at v6.18 120 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_H 5#define _LINUX_BPF_H 1 6 7#include <uapi/linux/bpf.h> 8#include <uapi/linux/filter.h> 9 10#include <crypto/sha2.h> 11#include <linux/workqueue.h> 12#include <linux/file.h> 13#include <linux/percpu.h> 14#include <linux/err.h> 15#include <linux/rbtree_latch.h> 16#include <linux/numa.h> 17#include <linux/mm_types.h> 18#include <linux/wait.h> 19#include <linux/refcount.h> 20#include <linux/mutex.h> 21#include <linux/module.h> 22#include <linux/kallsyms.h> 23#include <linux/capability.h> 24#include <linux/sched/mm.h> 25#include <linux/slab.h> 26#include <linux/percpu-refcount.h> 27#include <linux/stddef.h> 28#include <linux/bpfptr.h> 29#include <linux/btf.h> 30#include <linux/rcupdate_trace.h> 31#include <linux/static_call.h> 32#include <linux/memcontrol.h> 33#include <linux/cfi.h> 34#include <asm/rqspinlock.h> 35 36struct bpf_verifier_env; 37struct bpf_verifier_log; 38struct perf_event; 39struct bpf_prog; 40struct bpf_prog_aux; 41struct bpf_map; 42struct bpf_arena; 43struct sock; 44struct seq_file; 45struct btf; 46struct btf_type; 47struct exception_table_entry; 48struct seq_operations; 49struct bpf_iter_aux_info; 50struct bpf_local_storage; 51struct bpf_local_storage_map; 52struct kobject; 53struct mem_cgroup; 54struct module; 55struct bpf_func_state; 56struct ftrace_ops; 57struct cgroup; 58struct bpf_token; 59struct user_namespace; 60struct super_block; 61struct inode; 62 63extern struct idr btf_idr; 64extern spinlock_t btf_idr_lock; 65extern struct kobject *btf_kobj; 66extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 67extern bool bpf_global_ma_set; 68 69typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 70typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 71 struct bpf_iter_aux_info *aux); 72typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 73typedef unsigned int (*bpf_func_t)(const void *, 74 const struct bpf_insn *); 75struct bpf_iter_seq_info { 76 const struct seq_operations *seq_ops; 77 bpf_iter_init_seq_priv_t init_seq_private; 78 bpf_iter_fini_seq_priv_t fini_seq_private; 79 u32 seq_priv_size; 80}; 81 82/* map is generic key/value storage optionally accessible by eBPF programs */ 83struct bpf_map_ops { 84 /* funcs callable from userspace (via syscall) */ 85 int (*map_alloc_check)(union bpf_attr *attr); 86 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 87 void (*map_release)(struct bpf_map *map, struct file *map_file); 88 void (*map_free)(struct bpf_map *map); 89 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 90 void (*map_release_uref)(struct bpf_map *map); 91 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 92 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 93 union bpf_attr __user *uattr); 94 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 95 void *value, u64 flags); 96 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 97 const union bpf_attr *attr, 98 union bpf_attr __user *uattr); 99 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 100 const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 103 union bpf_attr __user *uattr); 104 105 /* funcs callable from userspace and from eBPF programs */ 106 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 107 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 108 long (*map_delete_elem)(struct bpf_map *map, void *key); 109 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 110 long (*map_pop_elem)(struct bpf_map *map, void *value); 111 long (*map_peek_elem)(struct bpf_map *map, void *value); 112 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 113 int (*map_get_hash)(struct bpf_map *map, u32 hash_buf_size, void *hash_buf); 114 115 /* funcs called by prog_array and perf_event_array map */ 116 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 117 int fd); 118 /* If need_defer is true, the implementation should guarantee that 119 * the to-be-put element is still alive before the bpf program, which 120 * may manipulate it, exists. 121 */ 122 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 123 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 124 u32 (*map_fd_sys_lookup_elem)(void *ptr); 125 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 126 struct seq_file *m); 127 int (*map_check_btf)(const struct bpf_map *map, 128 const struct btf *btf, 129 const struct btf_type *key_type, 130 const struct btf_type *value_type); 131 132 /* Prog poke tracking helpers. */ 133 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 134 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 135 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 136 struct bpf_prog *new); 137 138 /* Direct value access helpers. */ 139 int (*map_direct_value_addr)(const struct bpf_map *map, 140 u64 *imm, u32 off); 141 int (*map_direct_value_meta)(const struct bpf_map *map, 142 u64 imm, u32 *off); 143 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 144 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 145 struct poll_table_struct *pts); 146 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 147 unsigned long len, unsigned long pgoff, 148 unsigned long flags); 149 150 /* Functions called by bpf_local_storage maps */ 151 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 152 void *owner, u32 size); 153 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 154 void *owner, u32 size); 155 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 156 157 /* Misc helpers.*/ 158 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 159 160 /* map_meta_equal must be implemented for maps that can be 161 * used as an inner map. It is a runtime check to ensure 162 * an inner map can be inserted to an outer map. 163 * 164 * Some properties of the inner map has been used during the 165 * verification time. When inserting an inner map at the runtime, 166 * map_meta_equal has to ensure the inserting map has the same 167 * properties that the verifier has used earlier. 168 */ 169 bool (*map_meta_equal)(const struct bpf_map *meta0, 170 const struct bpf_map *meta1); 171 172 173 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 174 struct bpf_func_state *caller, 175 struct bpf_func_state *callee); 176 long (*map_for_each_callback)(struct bpf_map *map, 177 bpf_callback_t callback_fn, 178 void *callback_ctx, u64 flags); 179 180 u64 (*map_mem_usage)(const struct bpf_map *map); 181 182 /* BTF id of struct allocated by map_alloc */ 183 int *map_btf_id; 184 185 /* bpf_iter info used to open a seq_file */ 186 const struct bpf_iter_seq_info *iter_seq_info; 187}; 188 189enum { 190 /* Support at most 11 fields in a BTF type */ 191 BTF_FIELDS_MAX = 11, 192}; 193 194enum btf_field_type { 195 BPF_SPIN_LOCK = (1 << 0), 196 BPF_TIMER = (1 << 1), 197 BPF_KPTR_UNREF = (1 << 2), 198 BPF_KPTR_REF = (1 << 3), 199 BPF_KPTR_PERCPU = (1 << 4), 200 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 201 BPF_LIST_HEAD = (1 << 5), 202 BPF_LIST_NODE = (1 << 6), 203 BPF_RB_ROOT = (1 << 7), 204 BPF_RB_NODE = (1 << 8), 205 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 206 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 207 BPF_REFCOUNT = (1 << 9), 208 BPF_WORKQUEUE = (1 << 10), 209 BPF_UPTR = (1 << 11), 210 BPF_RES_SPIN_LOCK = (1 << 12), 211 BPF_TASK_WORK = (1 << 13), 212}; 213 214enum bpf_cgroup_storage_type { 215 BPF_CGROUP_STORAGE_SHARED, 216 BPF_CGROUP_STORAGE_PERCPU, 217 __BPF_CGROUP_STORAGE_MAX 218#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 219}; 220 221#ifdef CONFIG_CGROUP_BPF 222# define for_each_cgroup_storage_type(stype) \ 223 for (stype = 0; stype < MAX_BPF_CGROUP_STORAGE_TYPE; stype++) 224#else 225# define for_each_cgroup_storage_type(stype) for (; false; ) 226#endif /* CONFIG_CGROUP_BPF */ 227 228typedef void (*btf_dtor_kfunc_t)(void *); 229 230struct btf_field_kptr { 231 struct btf *btf; 232 struct module *module; 233 /* dtor used if btf_is_kernel(btf), otherwise the type is 234 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 235 */ 236 btf_dtor_kfunc_t dtor; 237 u32 btf_id; 238}; 239 240struct btf_field_graph_root { 241 struct btf *btf; 242 u32 value_btf_id; 243 u32 node_offset; 244 struct btf_record *value_rec; 245}; 246 247struct btf_field { 248 u32 offset; 249 u32 size; 250 enum btf_field_type type; 251 union { 252 struct btf_field_kptr kptr; 253 struct btf_field_graph_root graph_root; 254 }; 255}; 256 257struct btf_record { 258 u32 cnt; 259 u32 field_mask; 260 int spin_lock_off; 261 int res_spin_lock_off; 262 int timer_off; 263 int wq_off; 264 int refcount_off; 265 int task_work_off; 266 struct btf_field fields[]; 267}; 268 269/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 270struct bpf_rb_node_kern { 271 struct rb_node rb_node; 272 void *owner; 273} __attribute__((aligned(8))); 274 275/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 276struct bpf_list_node_kern { 277 struct list_head list_head; 278 void *owner; 279} __attribute__((aligned(8))); 280 281/* 'Ownership' of program-containing map is claimed by the first program 282 * that is going to use this map or by the first program which FD is 283 * stored in the map to make sure that all callers and callees have the 284 * same prog type, JITed flag and xdp_has_frags flag. 285 */ 286struct bpf_map_owner { 287 enum bpf_prog_type type; 288 bool jited; 289 bool xdp_has_frags; 290 u64 storage_cookie[MAX_BPF_CGROUP_STORAGE_TYPE]; 291 const struct btf_type *attach_func_proto; 292 enum bpf_attach_type expected_attach_type; 293}; 294 295struct bpf_map { 296 u8 sha[SHA256_DIGEST_SIZE]; 297 const struct bpf_map_ops *ops; 298 struct bpf_map *inner_map_meta; 299#ifdef CONFIG_SECURITY 300 void *security; 301#endif 302 enum bpf_map_type map_type; 303 u32 key_size; 304 u32 value_size; 305 u32 max_entries; 306 u64 map_extra; /* any per-map-type extra fields */ 307 u32 map_flags; 308 u32 id; 309 struct btf_record *record; 310 int numa_node; 311 u32 btf_key_type_id; 312 u32 btf_value_type_id; 313 u32 btf_vmlinux_value_type_id; 314 struct btf *btf; 315#ifdef CONFIG_MEMCG 316 struct obj_cgroup *objcg; 317#endif 318 char name[BPF_OBJ_NAME_LEN]; 319 struct mutex freeze_mutex; 320 atomic64_t refcnt; 321 atomic64_t usercnt; 322 /* rcu is used before freeing and work is only used during freeing */ 323 union { 324 struct work_struct work; 325 struct rcu_head rcu; 326 }; 327 atomic64_t writecnt; 328 spinlock_t owner_lock; 329 struct bpf_map_owner *owner; 330 bool bypass_spec_v1; 331 bool frozen; /* write-once; write-protected by freeze_mutex */ 332 bool free_after_mult_rcu_gp; 333 bool free_after_rcu_gp; 334 atomic64_t sleepable_refcnt; 335 s64 __percpu *elem_count; 336 u64 cookie; /* write-once */ 337 char *excl_prog_sha; 338}; 339 340static inline const char *btf_field_type_name(enum btf_field_type type) 341{ 342 switch (type) { 343 case BPF_SPIN_LOCK: 344 return "bpf_spin_lock"; 345 case BPF_RES_SPIN_LOCK: 346 return "bpf_res_spin_lock"; 347 case BPF_TIMER: 348 return "bpf_timer"; 349 case BPF_WORKQUEUE: 350 return "bpf_wq"; 351 case BPF_KPTR_UNREF: 352 case BPF_KPTR_REF: 353 return "kptr"; 354 case BPF_KPTR_PERCPU: 355 return "percpu_kptr"; 356 case BPF_UPTR: 357 return "uptr"; 358 case BPF_LIST_HEAD: 359 return "bpf_list_head"; 360 case BPF_LIST_NODE: 361 return "bpf_list_node"; 362 case BPF_RB_ROOT: 363 return "bpf_rb_root"; 364 case BPF_RB_NODE: 365 return "bpf_rb_node"; 366 case BPF_REFCOUNT: 367 return "bpf_refcount"; 368 case BPF_TASK_WORK: 369 return "bpf_task_work"; 370 default: 371 WARN_ON_ONCE(1); 372 return "unknown"; 373 } 374} 375 376#if IS_ENABLED(CONFIG_DEBUG_KERNEL) 377#define BPF_WARN_ONCE(cond, format...) WARN_ONCE(cond, format) 378#else 379#define BPF_WARN_ONCE(cond, format...) BUILD_BUG_ON_INVALID(cond) 380#endif 381 382static inline u32 btf_field_type_size(enum btf_field_type type) 383{ 384 switch (type) { 385 case BPF_SPIN_LOCK: 386 return sizeof(struct bpf_spin_lock); 387 case BPF_RES_SPIN_LOCK: 388 return sizeof(struct bpf_res_spin_lock); 389 case BPF_TIMER: 390 return sizeof(struct bpf_timer); 391 case BPF_WORKQUEUE: 392 return sizeof(struct bpf_wq); 393 case BPF_KPTR_UNREF: 394 case BPF_KPTR_REF: 395 case BPF_KPTR_PERCPU: 396 case BPF_UPTR: 397 return sizeof(u64); 398 case BPF_LIST_HEAD: 399 return sizeof(struct bpf_list_head); 400 case BPF_LIST_NODE: 401 return sizeof(struct bpf_list_node); 402 case BPF_RB_ROOT: 403 return sizeof(struct bpf_rb_root); 404 case BPF_RB_NODE: 405 return sizeof(struct bpf_rb_node); 406 case BPF_REFCOUNT: 407 return sizeof(struct bpf_refcount); 408 case BPF_TASK_WORK: 409 return sizeof(struct bpf_task_work); 410 default: 411 WARN_ON_ONCE(1); 412 return 0; 413 } 414} 415 416static inline u32 btf_field_type_align(enum btf_field_type type) 417{ 418 switch (type) { 419 case BPF_SPIN_LOCK: 420 return __alignof__(struct bpf_spin_lock); 421 case BPF_RES_SPIN_LOCK: 422 return __alignof__(struct bpf_res_spin_lock); 423 case BPF_TIMER: 424 return __alignof__(struct bpf_timer); 425 case BPF_WORKQUEUE: 426 return __alignof__(struct bpf_wq); 427 case BPF_KPTR_UNREF: 428 case BPF_KPTR_REF: 429 case BPF_KPTR_PERCPU: 430 case BPF_UPTR: 431 return __alignof__(u64); 432 case BPF_LIST_HEAD: 433 return __alignof__(struct bpf_list_head); 434 case BPF_LIST_NODE: 435 return __alignof__(struct bpf_list_node); 436 case BPF_RB_ROOT: 437 return __alignof__(struct bpf_rb_root); 438 case BPF_RB_NODE: 439 return __alignof__(struct bpf_rb_node); 440 case BPF_REFCOUNT: 441 return __alignof__(struct bpf_refcount); 442 case BPF_TASK_WORK: 443 return __alignof__(struct bpf_task_work); 444 default: 445 WARN_ON_ONCE(1); 446 return 0; 447 } 448} 449 450static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 451{ 452 memset(addr, 0, field->size); 453 454 switch (field->type) { 455 case BPF_REFCOUNT: 456 refcount_set((refcount_t *)addr, 1); 457 break; 458 case BPF_RB_NODE: 459 RB_CLEAR_NODE((struct rb_node *)addr); 460 break; 461 case BPF_LIST_HEAD: 462 case BPF_LIST_NODE: 463 INIT_LIST_HEAD((struct list_head *)addr); 464 break; 465 case BPF_RB_ROOT: 466 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 467 case BPF_SPIN_LOCK: 468 case BPF_RES_SPIN_LOCK: 469 case BPF_TIMER: 470 case BPF_WORKQUEUE: 471 case BPF_KPTR_UNREF: 472 case BPF_KPTR_REF: 473 case BPF_KPTR_PERCPU: 474 case BPF_UPTR: 475 case BPF_TASK_WORK: 476 break; 477 default: 478 WARN_ON_ONCE(1); 479 return; 480 } 481} 482 483static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 484{ 485 if (IS_ERR_OR_NULL(rec)) 486 return false; 487 return rec->field_mask & type; 488} 489 490static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 491{ 492 int i; 493 494 if (IS_ERR_OR_NULL(rec)) 495 return; 496 for (i = 0; i < rec->cnt; i++) 497 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 498} 499 500/* 'dst' must be a temporary buffer and should not point to memory that is being 501 * used in parallel by a bpf program or bpf syscall, otherwise the access from 502 * the bpf program or bpf syscall may be corrupted by the reinitialization, 503 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 504 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 505 * program or bpf syscall. 506 */ 507static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 508{ 509 bpf_obj_init(map->record, dst); 510} 511 512/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 513 * forced to use 'long' read/writes to try to atomically copy long counters. 