at v6.18-rc4 4068 lines 136 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_FS_H 3#define _LINUX_FS_H 4 5#include <linux/vfsdebug.h> 6#include <linux/linkage.h> 7#include <linux/wait_bit.h> 8#include <linux/kdev_t.h> 9#include <linux/dcache.h> 10#include <linux/path.h> 11#include <linux/stat.h> 12#include <linux/cache.h> 13#include <linux/list.h> 14#include <linux/list_lru.h> 15#include <linux/llist.h> 16#include <linux/radix-tree.h> 17#include <linux/xarray.h> 18#include <linux/rbtree.h> 19#include <linux/init.h> 20#include <linux/pid.h> 21#include <linux/bug.h> 22#include <linux/mutex.h> 23#include <linux/rwsem.h> 24#include <linux/mm_types.h> 25#include <linux/capability.h> 26#include <linux/semaphore.h> 27#include <linux/fcntl.h> 28#include <linux/rculist_bl.h> 29#include <linux/atomic.h> 30#include <linux/shrinker.h> 31#include <linux/migrate_mode.h> 32#include <linux/uidgid.h> 33#include <linux/lockdep.h> 34#include <linux/percpu-rwsem.h> 35#include <linux/workqueue.h> 36#include <linux/delayed_call.h> 37#include <linux/uuid.h> 38#include <linux/errseq.h> 39#include <linux/ioprio.h> 40#include <linux/fs_types.h> 41#include <linux/build_bug.h> 42#include <linux/stddef.h> 43#include <linux/mount.h> 44#include <linux/cred.h> 45#include <linux/mnt_idmapping.h> 46#include <linux/slab.h> 47#include <linux/maple_tree.h> 48#include <linux/rw_hint.h> 49#include <linux/file_ref.h> 50#include <linux/unicode.h> 51 52#include <asm/byteorder.h> 53#include <uapi/linux/fs.h> 54 55struct backing_dev_info; 56struct bdi_writeback; 57struct bio; 58struct io_comp_batch; 59struct export_operations; 60struct fiemap_extent_info; 61struct hd_geometry; 62struct iovec; 63struct kiocb; 64struct kobject; 65struct pipe_inode_info; 66struct poll_table_struct; 67struct kstatfs; 68struct vm_area_struct; 69struct vfsmount; 70struct cred; 71struct swap_info_struct; 72struct seq_file; 73struct workqueue_struct; 74struct iov_iter; 75struct fscrypt_operations; 76struct fsverity_operations; 77struct fsnotify_mark_connector; 78struct fsnotify_sb_info; 79struct fs_context; 80struct fs_parameter_spec; 81struct file_kattr; 82struct iomap_ops; 83 84extern void __init inode_init(void); 85extern void __init inode_init_early(void); 86extern void __init files_init(void); 87extern void __init files_maxfiles_init(void); 88 89extern unsigned long get_max_files(void); 90extern unsigned int sysctl_nr_open; 91 92typedef __kernel_rwf_t rwf_t; 93 94struct buffer_head; 95typedef int (get_block_t)(struct inode *inode, sector_t iblock, 96 struct buffer_head *bh_result, int create); 97typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 98 ssize_t bytes, void *private); 99 100#define MAY_EXEC 0x00000001 101#define MAY_WRITE 0x00000002 102#define MAY_READ 0x00000004 103#define MAY_APPEND 0x00000008 104#define MAY_ACCESS 0x00000010 105#define MAY_OPEN 0x00000020 106#define MAY_CHDIR 0x00000040 107/* called from RCU mode, don't block */ 108#define MAY_NOT_BLOCK 0x00000080 109 110/* 111 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 112 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 113 */ 114 115/* file is open for reading */ 116#define FMODE_READ ((__force fmode_t)(1 << 0)) 117/* file is open for writing */ 118#define FMODE_WRITE ((__force fmode_t)(1 << 1)) 119/* file is seekable */ 120#define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 121/* file can be accessed using pread */ 122#define FMODE_PREAD ((__force fmode_t)(1 << 3)) 123/* file can be accessed using pwrite */ 124#define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 125/* File is opened for execution with sys_execve / sys_uselib */ 126#define FMODE_EXEC ((__force fmode_t)(1 << 5)) 127/* File writes are restricted (block device specific) */ 128#define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 129/* File supports atomic writes */ 130#define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 131 132/* FMODE_* bit 8 */ 133 134/* 32bit hashes as llseek() offset (for directories) */ 135#define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 136/* 64bit hashes as llseek() offset (for directories) */ 137#define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 138 139/* 140 * Don't update ctime and mtime. 141 * 142 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 143 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 144 */ 145#define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 146 147/* Expect random access pattern */ 148#define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 149 150/* Supports IOCB_HAS_METADATA */ 151#define FMODE_HAS_METADATA ((__force fmode_t)(1 << 13)) 152 153/* File is opened with O_PATH; almost nothing can be done with it */ 154#define FMODE_PATH ((__force fmode_t)(1 << 14)) 155 156/* File needs atomic accesses to f_pos */ 157#define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 158/* Write access to underlying fs */ 159#define FMODE_WRITER ((__force fmode_t)(1 << 16)) 160/* Has read method(s) */ 161#define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 162/* Has write method(s) */ 163#define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 164 165#define FMODE_OPENED ((__force fmode_t)(1 << 19)) 166#define FMODE_CREATED ((__force fmode_t)(1 << 20)) 167 168/* File is stream-like */ 169#define FMODE_STREAM ((__force fmode_t)(1 << 21)) 170 171/* File supports DIRECT IO */ 172#define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 173 174#define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 175 176/* File is embedded in backing_file object */ 177#define FMODE_BACKING ((__force fmode_t)(1 << 24)) 178 179/* 180 * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be 181 * generated (see below) 182 */ 183#define FMODE_NONOTIFY ((__force fmode_t)(1 << 25)) 184 185/* 186 * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be 187 * generated (see below) 188 */ 189#define FMODE_NONOTIFY_PERM ((__force fmode_t)(1 << 26)) 190 191/* File is capable of returning -EAGAIN if I/O will block */ 192#define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 193 194/* File represents mount that needs unmounting */ 195#define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 196 197/* File does not contribute to nr_files count */ 198#define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 199 200/* 201 * The two FMODE_NONOTIFY* define which fsnotify events should not be generated 202 * for an open file. These are the possible values of 203 * (f->f_mode & FMODE_FSNOTIFY_MASK) and their meaning: 204 * 205 * FMODE_NONOTIFY - suppress all (incl. non-permission) events. 206 * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events. 207 * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only FAN_ACCESS_PERM. 208 */ 209#define FMODE_FSNOTIFY_MASK \ 210 (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM) 211 212#define FMODE_FSNOTIFY_NONE(mode) \ 213 ((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY) 214#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS 215#define FMODE_FSNOTIFY_HSM(mode) \ 216 ((mode & FMODE_FSNOTIFY_MASK) == 0 || \ 217 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)) 218#define FMODE_FSNOTIFY_ACCESS_PERM(mode) \ 219 ((mode & FMODE_FSNOTIFY_MASK) == 0) 220#else 221#define FMODE_FSNOTIFY_ACCESS_PERM(mode) 0 222#define FMODE_FSNOTIFY_HSM(mode) 0 223#endif 224 225/* 226 * Attribute flags. These should be or-ed together to figure out what 227 * has been changed! 228 */ 229#define ATTR_MODE (1 << 0) 230#define ATTR_UID (1 << 1) 231#define ATTR_GID (1 << 2) 232#define ATTR_SIZE (1 << 3) 233#define ATTR_ATIME (1 << 4) 234#define ATTR_MTIME (1 << 5) 235#define ATTR_CTIME (1 << 6) 236#define ATTR_ATIME_SET (1 << 7) 237#define ATTR_MTIME_SET (1 << 8) 238#define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 239#define ATTR_CTIME_SET (1 << 10) 240#define ATTR_KILL_SUID (1 << 11) 241#define ATTR_KILL_SGID (1 << 12) 242#define ATTR_FILE (1 << 13) 243#define ATTR_KILL_PRIV (1 << 14) 244#define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 245#define ATTR_TIMES_SET (1 << 16) 246#define ATTR_TOUCH (1 << 17) 247#define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 248 249/* 250 * Whiteout is represented by a char device. The following constants define the 251 * mode and device number to use. 252 */ 253#define WHITEOUT_MODE 0 254#define WHITEOUT_DEV 0 255 256/* 257 * This is the Inode Attributes structure, used for notify_change(). It 258 * uses the above definitions as flags, to know which values have changed. 259 * Also, in this manner, a Filesystem can look at only the values it cares 260 * about. Basically, these are the attributes that the VFS layer can 261 * request to change from the FS layer. 262 * 263 * Derek Atkins <warlord@MIT.EDU> 94-10-20 264 */ 265struct iattr { 266 unsigned int ia_valid; 267 umode_t ia_mode; 268 /* 269 * The two anonymous unions wrap structures with the same member. 270 * 271 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 272 * are a dedicated type requiring the filesystem to use the dedicated 273 * helpers. Other filesystem can continue to use ia_{g,u}id until they 274 * have been ported. 275 * 276 * They always contain the same value. In other words FS_ALLOW_IDMAP 277 * pass down the same value on idmapped mounts as they would on regular 278 * mounts. 279 */ 280 union { 281 kuid_t ia_uid; 282 vfsuid_t ia_vfsuid; 283 }; 284 union { 285 kgid_t ia_gid; 286 vfsgid_t ia_vfsgid; 287 }; 288 loff_t ia_size; 289 struct timespec64 ia_atime; 290 struct timespec64 ia_mtime; 291 struct timespec64 ia_ctime; 292 293 /* 294 * Not an attribute, but an auxiliary info for filesystems wanting to 295 * implement an ftruncate() like method. NOTE: filesystem should 296 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 297 */ 298 struct file *ia_file; 299}; 300 301/* 302 * Includes for diskquotas. 303 */ 304#include <linux/quota.h> 305 306/* 307 * Maximum number of layers of fs stack. Needs to be limited to 308 * prevent kernel stack overflow 309 */ 310#define FILESYSTEM_MAX_STACK_DEPTH 2 311 312/** 313 * enum positive_aop_returns - aop return codes with specific semantics 314 * 315 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 316 * completed, that the page is still locked, and 317 * should be considered active. The VM uses this hint 318 * to return the page to the active list -- it won't 319 * be a candidate for writeback again in the near 320 * future. Other callers must be careful to unlock 321 * the page if they get this return. Returned by 322 * writepage(); 323 * 324 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 325 * unlocked it and the page might have been truncated. 326 * The caller should back up to acquiring a new page and 327 * trying again. The aop will be taking reasonable 328 * precautions not to livelock. If the caller held a page 329 * reference, it should drop it before retrying. Returned 330 * by read_folio(). 331 * 332 * address_space_operation functions return these large constants to indicate 333 * special semantics to the caller. These are much larger than the bytes in a 334 * page to allow for functions that return the number of bytes operated on in a 335 * given page. 336 */ 337 338enum positive_aop_returns { 339 AOP_WRITEPAGE_ACTIVATE = 0x80000, 340 AOP_TRUNCATED_PAGE = 0x80001, 341}; 342 343/* 344 * oh the beauties of C type declarations. 345 */ 346struct page; 347struct address_space; 348struct writeback_control; 349struct readahead_control; 350 351/* Match RWF_* bits to IOCB bits */ 352#define IOCB_HIPRI (__force int) RWF_HIPRI 353#define IOCB_DSYNC (__force int) RWF_DSYNC 354#define IOCB_SYNC (__force int) RWF_SYNC 355#define IOCB_NOWAIT (__force int) RWF_NOWAIT 356#define IOCB_APPEND (__force int) RWF_APPEND 357#define IOCB_ATOMIC (__force int) RWF_ATOMIC 358#define IOCB_DONTCACHE (__force int) RWF_DONTCACHE 359#define IOCB_NOSIGNAL (__force int) RWF_NOSIGNAL 360 361/* non-RWF related bits - start at 16 */ 362#define IOCB_EVENTFD (1 << 16) 363#define IOCB_DIRECT (1 << 17) 364#define IOCB_WRITE (1 << 18) 365/* iocb->ki_waitq is valid */ 366#define IOCB_WAITQ (1 << 19) 367#define IOCB_NOIO (1 << 20) 368/* can use bio alloc cache */ 369#define IOCB_ALLOC_CACHE (1 << 21) 370/* 371 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 372 * iocb completion can be passed back to the owner for execution from a safe 373 * context rather than needing to be punted through a workqueue. If this 374 * flag is set, the bio completion handling may set iocb->dio_complete to a 375 * handler function and iocb->private to context information for that handler. 376 * The issuer should call the handler with that context information from task 377 * context to complete the processing of the iocb. Note that while this 378 * provides a task context for the dio_complete() callback, it should only be 379 * used on the completion side for non-IO generating completions. It's fine to 380 * call blocking functions from this callback, but they should not wait for 381 * unrelated IO (like cache flushing, new IO generation, etc). 382 */ 383#define IOCB_DIO_CALLER_COMP (1 << 22) 384/* kiocb is a read or write operation submitted by fs/aio.c. */ 385#define IOCB_AIO_RW (1 << 23) 386#define IOCB_HAS_METADATA (1 << 24) 387 388/* for use in trace events */ 389#define TRACE_IOCB_STRINGS \ 390 { IOCB_HIPRI, "HIPRI" }, \ 391 { IOCB_DSYNC, "DSYNC" }, \ 392 { IOCB_SYNC, "SYNC" }, \ 393 { IOCB_NOWAIT, "NOWAIT" }, \ 394 { IOCB_APPEND, "APPEND" }, \ 395 { IOCB_ATOMIC, "ATOMIC" }, \ 396 { IOCB_DONTCACHE, "DONTCACHE" }, \ 397 { IOCB_EVENTFD, "EVENTFD"}, \ 398 { IOCB_DIRECT, "DIRECT" }, \ 399 { IOCB_WRITE, "WRITE" }, \ 400 { IOCB_WAITQ, "WAITQ" }, \ 401 { IOCB_NOIO, "NOIO" }, \ 402 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 403 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" }, \ 404 { IOCB_AIO_RW, "AIO_RW" }, \ 405 { IOCB_HAS_METADATA, "AIO_HAS_METADATA" } 406 407struct kiocb { 408 struct file *ki_filp; 409 loff_t ki_pos; 410 void (*ki_complete)(struct kiocb *iocb, long ret); 411 void *private; 412 int ki_flags; 413 u16 ki_ioprio; /* See linux/ioprio.h */ 414 u8 ki_write_stream; 415 union { 416 /* 417 * Only used for async buffered reads, where it denotes the 418 * page waitqueue associated with completing the read. Valid 419 * IFF IOCB_WAITQ is set. 420 */ 421 struct wait_page_queue *ki_waitq; 422 /* 423 * Can be used for O_DIRECT IO, where the completion handling 424 * is punted back to the issuer of the IO. May only be set 425 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 426 * must then check for presence of this handler when ki_complete 427 * is invoked. The data passed in to this handler must be 428 * assigned to ->private when dio_complete is assigned. 429 */ 430 ssize_t (*dio_complete)(void *data); 431 }; 432}; 433 434static inline bool is_sync_kiocb(struct kiocb *kiocb) 435{ 436 return kiocb->ki_complete == NULL; 437} 438 439struct address_space_operations { 440 int (*read_folio)(struct file *, struct folio *); 441 442 /* Write back some dirty pages from this mapping. */ 443 int (*writepages)(struct address_space *, struct writeback_control *); 444 445 /* Mark a folio dirty. Return true if this dirtied it */ 446 bool (*dirty_folio)(struct address_space *, struct folio *); 447 448 void (*readahead)(struct readahead_control *); 449 450 int (*write_begin)(const struct kiocb *, struct address_space *mapping, 451 loff_t pos, unsigned len, 452 struct folio **foliop, void **fsdata); 453 int (*write_end)(const struct kiocb *, struct address_space *mapping, 454 loff_t pos, unsigned len, unsigned copied, 455 struct folio *folio, void *fsdata); 456 457 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 458 sector_t (*bmap)(struct address_space *, sector_t); 459 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 460 bool (*release_folio)(struct folio *, gfp_t); 461 void (*free_folio)(struct folio *folio); 462 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 463 /* 464 * migrate the contents of a folio to the specified target. If 465 * migrate_mode is MIGRATE_ASYNC, it must not block. 466 */ 467 int (*migrate_folio)(struct address_space *, struct folio *dst, 468 struct folio *src, enum migrate_mode); 469 int (*launder_folio)(struct folio *); 470 bool (*is_partially_uptodate) (struct folio *, size_t from, 471 size_t count); 472 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 473 int (*error_remove_folio)(struct address_space *, struct folio *); 474 475 /* swapfile support */ 476 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 477 sector_t *span); 478 void (*swap_deactivate)(struct file *file); 479 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 480}; 481 482extern const struct address_space_operations empty_aops; 483 484/** 485 * struct address_space - Contents of a cacheable, mappable object. 486 * @host: Owner, either the inode or the block_device. 487 * @i_pages: Cached pages. 488 * @invalidate_lock: Guards coherency between page cache contents and 489 * file offset->disk block mappings in the filesystem during invalidates. 490 * It is also used to block modification of page cache contents through 491 * memory mappings. 492 * @gfp_mask: Memory allocation flags to use for allocating pages. 493 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 494 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 495 * @i_mmap: Tree of private and shared mappings. 496 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 497 * @nrpages: Number of page entries, protected by the i_pages lock. 498 * @writeback_index: Writeback starts here. 499 * @a_ops: Methods. 