at v6.18 417 lines 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * OpenRISC Linux 4 * 5 * Linux architectural port borrowing liberally from similar works of 6 * others. All original copyrights apply as per the original source 7 * declaration. 8 * 9 * OpenRISC implementation: 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> 12 * et al. 13 */ 14 15/* or1k pgtable.h - macros and functions to manipulate page tables 16 * 17 * Based on: 18 * include/asm-cris/pgtable.h 19 */ 20 21#ifndef __ASM_OPENRISC_PGTABLE_H 22#define __ASM_OPENRISC_PGTABLE_H 23 24#include <asm-generic/pgtable-nopmd.h> 25 26#ifndef __ASSEMBLER__ 27#include <asm/mmu.h> 28#include <asm/fixmap.h> 29 30/* 31 * The Linux memory management assumes a three-level page table setup. On 32 * or1k, we use that, but "fold" the mid level into the top-level page 33 * table. Since the MMU TLB is software loaded through an interrupt, it 34 * supports any page table structure, so we could have used a three-level 35 * setup, but for the amounts of memory we normally use, a two-level is 36 * probably more efficient. 37 * 38 * This file contains the functions and defines necessary to modify and use 39 * the or1k page table tree. 40 */ 41 42extern void paging_init(void); 43 44/* Certain architectures need to do special things when pte's 45 * within a page table are directly modified. Thus, the following 46 * hook is made available. 47 */ 48#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) 49 50/* 51 * (pmds are folded into pgds so this doesn't get actually called, 52 * but the define is needed for a generic inline function.) 53 */ 54#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 55 56#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) 57#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 58#define PGDIR_MASK (~(PGDIR_SIZE-1)) 59 60/* 61 * entries per page directory level: we use a two-level, so 62 * we don't really have any PMD directory physically. 63 * pointers are 4 bytes so we can use the page size and 64 * divide it by 4 (shift by 2). 65 */ 66#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) 67 68#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT)) 69 70/* calculate how many PGD entries a user-level program can use 71 * the first mappable virtual address is 0 72 * (TASK_SIZE is the maximum virtual address space) 73 */ 74 75#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 76 77/* 78 * Kernels own virtual memory area. 79 */ 80 81/* 82 * The size and location of the vmalloc area are chosen so that modules 83 * placed in this area aren't more than a 28-bit signed offset from any 84 * kernel functions that they may need. This greatly simplifies handling 85 * of the relocations for l.j and l.jal instructions as we don't need to 86 * introduce any trampolines for reaching "distant" code. 87 * 88 * 64 MB of vmalloc area is comparable to what's available on other arches. 89 */ 90 91#define VMALLOC_START (PAGE_OFFSET-0x04000000UL) 92#define VMALLOC_END (PAGE_OFFSET) 93#define VMALLOC_VMADDR(x) ((unsigned long)(x)) 94 95/* Define some higher level generic page attributes. 96 * 97 * If you change _PAGE_CI definition be sure to change it in 98 * io.h for ioremap() too. 99 */ 100 101/* 102 * An OR32 PTE looks like this: 103 * 104 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 | 105 * Phys pg.num L PP Index D A WOM WBC CI CC 106 * 107 * L : link 108 * PPI: Page protection index 109 * D : Dirty 110 * A : Accessed 111 * WOM: Weakly ordered memory 112 * WBC: Write-back cache 113 * CI : Cache inhibit 114 * CC : Cache coherent 115 * 116 * The protection bits below should correspond to the layout of the actual 117 * PTE as per above 118 */ 119 120#define _PAGE_CC 0x001 /* software: pte contains a translation */ 121#define _PAGE_CI 0x002 /* cache inhibit */ 122#define _PAGE_WBC 0x004 /* write back cache */ 123#define _PAGE_WOM 0x008 /* weakly ordered memory */ 124 125#define _PAGE_A 0x010 /* accessed */ 126#define _PAGE_D 0x020 /* dirty */ 127#define _PAGE_URE 0x040 /* user read enable */ 128#define _PAGE_UWE 0x080 /* user write enable */ 129 130#define _PAGE_SRE 0x100 /* superuser read enable */ 131#define _PAGE_SWE 0x200 /* superuser write enable */ 132#define _PAGE_EXEC 0x400 /* software: page is executable */ 133#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */ 134 