514 * Best-effort only. No barriers here, since it _will_ race with concurrent 515 * updates from BPF programs. Called from bpf syscall and mostly used with 516 * size 8 or 16 bytes, so ask compiler to inline it. 517 */ 518static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 519{ 520 const long *lsrc = src; 521 long *ldst = dst; 522 523 size /= sizeof(long); 524 while (size--) 525 data_race(*ldst++ = *lsrc++); 526} 527 528/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 529static inline void bpf_obj_memcpy(struct btf_record *rec, 530 void *dst, void *src, u32 size, 531 bool long_memcpy) 532{ 533 u32 curr_off = 0; 534 int i; 535 536 if (IS_ERR_OR_NULL(rec)) { 537 if (long_memcpy) 538 bpf_long_memcpy(dst, src, round_up(size, 8)); 539 else 540 memcpy(dst, src, size); 541 return; 542 } 543 544 for (i = 0; i < rec->cnt; i++) { 545 u32 next_off = rec->fields[i].offset; 546 u32 sz = next_off - curr_off; 547 548 memcpy(dst + curr_off, src + curr_off, sz); 549 curr_off += rec->fields[i].size + sz; 550 } 551 memcpy(dst + curr_off, src + curr_off, size - curr_off); 552} 553 554static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 555{ 556 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 557} 558 559static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 560{ 561 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 562} 563 564static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src) 565{ 566 unsigned long *src_uptr, *dst_uptr; 567 const struct btf_field *field; 568 int i; 569 570 if (!btf_record_has_field(rec, BPF_UPTR)) 571 return; 572 573 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { 574 if (field->type != BPF_UPTR) 575 continue; 576 577 src_uptr = src + field->offset; 578 dst_uptr = dst + field->offset; 579 swap(*src_uptr, *dst_uptr); 580 } 581} 582 583static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 584{ 585 u32 curr_off = 0; 586 int i; 587 588 if (IS_ERR_OR_NULL(rec)) { 589 memset(dst, 0, size); 590 return; 591 } 592 593 for (i = 0; i < rec->cnt; i++) { 594 u32 next_off = rec->fields[i].offset; 595 u32 sz = next_off - curr_off; 596 597 memset(dst + curr_off, 0, sz); 598 curr_off += rec->fields[i].size + sz; 599 } 600 memset(dst + curr_off, 0, size - curr_off); 601} 602 603static inline void zero_map_value(struct bpf_map *map, void *dst) 604{ 605 bpf_obj_memzero(map->record, dst, map->value_size); 606} 607 608void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 609 bool lock_src); 610void bpf_timer_cancel_and_free(void *timer); 611void bpf_wq_cancel_and_free(void *timer); 612void bpf_task_work_cancel_and_free(void *timer); 613void bpf_list_head_free(const struct btf_field *field, void *list_head, 614 struct bpf_spin_lock *spin_lock); 615void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 616 struct bpf_spin_lock *spin_lock); 617u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 618u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 619int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 620 621struct bpf_offload_dev; 622struct bpf_offloaded_map; 623 624struct bpf_map_dev_ops { 625 int (*map_get_next_key)(struct bpf_offloaded_map *map, 626 void *key, void *next_key); 627 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 628 void *key, void *value); 629 int (*map_update_elem)(struct bpf_offloaded_map *map, 630 void *key, void *value, u64 flags); 631 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 632}; 633 634struct bpf_offloaded_map { 635 struct bpf_map map; 636 struct net_device *netdev; 637 const struct bpf_map_dev_ops *dev_ops; 638 void *dev_priv; 639 struct list_head offloads; 640}; 641 642static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 643{ 644 return container_of(map, struct bpf_offloaded_map, map); 645} 646 647static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 648{ 649 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 650} 651 652static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 653{ 654 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 655 map->ops->map_seq_show_elem; 656} 657 658int map_check_no_btf(const struct bpf_map *map, 659 const struct btf *btf, 660 const struct btf_type *key_type, 661 const struct btf_type *value_type); 662 663bool bpf_map_meta_equal(const struct bpf_map *meta0, 664 const struct bpf_map *meta1); 665 666extern const struct bpf_map_ops bpf_map_offload_ops; 667 668/* bpf_type_flag contains a set of flags that are applicable to the values of 669 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 670 * or a memory is read-only. We classify types into two categories: base types 671 * and extended types. Extended types are base types combined with a type flag. 672 * 673 * Currently there are no more than 32 base types in arg_type, ret_type and 674 * reg_types. 675 */ 676#define BPF_BASE_TYPE_BITS 8 677 678enum bpf_type_flag { 679 /* PTR may be NULL. */ 680 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 681 682 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 683 * compatible with both mutable and immutable memory. 684 */ 685 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 686 687 /* MEM points to BPF ring buffer reservation. */ 688 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 689 690 /* MEM is in user address space. */ 691 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 692 693 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 694 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 695 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 696 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 697 * to the specified cpu. 698 */ 699 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 700 701 /* Indicates that the argument will be released. */ 702 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 703 704 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 705 * unreferenced and referenced kptr loaded from map value using a load 706 * instruction, so that they can only be dereferenced but not escape the 707 * BPF program into the kernel (i.e. cannot be passed as arguments to 708 * kfunc or bpf helpers). 709 */ 710 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 711 712 /* MEM can be uninitialized. */ 713 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 714 715 /* DYNPTR points to memory local to the bpf program. */ 716 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 717 718 /* DYNPTR points to a kernel-produced ringbuf record. */ 719 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 720 721 /* Size is known at compile time. */ 722 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 723 724 /* MEM is of an allocated object of type in program BTF. This is used to 725 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 726 */ 727 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 728 729 /* PTR was passed from the kernel in a trusted context, and may be 730 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 731 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 732 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 733 * without invoking bpf_kptr_xchg(). What we really need to know is 734 * whether a pointer is safe to pass to a kfunc or BPF helper function. 735 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 736 * helpers, they do not cover all possible instances of unsafe 737 * pointers. For example, a pointer that was obtained from walking a 738 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 739 * fact that it may be NULL, invalid, etc. This is due to backwards 740 * compatibility requirements, as this was the behavior that was first 741 * introduced when kptrs were added. The behavior is now considered 742 * deprecated, and PTR_UNTRUSTED will eventually be removed. 743 * 744 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 745 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 746 * For example, pointers passed to tracepoint arguments are considered 747 * PTR_TRUSTED, as are pointers that are passed to struct_ops 748 * callbacks. As alluded to above, pointers that are obtained from 749 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 750 * struct task_struct *task is PTR_TRUSTED, then accessing 751 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 752 * in a BPF register. Similarly, pointers passed to certain programs 753 * types such as kretprobes are not guaranteed to be valid, as they may 754 * for example contain an object that was recently freed. 755 */ 756 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 757 758 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 759 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 760 761 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 762 * Currently only valid for linked-list and rbtree nodes. If the nodes 763 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 764 */ 765 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 766 767 /* DYNPTR points to sk_buff */ 768 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 769 770 /* DYNPTR points to xdp_buff */ 771 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 772 773 /* Memory must be aligned on some architectures, used in combination with 774 * MEM_FIXED_SIZE. 775 */ 776 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 777 778 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence 779 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the 780 * MEM_UNINIT means that memory needs to be initialized since it is also 781 * read. 782 */ 783 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), 784 785 /* DYNPTR points to skb_metadata_end()-skb_metadata_len() */ 786 DYNPTR_TYPE_SKB_META = BIT(19 + BPF_BASE_TYPE_BITS), 787 788 __BPF_TYPE_FLAG_MAX, 789 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 790}; 791 792#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 793 | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META) 794 795/* Max number of base types. */ 796#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 797 798/* Max number of all types. */ 799#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 800 801/* function argument constraints */ 802enum bpf_arg_type { 803 ARG_DONTCARE = 0, /* unused argument in helper function */ 804 805 /* the following constraints used to prototype 806 * bpf_map_lookup/update/delete_elem() functions 807 */ 808 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 809 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 810 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 811 812 /* Used to prototype bpf_memcmp() and other functions that access data 813 * on eBPF program stack 814 */ 815 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 816 ARG_PTR_TO_ARENA, 817 818 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 819 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 820 821 ARG_PTR_TO_CTX, /* pointer to context */ 822 ARG_ANYTHING, /* any (initialized) argument is ok */ 823 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 824 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 825 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 826 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 827 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 828 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 829 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 830 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 831 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 832 ARG_PTR_TO_STACK, /* pointer to stack */ 833 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 834 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 835 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 836 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 837 __BPF_ARG_TYPE_MAX, 838 839 /* Extended arg_types. */ 840 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 841 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 842 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 843 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 844 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 845 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 846 /* Pointer to memory does not need to be initialized, since helper function 847 * fills all bytes or clears them in error case. 848 */ 849 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, 850 /* Pointer to valid memory of size known at compile time. */ 851 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 852 853 /* This must be the last entry. Its purpose is to ensure the enum is 854 * wide enough to hold the higher bits reserved for bpf_type_flag. 855 */ 856 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 857}; 858static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 859 860/* type of values returned from helper functions */ 861enum bpf_return_type { 862 RET_INTEGER, /* function returns integer */ 863 RET_VOID, /* function doesn't return anything */ 864 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 865 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 866 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 867 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 868 RET_PTR_TO_MEM, /* returns a pointer to memory */ 869 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 870 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 871 __BPF_RET_TYPE_MAX, 872 873 /* Extended ret_types. */ 874 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 875 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 876 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 877 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 878 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 879 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 880 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 881 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 882 883 /* This must be the last entry. Its purpose is to ensure the enum is 884 * wide enough to hold the higher bits reserved for bpf_type_flag. 885 */ 886 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 887}; 888static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 889 890/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 891 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 892 * instructions after verifying 893 */ 894struct bpf_func_proto { 895 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 896 bool gpl_only; 897 bool pkt_access; 898 bool might_sleep; 899 /* set to true if helper follows contract for llvm 900 * attribute bpf_fastcall: 901 * - void functions do not scratch r0 902 * - functions taking N arguments scratch only registers r1-rN 903 */ 904 bool allow_fastcall; 905 enum bpf_return_type ret_type; 906 union { 907 struct { 908 enum bpf_arg_type arg1_type; 909 enum bpf_arg_type arg2_type; 910 enum bpf_arg_type arg3_type; 911 enum bpf_arg_type arg4_type; 912 enum bpf_arg_type arg5_type; 913 }; 914 enum bpf_arg_type arg_type[5]; 915 }; 916 union { 917 struct { 918 u32 *arg1_btf_id; 919 u32 *arg2_btf_id; 920 u32 *arg3_btf_id; 921 u32 *arg4_btf_id; 922 u32 *arg5_btf_id; 923 }; 924 u32 *arg_btf_id[5]; 925 struct { 926 size_t arg1_size; 927 size_t arg2_size; 928 size_t arg3_size; 929 size_t arg4_size; 930 size_t arg5_size; 931 }; 932 size_t arg_size[5]; 933 }; 934 int *ret_btf_id; /* return value btf_id */ 935 bool (*allowed)(const struct bpf_prog *prog); 936}; 937 938/* bpf_context is intentionally undefined structure. Pointer to bpf_context is 939 * the first argument to eBPF programs. 