500 * @flags: Error bits and flags (AS_*). 501 * @wb_err: The most recent error which has occurred. 502 * @i_private_lock: For use by the owner of the address_space. 503 * @i_private_list: For use by the owner of the address_space. 504 * @i_private_data: For use by the owner of the address_space. 505 */ 506struct address_space { 507 struct inode *host; 508 struct xarray i_pages; 509 struct rw_semaphore invalidate_lock; 510 gfp_t gfp_mask; 511 atomic_t i_mmap_writable; 512#ifdef CONFIG_READ_ONLY_THP_FOR_FS 513 /* number of thp, only for non-shmem files */ 514 atomic_t nr_thps; 515#endif 516 struct rb_root_cached i_mmap; 517 unsigned long nrpages; 518 pgoff_t writeback_index; 519 const struct address_space_operations *a_ops; 520 unsigned long flags; 521 errseq_t wb_err; 522 spinlock_t i_private_lock; 523 struct list_head i_private_list; 524 struct rw_semaphore i_mmap_rwsem; 525 void * i_private_data; 526} __attribute__((aligned(sizeof(long)))) __randomize_layout; 527 /* 528 * On most architectures that alignment is already the case; but 529 * must be enforced here for CRIS, to let the least significant bit 530 * of struct folio's "mapping" pointer be used for FOLIO_MAPPING_ANON. 531 */ 532 533/* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 534#define PAGECACHE_TAG_DIRTY XA_MARK_0 535#define PAGECACHE_TAG_WRITEBACK XA_MARK_1 536#define PAGECACHE_TAG_TOWRITE XA_MARK_2 537 538/* 539 * Returns true if any of the pages in the mapping are marked with the tag. 540 */ 541static inline bool mapping_tagged(const struct address_space *mapping, xa_mark_t tag) 542{ 543 return xa_marked(&mapping->i_pages, tag); 544} 545 546static inline void i_mmap_lock_write(struct address_space *mapping) 547{ 548 down_write(&mapping->i_mmap_rwsem); 549} 550 551static inline int i_mmap_trylock_write(struct address_space *mapping) 552{ 553 return down_write_trylock(&mapping->i_mmap_rwsem); 554} 555 556static inline void i_mmap_unlock_write(struct address_space *mapping) 557{ 558 up_write(&mapping->i_mmap_rwsem); 559} 560 561static inline int i_mmap_trylock_read(struct address_space *mapping) 562{ 563 return down_read_trylock(&mapping->i_mmap_rwsem); 564} 565 566static inline void i_mmap_lock_read(struct address_space *mapping) 567{ 568 down_read(&mapping->i_mmap_rwsem); 569} 570 571static inline void i_mmap_unlock_read(struct address_space *mapping) 572{ 573 up_read(&mapping->i_mmap_rwsem); 574} 575 576static inline void i_mmap_assert_locked(struct address_space *mapping) 577{ 578 lockdep_assert_held(&mapping->i_mmap_rwsem); 579} 580 581static inline void i_mmap_assert_write_locked(struct address_space *mapping) 582{ 583 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 584} 585 586/* 587 * Might pages of this file be mapped into userspace? 588 */ 589static inline int mapping_mapped(const struct address_space *mapping) 590{ 591 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 592} 593 594/* 595 * Might pages of this file have been modified in userspace? 596 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 597 * marks vma as VM_SHARED if it is shared, and the file was opened for 598 * writing i.e. vma may be mprotected writable even if now readonly. 599 * 600 * If i_mmap_writable is negative, no new writable mappings are allowed. You 601 * can only deny writable mappings, if none exists right now. 602 */ 603static inline int mapping_writably_mapped(const struct address_space *mapping) 604{ 605 return atomic_read(&mapping->i_mmap_writable) > 0; 606} 607 608static inline int mapping_map_writable(struct address_space *mapping) 609{ 610 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 611 0 : -EPERM; 612} 613 614static inline void mapping_unmap_writable(struct address_space *mapping) 615{ 616 atomic_dec(&mapping->i_mmap_writable); 617} 618 619static inline int mapping_deny_writable(struct address_space *mapping) 620{ 621 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 622 0 : -EBUSY; 623} 624 625static inline void mapping_allow_writable(struct address_space *mapping) 626{ 627 atomic_inc(&mapping->i_mmap_writable); 628} 629 630/* 631 * Use sequence counter to get consistent i_size on 32-bit processors. 632 */ 633#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 634#include <linux/seqlock.h> 635#define __NEED_I_SIZE_ORDERED 636#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 637#else 638#define i_size_ordered_init(inode) do { } while (0) 639#endif 640 641struct posix_acl; 642#define ACL_NOT_CACHED ((void *)(-1)) 643/* 644 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 645 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 646 * mode with the LOOKUP_RCU flag. 647 */ 648#define ACL_DONT_CACHE ((void *)(-3)) 649 650static inline struct posix_acl * 651uncached_acl_sentinel(struct task_struct *task) 652{ 653 return (void *)task + 1; 654} 655 656static inline bool 657is_uncached_acl(struct posix_acl *acl) 658{ 659 return (long)acl & 1; 660} 661 662#define IOP_FASTPERM 0x0001 663#define IOP_LOOKUP 0x0002 664#define IOP_NOFOLLOW 0x0004 665#define IOP_XATTR 0x0008 666#define IOP_DEFAULT_READLINK 0x0010 667#define IOP_MGTIME 0x0020 668#define IOP_CACHED_LINK 0x0040 669 670/* 671 * Inode state bits. Protected by inode->i_lock 672 * 673 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 674 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 675 * 676 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 677 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 678 * various stages of removing an inode. 679 * 680 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 681 * 682 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 683 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 684 * Timestamp updates are the usual cause. 685 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 686 * these changes separately from I_DIRTY_SYNC so that we 687 * don't have to write inode on fdatasync() when only 688 * e.g. the timestamps have changed. 689 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 690 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 691 * lazytime mount option is enabled. We keep track of this 692 * separately from I_DIRTY_SYNC in order to implement 693 * lazytime. This gets cleared if I_DIRTY_INODE 694 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 695 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 696 * in place because writeback might already be in progress 697 * and we don't want to lose the time update 698 * I_NEW Serves as both a mutex and completion notification. 699 * New inodes set I_NEW. If two processes both create 700 * the same inode, one of them will release its inode and 701 * wait for I_NEW to be released before returning. 702 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 703 * also cause waiting on I_NEW, without I_NEW actually 704 * being set. find_inode() uses this to prevent returning 705 * nearly-dead inodes. 706 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 707 * is zero. I_FREEING must be set when I_WILL_FREE is 708 * cleared. 709 * I_FREEING Set when inode is about to be freed but still has dirty 710 * pages or buffers attached or the inode itself is still 711 * dirty. 712 * I_CLEAR Added by clear_inode(). In this state the inode is 713 * clean and can be destroyed. Inode keeps I_FREEING. 714 * 715 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 716 * prohibited for many purposes. iget() must wait for 717 * the inode to be completely released, then create it 718 * anew. Other functions will just ignore such inodes, 719 * if appropriate. I_NEW is used for waiting. 720 * 721 * I_SYNC Writeback of inode is running. The bit is set during 722 * data writeback, and cleared with a wakeup on the bit 723 * address once it is done. The bit is also used to pin 724 * the inode in memory for flusher thread. 725 * 726 * I_REFERENCED Marks the inode as recently references on the LRU list. 727 * 728 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 729 * synchronize competing switching instances and to tell 730 * wb stat updates to grab the i_pages lock. See 731 * inode_switch_wbs_work_fn() for details. 732 * 733 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 734 * and work dirs among overlayfs mounts. 735 * 736 * I_CREATING New object's inode in the middle of setting up. 737 * 738 * I_DONTCACHE Evict inode as soon as it is not used anymore. 739 * 740 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 741 * Used to detect that mark_inode_dirty() should not move 742 * inode between dirty lists. 743 * 744 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 745 * 746 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 747 * i_count. 748 * 749 * Q: What is the difference between I_WILL_FREE and I_FREEING? 750 * 751 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 752 * upon. There's one free address left. 753 */ 754 755enum inode_state_bits { 756 __I_NEW = 0U, 757 __I_SYNC = 1U, 758 __I_LRU_ISOLATING = 2U 759 /* reserved wait address bit 3 */ 760}; 761 762enum inode_state_flags_t { 763 I_NEW = (1U << __I_NEW), 764 I_SYNC = (1U << __I_SYNC), 765 I_LRU_ISOLATING = (1U << __I_LRU_ISOLATING), 766 /* reserved flag bit 3 */ 767 I_DIRTY_SYNC = (1U << 4), 768 I_DIRTY_DATASYNC = (1U << 5), 769 I_DIRTY_PAGES = (1U << 6), 770 I_WILL_FREE = (1U << 7), 771 I_FREEING = (1U << 8), 772 I_CLEAR = (1U << 9), 773 I_REFERENCED = (1U << 10), 774 I_LINKABLE = (1U << 11), 775 I_DIRTY_TIME = (1U << 12), 776 I_WB_SWITCH = (1U << 13), 777 I_OVL_INUSE = (1U << 14), 778 I_CREATING = (1U << 15), 779 I_DONTCACHE = (1U << 16), 780 I_SYNC_QUEUED = (1U << 17), 781 I_PINNING_NETFS_WB = (1U << 18) 782}; 783 784#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 785#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 786#define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 787 788/* 789 * Keep mostly read-only and often accessed (especially for 790 * the RCU path lookup and 'stat' data) fields at the beginning 791 * of the 'struct inode' 792 */ 793struct inode { 794 umode_t i_mode; 795 unsigned short i_opflags; 796 kuid_t i_uid; 797 kgid_t i_gid; 798 unsigned int i_flags; 799 800#ifdef CONFIG_FS_POSIX_ACL 801 struct posix_acl *i_acl; 802 struct posix_acl *i_default_acl; 803#endif 804 805 const struct inode_operations *i_op; 806 struct super_block *i_sb; 807 struct address_space *i_mapping; 808 809#ifdef CONFIG_SECURITY 810 void *i_security; 811#endif 812 813 /* Stat data, not accessed from path walking */ 814 unsigned long i_ino; 815 /* 816 * Filesystems may only read i_nlink directly. They shall use the 817 * following functions for modification: 818 * 819 * (set|clear|inc|drop)_nlink 820 * inode_(inc|dec)_link_count 821 */ 822 union { 823 const unsigned int i_nlink; 824 unsigned int __i_nlink; 825 }; 826 dev_t i_rdev; 827 loff_t i_size; 828 time64_t i_atime_sec; 829 time64_t i_mtime_sec; 830 time64_t i_ctime_sec; 831 u32 i_atime_nsec; 832 u32 i_mtime_nsec; 833 u32 i_ctime_nsec; 834 u32 i_generation; 835 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 836 unsigned short i_bytes; 837 u8 i_blkbits; 838 enum rw_hint i_write_hint; 839 blkcnt_t i_blocks; 840 841#ifdef __NEED_I_SIZE_ORDERED 842 seqcount_t i_size_seqcount; 843#endif 844 845 /* Misc */ 846 enum inode_state_flags_t i_state; 847 /* 32-bit hole */ 848 struct rw_semaphore i_rwsem; 849 850 unsigned long dirtied_when; /* jiffies of first dirtying */ 851 unsigned long dirtied_time_when; 852 853 struct hlist_node i_hash; 854 struct list_head i_io_list; /* backing dev IO list */ 855#ifdef CONFIG_CGROUP_WRITEBACK 856 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 857 858 /* foreign inode detection, see wbc_detach_inode() */ 859 int i_wb_frn_winner; 860 u16 i_wb_frn_avg_time; 861 u16 i_wb_frn_history; 862#endif 863 struct list_head i_lru; /* inode LRU list */ 864 struct list_head i_sb_list; 865 struct list_head i_wb_list; /* backing dev writeback list */ 866 union { 867 struct hlist_head i_dentry; 868 struct rcu_head i_rcu; 869 }; 870 atomic64_t i_version; 871 atomic64_t i_sequence; /* see futex */ 872 atomic_t i_count; 873 atomic_t i_dio_count; 874 atomic_t i_writecount; 875#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 876 atomic_t i_readcount; /* struct files open RO */ 877#endif 878 union { 879 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 880 void (*free_inode)(struct inode *); 881 }; 882 struct file_lock_context *i_flctx; 883 struct address_space i_data; 884 union { 885 struct list_head i_devices; 886 int i_linklen; 887 }; 888 union { 889 struct pipe_inode_info *i_pipe; 890 struct cdev *i_cdev; 891 char *i_link; 892 unsigned i_dir_seq; 893 }; 894 895 896#ifdef CONFIG_FSNOTIFY 897 __u32 i_fsnotify_mask; /* all events this inode cares about */ 898 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 899 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 900#endif 901 902 void *i_private; /* fs or device private pointer */ 903} __randomize_layout; 904 905static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen) 906{ 907 VFS_WARN_ON_INODE(strlen(link) != linklen, inode); 908 VFS_WARN_ON_INODE(inode->i_opflags & IOP_CACHED_LINK, inode); 909 inode->i_link = link; 910 inode->i_linklen = linklen; 911 inode->i_opflags |= IOP_CACHED_LINK; 912} 913 914/* 915 * Get bit address from inode->i_state to use with wait_var_event() 916 * infrastructre. 917 */ 918#define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 919 920struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 921 struct inode *inode, u32 bit); 922 923static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 924{ 925 /* Caller is responsible for correct memory barriers. */ 926 wake_up_var(inode_state_wait_address(inode, bit)); 927} 928 929struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 930 931static inline unsigned int i_blocksize(const struct inode *node) 932{ 933 return (1 << node->i_blkbits); 934} 935 936static inline int inode_unhashed(struct inode *inode) 937{ 938 return hlist_unhashed(&inode->i_hash); 939} 940 941/* 942 * __mark_inode_dirty expects inodes to be hashed. Since we don't 943 * want special inodes in the fileset inode space, we make them 944 * appear hashed, but do not put on any lists. hlist_del() 945 * will work fine and require no locking. 946 */ 947static inline void inode_fake_hash(struct inode *inode) 948{ 949 hlist_add_fake(&inode->i_hash); 950} 951 952/* 953 * inode->i_rwsem nesting subclasses for the lock validator: 954 * 955 * 0: the object of the current VFS operation 956 * 1: parent 957 * 2: child/target 958 * 3: xattr 959 * 4: second non-directory 960 * 5: second parent (when locking independent directories in rename) 961 * 962 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 963 * non-directories at once. 964 * 965 * The locking order between these classes is 966 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 967 */ 968enum inode_i_mutex_lock_class 969{ 970 I_MUTEX_NORMAL, 971 I_MUTEX_PARENT, 972 I_MUTEX_CHILD, 973 I_MUTEX_XATTR, 974 I_MUTEX_NONDIR2, 975 I_MUTEX_PARENT2, 976}; 977 978static inline void inode_lock(struct inode *inode) 979{ 980 down_write(&inode->i_rwsem); 981} 982 983static inline __must_check int inode_lock_killable(struct inode *inode) 984{ 985 return down_write_killable(&inode->i_rwsem); 986} 987 988static inline void inode_unlock(struct inode *inode) 989{ 990 up_write(&inode->i_rwsem); 991} 992 993static inline void inode_lock_shared(struct inode *inode) 994{ 995 down_read(&inode->i_rwsem); 996} 997 998static inline __must_check int inode_lock_shared_killable(struct inode *inode) 999{ 1000 return down_read_killable(&inode->i_rwsem); 1001} 1002 1003static inline void inode_unlock_shared(struct inode *inode) 1004{ 1005 up_read(&inode->i_rwsem); 1006} 1007 1008static inline int inode_trylock(struct inode *inode) 1009{ 1010 return down_write_trylock(&inode->i_rwsem); 1011} 1012 1013static inline int inode_trylock_shared(struct inode *inode) 1014{ 1015 return down_read_trylock(&inode->i_rwsem); 1016} 1017 1018static inline int inode_is_locked(struct inode *inode) 1019{ 1020 return rwsem_is_locked(&inode->i_rwsem); 1021} 1022 1023static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 1024{ 1025 down_write_nested(&inode->i_rwsem, subclass); 1026} 1027 1028static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 1029{ 1030 down_read_nested(&inode->i_rwsem, subclass); 1031} 1032 1033static inline void filemap_invalidate_lock(struct address_space *mapping) 1034{ 1035 down_write(&mapping->invalidate_lock); 1036} 1037 1038static inline void filemap_invalidate_unlock(struct address_space *mapping) 1039{ 1040 up_write(&mapping->invalidate_lock); 1041} 1042 1043static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 1044{ 1045 down_read(&mapping->invalidate_lock); 1046} 1047 1048static inline int filemap_invalidate_trylock_shared( 1049 struct address_space *mapping) 1050{ 1051 return down_read_trylock(&mapping->invalidate_lock); 1052} 1053 1054static inline void filemap_invalidate_unlock_shared( 1055 struct address_space *mapping) 1056{ 1057 up_read(&mapping->invalidate_lock); 1058} 1059 1060void lock_two_nondirectories(struct inode *, struct inode*); 1061void unlock_two_nondirectories(struct inode *, struct inode*); 1062 1063void filemap_invalidate_lock_two(struct address_space *mapping1, 1064 struct address_space *mapping2); 1065void filemap_invalidate_unlock_two(struct address_space *mapping1, 1066 struct address_space *mapping2); 