135/* 0x001 is cache coherency bit, which should always be set to 136 * 1 - for SMP (when we support it) 137 * 0 - otherwise 138 * 139 * we just reuse this bit in software for _PAGE_PRESENT and 140 * force it to 0 when loading it into TLB. 141 */ 142#define _PAGE_PRESENT _PAGE_CC 143#define _PAGE_USER _PAGE_URE 144#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE) 145#define _PAGE_DIRTY _PAGE_D 146#define _PAGE_ACCESSED _PAGE_A 147#define _PAGE_NO_CACHE _PAGE_CI 148#define _PAGE_SHARED _PAGE_U_SHARED 149#define _PAGE_READ (_PAGE_URE | _PAGE_SRE) 150 151#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 152#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 153#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED) 154#define _KERNPG_TABLE \ 155 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY) 156 157/* We borrow bit 11 to store the exclusive marker in swap PTEs. */ 158#define _PAGE_SWP_EXCLUSIVE _PAGE_U_SHARED 159 160#define PAGE_NONE __pgprot(_PAGE_ALL) 161#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) 162#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) 163#define PAGE_SHARED \ 164 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ 165 | _PAGE_SHARED) 166#define PAGE_SHARED_X \ 167 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ 168 | _PAGE_SHARED | _PAGE_EXEC) 169#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) 170#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) 171 172#define PAGE_KERNEL \ 173 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ 174 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) 175#define PAGE_KERNEL_RO \ 176 __pgprot(_PAGE_ALL | _PAGE_SRE \ 177 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) 178#define PAGE_KERNEL_NOCACHE \ 179 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ 180 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI) 181 182/* zero page used for uninitialized stuff */ 183extern unsigned long empty_zero_page[2048]; 184#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 185 186#define pte_none(x) (!pte_val(x)) 187#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 188#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0) 189 190#define pmd_none(x) (!pmd_val(x)) 191#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE) 192#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 193#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) 194 195/* 196 * The following only work if pte_present() is true. 197 * Undefined behaviour if not.. 198 */ 199 200static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 201static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 202static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 203static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 204static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 205 206static inline pte_t pte_wrprotect(pte_t pte) 207{ 208 pte_val(pte) &= ~(_PAGE_WRITE); 209 return pte; 210} 211 212static inline pte_t pte_rdprotect(pte_t pte) 213{ 214 pte_val(pte) &= ~(_PAGE_READ); 215 return pte; 216} 217 218static inline pte_t pte_exprotect(pte_t pte) 219{ 220 pte_val(pte) &= ~(_PAGE_EXEC); 221 return pte; 222} 223 224static inline pte_t pte_mkclean(pte_t pte) 225{ 226 pte_val(pte) &= ~(_PAGE_DIRTY); 227 return pte; 228} 229 230static inline pte_t pte_mkold(pte_t pte) 231{ 232 pte_val(pte) &= ~(_PAGE_ACCESSED); 233 return pte; 234} 235 236static inline pte_t pte_mkwrite_novma(pte_t pte) 237{ 238 pte_val(pte) |= _PAGE_WRITE; 239 return pte; 240} 241 242static inline pte_t pte_mkread(pte_t pte) 243{ 244 pte_val(pte) |= _PAGE_READ; 245 return pte; 246} 247 248static inline pte_t pte_mkexec(pte_t pte) 249{ 250 pte_val(pte) |= _PAGE_EXEC; 251 return pte; 252} 253 254static inline pte_t pte_mkdirty(pte_t pte) 255{ 256 pte_val(pte) |= _PAGE_DIRTY; 257 return pte; 258} 259 260static inline pte_t pte_mkyoung(pte_t pte) 261{ 262 pte_val(pte) |= _PAGE_ACCESSED; 263 return pte; 264} 265 266/* 267 * Conversion functions: convert a page and protection to a page entry, 268 * and a page entry and page directory to the page they refer to. 269 */ 270 271/* What actually goes as arguments to the various functions is less than 272 * obvious, but a rule of thumb is that struct page's goes as struct page *, 273 * really physical DRAM addresses are unsigned long's, and DRAM "virtual" 274 * addresses (the 0xc0xxxxxx's) goes as void *'s. 275 */ 276 277static inline pte_t __mk_pte(void *page, pgprot_t pgprot) 278{ 279 pte_t pte; 280 /* the PTE needs a physical address */ 281 pte_val(pte) = __pa(page) | pgprot_val(pgprot); 282 return pte; 283} 284 285#define mk_pte_phys(physpage, pgprot) \ 286({ \ 287 pte_t __pte; \ 288 \ 289 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ 290 __pte; \ 291}) 292 293static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 294{ 295 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 296 return pte; 297} 298 299 300/* 301 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval 302 * __pte_page(pte_val) refers to the "virtual" DRAM interval 303 * pte_pagenr refers to the page-number counted starting from the virtual 304 * DRAM start 305 */ 306 307static inline unsigned long __pte_page(pte_t pte) 308{ 309 /* the PTE contains a physical address */ 310 return (unsigned long)__va(pte_val(pte) & PAGE_MASK); 311} 312 313#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) 314 315/* permanent address of a page */ 316 317#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) 318#define pte_page(pte) (mem_map+pte_pagenr(pte)) 319 320/* 321 * only the pte's themselves need to point to physical DRAM (see above) 322 * the pagetable links are purely handled within the kernel SW and thus 323 * don't need the __pa and __va transformations. 324 */ 325static inline void pmd_set(pmd_t *pmdp, pte_t *ptep) 326{ 327 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep; 328} 329 330#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 331#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 332 333static inline unsigned long pmd_page_vaddr(pmd_t pmd) 334{ 335 return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)); 336} 337 338#define __pmd_offset(address) \ 339 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 340 341#define PFN_PTE_SHIFT PAGE_SHIFT 342#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT) 343#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) 344 345#define pte_ERROR(e) \ 346 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \ 347 __FILE__, __LINE__, &(e), pte_val(e)) 348#define pgd_ERROR(e) \ 349 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \ 350 __FILE__, __LINE__, &(e), pgd_val(e)) 351 352extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ 353 354struct vm_area_struct; 355 356static inline void update_tlb(struct vm_area_struct *vma, 357 unsigned long address, pte_t *pte) 358{ 359} 360 361extern void update_cache(struct vm_area_struct *vma, 362 unsigned long address, pte_t *pte); 363 364static inline void update_mmu_cache_range(struct vm_fault *vmf, 365 struct vm_area_struct *vma, unsigned long address, 366 pte_t *ptep, unsigned int nr) 367{ 368 update_tlb(vma, address, ptep); 369 update_cache(vma, address, ptep); 370} 371 372#define update_mmu_cache(vma, addr, ptep) \ 373 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 374 375/* __PHX__ FIXME, SWAP, this probably doesn't work */ 376 377/* 378 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 379 * are !pte_none() && !pte_present(). 380 * 381 * Format of swap PTEs: 382 * 383 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 384 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 385 * <-------------- offset ---------------> E <- type --> 0 0 0 0 0 386 * 387 * E is the exclusive marker that is not stored in swap entries. 388 * The zero'ed bits include _PAGE_PRESENT. 389 */ 390#define __swp_type(x) (((x).val >> 5) & 0x3f) 391#define __swp_offset(x) ((x).val >> 12) 392#define __swp_entry(type, offset) \ 393 ((swp_entry_t) { (((type) & 0x3f) << 5) | ((offset) << 12) }) 394#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 395#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 396 397static inline bool pte_swp_exclusive(pte_t pte) 398{ 399 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 400} 401 402static inline pte_t pte_swp_mkexclusive(pte_t pte) 403{ 404 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; 405 return pte; 406} 407 408static inline pte_t pte_swp_clear_exclusive(pte_t pte) 409{ 410 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; 411 return pte; 412} 413 414typedef pte_t *pte_addr_t; 415 416#endif /* __ASSEMBLER__ */ 417#endif /* __ASM_OPENRISC_PGTABLE_H */