940 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 941 */ 942struct bpf_context; 943 944enum bpf_access_type { 945 BPF_READ = 1, 946 BPF_WRITE = 2 947}; 948 949/* types of values stored in eBPF registers */ 950/* Pointer types represent: 951 * pointer 952 * pointer + imm 953 * pointer + (u16) var 954 * pointer + (u16) var + imm 955 * if (range > 0) then [ptr, ptr + range - off) is safe to access 956 * if (id > 0) means that some 'var' was added 957 * if (off > 0) means that 'imm' was added 958 */ 959enum bpf_reg_type { 960 NOT_INIT = 0, /* nothing was written into register */ 961 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 962 PTR_TO_CTX, /* reg points to bpf_context */ 963 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 964 PTR_TO_MAP_VALUE, /* reg points to map element value */ 965 PTR_TO_MAP_KEY, /* reg points to a map element key */ 966 PTR_TO_STACK, /* reg == frame_pointer + offset */ 967 PTR_TO_PACKET_META, /* skb->data - meta_len */ 968 PTR_TO_PACKET, /* reg points to skb->data */ 969 PTR_TO_PACKET_END, /* skb->data + headlen */ 970 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 971 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 972 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 973 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 974 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 975 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 976 /* PTR_TO_BTF_ID points to a kernel struct that does not need 977 * to be null checked by the BPF program. This does not imply the 978 * pointer is _not_ null and in practice this can easily be a null 979 * pointer when reading pointer chains. The assumption is program 980 * context will handle null pointer dereference typically via fault 981 * handling. The verifier must keep this in mind and can make no 982 * assumptions about null or non-null when doing branch analysis. 983 * Further, when passed into helpers the helpers can not, without 984 * additional context, assume the value is non-null. 985 */ 986 PTR_TO_BTF_ID, 987 PTR_TO_MEM, /* reg points to valid memory region */ 988 PTR_TO_ARENA, 989 PTR_TO_BUF, /* reg points to a read/write buffer */ 990 PTR_TO_FUNC, /* reg points to a bpf program function */ 991 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 992 __BPF_REG_TYPE_MAX, 993 994 /* Extended reg_types. */ 995 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 996 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 997 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 998 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 999 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 1000 * been checked for null. Used primarily to inform the verifier 1001 * an explicit null check is required for this struct. 1002 */ 1003 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 1004 1005 /* This must be the last entry. Its purpose is to ensure the enum is 1006 * wide enough to hold the higher bits reserved for bpf_type_flag. 1007 */ 1008 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 1009}; 1010static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 1011 1012/* The information passed from prog-specific *_is_valid_access 1013 * back to the verifier. 1014 */ 1015struct bpf_insn_access_aux { 1016 enum bpf_reg_type reg_type; 1017 bool is_ldsx; 1018 union { 1019 int ctx_field_size; 1020 struct { 1021 struct btf *btf; 1022 u32 btf_id; 1023 u32 ref_obj_id; 1024 }; 1025 }; 1026 struct bpf_verifier_log *log; /* for verbose logs */ 1027 bool is_retval; /* is accessing function return value ? */ 1028}; 1029 1030static inline void 1031bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 1032{ 1033 aux->ctx_field_size = size; 1034} 1035 1036static bool bpf_is_ldimm64(const struct bpf_insn *insn) 1037{ 1038 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 1039} 1040 1041static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 1042{ 1043 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 1044} 1045 1046/* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an 1047 * atomic load or store, and false if it is a read-modify-write instruction. 1048 */ 1049static inline bool 1050bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn) 1051{ 1052 switch (atomic_insn->imm) { 1053 case BPF_LOAD_ACQ: 1054 case BPF_STORE_REL: 1055 return true; 1056 default: 1057 return false; 1058 } 1059} 1060 1061struct bpf_prog_ops { 1062 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 1063 union bpf_attr __user *uattr); 1064}; 1065 1066struct bpf_reg_state; 1067struct bpf_verifier_ops { 1068 /* return eBPF function prototype for verification */ 1069 const struct bpf_func_proto * 1070 (*get_func_proto)(enum bpf_func_id func_id, 1071 const struct bpf_prog *prog); 1072 1073 /* return true if 'size' wide access at offset 'off' within bpf_context 1074 * with 'type' (read or write) is allowed 1075 */ 1076 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 1077 const struct bpf_prog *prog, 1078 struct bpf_insn_access_aux *info); 1079 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 1080 const struct bpf_prog *prog); 1081 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 1082 s16 ctx_stack_off); 1083 int (*gen_ld_abs)(const struct bpf_insn *orig, 1084 struct bpf_insn *insn_buf); 1085 u32 (*convert_ctx_access)(enum bpf_access_type type, 1086 const struct bpf_insn *src, 1087 struct bpf_insn *dst, 1088 struct bpf_prog *prog, u32 *target_size); 1089 int (*btf_struct_access)(struct bpf_verifier_log *log, 1090 const struct bpf_reg_state *reg, 1091 int off, int size); 1092}; 1093 1094struct bpf_prog_offload_ops { 1095 /* verifier basic callbacks */ 1096 int (*insn_hook)(struct bpf_verifier_env *env, 1097 int insn_idx, int prev_insn_idx); 1098 int (*finalize)(struct bpf_verifier_env *env); 1099 /* verifier optimization callbacks (called after .finalize) */ 1100 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1101 struct bpf_insn *insn); 1102 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1103 /* program management callbacks */ 1104 int (*prepare)(struct bpf_prog *prog); 1105 int (*translate)(struct bpf_prog *prog); 1106 void (*destroy)(struct bpf_prog *prog); 1107}; 1108 1109struct bpf_prog_offload { 1110 struct bpf_prog *prog; 1111 struct net_device *netdev; 1112 struct bpf_offload_dev *offdev; 1113 void *dev_priv; 1114 struct list_head offloads; 1115 bool dev_state; 1116 bool opt_failed; 1117 void *jited_image; 1118 u32 jited_len; 1119}; 1120 1121/* The longest tracepoint has 12 args. 1122 * See include/trace/bpf_probe.h 1123 */ 1124#define MAX_BPF_FUNC_ARGS 12 1125 1126/* The maximum number of arguments passed through registers 1127 * a single function may have. 1128 */ 1129#define MAX_BPF_FUNC_REG_ARGS 5 1130 1131/* The argument is a structure or a union. */ 1132#define BTF_FMODEL_STRUCT_ARG BIT(0) 1133 1134/* The argument is signed. */ 1135#define BTF_FMODEL_SIGNED_ARG BIT(1) 1136 1137struct btf_func_model { 1138 u8 ret_size; 1139 u8 ret_flags; 1140 u8 nr_args; 1141 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1142 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1143}; 1144 1145/* Restore arguments before returning from trampoline to let original function 1146 * continue executing. This flag is used for fentry progs when there are no 1147 * fexit progs. 1148 */ 1149#define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1150/* Call original function after fentry progs, but before fexit progs. 1151 * Makes sense for fentry/fexit, normal calls and indirect calls. 1152 */ 1153#define BPF_TRAMP_F_CALL_ORIG BIT(1) 1154/* Skip current frame and return to parent. Makes sense for fentry/fexit 1155 * programs only. Should not be used with normal calls and indirect calls. 1156 */ 1157#define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1158/* Store IP address of the caller on the trampoline stack, 1159 * so it's available for trampoline's programs. 1160 */ 1161#define BPF_TRAMP_F_IP_ARG BIT(3) 1162/* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1163#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1164 1165/* Get original function from stack instead of from provided direct address. 1166 * Makes sense for trampolines with fexit or fmod_ret programs. 1167 */ 1168#define BPF_TRAMP_F_ORIG_STACK BIT(5) 1169 1170/* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1171 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1172 */ 1173#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1174 1175/* Indicate that current trampoline is in a tail call context. Then, it has to 1176 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1177 */ 1178#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1179 1180/* 1181 * Indicate the trampoline should be suitable to receive indirect calls; 1182 * without this indirectly calling the generated code can result in #UD/#CP, 1183 * depending on the CFI options. 1184 * 1185 * Used by bpf_struct_ops. 1186 * 1187 * Incompatible with FENTRY usage, overloads @func_addr argument. 1188 */ 1189#define BPF_TRAMP_F_INDIRECT BIT(8) 1190 1191/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1192 * bytes on x86. 1193 */ 1194enum { 1195#if defined(__s390x__) 1196 BPF_MAX_TRAMP_LINKS = 27, 1197#else 1198 BPF_MAX_TRAMP_LINKS = 38, 1199#endif 1200}; 1201 1202struct bpf_tramp_links { 1203 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1204 int nr_links; 1205}; 1206 1207struct bpf_tramp_run_ctx; 1208 1209/* Different use cases for BPF trampoline: 1210 * 1. replace nop at the function entry (kprobe equivalent) 1211 * flags = BPF_TRAMP_F_RESTORE_REGS 1212 * fentry = a set of programs to run before returning from trampoline 1213 * 1214 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1215 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1216 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1217 * fentry = a set of program to run before calling original function 1218 * fexit = a set of program to run after original function 1219 * 1220 * 3. replace direct call instruction anywhere in the function body 1221 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1222 * With flags = 0 1223 * fentry = a set of programs to run before returning from trampoline 1224 * With flags = BPF_TRAMP_F_CALL_ORIG 1225 * orig_call = original callback addr or direct function addr 1226 * fentry = a set of program to run before calling original function 1227 * fexit = a set of program to run after original function 1228 */ 1229struct bpf_tramp_image; 1230int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1231 const struct btf_func_model *m, u32 flags, 1232 struct bpf_tramp_links *tlinks, 1233 void *func_addr); 1234void *arch_alloc_bpf_trampoline(unsigned int size); 1235void arch_free_bpf_trampoline(void *image, unsigned int size); 1236int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1237int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1238 struct bpf_tramp_links *tlinks, void *func_addr); 1239 1240u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1241 struct bpf_tramp_run_ctx *run_ctx); 1242void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1243 struct bpf_tramp_run_ctx *run_ctx); 1244void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1245void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1246typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1247 struct bpf_tramp_run_ctx *run_ctx); 1248typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1249 struct bpf_tramp_run_ctx *run_ctx); 1250bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1251bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1252 1253struct bpf_ksym { 1254 unsigned long start; 1255 unsigned long end; 1256 char name[KSYM_NAME_LEN]; 1257 struct list_head lnode; 1258 struct latch_tree_node tnode; 1259 bool prog; 1260}; 1261 1262enum bpf_tramp_prog_type { 1263 BPF_TRAMP_FENTRY, 1264 BPF_TRAMP_FEXIT, 1265 BPF_TRAMP_MODIFY_RETURN, 1266 BPF_TRAMP_MAX, 1267 BPF_TRAMP_REPLACE, /* more than MAX */ 1268}; 1269 1270struct bpf_tramp_image { 1271 void *image; 1272 int size; 1273 struct bpf_ksym ksym; 1274 struct percpu_ref pcref; 1275 void *ip_after_call; 1276 void *ip_epilogue; 1277 union { 1278 struct rcu_head rcu; 1279 struct work_struct work; 1280 }; 1281}; 1282 1283struct bpf_trampoline { 1284 /* hlist for trampoline_table */ 1285 struct hlist_node hlist; 1286 struct ftrace_ops *fops; 1287 /* serializes access to fields of this trampoline */ 1288 struct mutex mutex; 1289 refcount_t refcnt; 1290 u32 flags; 1291 u64 key; 1292 struct { 1293 struct btf_func_model model; 1294 void *addr; 1295 bool ftrace_managed; 1296 } func; 1297 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1298 * program by replacing one of its functions. func.addr is the address 1299 * of the function it replaced. 1300 */ 1301 struct bpf_prog *extension_prog; 1302 /* list of BPF programs using this trampoline */ 1303 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1304 /* Number of attached programs. A counter per kind. */ 1305 int progs_cnt[BPF_TRAMP_MAX]; 1306 /* Executable image of trampoline */ 1307 struct bpf_tramp_image *cur_image; 1308}; 1309 1310struct bpf_attach_target_info { 1311 struct btf_func_model fmodel; 1312 long tgt_addr; 1313 struct module *tgt_mod; 1314 const char *tgt_name; 1315 const struct btf_type *tgt_type; 1316}; 1317 1318#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1319 1320struct bpf_dispatcher_prog { 1321 struct bpf_prog *prog; 1322 refcount_t users; 1323}; 1324 1325struct bpf_dispatcher { 1326 /* dispatcher mutex */ 1327 struct mutex mutex; 1328 void *func; 1329 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1330 int num_progs; 1331 void *image; 1332 void *rw_image; 1333 u32 image_off; 1334 struct bpf_ksym ksym; 1335#ifdef CONFIG_HAVE_STATIC_CALL 1336 struct static_call_key *sc_key; 1337 void *sc_tramp; 1338#endif 1339}; 1340 1341#ifndef __bpfcall 1342#define __bpfcall __nocfi 1343#endif 1344 1345static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1346 const void *ctx, 1347 const struct bpf_insn *insnsi, 1348 bpf_func_t bpf_func) 1349{ 1350 return bpf_func(ctx, insnsi); 1351} 1352 1353/* the implementation of the opaque uapi struct bpf_dynptr */ 1354struct bpf_dynptr_kern { 1355 void *data; 1356 /* Size represents the number of usable bytes of dynptr data. 1357 * If for example the offset is at 4 for a local dynptr whose data is 1358 * of type u64, the number of usable bytes is 4. 1359 * 1360 * The upper 8 bits are reserved. It is as follows: 1361 * Bits 0 - 23 = size 1362 * Bits 24 - 30 = dynptr type 1363 * Bit 31 = whether dynptr is read-only 1364 */ 1365 u32 size; 1366 u32 offset; 1367} __aligned(8); 1368 1369enum bpf_dynptr_type { 1370 BPF_DYNPTR_TYPE_INVALID, 1371 /* Points to memory that is local to the bpf program */ 1372 BPF_DYNPTR_TYPE_LOCAL, 1373 /* Underlying data is a ringbuf record */ 1374 BPF_DYNPTR_TYPE_RINGBUF, 1375 /* Underlying data is a sk_buff */ 1376 BPF_DYNPTR_TYPE_SKB, 1377 /* Underlying data is a xdp_buff */ 1378 BPF_DYNPTR_TYPE_XDP, 1379 /* Points to skb_metadata_end()-skb_metadata_len() */ 1380 BPF_DYNPTR_TYPE_SKB_META, 1381}; 1382 1383int bpf_dynptr_check_size(u32 size); 1384u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1385const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1386void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1387bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1388int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, 1389 void *src, u32 len, u64 flags); 1390void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset, 1391 void *buffer__opt, u32 buffer__szk); 1392 1393static inline int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1394{ 1395 u32 size = __bpf_dynptr_size(ptr); 1396 1397 if (len > size || offset > size - len) 1398 return -E2BIG; 1399 1400 return 0; 1401} 1402 1403#ifdef CONFIG_BPF_JIT 1404int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1405 struct bpf_trampoline *tr, 1406 struct bpf_prog *tgt_prog); 1407int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1408 struct bpf_trampoline *tr, 1409 struct bpf_prog *tgt_prog); 1410struct bpf_trampoline *bpf_trampoline_get(u64 key, 1411 struct bpf_attach_target_info *tgt_info); 1412void bpf_trampoline_put(struct bpf_trampoline *tr); 1413int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1414 1415/* 1416 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1417 * indirection with a direct call to the bpf program. If the architecture does 1418 * not have STATIC_CALL, avoid a double-indirection. 