1067 1068 1069/* 1070 * NOTE: in a 32bit arch with a preemptable kernel and 1071 * an UP compile the i_size_read/write must be atomic 1072 * with respect to the local cpu (unlike with preempt disabled), 1073 * but they don't need to be atomic with respect to other cpus like in 1074 * true SMP (so they need either to either locally disable irq around 1075 * the read or for example on x86 they can be still implemented as a 1076 * cmpxchg8b without the need of the lock prefix). For SMP compiles 1077 * and 64bit archs it makes no difference if preempt is enabled or not. 1078 */ 1079static inline loff_t i_size_read(const struct inode *inode) 1080{ 1081#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 1082 loff_t i_size; 1083 unsigned int seq; 1084 1085 do { 1086 seq = read_seqcount_begin(&inode->i_size_seqcount); 1087 i_size = inode->i_size; 1088 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 1089 return i_size; 1090#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 1091 loff_t i_size; 1092 1093 preempt_disable(); 1094 i_size = inode->i_size; 1095 preempt_enable(); 1096 return i_size; 1097#else 1098 /* Pairs with smp_store_release() in i_size_write() */ 1099 return smp_load_acquire(&inode->i_size); 1100#endif 1101} 1102 1103/* 1104 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 1105 * (normally i_rwsem), otherwise on 32bit/SMP an update of i_size_seqcount 1106 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 1107 */ 1108static inline void i_size_write(struct inode *inode, loff_t i_size) 1109{ 1110#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 1111 preempt_disable(); 1112 write_seqcount_begin(&inode->i_size_seqcount); 1113 inode->i_size = i_size; 1114 write_seqcount_end(&inode->i_size_seqcount); 1115 preempt_enable(); 1116#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 1117 preempt_disable(); 1118 inode->i_size = i_size; 1119 preempt_enable(); 1120#else 1121 /* 1122 * Pairs with smp_load_acquire() in i_size_read() to ensure 1123 * changes related to inode size (such as page contents) are 1124 * visible before we see the changed inode size. 1125 */ 1126 smp_store_release(&inode->i_size, i_size); 1127#endif 1128} 1129 1130static inline unsigned iminor(const struct inode *inode) 1131{ 1132 return MINOR(inode->i_rdev); 1133} 1134 1135static inline unsigned imajor(const struct inode *inode) 1136{ 1137 return MAJOR(inode->i_rdev); 1138} 1139 1140struct fown_struct { 1141 struct file *file; /* backpointer for security modules */ 1142 rwlock_t lock; /* protects pid, uid, euid fields */ 1143 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 1144 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 1145 kuid_t uid, euid; /* uid/euid of process setting the owner */ 1146 int signum; /* posix.1b rt signal to be delivered on IO */ 1147}; 1148 1149/** 1150 * struct file_ra_state - Track a file's readahead state. 1151 * @start: Where the most recent readahead started. 1152 * @size: Number of pages read in the most recent readahead. 1153 * @async_size: Numer of pages that were/are not needed immediately 1154 * and so were/are genuinely "ahead". Start next readahead when 1155 * the first of these pages is accessed. 1156 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 1157 * @order: Preferred folio order used for most recent readahead. 1158 * @mmap_miss: How many mmap accesses missed in the page cache. 1159 * @prev_pos: The last byte in the most recent read request. 1160 * 1161 * When this structure is passed to ->readahead(), the "most recent" 1162 * readahead means the current readahead. 1163 */ 1164struct file_ra_state { 1165 pgoff_t start; 1166 unsigned int size; 1167 unsigned int async_size; 1168 unsigned int ra_pages; 1169 unsigned short order; 1170 unsigned short mmap_miss; 1171 loff_t prev_pos; 1172}; 1173 1174/* 1175 * Check if @index falls in the readahead windows. 1176 */ 1177static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1178{ 1179 return (index >= ra->start && 1180 index < ra->start + ra->size); 1181} 1182 1183/** 1184 * struct file - Represents a file 1185 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1186 * @f_mode: FMODE_* flags often used in hotpaths 1187 * @f_op: file operations 1188 * @f_mapping: Contents of a cacheable, mappable object. 1189 * @private_data: filesystem or driver specific data 1190 * @f_inode: cached inode 1191 * @f_flags: file flags 1192 * @f_iocb_flags: iocb flags 1193 * @f_cred: stashed credentials of creator/opener 1194 * @f_owner: file owner 1195 * @f_path: path of the file 1196 * @__f_path: writable alias for @f_path; *ONLY* for core VFS and only before 1197 * the file gets open 1198 * @f_pos_lock: lock protecting file position 1199 * @f_pipe: specific to pipes 1200 * @f_pos: file position 1201 * @f_security: LSM security context of this file 1202 * @f_wb_err: writeback error 1203 * @f_sb_err: per sb writeback errors 1204 * @f_ep: link of all epoll hooks for this file 1205 * @f_task_work: task work entry point 1206 * @f_llist: work queue entrypoint 1207 * @f_ra: file's readahead state 1208 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1209 * @f_ref: reference count 1210 */ 1211struct file { 1212 spinlock_t f_lock; 1213 fmode_t f_mode; 1214 const struct file_operations *f_op; 1215 struct address_space *f_mapping; 1216 void *private_data; 1217 struct inode *f_inode; 1218 unsigned int f_flags; 1219 unsigned int f_iocb_flags; 1220 const struct cred *f_cred; 1221 struct fown_struct *f_owner; 1222 /* --- cacheline 1 boundary (64 bytes) --- */ 1223 union { 1224 const struct path f_path; 1225 struct path __f_path; 1226 }; 1227 union { 1228 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1229 struct mutex f_pos_lock; 1230 /* pipes */ 1231 u64 f_pipe; 1232 }; 1233 loff_t f_pos; 1234#ifdef CONFIG_SECURITY 1235 void *f_security; 1236#endif 1237 /* --- cacheline 2 boundary (128 bytes) --- */ 1238 errseq_t f_wb_err; 1239 errseq_t f_sb_err; 1240#ifdef CONFIG_EPOLL 1241 struct hlist_head *f_ep; 1242#endif 1243 union { 1244 struct callback_head f_task_work; 1245 struct llist_node f_llist; 1246 struct file_ra_state f_ra; 1247 freeptr_t f_freeptr; 1248 }; 1249 file_ref_t f_ref; 1250 /* --- cacheline 3 boundary (192 bytes) --- */ 1251} __randomize_layout 1252 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1253 1254struct file_handle { 1255 __u32 handle_bytes; 1256 int handle_type; 1257 /* file identifier */ 1258 unsigned char f_handle[] __counted_by(handle_bytes); 1259}; 1260 1261static inline struct file *get_file(struct file *f) 1262{ 1263 file_ref_inc(&f->f_ref); 1264 return f; 1265} 1266 1267struct file *get_file_rcu(struct file __rcu **f); 1268struct file *get_file_active(struct file **f); 1269 1270#define file_count(f) file_ref_read(&(f)->f_ref) 1271 1272#define MAX_NON_LFS ((1UL<<31) - 1) 1273 1274/* Page cache limit. The filesystems should put that into their s_maxbytes 1275 limits, otherwise bad things can happen in VM. */ 1276#if BITS_PER_LONG==32 1277#define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1278#elif BITS_PER_LONG==64 1279#define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1280#endif 1281 1282/* legacy typedef, should eventually be removed */ 1283typedef void *fl_owner_t; 1284 1285struct file_lock; 1286struct file_lease; 1287 1288/* The following constant reflects the upper bound of the file/locking space */ 1289#ifndef OFFSET_MAX 1290#define OFFSET_MAX type_max(loff_t) 1291#define OFFT_OFFSET_MAX type_max(off_t) 1292#endif 1293 1294int file_f_owner_allocate(struct file *file); 1295static inline struct fown_struct *file_f_owner(const struct file *file) 1296{ 1297 return READ_ONCE(file->f_owner); 1298} 1299 1300extern void send_sigio(struct fown_struct *fown, int fd, int band); 1301 1302static inline struct inode *file_inode(const struct file *f) 1303{ 1304 return f->f_inode; 1305} 1306 1307/* 1308 * file_dentry() is a relic from the days that overlayfs was using files with a 1309 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1310 * In those days, file_dentry() was needed to get the underlying fs dentry that 1311 * matches f_inode. 1312 * Files with "fake" path should not exist nowadays, so use an assertion to make 1313 * sure that file_dentry() was not papering over filesystem bugs. 1314 */ 1315static inline struct dentry *file_dentry(const struct file *file) 1316{ 1317 struct dentry *dentry = file->f_path.dentry; 1318 1319 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1320 return dentry; 1321} 1322 1323struct fasync_struct { 1324 rwlock_t fa_lock; 1325 int magic; 1326 int fa_fd; 1327 struct fasync_struct *fa_next; /* singly linked list */ 1328 struct file *fa_file; 1329 struct rcu_head fa_rcu; 1330}; 1331 1332#define FASYNC_MAGIC 0x4601 1333 1334/* SMP safe fasync helpers: */ 1335extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1336extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1337extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1338extern struct fasync_struct *fasync_alloc(void); 1339extern void fasync_free(struct fasync_struct *); 1340 1341/* can be called from interrupts */ 1342extern void kill_fasync(struct fasync_struct **, int, int); 1343 1344extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1345extern int f_setown(struct file *filp, int who, int force); 1346extern void f_delown(struct file *filp); 1347extern pid_t f_getown(struct file *filp); 1348extern int send_sigurg(struct file *file); 1349 1350/* 1351 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1352 * represented in both. 1353 */ 1354#define SB_RDONLY BIT(0) /* Mount read-only */ 1355#define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1356#define SB_NODEV BIT(2) /* Disallow access to device special files */ 1357#define SB_NOEXEC BIT(3) /* Disallow program execution */ 1358#define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1359#define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1360#define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1361#define SB_NOATIME BIT(10) /* Do not update access times. */ 1362#define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1363#define SB_SILENT BIT(15) 1364#define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1365#define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1366#define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1367#define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1368#define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1369 1370/* These sb flags are internal to the kernel */ 1371#define SB_DEAD BIT(21) 1372#define SB_DYING BIT(24) 1373#define SB_FORCE BIT(27) 1374#define SB_NOSEC BIT(28) 1375#define SB_BORN BIT(29) 1376#define SB_ACTIVE BIT(30) 1377#define SB_NOUSER BIT(31) 1378 1379/* These flags relate to encoding and casefolding */ 1380#define SB_ENC_STRICT_MODE_FL (1 << 0) 1381#define SB_ENC_NO_COMPAT_FALLBACK_FL (1 << 1) 1382 1383#define sb_has_strict_encoding(sb) \ 1384 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1385 1386#if IS_ENABLED(CONFIG_UNICODE) 1387#define sb_no_casefold_compat_fallback(sb) \ 1388 (sb->s_encoding_flags & SB_ENC_NO_COMPAT_FALLBACK_FL) 1389#else 1390#define sb_no_casefold_compat_fallback(sb) (1) 1391#endif 1392 1393/* 1394 * Umount options 1395 */ 1396 1397#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1398#define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1399#define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1400#define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1401#define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1402 1403/* sb->s_iflags */ 1404#define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1405#define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1406#define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1407#define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1408 1409/* sb->s_iflags to limit user namespace mounts */ 1410#define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1411#define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1412#define SB_I_UNTRUSTED_MOUNTER 0x00000040 1413#define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1414 1415#define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1416#define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1417#define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1418#define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1419#define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1420#define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ 1421#define SB_I_ALLOW_HSM 0x00004000 /* Allow HSM events on this superblock */ 1422 1423/* Possible states of 'frozen' field */ 1424enum { 1425 SB_UNFROZEN = 0, /* FS is unfrozen */ 1426 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1427 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1428 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1429 * internal threads if needed) */ 1430 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1431}; 1432 1433#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1434 1435struct sb_writers { 1436 unsigned short frozen; /* Is sb frozen? */ 1437 int freeze_kcount; /* How many kernel freeze requests? */ 1438 int freeze_ucount; /* How many userspace freeze requests? */ 1439 const void *freeze_owner; /* Owner of the freeze */ 1440 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1441}; 1442 1443struct mount; 1444 1445struct super_block { 1446 struct list_head s_list; /* Keep this first */ 1447 dev_t s_dev; /* search index; _not_ kdev_t */ 1448 unsigned char s_blocksize_bits; 1449 unsigned long s_blocksize; 1450 loff_t s_maxbytes; /* Max file size */ 1451 struct file_system_type *s_type; 1452 const struct super_operations *s_op; 1453 const struct dquot_operations *dq_op; 1454 const struct quotactl_ops *s_qcop; 1455 const struct export_operations *s_export_op; 1456 unsigned long s_flags; 1457 unsigned long s_iflags; /* internal SB_I_* flags */ 1458 unsigned long s_magic; 1459 struct dentry *s_root; 1460 struct rw_semaphore s_umount; 1461 int s_count; 1462 atomic_t s_active; 1463#ifdef CONFIG_SECURITY 1464 void *s_security; 1465#endif 1466 const struct xattr_handler * const *s_xattr; 1467#ifdef CONFIG_FS_ENCRYPTION 1468 const struct fscrypt_operations *s_cop; 1469 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1470#endif 1471#ifdef CONFIG_FS_VERITY 1472 const struct fsverity_operations *s_vop; 1473#endif 1474#if IS_ENABLED(CONFIG_UNICODE) 1475 struct unicode_map *s_encoding; 1476 __u16 s_encoding_flags; 1477#endif 1478 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1479 struct mount *s_mounts; /* list of mounts; _not_ for fs use */ 1480 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1481 struct file *s_bdev_file; 1482 struct backing_dev_info *s_bdi; 1483 struct mtd_info *s_mtd; 1484 struct hlist_node s_instances; 1485 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1486 struct quota_info s_dquot; /* Diskquota specific options */ 1487 1488 struct sb_writers s_writers; 1489 1490 /* 1491 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1492 * s_fsnotify_info together for cache efficiency. They are frequently 1493 * accessed and rarely modified. 1494 */ 1495 void *s_fs_info; /* Filesystem private info */ 1496 1497 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1498 u32 s_time_gran; 1499 /* Time limits for c/m/atime in seconds */ 1500 time64_t s_time_min; 1501 time64_t s_time_max; 1502#ifdef CONFIG_FSNOTIFY 1503 u32 s_fsnotify_mask; 1504 struct fsnotify_sb_info *s_fsnotify_info; 1505#endif 1506 1507 /* 1508 * q: why are s_id and s_sysfs_name not the same? both are human 1509 * readable strings that identify the filesystem 1510 * a: s_id is allowed to change at runtime; it's used in log messages, 1511 * and we want to when a device starts out as single device (s_id is dev 1512 * name) but then a device is hot added and we have to switch to 1513 * identifying it by UUID 1514 * but s_sysfs_name is a handle for programmatic access, and can't 1515 * change at runtime 1516 */ 1517 char s_id[32]; /* Informational name */ 1518 uuid_t s_uuid; /* UUID */ 1519 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1520 1521 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1522 char s_sysfs_name[UUID_STRING_LEN + 1]; 1523 1524 unsigned int s_max_links; 1525 unsigned int s_d_flags; /* default d_flags for dentries */ 1526 1527 /* 1528 * The next field is for VFS *only*. No filesystems have any business 1529 * even looking at it. You had been warned. 1530 */ 1531 struct mutex s_vfs_rename_mutex; /* Kludge */ 1532 1533 /* 1534 * Filesystem subtype. If non-empty the filesystem type field 1535 * in /proc/mounts will be "type.subtype" 1536 */ 1537 const char *s_subtype; 1538 1539 const struct dentry_operations *__s_d_op; /* default d_op for dentries */ 1540 1541 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1542 1543 /* Number of inodes with nlink == 0 but still referenced */ 1544 atomic_long_t s_remove_count; 1545 1546 /* Read-only state of the superblock is being changed */ 1547 int s_readonly_remount; 1548 1549 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1550 errseq_t s_wb_err; 1551 1552 /* AIO completions deferred from interrupt context */ 1553 struct workqueue_struct *s_dio_done_wq; 1554 struct hlist_head s_pins; 1555 1556 /* 1557 * Owning user namespace and default context in which to 1558 * interpret filesystem uids, gids, quotas, device nodes, 1559 * xattrs and security labels. 1560 */ 1561 struct user_namespace *s_user_ns; 1562 1563 /* 1564 * The list_lru structure is essentially just a pointer to a table 1565 * of per-node lru lists, each of which has its own spinlock. 1566 * There is no need to put them into separate cachelines. 1567 */ 1568 struct list_lru s_dentry_lru; 1569 struct list_lru s_inode_lru; 1570 struct rcu_head rcu; 1571 struct work_struct destroy_work; 1572 1573 struct mutex s_sync_lock; /* sync serialisation lock */ 1574 1575 /* 1576 * Indicates how deep in a filesystem stack this SB is 1577 */ 1578 int s_stack_depth; 1579 1580 /* s_inode_list_lock protects s_inodes */ 1581 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1582 struct list_head s_inodes; /* all inodes */ 1583 1584 spinlock_t s_inode_wblist_lock; 1585 struct list_head s_inodes_wb; /* writeback inodes */ 1586} __randomize_layout; 1587 1588static inline struct user_namespace *i_user_ns(const struct inode *inode) 1589{ 1590 return inode->i_sb->s_user_ns; 1591} 1592 1593/* Helper functions so that in most cases filesystems will 1594 * not need to deal directly with kuid_t and kgid_t and can 1595 * instead deal with the raw numeric values that are stored 1596 * in the filesystem. 1597 */ 1598static inline uid_t i_uid_read(const struct inode *inode) 1599{ 1600 return from_kuid(i_user_ns(inode), inode->i_uid); 1601} 1602 1603static inline gid_t i_gid_read(const struct inode *inode) 1604{ 1605 return from_kgid(i_user_ns(inode), inode->i_gid); 1606} 1607 1608static inline void i_uid_write(struct inode *inode, uid_t uid) 1609{ 1610 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1611} 1612 1613static inline void i_gid_write(struct inode *inode, gid_t gid) 1614{ 1615 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1616} 1617 1618/** 1619 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1620 * @idmap: idmap of the mount the inode was found from 1621 * @inode: inode to map 1622 * 1623 * Return: whe inode's i_uid mapped down according to @idmap. 1624 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1625 */ 1626static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1627 const struct inode *inode) 1628{ 1629 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1630} 1631 1632/** 1633 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1634 * @idmap: idmap of the mount the inode was found from 1635 * @attr: the new attributes of @inode 1636 * @inode: the inode to update 1637 * 1638 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1639 * mounts into account if the filesystem supports it. 1640 * 1641 * Return: true if @inode's i_uid field needs to be updated, false if not. 1642 */ 1643static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1644 const struct iattr *attr, 1645 const struct inode *inode) 1646{ 1647 return ((attr->ia_valid & ATTR_UID) && 1648 !vfsuid_eq(attr->ia_vfsuid, 1649 i_uid_into_vfsuid(idmap, inode))); 1650} 1651 1652/** 1653 * i_uid_update - update @inode's i_uid field 1654 * @idmap: idmap of the mount the inode was found from 1655 * @attr: the new attributes of @inode 1656 * @inode: the inode to update 1657 * 1658 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1659 * mount into the filesystem kuid. 1660 */ 1661static inline void i_uid_update(struct mnt_idmap *idmap, 1662 const struct iattr *attr, 1663 struct inode *inode) 1664{ 1665 if (attr->ia_valid & ATTR_UID) 1666 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1667 attr->ia_vfsuid); 1668} 1669 1670/** 1671 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1672 * @idmap: idmap of the mount the inode was found from 1673 * @inode: inode to map 1674 * 1675 * Return: the inode's i_gid mapped down according to @idmap. 1676 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1677 */ 1678static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1679 const struct inode *inode) 1680{ 1681 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1682} 1683 1684/** 1685 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1686 * @idmap: idmap of the mount the inode was found from 1687 * @attr: the new attributes of @inode 1688 * @inode: the inode to update 1689 * 1690 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1691 * mounts into account if the filesystem supports it. 1692 * 1693 * Return: true if @inode's i_gid field needs to be updated, false if not. 1694 */ 1695static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1696 const struct iattr *attr, 1697 const struct inode *inode) 1698{ 1699 return ((attr->ia_valid & ATTR_GID) && 1700 !vfsgid_eq(attr->ia_vfsgid, 1701 i_gid_into_vfsgid(idmap, inode))); 1702} 1703 1704/** 1705 * i_gid_update - update @inode's i_gid field 1706 * @idmap: idmap of the mount the inode was found from 1707 * @attr: the new attributes of @inode 1708 * @inode: the inode to update 1709 * 1710 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1711 * mount into the filesystem kgid. 1712 */ 1713static inline void i_gid_update(struct mnt_idmap *idmap, 1714 const struct iattr *attr, 1715 struct inode *inode) 1716{ 1717 if (attr->ia_valid & ATTR_GID) 1718 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1719 attr->ia_vfsgid); 1720} 1721 1722/** 1723 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1724 * @inode: inode to initialize 1725 * @idmap: idmap of the mount the inode was found from 1726 * 1727 * Initialize the i_uid field of @inode. If the inode was found/created via 1728 * an idmapped mount map the caller's fsuid according to @idmap. 1729 */ 1730static inline void inode_fsuid_set(struct inode *inode, 1731 struct mnt_idmap *idmap) 1732{ 1733 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1734} 1735 1736/** 1737 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1738 * @inode: inode to initialize 1739 * @idmap: idmap of the mount the inode was found from 1740 * 1741 * Initialize the i_gid field of @inode. If the inode was found/created via 1742 * an idmapped mount map the caller's fsgid according to @idmap. 1743 */ 1744static inline void inode_fsgid_set(struct inode *inode, 1745 struct mnt_idmap *idmap) 1746{ 1747 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1748} 1749 1750/** 1751 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1752 * @sb: the superblock we want a mapping in 1753 * @idmap: idmap of the relevant mount 1754 * 1755 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1756 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1757 * the caller's fsuid and fsgid according to the @idmap first. 1758 * 1759 * Return: true if fsuid and fsgid is mapped, false if not. 1760 */ 1761static inline bool fsuidgid_has_mapping(struct super_block *sb, 1762 struct mnt_idmap *idmap) 1763{ 1764 struct user_namespace *fs_userns = sb->s_user_ns; 1765 kuid_t kuid; 1766 kgid_t kgid; 1767 1768 kuid = mapped_fsuid(idmap, fs_userns); 1769 if (!uid_valid(kuid)) 1770 return false; 1771 kgid = mapped_fsgid(idmap, fs_userns); 1772 if (!gid_valid(kgid)) 1773 return false; 1774 return kuid_has_mapping(fs_userns, kuid) && 1775 kgid_has_mapping(fs_userns, kgid); 1776} 1777 1778struct timespec64 current_time(struct inode *inode); 1779struct timespec64 inode_set_ctime_current(struct inode *inode); 1780struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1781 struct timespec64 update); 1782 1783static inline time64_t inode_get_atime_sec(const struct inode *inode) 1784{ 1785 return inode->i_atime_sec; 1786} 1787 1788static inline long inode_get_atime_nsec(const struct inode *inode) 1789{ 1790 return inode->i_atime_nsec; 1791} 1792 1793static inline struct timespec64 inode_get_atime(const struct inode *inode) 1794{ 1795 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1796 .tv_nsec = inode_get_atime_nsec(inode) }; 1797 1798 return ts; 1799} 1800 1801static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1802 struct timespec64 ts) 1803{ 1804 inode->i_atime_sec = ts.tv_sec; 1805 inode->i_atime_nsec = ts.tv_nsec; 1806 return ts; 1807} 1808 1809static inline struct timespec64 inode_set_atime(struct inode *inode, 1810 time64_t sec, long nsec) 1811{ 1812 struct timespec64 ts = { .tv_sec = sec, 1813 .tv_nsec = nsec }; 1814 1815 return inode_set_atime_to_ts(inode, ts); 1816} 1817 1818static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1819{ 1820 return inode->i_mtime_sec; 1821} 1822 1823static inline long inode_get_mtime_nsec(const struct inode *inode) 1824{ 1825 return inode->i_mtime_nsec; 1826} 1827 1828static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1829{ 1830 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1831 .tv_nsec = inode_get_mtime_nsec(inode) }; 1832 return ts; 1833} 1834 1835static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1836 struct timespec64 ts) 1837{ 1838 inode->i_mtime_sec = ts.tv_sec; 1839 inode->i_mtime_nsec = ts.tv_nsec; 1840 return ts; 1841} 1842 1843static inline struct timespec64 inode_set_mtime(struct inode *inode, 1844 time64_t sec, long nsec) 1845{ 1846 struct timespec64 ts = { .tv_sec = sec, 1847 .tv_nsec = nsec }; 1848 return inode_set_mtime_to_ts(inode, ts); 1849} 1850 1851/* 1852 * Multigrain timestamps 1853 * 1854 * Conditionally use fine-grained ctime and mtime timestamps when there 1855 * are users actively observing them via getattr. The primary use-case 1856 * for this is NFS clients that use the ctime to distinguish between 1857 * different states of the file, and that are often fooled by multiple 1858 * operations that occur in the same coarse-grained timer tick. 1859 */ 1860#define I_CTIME_QUERIED ((u32)BIT(31)) 1861 1862static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1863{ 1864 return inode->i_ctime_sec; 1865} 1866 1867static inline long inode_get_ctime_nsec(const struct inode *inode) 1868{ 1869 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1870} 1871 1872static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1873{ 1874 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1875 .tv_nsec = inode_get_ctime_nsec(inode) }; 1876 1877 return ts; 1878} 1879 1880struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1881 1882/** 1883 * inode_set_ctime - set the ctime in the inode 1884 * @inode: inode in which to set the ctime 1885 * @sec: tv_sec value to set 1886 * @nsec: tv_nsec value to set 1887 * 1888 * Set the ctime in @inode to { @sec, @nsec } 1889 */ 1890static inline struct timespec64 inode_set_ctime(struct inode *inode, 1891 time64_t sec, long nsec) 1892{ 1893 struct timespec64 ts = { .tv_sec = sec, 1894 .tv_nsec = nsec }; 1895 1896 return inode_set_ctime_to_ts(inode, ts); 1897} 1898 1899struct timespec64 simple_inode_init_ts(struct inode *inode); 1900 1901/* 1902 * Snapshotting support. 1903 */ 1904 1905/* 1906 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1907 * instead. 1908 */ 1909static inline void __sb_end_write(struct super_block *sb, int level) 1910{ 1911 percpu_up_read(sb->s_writers.rw_sem + level-1); 1912} 1913 1914static inline void __sb_start_write(struct super_block *sb, int level) 1915{ 1916 percpu_down_read_freezable(sb->s_writers.rw_sem + level - 1, true); 1917} 1918 1919static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1920{ 1921 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1922} 1923 1924#define __sb_writers_acquired(sb, lev) \ 1925 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1926#define __sb_writers_release(sb, lev) \ 1927 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) 1928 1929/** 1930 * __sb_write_started - check if sb freeze level is held 1931 * @sb: the super we write to 1932 * @level: the freeze level 1933 * 1934 * * > 0 - sb freeze level is held 1935 * * 0 - sb freeze level is not held 1936 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1937 */ 1938static inline int __sb_write_started(const struct super_block *sb, int level) 1939{ 1940 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1941} 1942 1943/** 1944 * sb_write_started - check if SB_FREEZE_WRITE is held 1945 * @sb: the super we write to 1946 * 1947 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1948 */ 1949static inline bool sb_write_started(const struct super_block *sb) 1950{ 1951 return __sb_write_started(sb, SB_FREEZE_WRITE); 1952} 1953 1954/** 1955 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1956 * @sb: the super we write to 1957 * 1958 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1959 */ 1960static inline bool sb_write_not_started(const struct super_block *sb) 1961{ 1962 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1963} 1964 1965/** 1966 * file_write_started - check if SB_FREEZE_WRITE is held 1967 * @file: the file we write to 1968 * 1969 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1970 * May be false positive with !S_ISREG, because file_start_write() has 1971 * no effect on !S_ISREG. 1972 */ 1973static inline bool file_write_started(const struct file *file) 1974{ 1975 if (!S_ISREG(file_inode(file)->i_mode)) 1976 return true; 1977 return sb_write_started(file_inode(file)->i_sb); 1978} 1979 1980/** 1981 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1982 * @file: the file we write to 1983 * 1984 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1985 * May be false positive with !S_ISREG, because file_start_write() has 1986 * no effect on !S_ISREG. 1987 */ 1988static inline bool file_write_not_started(const struct file *file) 1989{ 1990 if (!S_ISREG(file_inode(file)->i_mode)) 1991 return true; 1992 return sb_write_not_started(file_inode(file)->i_sb); 1993} 1994 1995/** 1996 * sb_end_write - drop write access to a superblock 1997 * @sb: the super we wrote to 1998 * 1999 * Decrement number of writers to the filesystem. Wake up possible waiters 2000 * wanting to freeze the filesystem. 2001 */ 2002static inline void sb_end_write(struct super_block *sb) 2003{ 2004 __sb_end_write(sb, SB_FREEZE_WRITE); 2005} 2006 2007/** 2008 * sb_end_pagefault - drop write access to a superblock from a page fault 2009 * @sb: the super we wrote to 2010 * 2011 * Decrement number of processes handling write page fault to the filesystem. 2012 * Wake up possible waiters wanting to freeze the filesystem. 2013 */ 2014static inline void sb_end_pagefault(struct super_block *sb) 2015{ 2016 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 2017} 2018 2019/** 2020 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 2021 * @sb: the super we wrote to 2022 * 2023 * Decrement fs-internal number of writers to the filesystem. Wake up possible 2024 * waiters wanting to freeze the filesystem. 2025 */ 2026static inline void sb_end_intwrite(struct super_block *sb) 2027{ 2028 __sb_end_write(sb, SB_FREEZE_FS); 2029} 2030 2031/** 2032 * sb_start_write - get write access to a superblock 2033 * @sb: the super we write to 2034 * 2035 * When a process wants to write data or metadata to a file system (i.e. dirty 2036 * a page or an inode), it should embed the operation in a sb_start_write() - 2037 * sb_end_write() pair to get exclusion against file system freezing. This 2038 * function increments number of writers preventing freezing. If the file 2039 * system is already frozen, the function waits until the file system is 2040 * thawed. 2041 * 2042 * Since freeze protection behaves as a lock, users have to preserve 2043 * ordering of freeze protection and other filesystem locks. Generally, 2044 * freeze protection should be the outermost lock. In particular, we have: 2045 * 2046 * sb_start_write 2047 * -> i_rwsem (write path, truncate, directory ops, ...) 2048 * -> s_umount (freeze_super, thaw_super) 2049 */ 2050static inline void sb_start_write(struct super_block *sb) 2051{ 2052 __sb_start_write(sb, SB_FREEZE_WRITE); 2053} 2054 2055static inline bool sb_start_write_trylock(struct super_block *sb) 2056{ 2057 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 2058} 2059 2060/** 2061 * sb_start_pagefault - get write access to a superblock from a page fault 2062 * @sb: the super we write to 2063 * 2064 * When a process starts handling write page fault, it should embed the 2065 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 2066 * exclusion against file system freezing. This is needed since the page fault 2067 * is going to dirty a page. This function increments number of running page 2068 * faults preventing freezing. If the file system is already frozen, the 2069 * function waits until the file system is thawed. 2070 * 2071 * Since page fault freeze protection behaves as a lock, users have to preserve 2072 * ordering of freeze protection and other filesystem locks. It is advised to 2073 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 2074 * handling code implies lock dependency: 2075 * 2076 * mmap_lock 2077 * -> sb_start_pagefault 2078 */ 2079static inline void sb_start_pagefault(struct super_block *sb) 2080{ 2081 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 2082} 2083 2084/** 2085 * sb_start_intwrite - get write access to a superblock for internal fs purposes 2086 * @sb: the super we write to 2087 * 2088 * This is the third level of protection against filesystem freezing. It is 2089 * free for use by a filesystem. The only requirement is that it must rank 2090 * below sb_start_pagefault. 2091 * 2092 * For example filesystem can call sb_start_intwrite() when starting a 2093 * transaction which somewhat eases handling of freezing for internal sources 2094 * of filesystem changes (internal fs threads, discarding preallocation on file 2095 * close, etc.). 