1419 */ 1420#ifdef CONFIG_HAVE_STATIC_CALL 1421 1422#define __BPF_DISPATCHER_SC_INIT(_name) \ 1423 .sc_key = &STATIC_CALL_KEY(_name), \ 1424 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1425 1426#define __BPF_DISPATCHER_SC(name) \ 1427 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1428 1429#define __BPF_DISPATCHER_CALL(name) \ 1430 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1431 1432#define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1433 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1434 1435#else 1436#define __BPF_DISPATCHER_SC_INIT(name) 1437#define __BPF_DISPATCHER_SC(name) 1438#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1439#define __BPF_DISPATCHER_UPDATE(_d, _new) 1440#endif 1441 1442#define BPF_DISPATCHER_INIT(_name) { \ 1443 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1444 .func = &_name##_func, \ 1445 .progs = {}, \ 1446 .num_progs = 0, \ 1447 .image = NULL, \ 1448 .image_off = 0, \ 1449 .ksym = { \ 1450 .name = #_name, \ 1451 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1452 }, \ 1453 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1454} 1455 1456#define DEFINE_BPF_DISPATCHER(name) \ 1457 __BPF_DISPATCHER_SC(name); \ 1458 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1459 const void *ctx, \ 1460 const struct bpf_insn *insnsi, \ 1461 bpf_func_t bpf_func) \ 1462 { \ 1463 return __BPF_DISPATCHER_CALL(name); \ 1464 } \ 1465 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1466 struct bpf_dispatcher bpf_dispatcher_##name = \ 1467 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1468 1469#define DECLARE_BPF_DISPATCHER(name) \ 1470 unsigned int bpf_dispatcher_##name##_func( \ 1471 const void *ctx, \ 1472 const struct bpf_insn *insnsi, \ 1473 bpf_func_t bpf_func); \ 1474 extern struct bpf_dispatcher bpf_dispatcher_##name; 1475 1476#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1477#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1478void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1479 struct bpf_prog *to); 1480/* Called only from JIT-enabled code, so there's no need for stubs. */ 1481void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym); 1482void bpf_image_ksym_add(struct bpf_ksym *ksym); 1483void bpf_image_ksym_del(struct bpf_ksym *ksym); 1484void bpf_ksym_add(struct bpf_ksym *ksym); 1485void bpf_ksym_del(struct bpf_ksym *ksym); 1486int bpf_jit_charge_modmem(u32 size); 1487void bpf_jit_uncharge_modmem(u32 size); 1488bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1489#else 1490static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1491 struct bpf_trampoline *tr, 1492 struct bpf_prog *tgt_prog) 1493{ 1494 return -ENOTSUPP; 1495} 1496static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1497 struct bpf_trampoline *tr, 1498 struct bpf_prog *tgt_prog) 1499{ 1500 return -ENOTSUPP; 1501} 1502static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1503 struct bpf_attach_target_info *tgt_info) 1504{ 1505 return NULL; 1506} 1507static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1508#define DEFINE_BPF_DISPATCHER(name) 1509#define DECLARE_BPF_DISPATCHER(name) 1510#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1511#define BPF_DISPATCHER_PTR(name) NULL 1512static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1513 struct bpf_prog *from, 1514 struct bpf_prog *to) {} 1515static inline bool is_bpf_image_address(unsigned long address) 1516{ 1517 return false; 1518} 1519static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1520{ 1521 return false; 1522} 1523#endif 1524 1525struct bpf_func_info_aux { 1526 u16 linkage; 1527 bool unreliable; 1528 bool called : 1; 1529 bool verified : 1; 1530}; 1531 1532enum bpf_jit_poke_reason { 1533 BPF_POKE_REASON_TAIL_CALL, 1534}; 1535 1536/* Descriptor of pokes pointing /into/ the JITed image. */ 1537struct bpf_jit_poke_descriptor { 1538 void *tailcall_target; 1539 void *tailcall_bypass; 1540 void *bypass_addr; 1541 void *aux; 1542 union { 1543 struct { 1544 struct bpf_map *map; 1545 u32 key; 1546 } tail_call; 1547 }; 1548 bool tailcall_target_stable; 1549 u8 adj_off; 1550 u16 reason; 1551 u32 insn_idx; 1552}; 1553 1554/* reg_type info for ctx arguments */ 1555struct bpf_ctx_arg_aux { 1556 u32 offset; 1557 enum bpf_reg_type reg_type; 1558 struct btf *btf; 1559 u32 btf_id; 1560 u32 ref_obj_id; 1561 bool refcounted; 1562}; 1563 1564struct btf_mod_pair { 1565 struct btf *btf; 1566 struct module *module; 1567}; 1568 1569struct bpf_kfunc_desc_tab; 1570 1571enum bpf_stream_id { 1572 BPF_STDOUT = 1, 1573 BPF_STDERR = 2, 1574}; 1575 1576struct bpf_stream_elem { 1577 struct llist_node node; 1578 int total_len; 1579 int consumed_len; 1580 char str[]; 1581}; 1582 1583enum { 1584 /* 100k bytes */ 1585 BPF_STREAM_MAX_CAPACITY = 100000ULL, 1586}; 1587 1588struct bpf_stream { 1589 atomic_t capacity; 1590 struct llist_head log; /* list of in-flight stream elements in LIFO order */ 1591 1592 struct mutex lock; /* lock protecting backlog_{head,tail} */ 1593 struct llist_node *backlog_head; /* list of in-flight stream elements in FIFO order */ 1594 struct llist_node *backlog_tail; /* tail of the list above */ 1595}; 1596 1597struct bpf_stream_stage { 1598 struct llist_head log; 1599 int len; 1600}; 1601 1602struct bpf_prog_aux { 1603 atomic64_t refcnt; 1604 u32 used_map_cnt; 1605 u32 used_btf_cnt; 1606 u32 max_ctx_offset; 1607 u32 max_pkt_offset; 1608 u32 max_tp_access; 1609 u32 stack_depth; 1610 u32 id; 1611 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1612 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1613 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1614 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1615 u32 attach_st_ops_member_off; 1616 u32 ctx_arg_info_size; 1617 u32 max_rdonly_access; 1618 u32 max_rdwr_access; 1619 struct btf *attach_btf; 1620 struct bpf_ctx_arg_aux *ctx_arg_info; 1621 void __percpu *priv_stack_ptr; 1622 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1623 struct bpf_prog *dst_prog; 1624 struct bpf_trampoline *dst_trampoline; 1625 enum bpf_prog_type saved_dst_prog_type; 1626 enum bpf_attach_type saved_dst_attach_type; 1627 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1628 bool dev_bound; /* Program is bound to the netdev. */ 1629 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1630 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1631 bool attach_tracing_prog; /* true if tracing another tracing program */ 1632 bool func_proto_unreliable; 1633 bool tail_call_reachable; 1634 bool xdp_has_frags; 1635 bool exception_cb; 1636 bool exception_boundary; 1637 bool is_extended; /* true if extended by freplace program */ 1638 bool jits_use_priv_stack; 1639 bool priv_stack_requested; 1640 bool changes_pkt_data; 1641 bool might_sleep; 1642 bool kprobe_write_ctx; 1643 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ 1644 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ 1645 struct bpf_arena *arena; 1646 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */ 1647 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1648 const struct btf_type *attach_func_proto; 1649 /* function name for valid attach_btf_id */ 1650 const char *attach_func_name; 1651 struct bpf_prog **func; 1652 struct bpf_prog_aux *main_prog_aux; 1653 void *jit_data; /* JIT specific data. arch dependent */ 1654 struct bpf_jit_poke_descriptor *poke_tab; 1655 struct bpf_kfunc_desc_tab *kfunc_tab; 1656 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1657 u32 size_poke_tab; 1658#ifdef CONFIG_FINEIBT 1659 struct bpf_ksym ksym_prefix; 1660#endif 1661 struct bpf_ksym ksym; 1662 const struct bpf_prog_ops *ops; 1663 const struct bpf_struct_ops *st_ops; 1664 struct bpf_map **used_maps; 1665 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1666 struct btf_mod_pair *used_btfs; 1667 struct bpf_prog *prog; 1668 struct user_struct *user; 1669 u64 load_time; /* ns since boottime */ 1670 u32 verified_insns; 1671 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1672 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1673 char name[BPF_OBJ_NAME_LEN]; 1674 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1675#ifdef CONFIG_SECURITY 1676 void *security; 1677#endif 1678 struct bpf_token *token; 1679 struct bpf_prog_offload *offload; 1680 struct btf *btf; 1681 struct bpf_func_info *func_info; 1682 struct bpf_func_info_aux *func_info_aux; 1683 /* bpf_line_info loaded from userspace. linfo->insn_off 1684 * has the xlated insn offset. 1685 * Both the main and sub prog share the same linfo. 1686 * The subprog can access its first linfo by 1687 * using the linfo_idx. 1688 */ 1689 struct bpf_line_info *linfo; 1690 /* jited_linfo is the jited addr of the linfo. It has a 1691 * one to one mapping to linfo: 1692 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1693 * Both the main and sub prog share the same jited_linfo. 1694 * The subprog can access its first jited_linfo by 1695 * using the linfo_idx. 1696 */ 1697 void **jited_linfo; 1698 u32 func_info_cnt; 1699 u32 nr_linfo; 1700 /* subprog can use linfo_idx to access its first linfo and 1701 * jited_linfo. 1702 * main prog always has linfo_idx == 0 1703 */ 1704 u32 linfo_idx; 1705 struct module *mod; 1706 u32 num_exentries; 1707 struct exception_table_entry *extable; 1708 union { 1709 struct work_struct work; 1710 struct rcu_head rcu; 1711 }; 1712 struct bpf_stream stream[2]; 1713}; 1714 1715struct bpf_prog { 1716 u16 pages; /* Number of allocated pages */ 1717 u16 jited:1, /* Is our filter JIT'ed? */ 1718 jit_requested:1,/* archs need to JIT the prog */ 1719 gpl_compatible:1, /* Is filter GPL compatible? */ 1720 cb_access:1, /* Is control block accessed? */ 1721 dst_needed:1, /* Do we need dst entry? */ 1722 blinding_requested:1, /* needs constant blinding */ 1723 blinded:1, /* Was blinded */ 1724 is_func:1, /* program is a bpf function */ 1725 kprobe_override:1, /* Do we override a kprobe? */ 1726 has_callchain_buf:1, /* callchain buffer allocated? */ 1727 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1728 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1729 call_get_func_ip:1, /* Do we call get_func_ip() */ 1730 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1731 sleepable:1; /* BPF program is sleepable */ 1732 enum bpf_prog_type type; /* Type of BPF program */ 1733 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1734 u32 len; /* Number of filter blocks */ 1735 u32 jited_len; /* Size of jited insns in bytes */ 1736 union { 1737 u8 digest[SHA256_DIGEST_SIZE]; 1738 u8 tag[BPF_TAG_SIZE]; 1739 }; 1740 struct bpf_prog_stats __percpu *stats; 1741 int __percpu *active; 1742 unsigned int (*bpf_func)(const void *ctx, 1743 const struct bpf_insn *insn); 1744 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1745 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1746 /* Instructions for interpreter */ 1747 union { 1748 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1749 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1750 }; 1751}; 1752 1753struct bpf_array_aux { 1754 /* Programs with direct jumps into programs part of this array. */ 1755 struct list_head poke_progs; 1756 struct bpf_map *map; 1757 struct mutex poke_mutex; 1758 struct work_struct work; 1759}; 1760 1761struct bpf_link { 1762 atomic64_t refcnt; 1763 u32 id; 1764 enum bpf_link_type type; 1765 const struct bpf_link_ops *ops; 1766 struct bpf_prog *prog; 1767 1768 u32 flags; 1769 enum bpf_attach_type attach_type; 1770 1771 /* rcu is used before freeing, work can be used to schedule that 1772 * RCU-based freeing before that, so they never overlap 1773 */ 1774 union { 1775 struct rcu_head rcu; 1776 struct work_struct work; 1777 }; 1778 /* whether BPF link itself has "sleepable" semantics, which can differ 1779 * from underlying BPF program having a "sleepable" semantics, as BPF 1780 * link's semantics is determined by target attach hook 1781 */ 1782 bool sleepable; 1783}; 1784 1785struct bpf_link_ops { 1786 void (*release)(struct bpf_link *link); 1787 /* deallocate link resources callback, called without RCU grace period 1788 * waiting 1789 */ 1790 void (*dealloc)(struct bpf_link *link); 1791 /* deallocate link resources callback, called after RCU grace period; 1792 * if either the underlying BPF program is sleepable or BPF link's 1793 * target hook is sleepable, we'll go through tasks trace RCU GP and 1794 * then "classic" RCU GP; this need for chaining tasks trace and 1795 * classic RCU GPs is designated by setting bpf_link->sleepable flag 1796 */ 1797 void (*dealloc_deferred)(struct bpf_link *link); 1798 int (*detach)(struct bpf_link *link); 1799 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1800 struct bpf_prog *old_prog); 1801 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1802 int (*fill_link_info)(const struct bpf_link *link, 1803 struct bpf_link_info *info); 1804 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1805 struct bpf_map *old_map); 1806 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1807}; 1808 1809struct bpf_tramp_link { 1810 struct bpf_link link; 1811 struct hlist_node tramp_hlist; 1812 u64 cookie; 1813}; 1814 1815struct bpf_shim_tramp_link { 1816 struct bpf_tramp_link link; 1817 struct bpf_trampoline *trampoline; 1818}; 1819 1820struct bpf_tracing_link { 1821 struct bpf_tramp_link link; 1822 struct bpf_trampoline *trampoline; 1823 struct bpf_prog *tgt_prog; 1824}; 1825 1826struct bpf_raw_tp_link { 1827 struct bpf_link link; 1828 struct bpf_raw_event_map *btp; 1829 u64 cookie; 1830}; 1831 1832struct bpf_link_primer { 1833 struct bpf_link *link; 1834 struct file *file; 1835 int fd; 1836 u32 id; 1837}; 1838 1839struct bpf_mount_opts { 1840 kuid_t uid; 1841 kgid_t gid; 1842 umode_t mode; 1843 1844 /* BPF token-related delegation options */ 1845 u64 delegate_cmds; 1846 u64 delegate_maps; 1847 u64 delegate_progs; 1848 u64 delegate_attachs; 1849}; 1850 1851struct bpf_token { 1852 struct work_struct work; 1853 atomic64_t refcnt; 1854 struct user_namespace *userns; 1855 u64 allowed_cmds; 1856 u64 allowed_maps; 1857 u64 allowed_progs; 1858 u64 allowed_attachs; 1859#ifdef CONFIG_SECURITY 1860 void *security; 1861#endif 1862}; 1863 1864struct bpf_struct_ops_value; 1865struct btf_member; 1866 1867#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1868/** 1869 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1870 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1871 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1872 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1873 * when determining whether the struct_ops progs in the 1874 * struct_ops map are valid. 1875 * @init: A callback that is invoked a single time, and before any other 1876 * callback, to initialize the structure. A nonzero return value means 1877 * the subsystem could not be initialized. 1878 * @check_member: When defined, a callback invoked by the verifier to allow 1879 * the subsystem to determine if an entry in the struct_ops map 1880 * is valid. A nonzero return value means that the map is 1881 * invalid and should be rejected by the verifier. 1882 * @init_member: A callback that is invoked for each member of the struct_ops 1883 * map to allow the subsystem to initialize the member. A nonzero 1884 * value means the member could not be initialized. This callback 1885 * is exclusive with the @type, @type_id, @value_type, and 1886 * @value_id fields. 1887 * @reg: A callback that is invoked when the struct_ops map has been 1888 * initialized and is being attached to. Zero means the struct_ops map 1889 * has been successfully registered and is live. A nonzero return value 1890 * means the struct_ops map could not be registered. 1891 * @unreg: A callback that is invoked when the struct_ops map should be 1892 * unregistered. 1893 * @update: A callback that is invoked when the live struct_ops map is being 1894 * updated to contain new values. This callback is only invoked when 1895 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1896 * it is assumed that the struct_ops map cannot be updated. 1897 * @validate: A callback that is invoked after all of the members have been 1898 * initialized. This callback should perform static checks on the 1899 * map, meaning that it should either fail or succeed 1900 * deterministically. A struct_ops map that has been validated may 1901 * not necessarily succeed in being registered if the call to @reg 1902 * fails. For example, a valid struct_ops map may be loaded, but 1903 * then fail to be registered due to there being another active 1904 * struct_ops map on the system in the subsystem already. For this 1905 * reason, if this callback is not defined, the check is skipped as 1906 * the struct_ops map will have final verification performed in 1907 * @reg. 1908 * @type: BTF type. 1909 * @value_type: Value type. 1910 * @name: The name of the struct bpf_struct_ops object. 1911 * @func_models: Func models 1912 * @type_id: BTF type id. 1913 * @value_id: BTF value id. 1914 */ 1915struct bpf_struct_ops { 1916 const struct bpf_verifier_ops *verifier_ops; 1917 int (*init)(struct btf *btf); 1918 int (*check_member)(const struct btf_type *t, 1919 const struct btf_member *member, 1920 const struct bpf_prog *prog); 1921 int (*init_member)(const struct btf_type *t, 1922 const struct btf_member *member, 1923 void *kdata, const void *udata); 1924 int (*reg)(void *kdata, struct bpf_link *link); 1925 void (*unreg)(void *kdata, struct bpf_link *link); 1926 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1927 int (*validate)(void *kdata); 1928 void *cfi_stubs; 1929 struct module *owner; 1930 const char *name; 1931 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1932}; 1933 1934/* Every member of a struct_ops type has an instance even a member is not 1935 * an operator (function pointer). The "info" field will be assigned to 1936 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1937 * argument information required by the verifier to verify the program. 1938 * 1939 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1940 * corresponding entry for an given argument. 1941 */ 1942struct bpf_struct_ops_arg_info { 1943 struct bpf_ctx_arg_aux *info; 1944 u32 cnt; 1945}; 1946 1947struct bpf_struct_ops_desc { 1948 struct bpf_struct_ops *st_ops; 1949 1950 const struct btf_type *type; 1951 const struct btf_type *value_type; 1952 u32 type_id; 1953 u32 value_id; 1954 1955 /* Collection of argument information for each member */ 1956 struct bpf_struct_ops_arg_info *arg_info; 1957}; 1958 1959enum bpf_struct_ops_state { 1960 BPF_STRUCT_OPS_STATE_INIT, 1961 BPF_STRUCT_OPS_STATE_INUSE, 1962 BPF_STRUCT_OPS_STATE_TOBEFREE, 1963 BPF_STRUCT_OPS_STATE_READY, 1964}; 1965 1966struct bpf_struct_ops_common_value { 1967 refcount_t refcnt; 1968 enum bpf_struct_ops_state state; 1969}; 1970 1971#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1972/* This macro helps developer to register a struct_ops type and generate 1973 * type information correctly. Developers should use this macro to register 1974 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1975 */ 1976#define register_bpf_struct_ops(st_ops, type) \ 1977 ({ \ 1978 struct bpf_struct_ops_##type { \ 1979 struct bpf_struct_ops_common_value common; \ 1980 struct type data ____cacheline_aligned_in_smp; \ 1981 }; \ 1982 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1983 __register_bpf_struct_ops(st_ops); \ 1984 }) 1985#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1986bool bpf_struct_ops_get(const void *kdata); 1987void bpf_struct_ops_put(const void *kdata); 1988int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1989int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1990 void *value); 1991int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1992 struct bpf_tramp_link *link, 1993 const struct btf_func_model *model, 1994 void *stub_func, 1995 void **image, u32 *image_off, 1996 bool allow_alloc); 1997void bpf_struct_ops_image_free(void *image); 1998static inline bool bpf_try_module_get(const void *data, struct module *owner) 1999{ 2000 if (owner == BPF_MODULE_OWNER) 2001 return bpf_struct_ops_get(data); 2002 else 2003 return try_module_get(owner); 2004} 2005static inline void bpf_module_put(const void *data, struct module *owner) 2006{ 2007 if (owner == BPF_MODULE_OWNER) 2008 bpf_struct_ops_put(data); 2009 else 2010 module_put(owner); 2011} 2012int bpf_struct_ops_link_create(union bpf_attr *attr); 2013u32 bpf_struct_ops_id(const void *kdata); 2014 2015#ifdef CONFIG_NET 2016/* Define it here to avoid the use of forward declaration */ 2017struct bpf_dummy_ops_state { 2018 int val; 2019}; 2020 2021struct bpf_dummy_ops { 2022 int (*test_1)(struct bpf_dummy_ops_state *cb); 2023 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 2024 char a3, unsigned long a4); 2025 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 2026}; 2027 2028int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 2029 union bpf_attr __user *uattr); 2030#endif 2031int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 2032 struct btf *btf, 2033 struct bpf_verifier_log *log); 2034void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2035void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 2036#else 2037#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 2038static inline bool bpf_try_module_get(const void *data, struct module *owner) 2039{ 2040 return try_module_get(owner); 2041} 2042static inline void bpf_module_put(const void *data, struct module *owner) 2043{ 2044 module_put(owner); 2045} 2046static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 2047{ 2048 return -ENOTSUPP; 2049} 2050static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 2051 void *key, 2052 void *value) 2053{ 2054 return -EINVAL; 2055} 2056static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 2057{ 2058 return -EOPNOTSUPP; 2059} 2060static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 2061{ 2062} 2063 2064static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 2065{ 2066} 2067 2068#endif 2069 2070int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 2071 const struct bpf_ctx_arg_aux *info, u32 cnt); 2072 2073#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 2074int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 2075 int cgroup_atype, 2076 enum bpf_attach_type attach_type); 2077void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 2078#else 2079static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 2080 int cgroup_atype, 2081 enum bpf_attach_type attach_type) 2082{ 2083 return -EOPNOTSUPP; 2084} 2085static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 2086{ 2087} 2088#endif 2089 2090struct bpf_array { 2091 struct bpf_map map; 2092 u32 elem_size; 2093 u32 index_mask; 2094 struct bpf_array_aux *aux; 2095 union { 2096 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 2097 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 2098 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 2099 }; 2100}; 2101 2102#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 2103#define MAX_TAIL_CALL_CNT 33 2104 2105/* Maximum number of loops for bpf_loop and bpf_iter_num. 2106 * It's enum to expose it (and thus make it discoverable) through BTF. 2107 */ 2108enum { 2109 BPF_MAX_LOOPS = 8 * 1024 * 1024, 2110 BPF_MAX_TIMED_LOOPS = 0xffff, 2111}; 2112 2113#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 2114 BPF_F_RDONLY_PROG | \ 2115 BPF_F_WRONLY | \ 2116 BPF_F_WRONLY_PROG) 2117 2118#define BPF_MAP_CAN_READ BIT(0) 2119#define BPF_MAP_CAN_WRITE BIT(1) 2120 2121/* Maximum number of user-producer ring buffer samples that can be drained in 2122 * a call to bpf_user_ringbuf_drain(). 2123 */ 2124#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 2125 2126static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 2127{ 2128 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2129 2130 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 2131 * not possible. 2132 */ 2133 if (access_flags & BPF_F_RDONLY_PROG) 2134 return BPF_MAP_CAN_READ; 2135 else if (access_flags & BPF_F_WRONLY_PROG) 2136 return BPF_MAP_CAN_WRITE; 2137 else 2138 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 2139} 2140 2141static inline bool bpf_map_flags_access_ok(u32 access_flags) 2142{ 2143 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 2144 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2145} 2146 2147static inline struct bpf_map_owner *bpf_map_owner_alloc(struct bpf_map *map) 2148{ 2149 return kzalloc(sizeof(*map->owner), GFP_ATOMIC); 2150} 2151 2152static inline void bpf_map_owner_free(struct bpf_map *map) 2153{ 2154 kfree(map->owner); 2155} 2156 2157struct bpf_event_entry { 2158 struct perf_event *event; 2159 struct file *perf_file; 2160 struct file *map_file; 2161 struct rcu_head rcu; 2162}; 2163 2164static inline bool map_type_contains_progs(struct bpf_map *map) 2165{ 2166 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 2167 map->map_type == BPF_MAP_TYPE_DEVMAP || 2168 map->map_type == BPF_MAP_TYPE_CPUMAP; 2169} 2170 2171bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 2172int bpf_prog_calc_tag(struct bpf_prog *fp); 2173 2174const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 2175const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 2176 2177const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void); 2178 2179typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 2180 unsigned long off, unsigned long len); 2181typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 2182 const struct bpf_insn *src, 2183 struct bpf_insn *dst, 2184 struct bpf_prog *prog, 2185 u32 *target_size); 2186 2187u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2188 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2189 2190/* an array of programs to be executed under rcu_lock. 2191 * 2192 * Typical usage: 2193 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2194 * 2195 * the structure returned by bpf_prog_array_alloc() should be populated 2196 * with program pointers and the last pointer must be NULL. 2197 * The user has to keep refcnt on the program and make sure the program 2198 * is removed from the array before bpf_prog_put(). 2199 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2200 * since other cpus are walking the array of pointers in parallel. 2201 */ 2202struct bpf_prog_array_item { 2203 struct bpf_prog *prog; 2204 union { 2205 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2206 u64 bpf_cookie; 2207 }; 2208}; 2209 2210struct bpf_prog_array { 2211 struct rcu_head rcu; 2212 struct bpf_prog_array_item items[]; 2213}; 2214 2215struct bpf_empty_prog_array { 2216 struct bpf_prog_array hdr; 2217 struct bpf_prog *null_prog; 2218}; 2219 2220/* to avoid allocating empty bpf_prog_array for cgroups that 2221 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2222 * It will not be modified the caller of bpf_prog_array_alloc() 2223 * (since caller requested prog_cnt == 0) 2224 * that pointer should be 'freed' by bpf_prog_array_free() 2225 */ 2226extern struct bpf_empty_prog_array bpf_empty_prog_array; 2227 2228struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2229void bpf_prog_array_free(struct bpf_prog_array *progs); 2230/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2231void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2232int bpf_prog_array_length(struct bpf_prog_array *progs); 2233bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2234int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2235 __u32 __user *prog_ids, u32 cnt); 2236 2237void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2238 struct bpf_prog *old_prog); 2239int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2240int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2241 struct bpf_prog *prog); 2242int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2243 u32 *prog_ids, u32 request_cnt, 2244 u32 *prog_cnt); 2245int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2246 struct bpf_prog *exclude_prog, 2247 struct bpf_prog *include_prog, 2248 u64 bpf_cookie, 2249 struct bpf_prog_array **new_array); 2250 2251struct bpf_run_ctx {}; 2252 2253struct bpf_cg_run_ctx { 2254 struct bpf_run_ctx run_ctx; 2255 const struct bpf_prog_array_item *prog_item; 2256 int retval; 2257}; 2258 2259struct bpf_trace_run_ctx { 2260 struct bpf_run_ctx run_ctx; 2261 u64 bpf_cookie; 2262 bool is_uprobe; 2263}; 2264 2265struct bpf_tramp_run_ctx { 2266 struct bpf_run_ctx run_ctx; 2267 u64 bpf_cookie; 2268 struct bpf_run_ctx *saved_run_ctx; 2269}; 2270 2271static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2272{ 2273 struct bpf_run_ctx *old_ctx = NULL; 2274 2275#ifdef CONFIG_BPF_SYSCALL 2276 old_ctx = current->bpf_ctx; 2277 current->bpf_ctx = new_ctx; 2278#endif 2279 return old_ctx; 2280} 2281 2282static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2283{ 2284#ifdef CONFIG_BPF_SYSCALL 2285 current->bpf_ctx = old_ctx; 2286#endif 2287} 2288 2289/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2290#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2291/* BPF program asks to set CN on the packet. */ 2292#define BPF_RET_SET_CN (1 << 0) 2293 2294typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2295 2296static __always_inline u32 2297bpf_prog_run_array(const struct bpf_prog_array *array, 2298 const void *ctx, bpf_prog_run_fn run_prog) 2299{ 2300 const struct bpf_prog_array_item *item; 2301 const struct bpf_prog *prog; 2302 struct bpf_run_ctx *old_run_ctx; 2303 struct bpf_trace_run_ctx run_ctx; 2304 u32 ret = 1; 2305 2306 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2307 2308 if (unlikely(!array)) 2309 return ret; 2310 2311 run_ctx.is_uprobe = false; 2312 2313 migrate_disable(); 2314 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2315 item = &array->items[0]; 2316 while ((prog = READ_ONCE(item->prog))) { 2317 run_ctx.bpf_cookie = item->bpf_cookie; 2318 ret &= run_prog(prog, ctx); 2319 item++; 2320 } 2321 bpf_reset_run_ctx(old_run_ctx); 2322 migrate_enable(); 2323 return ret; 2324} 2325 2326/* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2327 * 2328 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2329 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2330 * in order to use the tasks_trace rcu grace period. 