2096 */ 2097static inline void sb_start_intwrite(struct super_block *sb) 2098{ 2099 __sb_start_write(sb, SB_FREEZE_FS); 2100} 2101 2102static inline bool sb_start_intwrite_trylock(struct super_block *sb) 2103{ 2104 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 2105} 2106 2107bool inode_owner_or_capable(struct mnt_idmap *idmap, 2108 const struct inode *inode); 2109 2110/* 2111 * VFS helper functions.. 2112 */ 2113int vfs_create(struct mnt_idmap *, struct inode *, 2114 struct dentry *, umode_t, bool); 2115struct dentry *vfs_mkdir(struct mnt_idmap *, struct inode *, 2116 struct dentry *, umode_t); 2117int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 2118 umode_t, dev_t); 2119int vfs_symlink(struct mnt_idmap *, struct inode *, 2120 struct dentry *, const char *); 2121int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 2122 struct dentry *, struct inode **); 2123int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 2124int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 2125 struct inode **); 2126 2127/** 2128 * struct renamedata - contains all information required for renaming 2129 * @mnt_idmap: idmap of the mount in which the rename is happening. 2130 * @old_parent: parent of source 2131 * @old_dentry: source 2132 * @new_parent: parent of destination 2133 * @new_dentry: destination 2134 * @delegated_inode: returns an inode needing a delegation break 2135 * @flags: rename flags 2136 */ 2137struct renamedata { 2138 struct mnt_idmap *mnt_idmap; 2139 struct dentry *old_parent; 2140 struct dentry *old_dentry; 2141 struct dentry *new_parent; 2142 struct dentry *new_dentry; 2143 struct inode **delegated_inode; 2144 unsigned int flags; 2145} __randomize_layout; 2146 2147int vfs_rename(struct renamedata *); 2148 2149static inline int vfs_whiteout(struct mnt_idmap *idmap, 2150 struct inode *dir, struct dentry *dentry) 2151{ 2152 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 2153 WHITEOUT_DEV); 2154} 2155 2156struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 2157 const struct path *parentpath, 2158 umode_t mode, int open_flag, 2159 const struct cred *cred); 2160struct file *kernel_file_open(const struct path *path, int flags, 2161 const struct cred *cred); 2162 2163int vfs_mkobj(struct dentry *, umode_t, 2164 int (*f)(struct dentry *, umode_t, void *), 2165 void *); 2166 2167int vfs_fchown(struct file *file, uid_t user, gid_t group); 2168int vfs_fchmod(struct file *file, umode_t mode); 2169int vfs_utimes(const struct path *path, struct timespec64 *times); 2170 2171#ifdef CONFIG_COMPAT 2172extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 2173 unsigned long arg); 2174#else 2175#define compat_ptr_ioctl NULL 2176#endif 2177 2178/* 2179 * VFS file helper functions. 2180 */ 2181void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2182 const struct inode *dir, umode_t mode); 2183extern bool may_open_dev(const struct path *path); 2184umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2185 const struct inode *dir, umode_t mode); 2186bool in_group_or_capable(struct mnt_idmap *idmap, 2187 const struct inode *inode, vfsgid_t vfsgid); 2188 2189/* 2190 * This is the "filldir" function type, used by readdir() to let 2191 * the kernel specify what kind of dirent layout it wants to have. 2192 * This allows the kernel to read directories into kernel space or 2193 * to have different dirent layouts depending on the binary type. 2194 * Return 'true' to keep going and 'false' if there are no more entries. 2195 */ 2196struct dir_context; 2197typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 2198 unsigned); 2199 2200struct dir_context { 2201 filldir_t actor; 2202 loff_t pos; 2203 /* 2204 * Filesystems MUST NOT MODIFY count, but may use as a hint: 2205 * 0 unknown 2206 * > 0 space in buffer (assume at least one entry) 2207 * INT_MAX unlimited 2208 */ 2209 int count; 2210}; 2211 2212/* If OR-ed with d_type, pending signals are not checked */ 2213#define FILLDIR_FLAG_NOINTR 0x1000 2214 2215/* 2216 * These flags let !MMU mmap() govern direct device mapping vs immediate 2217 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 2218 * 2219 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 2220 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 2221 * NOMMU_MAP_READ: Can be mapped for reading 2222 * NOMMU_MAP_WRITE: Can be mapped for writing 2223 * NOMMU_MAP_EXEC: Can be mapped for execution 2224 */ 2225#define NOMMU_MAP_COPY 0x00000001 2226#define NOMMU_MAP_DIRECT 0x00000008 2227#define NOMMU_MAP_READ VM_MAYREAD 2228#define NOMMU_MAP_WRITE VM_MAYWRITE 2229#define NOMMU_MAP_EXEC VM_MAYEXEC 2230 2231#define NOMMU_VMFLAGS \ 2232 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 2233 2234/* 2235 * These flags control the behavior of the remap_file_range function pointer. 2236 * If it is called with len == 0 that means "remap to end of source file". 2237 * See Documentation/filesystems/vfs.rst for more details about this call. 2238 * 2239 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 2240 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 2241 */ 2242#define REMAP_FILE_DEDUP (1 << 0) 2243#define REMAP_FILE_CAN_SHORTEN (1 << 1) 2244 2245/* 2246 * These flags signal that the caller is ok with altering various aspects of 2247 * the behavior of the remap operation. The changes must be made by the 2248 * implementation; the vfs remap helper functions can take advantage of them. 2249 * Flags in this category exist to preserve the quirky behavior of the hoisted 2250 * btrfs clone/dedupe ioctls. 2251 */ 2252#define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2253 2254/* 2255 * These flags control the behavior of vfs_copy_file_range(). 2256 * They are not available to the user via syscall. 2257 * 2258 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2259 */ 2260#define COPY_FILE_SPLICE (1 << 0) 2261 2262struct iov_iter; 2263struct io_uring_cmd; 2264struct offset_ctx; 2265 2266typedef unsigned int __bitwise fop_flags_t; 2267 2268struct file_operations { 2269 struct module *owner; 2270 fop_flags_t fop_flags; 2271 loff_t (*llseek) (struct file *, loff_t, int); 2272 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2273 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2274 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2275 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2276 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2277 unsigned int flags); 2278 int (*iterate_shared) (struct file *, struct dir_context *); 2279 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2280 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2281 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2282 int (*mmap) (struct file *, struct vm_area_struct *); 2283 int (*open) (struct inode *, struct file *); 2284 int (*flush) (struct file *, fl_owner_t id); 2285 int (*release) (struct inode *, struct file *); 2286 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2287 int (*fasync) (int, struct file *, int); 2288 int (*lock) (struct file *, int, struct file_lock *); 2289 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2290 int (*check_flags)(int); 2291 int (*flock) (struct file *, int, struct file_lock *); 2292 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2293 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2294 void (*splice_eof)(struct file *file); 2295 int (*setlease)(struct file *, int, struct file_lease **, void **); 2296 long (*fallocate)(struct file *file, int mode, loff_t offset, 2297 loff_t len); 2298 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2299#ifndef CONFIG_MMU 2300 unsigned (*mmap_capabilities)(struct file *); 2301#endif 2302 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2303 loff_t, size_t, unsigned int); 2304 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2305 struct file *file_out, loff_t pos_out, 2306 loff_t len, unsigned int remap_flags); 2307 int (*fadvise)(struct file *, loff_t, loff_t, int); 2308 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2309 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2310 unsigned int poll_flags); 2311 int (*mmap_prepare)(struct vm_area_desc *); 2312} __randomize_layout; 2313 2314/* Supports async buffered reads */ 2315#define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2316/* Supports async buffered writes */ 2317#define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2318/* Supports synchronous page faults for mappings */ 2319#define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2320/* Supports non-exclusive O_DIRECT writes from multiple threads */ 2321#define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2322/* Contains huge pages */ 2323#define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2324/* Treat loff_t as unsigned (e.g., /dev/mem) */ 2325#define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 2326/* Supports asynchronous lock callbacks */ 2327#define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 2328/* File system supports uncached read/write buffered IO */ 2329#define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7)) 2330 2331/* Wrap a directory iterator that needs exclusive inode access */ 2332int wrap_directory_iterator(struct file *, struct dir_context *, 2333 int (*) (struct file *, struct dir_context *)); 2334#define WRAP_DIR_ITER(x) \ 2335 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2336 { return wrap_directory_iterator(file, ctx, x); } 2337 2338struct inode_operations { 2339 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2340 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2341 int (*permission) (struct mnt_idmap *, struct inode *, int); 2342 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2343 2344 int (*readlink) (struct dentry *, char __user *,int); 2345 2346 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2347 umode_t, bool); 2348 int (*link) (struct dentry *,struct inode *,struct dentry *); 2349 int (*unlink) (struct inode *,struct dentry *); 2350 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2351 const char *); 2352 struct dentry *(*mkdir) (struct mnt_idmap *, struct inode *, 2353 struct dentry *, umode_t); 2354 int (*rmdir) (struct inode *,struct dentry *); 2355 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2356 umode_t,dev_t); 2357 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2358 struct inode *, struct dentry *, unsigned int); 2359 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2360 int (*getattr) (struct mnt_idmap *, const struct path *, 2361 struct kstat *, u32, unsigned int); 2362 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2363 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2364 u64 len); 2365 int (*update_time)(struct inode *, int); 2366 int (*atomic_open)(struct inode *, struct dentry *, 2367 struct file *, unsigned open_flag, 2368 umode_t create_mode); 2369 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2370 struct file *, umode_t); 2371 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2372 int); 2373 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2374 struct posix_acl *, int); 2375 int (*fileattr_set)(struct mnt_idmap *idmap, 2376 struct dentry *dentry, struct file_kattr *fa); 2377 int (*fileattr_get)(struct dentry *dentry, struct file_kattr *fa); 2378 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2379} ____cacheline_aligned; 2380 2381/* Did the driver provide valid mmap hook configuration? */ 2382static inline bool can_mmap_file(struct file *file) 2383{ 2384 bool has_mmap = file->f_op->mmap; 2385 bool has_mmap_prepare = file->f_op->mmap_prepare; 2386 2387 /* Hooks are mutually exclusive. */ 2388 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare)) 2389 return false; 2390 if (!has_mmap && !has_mmap_prepare) 2391 return false; 2392 2393 return true; 2394} 2395 2396int __compat_vma_mmap_prepare(const struct file_operations *f_op, 2397 struct file *file, struct vm_area_struct *vma); 2398int compat_vma_mmap_prepare(struct file *file, struct vm_area_struct *vma); 2399 2400static inline int vfs_mmap(struct file *file, struct vm_area_struct *vma) 2401{ 2402 if (file->f_op->mmap_prepare) 2403 return compat_vma_mmap_prepare(file, vma); 2404 2405 return file->f_op->mmap(file, vma); 2406} 2407 2408static inline int vfs_mmap_prepare(struct file *file, struct vm_area_desc *desc) 2409{ 2410 return file->f_op->mmap_prepare(desc); 2411} 2412 2413extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2414extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2415extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2416 loff_t, size_t, unsigned int); 2417int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2418int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2419 struct file *file_out, loff_t pos_out, 2420 loff_t *len, unsigned int remap_flags, 2421 const struct iomap_ops *dax_read_ops); 2422int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2423 struct file *file_out, loff_t pos_out, 2424 loff_t *count, unsigned int remap_flags); 2425extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2426 struct file *file_out, loff_t pos_out, 2427 loff_t len, unsigned int remap_flags); 2428extern int vfs_dedupe_file_range(struct file *file, 2429 struct file_dedupe_range *same); 2430extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2431 struct file *dst_file, loff_t dst_pos, 2432 loff_t len, unsigned int remap_flags); 2433 2434/** 2435 * enum freeze_holder - holder of the freeze 2436 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2437 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2438 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2439 * @FREEZE_EXCL: a freeze that can only be undone by the owner 2440 * 2441 * Indicate who the owner of the freeze or thaw request is and whether 2442 * the freeze needs to be exclusive or can nest. 2443 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2444 * same holder aren't allowed. It is however allowed to hold a single 2445 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2446 * the same time. This is relied upon by some filesystems during online 2447 * repair or similar. 2448 */ 2449enum freeze_holder { 2450 FREEZE_HOLDER_KERNEL = (1U << 0), 2451 FREEZE_HOLDER_USERSPACE = (1U << 1), 2452 FREEZE_MAY_NEST = (1U << 2), 2453 FREEZE_EXCL = (1U << 3), 2454}; 2455 2456struct super_operations { 2457 struct inode *(*alloc_inode)(struct super_block *sb); 2458 void (*destroy_inode)(struct inode *); 2459 void (*free_inode)(struct inode *); 2460 2461 void (*dirty_inode) (struct inode *, int flags); 2462 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2463 int (*drop_inode) (struct inode *); 2464 void (*evict_inode) (struct inode *); 2465 void (*put_super) (struct super_block *); 2466 int (*sync_fs)(struct super_block *sb, int wait); 2467 int (*freeze_super) (struct super_block *, enum freeze_holder who, const void *owner); 2468 int (*freeze_fs) (struct super_block *); 2469 int (*thaw_super) (struct super_block *, enum freeze_holder who, const void *owner); 2470 int (*unfreeze_fs) (struct super_block *); 2471 int (*statfs) (struct dentry *, struct kstatfs *); 2472 int (*remount_fs) (struct super_block *, int *, char *); 2473 void (*umount_begin) (struct super_block *); 2474 2475 int (*show_options)(struct seq_file *, struct dentry *); 2476 int (*show_devname)(struct seq_file *, struct dentry *); 2477 int (*show_path)(struct seq_file *, struct dentry *); 2478 int (*show_stats)(struct seq_file *, struct dentry *); 2479#ifdef CONFIG_QUOTA 2480 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2481 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2482 struct dquot __rcu **(*get_dquots)(struct inode *); 2483#endif 2484 long (*nr_cached_objects)(struct super_block *, 2485 struct shrink_control *); 2486 long (*free_cached_objects)(struct super_block *, 2487 struct shrink_control *); 2488 /* 2489 * If a filesystem can support graceful removal of a device and 2490 * continue read-write operations, implement this callback. 2491 * 2492 * Return 0 if the filesystem can continue read-write. 2493 * Non-zero return value or no such callback means the fs will be shutdown 2494 * as usual. 2495 */ 2496 int (*remove_bdev)(struct super_block *sb, struct block_device *bdev); 2497 void (*shutdown)(struct super_block *sb); 2498}; 2499 2500/* 2501 * Inode flags - they have no relation to superblock flags now 2502 */ 2503#define S_SYNC (1 << 0) /* Writes are synced at once */ 2504#define S_NOATIME (1 << 1) /* Do not update access times */ 2505#define S_APPEND (1 << 2) /* Append-only file */ 2506#define S_IMMUTABLE (1 << 3) /* Immutable file */ 2507#define S_DEAD (1 << 4) /* removed, but still open directory */ 2508#define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2509#define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2510#define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2511#define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2512#define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2513#define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2514#define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2515#define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2516#ifdef CONFIG_FS_DAX 2517#define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2518#else 2519#define S_DAX 0 /* Make all the DAX code disappear */ 2520#endif 2521#define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2522#define S_CASEFOLD (1 << 15) /* Casefolded file */ 2523#define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2524#define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2525#define S_ANON_INODE (1 << 19) /* Inode is an anonymous inode */ 2526 2527/* 2528 * Note that nosuid etc flags are inode-specific: setting some file-system 2529 * flags just means all the inodes inherit those flags by default. It might be 2530 * possible to override it selectively if you really wanted to with some 2531 * ioctl() that is not currently implemented. 2532 * 2533 * Exception: SB_RDONLY is always applied to the entire file system. 2534 * 2535 * Unfortunately, it is possible to change a filesystems flags with it mounted 2536 * with files in use. This means that all of the inodes will not have their 2537 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2538 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org 2539 */ 2540#define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2541 2542static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2543#define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2544#define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2545 ((inode)->i_flags & S_SYNC)) 2546#define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2547 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2548#define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2549#define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2550#define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2551 2552#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2553#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2554#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2555 2556#ifdef CONFIG_FS_POSIX_ACL 2557#define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2558#else 2559#define IS_POSIXACL(inode) 0 2560#endif 2561 2562#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2563#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2564 2565#ifdef CONFIG_SWAP 2566#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2567#else 2568#define IS_SWAPFILE(inode) ((void)(inode), 0U) 2569#endif 2570 2571#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2572#define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2573#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2574#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2575#define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2576#define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2577#define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2578#define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2579 2580#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2581 (inode)->i_rdev == WHITEOUT_DEV) 2582#define IS_ANON_FILE(inode) ((inode)->i_flags & S_ANON_INODE) 2583 2584static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2585 struct inode *inode) 2586{ 2587 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2588 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2589} 2590 2591static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2592{ 2593 *kiocb = (struct kiocb) { 2594 .ki_filp = filp, 2595 .ki_flags = filp->f_iocb_flags, 2596 .ki_ioprio = get_current_ioprio(), 2597 }; 2598} 2599 2600static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2601 struct file *filp) 2602{ 2603 *kiocb = (struct kiocb) { 2604 .ki_filp = filp, 2605 .ki_flags = kiocb_src->ki_flags, 2606 .ki_ioprio = kiocb_src->ki_ioprio, 2607 .ki_pos = kiocb_src->ki_pos, 2608 }; 2609} 2610 2611extern void __mark_inode_dirty(struct inode *, int); 2612static inline void mark_inode_dirty(struct inode *inode) 2613{ 2614 __mark_inode_dirty(inode, I_DIRTY); 2615} 2616 2617static inline void mark_inode_dirty_sync(struct inode *inode) 2618{ 2619 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2620} 2621 2622static inline int icount_read(const struct inode *inode) 2623{ 2624 return atomic_read(&inode->i_count); 2625} 2626 2627/* 2628 * Returns true if the given inode itself only has dirty timestamps (its pages 2629 * may still be dirty) and isn't currently being allocated or freed. 2630 * Filesystems should call this if when writing an inode when lazytime is 2631 * enabled, they want to opportunistically write the timestamps of other inodes 2632 * located very nearby on-disk, e.g. in the same inode block. This returns true 2633 * if the given inode is in need of such an opportunistic update. Requires 2634 * i_lock, or at least later re-checking under i_lock. 2635 */ 2636static inline bool inode_is_dirtytime_only(struct inode *inode) 2637{ 2638 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2639 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2640} 2641 2642extern void inc_nlink(struct inode *inode); 2643extern void drop_nlink(struct inode *inode); 2644extern void clear_nlink(struct inode *inode); 2645extern void set_nlink(struct inode *inode, unsigned int nlink); 2646 2647static inline void inode_inc_link_count(struct inode *inode) 2648{ 2649 inc_nlink(inode); 2650 mark_inode_dirty(inode); 2651} 2652 2653static inline void inode_dec_link_count(struct inode *inode) 2654{ 2655 drop_nlink(inode); 2656 mark_inode_dirty(inode); 2657} 2658 2659enum file_time_flags { 2660 S_ATIME = 1, 2661 S_MTIME = 2, 2662 S_CTIME = 4, 2663 S_VERSION = 8, 2664}; 2665 2666extern bool atime_needs_update(const struct path *, struct inode *); 2667extern void touch_atime(const struct path *); 2668int inode_update_time(struct inode *inode, int flags); 2669 2670static inline void file_accessed(struct file *file) 2671{ 2672 if (!(file->f_flags & O_NOATIME)) 2673 touch_atime(&file->f_path); 2674} 2675 2676extern int file_modified(struct file *file); 2677int kiocb_modified(struct kiocb *iocb); 2678 2679int sync_inode_metadata(struct inode *inode, int wait); 2680 2681struct file_system_type { 2682 const char *name; 2683 int fs_flags; 2684#define FS_REQUIRES_DEV 1 2685#define FS_BINARY_MOUNTDATA 2 2686#define FS_HAS_SUBTYPE 4 2687#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2688#define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2689#define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2690#define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2691#define FS_LBS 128 /* FS supports LBS */ 2692#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2693 int (*init_fs_context)(struct fs_context *); 2694 const struct fs_parameter_spec *parameters; 2695 struct dentry *(*mount) (struct file_system_type *, int, 2696 const char *, void *); 2697 void (*kill_sb) (struct super_block *); 2698 struct module *owner; 2699 struct file_system_type * next; 2700 struct hlist_head fs_supers; 2701 2702 struct lock_class_key s_lock_key; 2703 struct lock_class_key s_umount_key; 2704 struct lock_class_key s_vfs_rename_key; 2705 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2706 2707 struct lock_class_key i_lock_key; 2708 struct lock_class_key i_mutex_key; 2709 struct lock_class_key invalidate_lock_key; 2710 struct lock_class_key i_mutex_dir_key; 2711}; 2712 2713#define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2714 2715/** 2716 * is_mgtime: is this inode using multigrain timestamps 2717 * @inode: inode to test for multigrain timestamps 2718 * 2719 * Return true if the inode uses multigrain timestamps, false otherwise. 2720 */ 2721static inline bool is_mgtime(const struct inode *inode) 2722{ 2723 return inode->i_opflags & IOP_MGTIME; 2724} 2725 2726extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2727void retire_super(struct super_block *sb); 2728void generic_shutdown_super(struct super_block *sb); 2729void kill_block_super(struct super_block *sb); 2730void kill_anon_super(struct super_block *sb); 2731void kill_litter_super(struct super_block *sb); 2732void deactivate_super(struct super_block *sb); 2733void deactivate_locked_super(struct super_block *sb); 2734int set_anon_super(struct super_block *s, void *data); 2735int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2736int get_anon_bdev(dev_t *); 2737void free_anon_bdev(dev_t); 2738struct super_block *sget_fc(struct fs_context *fc, 2739 int (*test)(struct super_block *, struct fs_context *), 2740 int (*set)(struct super_block *, struct fs_context *)); 2741struct super_block *sget(struct file_system_type *type, 2742 int (*test)(struct super_block *,void *), 2743 int (*set)(struct super_block *,void *), 2744 int flags, void *data); 2745struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2746 2747/* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2748#define fops_get(fops) ({ \ 2749 const struct file_operations *_fops = (fops); \ 2750 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2751}) 2752 2753#define fops_put(fops) ({ \ 2754 const struct file_operations *_fops = (fops); \ 2755 if (_fops) \ 2756 module_put((_fops)->owner); \ 2757}) 2758 2759/* 2760 * This one is to be used *ONLY* from ->open() instances. 2761 * fops must be non-NULL, pinned down *and* module dependencies 2762 * should be sufficient to pin the caller down as well. 2763 */ 2764#define replace_fops(f, fops) \ 2765 do { \ 2766 struct file *__file = (f); \ 2767 fops_put(__file->f_op); \ 2768 BUG_ON(!(__file->f_op = (fops))); \ 2769 } while(0) 2770 2771extern int register_filesystem(struct file_system_type *); 2772extern int unregister_filesystem(struct file_system_type *); 2773extern int vfs_statfs(const struct path *, struct kstatfs *); 2774extern int user_statfs(const char __user *, struct kstatfs *); 2775extern int fd_statfs(int, struct kstatfs *); 2776int freeze_super(struct super_block *super, enum freeze_holder who, 2777 const void *freeze_owner); 2778int thaw_super(struct super_block *super, enum freeze_holder who, 2779 const void *freeze_owner); 2780extern __printf(2, 3) 2781int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2782extern int super_setup_bdi(struct super_block *sb); 2783 2784static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2785{ 2786 if (WARN_ON(len > sizeof(sb->s_uuid))) 2787 len = sizeof(sb->s_uuid); 2788 sb->s_uuid_len = len; 2789 memcpy(&sb->s_uuid, uuid, len); 2790} 2791 2792/* set sb sysfs name based on sb->s_bdev */ 2793static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2794{ 2795 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2796} 2797 2798/* set sb sysfs name based on sb->s_uuid */ 2799static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2800{ 2801 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2802 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2803} 2804 2805/* set sb sysfs name based on sb->s_id */ 2806static inline void super_set_sysfs_name_id(struct super_block *sb) 2807{ 2808 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2809} 2810 2811/* try to use something standard before you use this */ 2812__printf(2, 3) 2813static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2814{ 2815 va_list args; 2816 2817 va_start(args, fmt); 2818 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2819 va_end(args); 2820} 2821 2822extern int current_umask(void); 2823 2824extern void ihold(struct inode * inode); 2825extern void iput(struct inode *); 2826int inode_update_timestamps(struct inode *inode, int flags); 2827int generic_update_time(struct inode *, int); 2828 2829/* /sys/fs */ 2830extern struct kobject *fs_kobj; 2831 2832#define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2833 2834/* fs/open.c */ 2835struct audit_names; 2836struct filename { 2837 const char *name; /* pointer to actual string */ 2838 const __user char *uptr; /* original userland pointer */ 2839 atomic_t refcnt; 2840 struct audit_names *aname; 2841 const char iname[]; 2842}; 2843static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2844 2845static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2846{ 2847 return mnt_idmap(file->f_path.mnt); 2848} 2849 2850/** 2851 * is_idmapped_mnt - check whether a mount is mapped 2852 * @mnt: the mount to check 2853 * 2854 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2855 * 2856 * Return: true if mount is mapped, false if not. 2857 */ 2858static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2859{ 2860 return mnt_idmap(mnt) != &nop_mnt_idmap; 2861} 2862 2863int vfs_truncate(const struct path *, loff_t); 2864int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2865 unsigned int time_attrs, struct file *filp); 2866extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2867 loff_t len); 2868int do_sys_open(int dfd, const char __user *filename, int flags, 2869 umode_t mode); 2870extern struct file *file_open_name(struct filename *, int, umode_t); 2871extern struct file *filp_open(const char *, int, umode_t); 2872extern struct file *file_open_root(const struct path *, 2873 const char *, int, umode_t); 2874static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2875 const char *name, int flags, umode_t mode) 2876{ 2877 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2878 name, flags, mode); 2879} 2880struct file *dentry_open(const struct path *path, int flags, 2881 const struct cred *creds); 2882struct file *dentry_open_nonotify(const struct path *path, int flags, 2883 const struct cred *cred); 2884struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2885 const struct cred *cred); 2886const struct path *backing_file_user_path(const struct file *f); 2887 2888/* 2889 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2890 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2891 * filesystem. When the mapped file path and inode number are displayed to 2892 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2893 * path and inode number to display to the user, which is the path of the fd 2894 * that user has requested to map and the inode number that would be returned 2895 * by fstat() on that same fd. 2896 */ 2897/* Get the path to display in /proc/<pid>/maps */ 2898static inline const struct path *file_user_path(const struct file *f) 2899{ 2900 if (unlikely(f->f_mode & FMODE_BACKING)) 2901 return backing_file_user_path(f); 2902 return &f->f_path; 2903} 2904/* Get the inode whose inode number to display in /proc/<pid>/maps */ 2905static inline const struct inode *file_user_inode(const struct file *f) 2906{ 2907 if (unlikely(f->f_mode & FMODE_BACKING)) 2908 return d_inode(backing_file_user_path(f)->dentry); 2909 return file_inode(f); 2910} 2911 2912static inline struct file *file_clone_open(struct file *file) 2913{ 2914 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2915} 2916extern int filp_close(struct file *, fl_owner_t id); 2917 2918extern struct filename *getname_flags(const char __user *, int); 2919extern struct filename *getname_uflags(const char __user *, int); 2920static inline struct filename *getname(const char __user *name) 2921{ 2922 return getname_flags(name, 0); 2923} 2924extern struct filename *getname_kernel(const char *); 2925extern struct filename *__getname_maybe_null(const char __user *); 2926static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2927{ 2928 if (!(flags & AT_EMPTY_PATH)) 2929 return getname(name); 2930 2931 if (!name) 2932 return NULL; 2933 return __getname_maybe_null(name); 2934} 2935extern void putname(struct filename *name); 2936DEFINE_FREE(putname, struct filename *, if (!IS_ERR_OR_NULL(_T)) putname(_T)) 2937 2938static inline struct filename *refname(struct filename *name) 2939{ 2940 atomic_inc(&name->refcnt); 2941 return name; 2942} 2943 2944extern int finish_open(struct file *file, struct dentry *dentry, 2945 int (*open)(struct inode *, struct file *)); 2946extern int finish_no_open(struct file *file, struct dentry *dentry); 2947 2948/* Helper for the simple case when original dentry is used */ 2949static inline int finish_open_simple(struct file *file, int error) 2950{ 2951 if (error) 2952 return error; 2953 2954 return finish_open(file, file->f_path.dentry, NULL); 2955} 2956 2957/* fs/dcache.c */ 2958extern void __init vfs_caches_init_early(void); 2959extern void __init vfs_caches_init(void); 2960 2961extern struct kmem_cache *names_cachep; 2962 2963#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2964#define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2965 2966extern struct super_block *blockdev_superblock; 2967static inline bool sb_is_blkdev_sb(struct super_block *sb) 2968{ 2969 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2970} 2971 2972void emergency_thaw_all(void); 2973extern int sync_filesystem(struct super_block *); 2974extern const struct file_operations def_blk_fops; 2975extern const struct file_operations def_chr_fops; 2976 2977/* fs/char_dev.c */ 2978#define CHRDEV_MAJOR_MAX 512 2979/* Marks the bottom of the first segment of free char majors */ 2980#define CHRDEV_MAJOR_DYN_END 234 2981/* Marks the top and bottom of the second segment of free char majors */ 2982#define CHRDEV_MAJOR_DYN_EXT_START 511 2983#define CHRDEV_MAJOR_DYN_EXT_END 384 2984 2985extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2986extern int register_chrdev_region(dev_t, unsigned, const char *); 2987extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2988 unsigned int count, const char *name, 2989 const struct file_operations *fops); 2990extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2991 unsigned int count, const char *name); 2992extern void unregister_chrdev_region(dev_t, unsigned); 2993extern void chrdev_show(struct seq_file *,off_t); 2994 2995static inline int register_chrdev(unsigned int major, const char *name, 2996 const struct file_operations *fops) 2997{ 2998 return __register_chrdev(major, 0, 256, name, fops); 2999} 3000 3001static inline void unregister_chrdev(unsigned int major, const char *name) 3002{ 3003 __unregister_chrdev(major, 0, 256, name); 3004} 3005 3006extern void init_special_inode(struct inode *, umode_t, dev_t); 3007 3008/* Invalid inode operations -- fs/bad_inode.c */ 3009extern void make_bad_inode(struct inode *); 3010extern bool is_bad_inode(struct inode *); 3011 3012extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 3013 loff_t lend); 3014extern int __must_check file_check_and_advance_wb_err(struct file *file); 3015extern int __must_check file_write_and_wait_range(struct file *file, 3016 loff_t start, loff_t end); 3017int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 3018 loff_t end); 3019 3020static inline int file_write_and_wait(struct file *file) 3021{ 3022 return file_write_and_wait_range(file, 0, LLONG_MAX); 3023} 3024 3025extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 3026 int datasync); 3027extern int vfs_fsync(struct file *file, int datasync); 3028 3029extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 3030 unsigned int flags); 3031 3032static inline bool iocb_is_dsync(const struct kiocb *iocb) 3033{ 3034 return (iocb->ki_flags & IOCB_DSYNC) || 3035 IS_SYNC(iocb->ki_filp->f_mapping->host); 3036} 3037 3038/* 3039 * Sync the bytes written if this was a synchronous write. Expect ki_pos 3040 * to already be updated for the write, and will return either the amount 3041 * of bytes passed in, or an error if syncing the file failed. 