2331 * 2332 * When a non-sleepable program is inside the array, we take the rcu read 2333 * section and disable preemption for that program alone, so it can access 2334 * rcu-protected dynamically sized maps. 2335 */ 2336static __always_inline u32 2337bpf_prog_run_array_uprobe(const struct bpf_prog_array *array, 2338 const void *ctx, bpf_prog_run_fn run_prog) 2339{ 2340 const struct bpf_prog_array_item *item; 2341 const struct bpf_prog *prog; 2342 struct bpf_run_ctx *old_run_ctx; 2343 struct bpf_trace_run_ctx run_ctx; 2344 u32 ret = 1; 2345 2346 might_fault(); 2347 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held"); 2348 2349 if (unlikely(!array)) 2350 return ret; 2351 2352 migrate_disable(); 2353 2354 run_ctx.is_uprobe = true; 2355 2356 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2357 item = &array->items[0]; 2358 while ((prog = READ_ONCE(item->prog))) { 2359 if (!prog->sleepable) 2360 rcu_read_lock(); 2361 2362 run_ctx.bpf_cookie = item->bpf_cookie; 2363 ret &= run_prog(prog, ctx); 2364 item++; 2365 2366 if (!prog->sleepable) 2367 rcu_read_unlock(); 2368 } 2369 bpf_reset_run_ctx(old_run_ctx); 2370 migrate_enable(); 2371 return ret; 2372} 2373 2374bool bpf_jit_bypass_spec_v1(void); 2375bool bpf_jit_bypass_spec_v4(void); 2376 2377#ifdef CONFIG_BPF_SYSCALL 2378DECLARE_PER_CPU(int, bpf_prog_active); 2379extern struct mutex bpf_stats_enabled_mutex; 2380 2381/* 2382 * Block execution of BPF programs attached to instrumentation (perf, 2383 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2384 * these events can happen inside a region which holds a map bucket lock 2385 * and can deadlock on it. 2386 */ 2387static inline void bpf_disable_instrumentation(void) 2388{ 2389 migrate_disable(); 2390 this_cpu_inc(bpf_prog_active); 2391} 2392 2393static inline void bpf_enable_instrumentation(void) 2394{ 2395 this_cpu_dec(bpf_prog_active); 2396 migrate_enable(); 2397} 2398 2399extern const struct super_operations bpf_super_ops; 2400extern const struct file_operations bpf_map_fops; 2401extern const struct file_operations bpf_prog_fops; 2402extern const struct file_operations bpf_iter_fops; 2403extern const struct file_operations bpf_token_fops; 2404 2405#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2406 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2407 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2408#define BPF_MAP_TYPE(_id, _ops) \ 2409 extern const struct bpf_map_ops _ops; 2410#define BPF_LINK_TYPE(_id, _name) 2411#include <linux/bpf_types.h> 2412#undef BPF_PROG_TYPE 2413#undef BPF_MAP_TYPE 2414#undef BPF_LINK_TYPE 2415 2416extern const struct bpf_prog_ops bpf_offload_prog_ops; 2417extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2418extern const struct bpf_verifier_ops xdp_analyzer_ops; 2419 2420struct bpf_prog *bpf_prog_get(u32 ufd); 2421struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2422 bool attach_drv); 2423void bpf_prog_add(struct bpf_prog *prog, int i); 2424void bpf_prog_sub(struct bpf_prog *prog, int i); 2425void bpf_prog_inc(struct bpf_prog *prog); 2426struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2427void bpf_prog_put(struct bpf_prog *prog); 2428 2429void bpf_prog_free_id(struct bpf_prog *prog); 2430void bpf_map_free_id(struct bpf_map *map); 2431 2432struct btf_field *btf_record_find(const struct btf_record *rec, 2433 u32 offset, u32 field_mask); 2434void btf_record_free(struct btf_record *rec); 2435void bpf_map_free_record(struct bpf_map *map); 2436struct btf_record *btf_record_dup(const struct btf_record *rec); 2437bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2438void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2439void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2440void bpf_obj_free_task_work(const struct btf_record *rec, void *obj); 2441void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2442void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2443 2444struct bpf_map *bpf_map_get(u32 ufd); 2445struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2446 2447/* 2448 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file 2449 * descriptor and return a corresponding map or btf object. 2450 * Their names are double underscored to emphasize the fact that they 2451 * do not increase refcnt. To also increase refcnt use corresponding 2452 * bpf_map_get() and btf_get_by_fd() functions. 2453 */ 2454 2455static inline struct bpf_map *__bpf_map_get(struct fd f) 2456{ 2457 if (fd_empty(f)) 2458 return ERR_PTR(-EBADF); 2459 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2460 return ERR_PTR(-EINVAL); 2461 return fd_file(f)->private_data; 2462} 2463 2464static inline struct btf *__btf_get_by_fd(struct fd f) 2465{ 2466 if (fd_empty(f)) 2467 return ERR_PTR(-EBADF); 2468 if (unlikely(fd_file(f)->f_op != &btf_fops)) 2469 return ERR_PTR(-EINVAL); 2470 return fd_file(f)->private_data; 2471} 2472 2473void bpf_map_inc(struct bpf_map *map); 2474void bpf_map_inc_with_uref(struct bpf_map *map); 2475struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2476struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2477void bpf_map_put_with_uref(struct bpf_map *map); 2478void bpf_map_put(struct bpf_map *map); 2479void *bpf_map_area_alloc(u64 size, int numa_node); 2480void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2481void bpf_map_area_free(void *base); 2482bool bpf_map_write_active(const struct bpf_map *map); 2483void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2484int generic_map_lookup_batch(struct bpf_map *map, 2485 const union bpf_attr *attr, 2486 union bpf_attr __user *uattr); 2487int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2488 const union bpf_attr *attr, 2489 union bpf_attr __user *uattr); 2490int generic_map_delete_batch(struct bpf_map *map, 2491 const union bpf_attr *attr, 2492 union bpf_attr __user *uattr); 2493struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2494struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2495 2496 2497int bpf_map_alloc_pages(const struct bpf_map *map, int nid, 2498 unsigned long nr_pages, struct page **page_array); 2499#ifdef CONFIG_MEMCG 2500void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2501 int node); 2502void *bpf_map_kmalloc_nolock(const struct bpf_map *map, size_t size, gfp_t flags, 2503 int node); 2504void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2505void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2506 gfp_t flags); 2507void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2508 size_t align, gfp_t flags); 2509#else 2510/* 2511 * These specialized allocators have to be macros for their allocations to be 2512 * accounted separately (to have separate alloc_tag). 2513 */ 2514#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2515 kmalloc_node(_size, _flags, _node) 2516#define bpf_map_kmalloc_nolock(_map, _size, _flags, _node) \ 2517 kmalloc_nolock(_size, _flags, _node) 2518#define bpf_map_kzalloc(_map, _size, _flags) \ 2519 kzalloc(_size, _flags) 2520#define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2521 kvcalloc(_n, _size, _flags) 2522#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2523 __alloc_percpu_gfp(_size, _align, _flags) 2524#endif 2525 2526static inline int 2527bpf_map_init_elem_count(struct bpf_map *map) 2528{ 2529 size_t size = sizeof(*map->elem_count), align = size; 2530 gfp_t flags = GFP_USER | __GFP_NOWARN; 2531 2532 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2533 if (!map->elem_count) 2534 return -ENOMEM; 2535 2536 return 0; 2537} 2538 2539static inline void 2540bpf_map_free_elem_count(struct bpf_map *map) 2541{ 2542 free_percpu(map->elem_count); 2543} 2544 2545static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2546{ 2547 this_cpu_inc(*map->elem_count); 2548} 2549 2550static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2551{ 2552 this_cpu_dec(*map->elem_count); 2553} 2554 2555extern int sysctl_unprivileged_bpf_disabled; 2556 2557bool bpf_token_capable(const struct bpf_token *token, int cap); 2558 2559static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2560{ 2561 return bpf_token_capable(token, CAP_PERFMON); 2562} 2563 2564static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2565{ 2566 return bpf_token_capable(token, CAP_PERFMON); 2567} 2568 2569static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2570{ 2571 return bpf_jit_bypass_spec_v1() || 2572 cpu_mitigations_off() || 2573 bpf_token_capable(token, CAP_PERFMON); 2574} 2575 2576static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2577{ 2578 return bpf_jit_bypass_spec_v4() || 2579 cpu_mitigations_off() || 2580 bpf_token_capable(token, CAP_PERFMON); 2581} 2582 2583int bpf_map_new_fd(struct bpf_map *map, int flags); 2584int bpf_prog_new_fd(struct bpf_prog *prog); 2585 2586void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2587 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2588 enum bpf_attach_type attach_type); 2589void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2590 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2591 enum bpf_attach_type attach_type, bool sleepable); 2592int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2593int bpf_link_settle(struct bpf_link_primer *primer); 2594void bpf_link_cleanup(struct bpf_link_primer *primer); 2595void bpf_link_inc(struct bpf_link *link); 2596struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2597void bpf_link_put(struct bpf_link *link); 2598int bpf_link_new_fd(struct bpf_link *link); 2599struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2600struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2601 2602void bpf_token_inc(struct bpf_token *token); 2603void bpf_token_put(struct bpf_token *token); 2604int bpf_token_create(union bpf_attr *attr); 2605struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2606int bpf_token_get_info_by_fd(struct bpf_token *token, 2607 const union bpf_attr *attr, 2608 union bpf_attr __user *uattr); 2609 2610bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2611bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2612bool bpf_token_allow_prog_type(const struct bpf_token *token, 2613 enum bpf_prog_type prog_type, 2614 enum bpf_attach_type attach_type); 2615 2616int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2617int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2618struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2619 umode_t mode); 2620 2621#define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2622#define DEFINE_BPF_ITER_FUNC(target, args...) \ 2623 extern int bpf_iter_ ## target(args); \ 2624 int __init bpf_iter_ ## target(args) { return 0; } 2625 2626/* 2627 * The task type of iterators. 2628 * 2629 * For BPF task iterators, they can be parameterized with various 2630 * parameters to visit only some of tasks. 2631 * 2632 * BPF_TASK_ITER_ALL (default) 2633 * Iterate over resources of every task. 2634 * 2635 * BPF_TASK_ITER_TID 2636 * Iterate over resources of a task/tid. 2637 * 2638 * BPF_TASK_ITER_TGID 2639 * Iterate over resources of every task of a process / task group. 2640 */ 2641enum bpf_iter_task_type { 2642 BPF_TASK_ITER_ALL = 0, 2643 BPF_TASK_ITER_TID, 2644 BPF_TASK_ITER_TGID, 2645}; 2646 2647struct bpf_iter_aux_info { 2648 /* for map_elem iter */ 2649 struct bpf_map *map; 2650 2651 /* for cgroup iter */ 2652 struct { 2653 struct cgroup *start; /* starting cgroup */ 2654 enum bpf_cgroup_iter_order order; 2655 } cgroup; 2656 struct { 2657 enum bpf_iter_task_type type; 2658 u32 pid; 2659 } task; 2660}; 2661 2662typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2663 union bpf_iter_link_info *linfo, 2664 struct bpf_iter_aux_info *aux); 2665typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2666typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2667 struct seq_file *seq); 2668typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2669 struct bpf_link_info *info); 2670typedef const struct bpf_func_proto * 2671(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2672 const struct bpf_prog *prog); 2673 2674enum bpf_iter_feature { 2675 BPF_ITER_RESCHED = BIT(0), 2676}; 2677 2678#define BPF_ITER_CTX_ARG_MAX 2 2679struct bpf_iter_reg { 2680 const char *target; 2681 bpf_iter_attach_target_t attach_target; 2682 bpf_iter_detach_target_t detach_target; 2683 bpf_iter_show_fdinfo_t show_fdinfo; 2684 bpf_iter_fill_link_info_t fill_link_info; 2685 bpf_iter_get_func_proto_t get_func_proto; 2686 u32 ctx_arg_info_size; 2687 u32 feature; 2688 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2689 const struct bpf_iter_seq_info *seq_info; 2690}; 2691 2692struct bpf_iter_meta { 2693 __bpf_md_ptr(struct seq_file *, seq); 2694 u64 session_id; 2695 u64 seq_num; 2696}; 2697 2698struct bpf_iter__bpf_map_elem { 2699 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2700 __bpf_md_ptr(struct bpf_map *, map); 2701 __bpf_md_ptr(void *, key); 2702 __bpf_md_ptr(void *, value); 2703}; 2704 2705int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2706void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2707int bpf_iter_prog_supported(struct bpf_prog *prog); 2708const struct bpf_func_proto * 2709bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2710int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2711int bpf_iter_new_fd(struct bpf_link *link); 2712bool bpf_link_is_iter(struct bpf_link *link); 2713struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2714int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2715void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2716 struct seq_file *seq); 2717int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2718 struct bpf_link_info *info); 2719 2720int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2721 struct bpf_func_state *caller, 2722 struct bpf_func_state *callee); 2723 2724int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2725int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2726int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2727 u64 flags); 2728int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2729 u64 flags); 2730 2731int bpf_stackmap_extract(struct bpf_map *map, void *key, void *value, bool delete); 2732 2733int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2734 void *key, void *value, u64 map_flags); 2735int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2736int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2737 void *key, void *value, u64 map_flags); 2738int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2739 2740int bpf_get_file_flag(int flags); 2741int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2742 size_t actual_size); 2743 2744/* verify correctness of eBPF program */ 2745int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2746 2747#ifndef CONFIG_BPF_JIT_ALWAYS_ON 2748void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2749#endif 2750 2751struct btf *bpf_get_btf_vmlinux(void); 2752 2753/* Map specifics */ 2754struct xdp_frame; 2755struct sk_buff; 2756struct bpf_dtab_netdev; 2757struct bpf_cpu_map_entry; 2758 2759void __dev_flush(struct list_head *flush_list); 2760int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2761 struct net_device *dev_rx); 2762int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2763 struct net_device *dev_rx); 2764int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2765 struct bpf_map *map, bool exclude_ingress); 2766int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2767 const struct bpf_prog *xdp_prog); 2768int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2769 const struct bpf_prog *xdp_prog, 2770 struct bpf_map *map, bool exclude_ingress); 2771 2772void __cpu_map_flush(struct list_head *flush_list); 2773int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2774 