3042 */ 3043static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 3044{ 3045 if (iocb_is_dsync(iocb)) { 3046 int ret = vfs_fsync_range(iocb->ki_filp, 3047 iocb->ki_pos - count, iocb->ki_pos - 1, 3048 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 3049 if (ret) 3050 return ret; 3051 } else if (iocb->ki_flags & IOCB_DONTCACHE) { 3052 struct address_space *mapping = iocb->ki_filp->f_mapping; 3053 3054 filemap_fdatawrite_range_kick(mapping, iocb->ki_pos - count, 3055 iocb->ki_pos - 1); 3056 } 3057 3058 return count; 3059} 3060 3061extern void emergency_sync(void); 3062extern void emergency_remount(void); 3063 3064#ifdef CONFIG_BLOCK 3065extern int bmap(struct inode *inode, sector_t *block); 3066#else 3067static inline int bmap(struct inode *inode, sector_t *block) 3068{ 3069 return -EINVAL; 3070} 3071#endif 3072 3073int notify_change(struct mnt_idmap *, struct dentry *, 3074 struct iattr *, struct inode **); 3075int inode_permission(struct mnt_idmap *, struct inode *, int); 3076int generic_permission(struct mnt_idmap *, struct inode *, int); 3077static inline int file_permission(struct file *file, int mask) 3078{ 3079 return inode_permission(file_mnt_idmap(file), 3080 file_inode(file), mask); 3081} 3082static inline int path_permission(const struct path *path, int mask) 3083{ 3084 return inode_permission(mnt_idmap(path->mnt), 3085 d_inode(path->dentry), mask); 3086} 3087int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3088 struct inode *inode); 3089 3090static inline bool execute_ok(struct inode *inode) 3091{ 3092 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 3093} 3094 3095static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 3096{ 3097 return (inode->i_mode ^ mode) & S_IFMT; 3098} 3099 3100/** 3101 * file_start_write - get write access to a superblock for regular file io 3102 * @file: the file we want to write to 3103 * 3104 * This is a variant of sb_start_write() which is a noop on non-regualr file. 3105 * Should be matched with a call to file_end_write(). 3106 */ 3107static inline void file_start_write(struct file *file) 3108{ 3109 if (!S_ISREG(file_inode(file)->i_mode)) 3110 return; 3111 sb_start_write(file_inode(file)->i_sb); 3112} 3113 3114static inline bool file_start_write_trylock(struct file *file) 3115{ 3116 if (!S_ISREG(file_inode(file)->i_mode)) 3117 return true; 3118 return sb_start_write_trylock(file_inode(file)->i_sb); 3119} 3120 3121/** 3122 * file_end_write - drop write access to a superblock of a regular file 3123 * @file: the file we wrote to 3124 * 3125 * Should be matched with a call to file_start_write(). 3126 */ 3127static inline void file_end_write(struct file *file) 3128{ 3129 if (!S_ISREG(file_inode(file)->i_mode)) 3130 return; 3131 sb_end_write(file_inode(file)->i_sb); 3132} 3133 3134/** 3135 * kiocb_start_write - get write access to a superblock for async file io 3136 * @iocb: the io context we want to submit the write with 3137 * 3138 * This is a variant of sb_start_write() for async io submission. 3139 * Should be matched with a call to kiocb_end_write(). 3140 */ 3141static inline void kiocb_start_write(struct kiocb *iocb) 3142{ 3143 struct inode *inode = file_inode(iocb->ki_filp); 3144 3145 sb_start_write(inode->i_sb); 3146 /* 3147 * Fool lockdep by telling it the lock got released so that it 3148 * doesn't complain about the held lock when we return to userspace. 3149 */ 3150 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 3151} 3152 3153/** 3154 * kiocb_end_write - drop write access to a superblock after async file io 3155 * @iocb: the io context we sumbitted the write with 3156 * 3157 * Should be matched with a call to kiocb_start_write(). 3158 */ 3159static inline void kiocb_end_write(struct kiocb *iocb) 3160{ 3161 struct inode *inode = file_inode(iocb->ki_filp); 3162 3163 /* 3164 * Tell lockdep we inherited freeze protection from submission thread. 3165 */ 3166 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 3167 sb_end_write(inode->i_sb); 3168} 3169 3170/* 3171 * This is used for regular files where some users -- especially the 3172 * currently executed binary in a process, previously handled via 3173 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 3174 * read-write shared) accesses. 3175 * 3176 * get_write_access() gets write permission for a file. 3177 * put_write_access() releases this write permission. 3178 * deny_write_access() denies write access to a file. 3179 * allow_write_access() re-enables write access to a file. 3180 * 3181 * The i_writecount field of an inode can have the following values: 3182 * 0: no write access, no denied write access 3183 * < 0: (-i_writecount) users that denied write access to the file. 3184 * > 0: (i_writecount) users that have write access to the file. 3185 * 3186 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 3187 * except for the cases where we don't hold i_writecount yet. Then we need to 3188 * use {get,deny}_write_access() - these functions check the sign and refuse 3189 * to do the change if sign is wrong. 3190 */ 3191static inline int get_write_access(struct inode *inode) 3192{ 3193 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 3194} 3195static inline int deny_write_access(struct file *file) 3196{ 3197 struct inode *inode = file_inode(file); 3198 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 3199} 3200static inline void put_write_access(struct inode * inode) 3201{ 3202 atomic_dec(&inode->i_writecount); 3203} 3204static inline void allow_write_access(struct file *file) 3205{ 3206 if (file) 3207 atomic_inc(&file_inode(file)->i_writecount); 3208} 3209 3210/* 3211 * Do not prevent write to executable file when watched by pre-content events. 3212 * 3213 * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at 3214 * the time of file open and remains constant for entire lifetime of the file, 3215 * so if pre-content watches are added post execution or removed before the end 3216 * of the execution, it will not cause i_writecount reference leak. 3217 */ 3218static inline int exe_file_deny_write_access(struct file *exe_file) 3219{ 3220 if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode))) 3221 return 0; 3222 return deny_write_access(exe_file); 3223} 3224static inline void exe_file_allow_write_access(struct file *exe_file) 3225{ 3226 if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode))) 3227 return; 3228 allow_write_access(exe_file); 3229} 3230 3231static inline void file_set_fsnotify_mode(struct file *file, fmode_t mode) 3232{ 3233 file->f_mode &= ~FMODE_FSNOTIFY_MASK; 3234 file->f_mode |= mode; 3235} 3236 3237static inline bool inode_is_open_for_write(const struct inode *inode) 3238{ 3239 return atomic_read(&inode->i_writecount) > 0; 3240} 3241 3242#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 3243static inline void i_readcount_dec(struct inode *inode) 3244{ 3245 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 3246} 3247static inline void i_readcount_inc(struct inode *inode) 3248{ 3249 atomic_inc(&inode->i_readcount); 3250} 3251#else 3252static inline void i_readcount_dec(struct inode *inode) 3253{ 3254 return; 3255} 3256static inline void i_readcount_inc(struct inode *inode) 3257{ 3258 return; 3259} 3260#endif 3261extern int do_pipe_flags(int *, int); 3262 3263extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3264ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3265extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3266extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3267extern struct file * open_exec(const char *); 3268 3269/* fs/dcache.c -- generic fs support functions */ 3270extern bool is_subdir(struct dentry *, struct dentry *); 3271extern bool path_is_under(const struct path *, const struct path *); 3272 3273extern char *file_path(struct file *, char *, int); 3274 3275/** 3276 * is_dot_dotdot - returns true only if @name is "." or ".." 3277 * @name: file name to check 3278 * @len: length of file name, in bytes 3279 */ 3280static inline bool is_dot_dotdot(const char *name, size_t len) 3281{ 3282 return len && unlikely(name[0] == '.') && 3283 (len == 1 || (len == 2 && name[1] == '.')); 3284} 3285 3286/** 3287 * name_contains_dotdot - check if a file name contains ".." path components 3288 * @name: File path string to check 3289 * Search for ".." surrounded by either '/' or start/end of string. 3290 */ 3291static inline bool name_contains_dotdot(const char *name) 3292{ 3293 size_t name_len; 3294 3295 name_len = strlen(name); 3296 return strcmp(name, "..") == 0 || 3297 strncmp(name, "../", 3) == 0 || 3298 strstr(name, "/../") != NULL || 3299 (name_len >= 3 && strcmp(name + name_len - 3, "/..") == 0); 3300} 3301 3302#include <linux/err.h> 3303 3304/* needed for stackable file system support */ 3305extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3306 3307extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3308 3309extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 3310static inline int inode_init_always(struct super_block *sb, struct inode *inode) 3311{ 3312 return inode_init_always_gfp(sb, inode, GFP_NOFS); 3313} 3314 3315extern void inode_init_once(struct inode *); 3316extern void address_space_init_once(struct address_space *mapping); 3317extern struct inode * igrab(struct inode *); 3318extern ino_t iunique(struct super_block *, ino_t); 3319extern int inode_needs_sync(struct inode *inode); 3320extern int inode_just_drop(struct inode *inode); 3321static inline int inode_generic_drop(struct inode *inode) 3322{ 3323 return !inode->i_nlink || inode_unhashed(inode); 3324} 3325extern void d_mark_dontcache(struct inode *inode); 3326 3327extern struct inode *ilookup5_nowait(struct super_block *sb, 3328 unsigned long hashval, int (*test)(struct inode *, void *), 3329 void *data); 3330extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3331 int (*test)(struct inode *, void *), void *data); 3332extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3333 3334extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3335 int (*test)(struct inode *, void *), 3336 int (*set)(struct inode *, void *), 3337 void *data); 3338struct inode *iget5_locked(struct super_block *, unsigned long, 3339 int (*test)(struct inode *, void *), 3340 int (*set)(struct inode *, void *), void *); 3341struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3342 int (*test)(struct inode *, void *), 3343 int (*set)(struct inode *, void *), void *); 3344extern struct inode * iget_locked(struct super_block *, unsigned long); 3345extern struct inode *find_inode_nowait(struct super_block *, 3346 unsigned long, 3347 int (*match)(struct inode *, 3348 unsigned long, void *), 3349 void *data); 3350extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3351 int (*)(struct inode *, void *), void *); 3352extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3353extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3354extern int insert_inode_locked(struct inode *); 3355#ifdef CONFIG_DEBUG_LOCK_ALLOC 3356extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3357#else 3358static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3359#endif 3360extern void unlock_new_inode(struct inode *); 3361extern void discard_new_inode(struct inode *); 3362extern unsigned int get_next_ino(void); 3363extern void evict_inodes(struct super_block *sb); 3364void dump_mapping(const struct address_space *); 3365 3366/* 3367 * Userspace may rely on the inode number being non-zero. For example, glibc 3368 * simply ignores files with zero i_ino in unlink() and other places. 3369 * 3370 * As an additional complication, if userspace was compiled with 3371 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3372 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3373 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3374 * better safe than sorry. 3375 */ 3376static inline bool is_zero_ino(ino_t ino) 3377{ 3378 return (u32)ino == 0; 3379} 3380 3381/* 3382 * inode->i_lock must be held 3383 */ 3384static inline void __iget(struct inode *inode) 3385{ 3386 atomic_inc(&inode->i_count); 3387} 3388 3389extern void iget_failed(struct inode *); 3390extern void clear_inode(struct inode *); 3391extern void __destroy_inode(struct inode *); 3392struct inode *alloc_inode(struct super_block *sb); 3393static inline struct inode *new_inode_pseudo(struct super_block *sb) 3394{ 3395 return alloc_inode(sb); 3396} 3397extern struct inode *new_inode(struct super_block *sb); 3398extern void free_inode_nonrcu(struct inode *inode); 3399extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3400extern int file_remove_privs(struct file *); 3401int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3402 const struct inode *inode); 3403 3404/* 3405 * This must be used for allocating filesystems specific inodes to set 3406 * up the inode reclaim context correctly. 3407 */ 3408#define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3409 3410extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3411static inline void insert_inode_hash(struct inode *inode) 3412{ 3413 __insert_inode_hash(inode, inode->i_ino); 3414} 3415 3416extern void __remove_inode_hash(struct inode *); 3417static inline void remove_inode_hash(struct inode *inode) 3418{ 3419 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3420 __remove_inode_hash(inode); 3421} 3422 3423extern void inode_sb_list_add(struct inode *inode); 3424extern void inode_add_lru(struct inode *inode); 3425 3426extern int sb_set_blocksize(struct super_block *, int); 3427extern int sb_min_blocksize(struct super_block *, int); 3428 3429int generic_file_mmap(struct file *, struct vm_area_struct *); 3430int generic_file_mmap_prepare(struct vm_area_desc *desc); 3431int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3432int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc); 3433extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3434int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3435extern int generic_write_check_limits(struct file *file, loff_t pos, 3436 loff_t *count); 3437extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3438ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3439 ssize_t already_read); 3440extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3441extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3442extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3443extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3444ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3445ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3446 ssize_t direct_written, ssize_t buffered_written); 3447 3448ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3449 rwf_t flags); 3450ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3451 rwf_t flags); 3452ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3453 struct iov_iter *iter); 3454ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3455 struct iov_iter *iter); 3456 3457/* fs/splice.c */ 3458ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3459 struct pipe_inode_info *pipe, 3460 size_t len, unsigned int flags); 3461ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3462 struct pipe_inode_info *pipe, 3463 size_t len, unsigned int flags); 3464extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3465 struct file *, loff_t *, size_t, unsigned int); 3466 3467 3468extern void 3469file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3470extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3471extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3472extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3473extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3474 int whence, loff_t maxsize, loff_t eof); 3475loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3476 u64 *cookie); 3477extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3478 int whence, loff_t size); 3479extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3480extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3481int rw_verify_area(int, struct file *, const loff_t *, size_t); 3482extern int generic_file_open(struct inode * inode, struct file * filp); 3483extern int nonseekable_open(struct inode * inode, struct file * filp); 3484extern int stream_open(struct inode * inode, struct file * filp); 3485 3486#ifdef CONFIG_BLOCK 3487typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3488 loff_t file_offset); 3489 3490enum { 3491 /* need locking between buffered and direct access */ 3492 DIO_LOCKING = 0x01, 3493 3494 /* filesystem does not support filling holes */ 3495 DIO_SKIP_HOLES = 0x02, 3496}; 3497 3498ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3499 struct block_device *bdev, struct iov_iter *iter, 3500 get_block_t get_block, 3501 dio_iodone_t end_io, 3502 int flags); 3503 3504static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3505 struct inode *inode, 3506 struct iov_iter *iter, 3507 get_block_t get_block) 3508{ 3509 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3510 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3511} 3512#endif 3513 3514bool inode_dio_finished(const struct inode *inode); 3515void inode_dio_wait(struct inode *inode); 3516void inode_dio_wait_interruptible(struct inode *inode); 3517 3518/** 3519 * inode_dio_begin - signal start of a direct I/O requests 3520 * @inode: inode the direct I/O happens on 3521 * 3522 * This is called once we've finished processing a direct I/O request, 3523 * and is used to wake up callers waiting for direct I/O to be quiesced. 