struct net_device *dev_rx); 2775int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2776 struct sk_buff *skb); 2777 2778/* Return map's numa specified by userspace */ 2779static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2780{ 2781 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2782 attr->numa_node : NUMA_NO_NODE; 2783} 2784 2785struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2786int array_map_alloc_check(union bpf_attr *attr); 2787 2788int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2789 union bpf_attr __user *uattr); 2790int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2791 union bpf_attr __user *uattr); 2792int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2793 const union bpf_attr *kattr, 2794 union bpf_attr __user *uattr); 2795int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2796 const union bpf_attr *kattr, 2797 union bpf_attr __user *uattr); 2798int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2799 const union bpf_attr *kattr, 2800 union bpf_attr __user *uattr); 2801int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2802 const union bpf_attr *kattr, 2803 union bpf_attr __user *uattr); 2804int bpf_prog_test_run_nf(struct bpf_prog *prog, 2805 const union bpf_attr *kattr, 2806 union bpf_attr __user *uattr); 2807bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2808 const struct bpf_prog *prog, 2809 struct bpf_insn_access_aux *info); 2810 2811static inline bool bpf_tracing_ctx_access(int off, int size, 2812 enum bpf_access_type type) 2813{ 2814 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2815 return false; 2816 if (type != BPF_READ) 2817 return false; 2818 if (off % size != 0) 2819 return false; 2820 return true; 2821} 2822 2823static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2824 enum bpf_access_type type, 2825 const struct bpf_prog *prog, 2826 struct bpf_insn_access_aux *info) 2827{ 2828 if (!bpf_tracing_ctx_access(off, size, type)) 2829 return false; 2830 return btf_ctx_access(off, size, type, prog, info); 2831} 2832 2833int btf_struct_access(struct bpf_verifier_log *log, 2834 const struct bpf_reg_state *reg, 2835 int off, int size, enum bpf_access_type atype, 2836 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2837bool btf_struct_ids_match(struct bpf_verifier_log *log, 2838 const struct btf *btf, u32 id, int off, 2839 const struct btf *need_btf, u32 need_type_id, 2840 bool strict); 2841 2842int btf_distill_func_proto(struct bpf_verifier_log *log, 2843 struct btf *btf, 2844 const struct btf_type *func_proto, 2845 const char *func_name, 2846 struct btf_func_model *m); 2847 2848struct bpf_reg_state; 2849int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2850int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2851 struct btf *btf, const struct btf_type *t); 2852const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2853 int comp_idx, const char *tag_key); 2854int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2855 int comp_idx, const char *tag_key, int last_id); 2856 2857struct bpf_prog *bpf_prog_by_id(u32 id); 2858struct bpf_link *bpf_link_by_id(u32 id); 2859 2860const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2861 const struct bpf_prog *prog); 2862void bpf_task_storage_free(struct task_struct *task); 2863void bpf_cgrp_storage_free(struct cgroup *cgroup); 2864bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2865const struct btf_func_model * 2866bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2867 const struct bpf_insn *insn); 2868int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2869 u16 btf_fd_idx, u8 **func_addr); 2870 2871struct bpf_core_ctx { 2872 struct bpf_verifier_log *log; 2873 const struct btf *btf; 2874}; 2875 2876bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2877 const struct bpf_reg_state *reg, 2878 const char *field_name, u32 btf_id, const char *suffix); 2879 2880bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2881 const struct btf *reg_btf, u32 reg_id, 2882 const struct btf *arg_btf, u32 arg_id); 2883 2884int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2885 int relo_idx, void *insn); 2886 2887static inline bool unprivileged_ebpf_enabled(void) 2888{ 2889 return !sysctl_unprivileged_bpf_disabled; 2890} 2891 2892/* Not all bpf prog type has the bpf_ctx. 2893 * For the bpf prog type that has initialized the bpf_ctx, 2894 * this function can be used to decide if a kernel function 2895 * is called by a bpf program. 2896 */ 2897static inline bool has_current_bpf_ctx(void) 2898{ 2899 return !!current->bpf_ctx; 2900} 2901 2902void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2903 2904void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2905 enum bpf_dynptr_type type, u32 offset, u32 size); 2906void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2907void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2908void bpf_prog_report_arena_violation(bool write, unsigned long addr, unsigned long fault_ip); 2909 2910#else /* !CONFIG_BPF_SYSCALL */ 2911static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2912{ 2913 return ERR_PTR(-EOPNOTSUPP); 2914} 2915 2916static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2917 enum bpf_prog_type type, 2918 bool attach_drv) 2919{ 2920 return ERR_PTR(-EOPNOTSUPP); 2921} 2922 2923static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2924{ 2925} 2926 2927static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2928{ 2929} 2930 2931static inline void bpf_prog_put(struct bpf_prog *prog) 2932{ 2933} 2934 2935static inline void bpf_prog_inc(struct bpf_prog *prog) 2936{ 2937} 2938 2939static inline struct bpf_prog *__must_check 2940bpf_prog_inc_not_zero(struct bpf_prog *prog) 2941{ 2942 return ERR_PTR(-EOPNOTSUPP); 2943} 2944 2945static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2946 const struct bpf_link_ops *ops, 2947 struct bpf_prog *prog, enum bpf_attach_type attach_type) 2948{ 2949} 2950 2951static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2952 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2953 enum bpf_attach_type attach_type, bool sleepable) 2954{ 2955} 2956 2957static inline int bpf_link_prime(struct bpf_link *link, 2958 struct bpf_link_primer *primer) 2959{ 2960 return -EOPNOTSUPP; 2961} 2962 2963static inline int bpf_link_settle(struct bpf_link_primer *primer) 2964{ 2965 return -EOPNOTSUPP; 2966} 2967 2968static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2969{ 2970} 2971 2972static inline void bpf_link_inc(struct bpf_link *link) 2973{ 2974} 2975 2976static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2977{ 2978 return NULL; 2979} 2980 2981static inline void bpf_link_put(struct bpf_link *link) 2982{ 2983} 2984 2985static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2986{ 2987 return -EOPNOTSUPP; 2988} 2989 2990static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2991{ 2992 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2993} 2994 2995static inline void bpf_token_inc(struct bpf_token *token) 2996{ 2997} 2998 2999static inline void bpf_token_put(struct bpf_token *token) 3000{ 3001} 3002 3003static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 3004{ 3005 return ERR_PTR(-EOPNOTSUPP); 3006} 3007 3008static inline int bpf_token_get_info_by_fd(struct bpf_token *token, 3009 const union bpf_attr *attr, 3010 union bpf_attr __user *uattr) 3011{ 3012 return -EOPNOTSUPP; 3013} 3014 3015static inline void __dev_flush(struct list_head *flush_list) 3016{ 3017} 3018 3019struct xdp_frame; 3020struct bpf_dtab_netdev; 3021struct bpf_cpu_map_entry; 3022 3023static inline 3024int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 3025 struct net_device *dev_rx) 3026{ 3027 return 0; 3028} 3029 3030static inline 3031int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 3032 struct net_device *dev_rx) 3033{ 3034 return 0; 3035} 3036 3037static inline 3038int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 3039 struct bpf_map *map, bool exclude_ingress) 3040{ 3041 return 0; 3042} 3043 3044struct sk_buff; 3045 3046static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 3047 struct sk_buff *skb, 3048 const struct bpf_prog *xdp_prog) 3049{ 3050 return 0; 3051} 3052 3053static inline 3054int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 3055 const struct bpf_prog *xdp_prog, 3056 struct bpf_map *map, bool exclude_ingress) 3057{ 3058 return 0; 3059} 3060 3061static inline void __cpu_map_flush(struct list_head *flush_list) 3062{ 3063} 3064 3065static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 3066 struct xdp_frame *xdpf, 3067 struct net_device *dev_rx) 3068{ 3069 return 0; 3070} 3071 3072static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 3073 struct sk_buff *skb) 3074{ 3075 return -EOPNOTSUPP; 3076} 3077 3078static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 3079 enum bpf_prog_type type) 3080{ 3081 return ERR_PTR(-EOPNOTSUPP); 3082} 3083 3084static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 3085 const union bpf_attr *kattr, 3086 union bpf_attr __user *uattr) 3087{ 3088 return -ENOTSUPP; 3089} 3090 3091static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 3092 const union bpf_attr *kattr, 3093 union bpf_attr __user *uattr) 3094{ 3095 return -ENOTSUPP; 3096} 3097 3098static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 3099 const union bpf_attr *kattr, 3100 union bpf_attr __user *uattr) 3101{ 3102 return -ENOTSUPP; 3103} 3104 3105static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 3106 const union bpf_attr *kattr, 3107 union bpf_attr __user *uattr) 3108{ 3109 return -ENOTSUPP; 3110} 3111 3112static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 3113 const union bpf_attr *kattr, 3114 union bpf_attr __user *uattr) 3115{ 3116 return -ENOTSUPP; 3117} 3118 3119static inline void bpf_map_put(struct bpf_map *map) 3120{ 3121} 3122 3123static inline struct bpf_prog *bpf_prog_by_id(u32 id) 3124{ 3125 return ERR_PTR(-ENOTSUPP); 3126} 3127 3128static inline int btf_struct_access(struct bpf_verifier_log *log, 3129 const struct bpf_reg_state *reg, 3130 int off, int size, enum bpf_access_type atype, 3131 u32 *next_btf_id, enum bpf_type_flag *flag, 3132 const char **field_name) 3133{ 3134 return -EACCES; 3135} 3136 3137static inline const struct bpf_func_proto * 3138bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 3139{ 3140 return NULL; 3141} 3142 3143static inline void bpf_task_storage_free(struct task_struct *task) 3144{ 3145} 3146 3147static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3148{ 3149 return false; 3150} 3151 3152static inline const struct btf_func_model * 3153bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3154 const struct bpf_insn *insn) 3155{ 3156 return NULL; 3157} 3158 3159static inline int 3160bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3161 u16 btf_fd_idx, u8 **func_addr) 3162{ 3163 return -ENOTSUPP; 3164} 3165 3166static inline bool unprivileged_ebpf_enabled(void) 3167{ 3168 return false; 3169} 3170 3171static inline bool has_current_bpf_ctx(void) 3172{ 3173 return false; 3174} 3175 3176static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 3177{ 3178} 3179 3180static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 3181{ 3182} 3183 3184static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 3185 enum bpf_dynptr_type type, u32 offset, u32 size) 3186{ 3187} 3188 3189static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 3190{ 3191} 3192 3193static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 3194{ 3195} 3196 3197static inline void bpf_prog_report_arena_violation(bool write, unsigned long addr, 3198 unsigned long fault_ip) 3199{ 3200} 3201#endif /* CONFIG_BPF_SYSCALL */ 3202 3203static __always_inline int 3204bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 3205{ 3206 int ret = -EFAULT; 3207 3208 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 3209 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 3210 if (unlikely(ret < 0)) 3211 memset(dst, 0, size); 3212 return ret; 3213} 3214 3215void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 3216 3217static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 3218 enum bpf_prog_type type) 3219{ 3220 return bpf_prog_get_type_dev(ufd, type, false); 3221} 3222 3223void __bpf_free_used_maps(struct bpf_prog_aux *aux, 3224 struct bpf_map **used_maps, u32 len); 3225 3226bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 3227 3228int bpf_prog_offload_compile(struct bpf_prog *prog); 3229void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 3230int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 3231 struct bpf_prog *prog); 3232 3233int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 3234 3235int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 3236int bpf_map_offload_update_elem(struct bpf_map *map, 3237 void *key, void *value, u64 flags); 3238int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 3239int bpf_map_offload_get_next_key(struct bpf_map *map, 3240 void *key, void *next_key); 3241 3242bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3243 3244struct bpf_offload_dev * 3245bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3246void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3247void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3248int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3249 struct net_device *netdev); 3250void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3251 struct net_device *netdev); 3252bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3253 3254void unpriv_ebpf_notify(int new_state); 3255 3256#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3257int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3258 struct bpf_prog_aux *prog_aux); 3259void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3260int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3261int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3262void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3263 3264static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3265{ 3266 return aux->dev_bound; 3267} 3268 3269static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3270{ 3271 return aux->offload_requested; 3272} 3273 3274bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3275 3276static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3277{ 3278 return unlikely(map->ops == &bpf_map_offload_ops); 3279} 3280 3281struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3282void bpf_map_offload_map_free(struct bpf_map *map); 3283u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3284int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3285 const union bpf_attr *kattr, 3286 union bpf_attr __user *uattr); 3287 3288int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3289int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3290int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3291int sock_map_bpf_prog_query(const union bpf_attr *attr, 3292 union bpf_attr __user *uattr); 3293int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3294 3295void sock_map_unhash(struct sock *sk); 3296void sock_map_destroy(struct sock *sk); 3297void sock_map_close(struct sock *sk, long timeout); 3298#else 3299static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3300 struct bpf_prog_aux *prog_aux) 3301{ 3302 return -EOPNOTSUPP; 3303} 3304 3305static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3306 u32 func_id) 3307{ 3308 return NULL; 3309} 3310 3311static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3312 union bpf_attr *attr) 3313{ 3314 return -EOPNOTSUPP; 3315} 3316 3317static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3318 struct bpf_prog *old_prog) 3319{ 3320 return -EOPNOTSUPP; 3321} 3322 3323static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3324{ 3325} 3326 3327static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3328{ 3329 return false; 3330} 3331 3332static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3333{ 3334 return false; 3335} 3336 3337static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3338{ 3339 return false; 3340} 3341 3342static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3343{ 3344 return false; 3345} 3346 3347static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3348{ 3349 return ERR_PTR(-EOPNOTSUPP); 3350} 3351 3352static inline void bpf_map_offload_map_free(struct bpf_map *map) 3353{ 3354} 3355 3356static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3357{ 3358 return 0; 3359} 3360 3361static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3362 const union bpf_attr *kattr, 3363 union bpf_attr __user *uattr) 3364{ 3365 return -ENOTSUPP; 3366} 3367 3368#ifdef CONFIG_BPF_SYSCALL 3369static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3370 struct bpf_prog *prog) 3371{ 3372 return -EINVAL; 3373} 3374 3375static inline int sock_map_prog_detach(const union bpf_attr *attr, 3376 enum bpf_prog_type ptype) 3377{ 3378 return -EOPNOTSUPP; 3379} 3380 3381static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3382 u64 flags) 3383{ 3384 return -EOPNOTSUPP; 3385} 3386 3387static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3388 union bpf_attr __user *uattr) 3389{ 3390 return -EINVAL; 3391} 3392 3393static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3394{ 3395 return -EOPNOTSUPP; 3396} 3397#endif /* CONFIG_BPF_SYSCALL */ 3398#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3399 3400static __always_inline void 3401bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3402{ 3403 const struct bpf_prog_array_item *item; 3404 struct bpf_prog *prog; 3405 3406 if (unlikely(!array)) 3407 return; 3408 3409 item = &array->items[0]; 3410 while ((prog = READ_ONCE(item->prog))) { 3411 bpf_prog_inc_misses_counter(prog); 3412 item++; 3413 } 3414} 3415 3416#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3417void bpf_sk_reuseport_detach(struct sock *sk); 3418int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3419 void *value); 3420int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3421 void *value, u64 map_flags); 3422#else 3423static inline void bpf_sk_reuseport_detach(struct sock *sk) 3424{ 3425} 3426 3427#ifdef CONFIG_BPF_SYSCALL 3428static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3429 void *key, void *value) 3430{ 3431 return -EOPNOTSUPP; 3432} 3433 3434static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3435 void *key, void *value, 3436 u64 map_flags) 3437{ 3438 return -EOPNOTSUPP; 3439} 3440#endif /* CONFIG_BPF_SYSCALL */ 3441#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3442 3443#if defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL) 3444 3445struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags); 3446struct bpf_key *bpf_lookup_system_key(u64 id); 3447void bpf_key_put(struct bpf_key *bkey); 3448int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 3449 struct bpf_dynptr *sig_p, 3450 struct bpf_key *trusted_keyring); 3451 3452#else 3453static inline struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 3454{ 3455 return NULL; 3456} 3457 3458static inline struct bpf_key *bpf_lookup_system_key(u64 id) 3459{ 3460 return NULL; 3461} 3462 3463static inline void bpf_key_put(struct bpf_key *bkey) 3464{ 3465} 3466 3467static inline int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 3468 struct bpf_dynptr *sig_p, 3469 struct bpf_key *trusted_keyring) 3470{ 3471 return -EOPNOTSUPP; 3472} 3473#endif /* defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL) */ 3474 3475/* verifier prototypes for helper functions called from eBPF programs */ 3476extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3477extern const struct bpf_func_proto bpf_map_update_elem_proto; 3478extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3479extern const struct bpf_func_proto bpf_map_push_elem_proto; 3480extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3481extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3482extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3483 3484extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3485extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3486extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3487extern const struct bpf_func_proto bpf_tail_call_proto; 3488extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3489extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3490extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3491extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3492extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3493extern const struct bpf_func_proto bpf_get_current_comm_proto; 3494extern const struct bpf_func_proto bpf_get_stackid_proto; 3495extern const struct bpf_func_proto bpf_get_stack_proto; 3496extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3497extern const struct bpf_func_proto bpf_get_task_stack_proto; 3498extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3499extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3500extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3501extern const struct bpf_func_proto bpf_sock_map_update_proto; 3502extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3503extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3504extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3505extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3506extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3507extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3508extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3509extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3510extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3511extern const struct bpf_func_proto bpf_spin_lock_proto; 3512extern const struct bpf_func_proto bpf_spin_unlock_proto; 3513extern const struct bpf_func_proto bpf_get_local_storage_proto; 3514extern const struct bpf_func_proto bpf_strtol_proto; 3515extern const struct bpf_func_proto bpf_strtoul_proto; 3516extern const struct bpf_func_proto bpf_tcp_sock_proto; 3517extern const struct bpf_func_proto bpf_jiffies64_proto; 3518extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3519extern const struct bpf_func_proto bpf_event_output_data_proto; 3520extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3521extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3522extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3523extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3524extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3525extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3526extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3527extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3528extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3529extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3530extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3531extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3532extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3533extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3534extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3535extern const struct bpf_func_proto bpf_copy_from_user_proto; 3536extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3537extern const struct bpf_func_proto bpf_snprintf_proto; 3538extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3539extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3540extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3541extern const struct bpf_func_proto bpf_sock_from_file_proto; 3542extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3543extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3544extern const struct bpf_func_proto bpf_task_storage_get_proto; 3545extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3546extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3547extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3548extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3549extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3550extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3551extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3552extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3553extern const struct bpf_func_proto bpf_find_vma_proto; 3554extern const struct bpf_func_proto bpf_loop_proto; 3555extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3556extern const struct bpf_func_proto bpf_set_retval_proto; 3557extern const struct bpf_func_proto bpf_get_retval_proto; 3558extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3559extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3560extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3561 3562const struct bpf_func_proto *tracing_prog_func_proto( 3563 enum bpf_func_id func_id, const struct bpf_prog *prog); 3564 3565/* Shared helpers among cBPF and eBPF. */ 3566void bpf_user_rnd_init_once(void); 3567u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3568u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3569 3570#if defined(CONFIG_NET) 3571bool bpf_sock_common_is_valid_access(int off, int size, 3572 enum bpf_access_type type, 3573 struct bpf_insn_access_aux *info); 3574bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3575 struct bpf_insn_access_aux *info); 3576u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3577 const struct bpf_insn *si, 3578 struct bpf_insn *insn_buf, 3579 struct bpf_prog *prog, 3580 u32 *target_size); 3581int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3582 struct bpf_dynptr *ptr); 3583#else 3584static inline bool bpf_sock_common_is_valid_access(int off, int size, 3585 enum bpf_access_type type, 3586 struct bpf_insn_access_aux *info) 3587{ 3588 return false; 3589} 3590static inline bool bpf_sock_is_valid_access(int off, int size, 3591 enum bpf_access_type type, 3592 struct bpf_insn_access_aux *info) 3593{ 3594 return false; 3595} 3596static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3597 const struct bpf_insn *si, 3598 struct bpf_insn *insn_buf, 3599 struct bpf_prog *prog, 3600 u32 *target_size) 3601{ 3602 return 0; 3603} 3604static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3605 struct bpf_dynptr *ptr) 3606{ 3607 return -EOPNOTSUPP; 3608} 3609#endif 3610 3611#ifdef CONFIG_INET 3612struct sk_reuseport_kern { 3613 struct sk_buff *skb; 3614 struct sock *sk; 3615 struct sock *selected_sk; 3616 struct sock *migrating_sk; 3617 void *data_end; 3618 u32 hash; 3619 u32 reuseport_id; 3620 bool bind_inany; 3621}; 3622bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3623 struct bpf_insn_access_aux *info); 3624 3625u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3626 const struct bpf_insn *si, 3627 struct bpf_insn *insn_buf, 3628 struct bpf_prog *prog, 3629 u32 *target_size); 3630 3631bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3632 struct bpf_insn_access_aux *info); 3633 3634u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3635 const struct bpf_insn *si, 3636 struct bpf_insn *insn_buf, 3637 struct bpf_prog *prog, 3638 u32 *target_size); 3639#else 3640static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3641 enum bpf_access_type type, 3642 struct bpf_insn_access_aux *info) 3643{ 3644 return false; 3645} 3646 3647static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3648 const struct bpf_insn *si, 3649 struct bpf_insn *insn_buf, 3650 struct bpf_prog *prog, 3651 u32 *target_size) 3652{ 3653 return 0; 3654} 3655static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3656 enum bpf_access_type type, 3657 struct bpf_insn_access_aux *info) 3658{ 3659 return false; 3660} 3661 3662static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3663 const struct bpf_insn *si, 3664 struct bpf_insn *insn_buf, 3665 struct bpf_prog *prog, 3666 u32 *target_size) 3667{ 3668 return 0; 3669} 3670#endif /* CONFIG_INET */ 3671 3672enum bpf_text_poke_type { 3673 BPF_MOD_CALL, 3674 BPF_MOD_JUMP, 3675}; 3676 3677int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3678 void *addr1, void *addr2); 3679 3680void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3681 struct bpf_prog *new, struct bpf_prog *old); 3682 3683void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3684int bpf_arch_text_invalidate(void *dst, size_t len); 3685 3686struct btf_id_set; 3687bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3688 3689#define MAX_BPRINTF_VARARGS 12 3690#define MAX_BPRINTF_BUF 1024 3691 3692/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 3693 * arguments representation. 3694 */ 3695#define MAX_BPRINTF_BIN_ARGS 512 3696 3697struct bpf_bprintf_buffers { 3698 char bin_args[MAX_BPRINTF_BIN_ARGS]; 3699 char buf[MAX_BPRINTF_BUF]; 3700}; 3701 3702struct bpf_bprintf_data { 3703 u32 *bin_args; 3704 char *buf; 3705 bool get_bin_args; 3706 bool get_buf; 3707}; 3708 3709int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args, 3710 u32 num_args, struct bpf_bprintf_data *data); 3711void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3712int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs); 3713void bpf_put_buffers(void); 3714 3715void bpf_prog_stream_init(struct bpf_prog *prog); 3716void bpf_prog_stream_free(struct bpf_prog *prog); 3717int bpf_prog_stream_read(struct bpf_prog *prog, enum bpf_stream_id stream_id, void __user *buf, int len); 3718void bpf_stream_stage_init(struct bpf_stream_stage *ss); 3719void bpf_stream_stage_free(struct bpf_stream_stage *ss); 3720__printf(2, 3) 3721int bpf_stream_stage_printk(struct bpf_stream_stage *ss, const char *fmt, ...); 3722int bpf_stream_stage_commit(struct bpf_stream_stage *ss, struct bpf_prog *prog, 3723 enum bpf_stream_id stream_id); 3724int bpf_stream_stage_dump_stack(struct bpf_stream_stage *ss); 3725 3726#define bpf_stream_printk(ss, ...) bpf_stream_stage_printk(&ss, __VA_ARGS__) 3727#define bpf_stream_dump_stack(ss) bpf_stream_stage_dump_stack(&ss) 3728 3729#define bpf_stream_stage(ss, prog, stream_id, expr) \ 3730 ({ \ 3731 bpf_stream_stage_init(&ss); \ 3732 (expr); \ 3733 bpf_stream_stage_commit(&ss, prog, stream_id); \ 3734 bpf_stream_stage_free(&ss); \ 3735 }) 3736 3737#ifdef CONFIG_BPF_LSM 3738void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3739void bpf_cgroup_atype_put(int cgroup_atype); 3740#else 3741static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3742static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3743#endif /* CONFIG_BPF_LSM */ 3744 3745struct key; 3746 3747#ifdef CONFIG_KEYS 3748struct bpf_key { 3749 struct key *key; 3750 bool has_ref; 3751}; 3752#endif /* CONFIG_KEYS */ 3753 3754static inline bool type_is_alloc(u32 type) 3755{ 3756 return type & MEM_ALLOC; 3757} 3758 3759static inline gfp_t bpf_memcg_flags(gfp_t flags) 3760{ 3761 if (memcg_bpf_enabled()) 3762 return flags | __GFP_ACCOUNT; 3763 return flags; 3764} 3765 3766static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3767{ 3768 return prog->aux->func_idx != 0; 3769} 3770 3771int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep, 3772 const char **linep, int *nump); 3773struct bpf_prog *bpf_prog_find_from_stack(void); 3774 3775#endif /* _LINUX_BPF_H */