3524 */ 3525static inline void inode_dio_begin(struct inode *inode) 3526{ 3527 atomic_inc(&inode->i_dio_count); 3528} 3529 3530/** 3531 * inode_dio_end - signal finish of a direct I/O requests 3532 * @inode: inode the direct I/O happens on 3533 * 3534 * This is called once we've finished processing a direct I/O request, 3535 * and is used to wake up callers waiting for direct I/O to be quiesced. 3536 */ 3537static inline void inode_dio_end(struct inode *inode) 3538{ 3539 if (atomic_dec_and_test(&inode->i_dio_count)) 3540 wake_up_var(&inode->i_dio_count); 3541} 3542 3543extern void inode_set_flags(struct inode *inode, unsigned int flags, 3544 unsigned int mask); 3545 3546extern const struct file_operations generic_ro_fops; 3547 3548#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3549 3550extern int readlink_copy(char __user *, int, const char *, int); 3551extern int page_readlink(struct dentry *, char __user *, int); 3552extern const char *page_get_link_raw(struct dentry *, struct inode *, 3553 struct delayed_call *); 3554extern const char *page_get_link(struct dentry *, struct inode *, 3555 struct delayed_call *); 3556extern void page_put_link(void *); 3557extern int page_symlink(struct inode *inode, const char *symname, int len); 3558extern const struct inode_operations page_symlink_inode_operations; 3559extern void kfree_link(void *); 3560void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3561void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3562void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3563void generic_fill_statx_atomic_writes(struct kstat *stat, 3564 unsigned int unit_min, 3565 unsigned int unit_max, 3566 unsigned int unit_max_opt); 3567extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3568extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3569void __inode_add_bytes(struct inode *inode, loff_t bytes); 3570void inode_add_bytes(struct inode *inode, loff_t bytes); 3571void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3572void inode_sub_bytes(struct inode *inode, loff_t bytes); 3573static inline loff_t __inode_get_bytes(struct inode *inode) 3574{ 3575 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3576} 3577loff_t inode_get_bytes(struct inode *inode); 3578void inode_set_bytes(struct inode *inode, loff_t bytes); 3579const char *simple_get_link(struct dentry *, struct inode *, 3580 struct delayed_call *); 3581extern const struct inode_operations simple_symlink_inode_operations; 3582 3583extern int iterate_dir(struct file *, struct dir_context *); 3584 3585int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3586 int flags); 3587int vfs_fstat(int fd, struct kstat *stat); 3588 3589static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3590{ 3591 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3592} 3593static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3594{ 3595 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3596} 3597 3598extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3599extern int vfs_readlink(struct dentry *, char __user *, int); 3600 3601extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3602extern void put_filesystem(struct file_system_type *fs); 3603extern struct file_system_type *get_fs_type(const char *name); 3604extern void drop_super(struct super_block *sb); 3605extern void drop_super_exclusive(struct super_block *sb); 3606extern void iterate_supers(void (*f)(struct super_block *, void *), void *arg); 3607extern void iterate_supers_type(struct file_system_type *, 3608 void (*)(struct super_block *, void *), void *); 3609void filesystems_freeze(void); 3610void filesystems_thaw(void); 3611 3612extern int dcache_dir_open(struct inode *, struct file *); 3613extern int dcache_dir_close(struct inode *, struct file *); 3614extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3615extern int dcache_readdir(struct file *, struct dir_context *); 3616extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3617 struct iattr *); 3618extern int simple_getattr(struct mnt_idmap *, const struct path *, 3619 struct kstat *, u32, unsigned int); 3620extern int simple_statfs(struct dentry *, struct kstatfs *); 3621extern int simple_open(struct inode *inode, struct file *file); 3622extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3623extern int simple_unlink(struct inode *, struct dentry *); 3624extern int simple_rmdir(struct inode *, struct dentry *); 3625void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3626 struct inode *new_dir, struct dentry *new_dentry); 3627extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3628 struct inode *new_dir, struct dentry *new_dentry); 3629extern int simple_rename(struct mnt_idmap *, struct inode *, 3630 struct dentry *, struct inode *, struct dentry *, 3631 unsigned int); 3632extern void simple_recursive_removal(struct dentry *, 3633 void (*callback)(struct dentry *)); 3634extern void locked_recursive_removal(struct dentry *, 3635 void (*callback)(struct dentry *)); 3636extern int noop_fsync(struct file *, loff_t, loff_t, int); 3637extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3638extern int simple_empty(struct dentry *); 3639extern int simple_write_begin(const struct kiocb *iocb, 3640 struct address_space *mapping, 3641 loff_t pos, unsigned len, 3642 struct folio **foliop, void **fsdata); 3643extern const struct address_space_operations ram_aops; 3644extern int always_delete_dentry(const struct dentry *); 3645extern struct inode *alloc_anon_inode(struct super_block *); 3646struct inode *anon_inode_make_secure_inode(struct super_block *sb, const char *name, 3647 const struct inode *context_inode); 3648extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3649 3650extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3651extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3652extern const struct file_operations simple_dir_operations; 3653extern const struct inode_operations simple_dir_inode_operations; 3654extern void make_empty_dir_inode(struct inode *inode); 3655extern bool is_empty_dir_inode(struct inode *inode); 3656struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3657struct dentry *d_alloc_name(struct dentry *, const char *); 3658extern int simple_fill_super(struct super_block *, unsigned long, 3659 const struct tree_descr *); 3660extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3661extern void simple_release_fs(struct vfsmount **mount, int *count); 3662struct dentry *simple_start_creating(struct dentry *, const char *); 3663 3664extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3665 loff_t *ppos, const void *from, size_t available); 3666extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3667 const void __user *from, size_t count); 3668 3669struct offset_ctx { 3670 struct maple_tree mt; 3671 unsigned long next_offset; 3672}; 3673 3674void simple_offset_init(struct offset_ctx *octx); 3675int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3676void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3677int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3678 struct inode *new_dir, struct dentry *new_dentry); 3679int simple_offset_rename_exchange(struct inode *old_dir, 3680 struct dentry *old_dentry, 3681 struct inode *new_dir, 3682 struct dentry *new_dentry); 3683void simple_offset_destroy(struct offset_ctx *octx); 3684 3685extern const struct file_operations simple_offset_dir_operations; 3686 3687extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3688extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3689 3690extern int generic_check_addressable(unsigned, u64); 3691 3692extern void generic_set_sb_d_ops(struct super_block *sb); 3693extern int generic_ci_match(const struct inode *parent, 3694 const struct qstr *name, 3695 const struct qstr *folded_name, 3696 const u8 *de_name, u32 de_name_len); 3697 3698#if IS_ENABLED(CONFIG_UNICODE) 3699int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3700int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3701 const char *str, const struct qstr *name); 3702 3703/** 3704 * generic_ci_validate_strict_name - Check if a given name is suitable 3705 * for a directory 3706 * 3707 * This functions checks if the proposed filename is valid for the 3708 * parent directory. That means that only valid UTF-8 filenames will be 3709 * accepted for casefold directories from filesystems created with the 3710 * strict encoding flag. That also means that any name will be 3711 * accepted for directories that doesn't have casefold enabled, or 3712 * aren't being strict with the encoding. 3713 * 3714 * @dir: inode of the directory where the new file will be created 3715 * @name: name of the new file 3716 * 3717 * Return: 3718 * * True: if the filename is suitable for this directory. It can be 3719 * true if a given name is not suitable for a strict encoding 3720 * directory, but the directory being used isn't strict 3721 * * False if the filename isn't suitable for this directory. This only 3722 * happens when a directory is casefolded and the filesystem is strict 3723 * about its encoding. 3724 */ 3725static inline bool generic_ci_validate_strict_name(struct inode *dir, 3726 const struct qstr *name) 3727{ 3728 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3729 return true; 3730 3731 /* 3732 * A casefold dir must have a encoding set, unless the filesystem 3733 * is corrupted 3734 */ 3735 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3736 return true; 3737 3738 return !utf8_validate(dir->i_sb->s_encoding, name); 3739} 3740#else 3741static inline bool generic_ci_validate_strict_name(struct inode *dir, 3742 const struct qstr *name) 3743{ 3744 return true; 3745} 3746#endif 3747 3748static inline struct unicode_map *sb_encoding(const struct super_block *sb) 3749{ 3750#if IS_ENABLED(CONFIG_UNICODE) 3751 return sb->s_encoding; 3752#else 3753 return NULL; 3754#endif 3755} 3756 3757static inline bool sb_has_encoding(const struct super_block *sb) 3758{ 3759 return !!sb_encoding(sb); 3760} 3761 3762/* 3763 * Compare if two super blocks have the same encoding and flags 3764 */ 3765static inline bool sb_same_encoding(const struct super_block *sb1, 3766 const struct super_block *sb2) 3767{ 3768#if IS_ENABLED(CONFIG_UNICODE) 3769 if (sb1->s_encoding == sb2->s_encoding) 3770 return true; 3771 3772 return (sb1->s_encoding && sb2->s_encoding && 3773 (sb1->s_encoding->version == sb2->s_encoding->version) && 3774 (sb1->s_encoding_flags == sb2->s_encoding_flags)); 3775#else 3776 return true; 3777#endif 3778} 3779 3780int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3781 unsigned int ia_valid); 3782int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3783extern int inode_newsize_ok(const struct inode *, loff_t offset); 3784void setattr_copy(struct mnt_idmap *, struct inode *inode, 3785 const struct iattr *attr); 3786 3787extern int file_update_time(struct file *file); 3788 3789static inline bool file_is_dax(const struct file *file) 3790{ 3791 return file && IS_DAX(file->f_mapping->host); 3792} 3793 3794static inline bool vma_is_dax(const struct vm_area_struct *vma) 3795{ 3796 return file_is_dax(vma->vm_file); 3797} 3798 3799static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3800{ 3801 struct inode *inode; 3802 3803 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3804 return false; 3805 if (!vma_is_dax(vma)) 3806 return false; 3807 inode = file_inode(vma->vm_file); 3808 if (S_ISCHR(inode->i_mode)) 3809 return false; /* device-dax */ 3810 return true; 3811} 3812 3813static inline int iocb_flags(struct file *file) 3814{ 3815 int res = 0; 3816 if (file->f_flags & O_APPEND) 3817 res |= IOCB_APPEND; 3818 if (file->f_flags & O_DIRECT) 3819 res |= IOCB_DIRECT; 3820 if (file->f_flags & O_DSYNC) 3821 res |= IOCB_DSYNC; 3822 if (file->f_flags & __O_SYNC) 3823 res |= IOCB_SYNC; 3824 return res; 3825} 3826 3827static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3828 int rw_type) 3829{ 3830 int kiocb_flags = 0; 3831 3832 /* make sure there's no overlap between RWF and private IOCB flags */ 3833 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3834 3835 if (!flags) 3836 return 0; 3837 if (unlikely(flags & ~RWF_SUPPORTED)) 3838 return -EOPNOTSUPP; 3839 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3840 return -EINVAL; 3841 3842 if (flags & RWF_NOWAIT) { 3843 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3844 return -EOPNOTSUPP; 3845 } 3846 if (flags & RWF_ATOMIC) { 3847 if (rw_type != WRITE) 3848 return -EOPNOTSUPP; 3849 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3850 return -EOPNOTSUPP; 3851 } 3852 if (flags & RWF_DONTCACHE) { 3853 /* file system must support it */ 3854 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE)) 3855 return -EOPNOTSUPP; 3856 /* DAX mappings not supported */ 3857 if (IS_DAX(ki->ki_filp->f_mapping->host)) 3858 return -EOPNOTSUPP; 3859 } 3860 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3861 if (flags & RWF_SYNC) 3862 kiocb_flags |= IOCB_DSYNC; 3863 3864 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3865 if (IS_APPEND(file_inode(ki->ki_filp))) 3866 return -EPERM; 3867 ki->ki_flags &= ~IOCB_APPEND; 3868 } 3869 3870 ki->ki_flags |= kiocb_flags; 3871 return 0; 3872} 3873 3874/* Transaction based IO helpers */ 3875 3876/* 3877 * An argresp is stored in an allocated page and holds the 3878 * size of the argument or response, along with its content 3879 */ 3880struct simple_transaction_argresp { 3881 ssize_t size; 3882 char data[]; 3883}; 3884 3885#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3886 3887char *simple_transaction_get(struct file *file, const char __user *buf, 3888 size_t size); 3889ssize_t simple_transaction_read(struct file *file, char __user *buf, 3890 size_t size, loff_t *pos); 3891int simple_transaction_release(struct inode *inode, struct file *file); 3892 3893void simple_transaction_set(struct file *file, size_t n); 3894 3895/* 3896 * simple attribute files 3897 * 3898 * These attributes behave similar to those in sysfs: 3899 * 3900 * Writing to an attribute immediately sets a value, an open file can be 3901 * written to multiple times. 3902 * 3903 * Reading from an attribute creates a buffer from the value that might get 3904 * read with multiple read calls. When the attribute has been read 3905 * completely, no further read calls are possible until the file is opened 3906 * again. 3907 * 3908 * All attributes contain a text representation of a numeric value 3909 * that are accessed with the get() and set() functions. 3910 */ 3911#define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3912static int __fops ## _open(struct inode *inode, struct file *file) \ 3913{ \ 3914 __simple_attr_check_format(__fmt, 0ull); \ 3915 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3916} \ 3917static const struct file_operations __fops = { \ 3918 .owner = THIS_MODULE, \ 3919 .open = __fops ## _open, \ 3920 .release = simple_attr_release, \ 3921 .read = simple_attr_read, \ 3922 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3923 .llseek = generic_file_llseek, \ 3924} 3925 3926#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3927 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3928 3929#define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3930 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3931 3932static inline __printf(1, 2) 3933void __simple_attr_check_format(const char *fmt, ...) 3934{ 3935 /* don't do anything, just let the compiler check the arguments; */ 3936} 3937 3938int simple_attr_open(struct inode *inode, struct file *file, 3939 int (*get)(void *, u64 *), int (*set)(void *, u64), 3940 const char *fmt); 3941int simple_attr_release(struct inode *inode, struct file *file); 3942ssize_t simple_attr_read(struct file *file, char __user *buf, 3943 size_t len, loff_t *ppos); 3944ssize_t simple_attr_write(struct file *file, const char __user *buf, 3945 size_t len, loff_t *ppos); 3946ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3947 size_t len, loff_t *ppos); 3948 3949struct ctl_table; 3950int __init list_bdev_fs_names(char *buf, size_t size); 3951 3952#define __FMODE_EXEC ((__force int) FMODE_EXEC) 3953 3954#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3955#define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE)) 3956 3957static inline bool is_sxid(umode_t mode) 3958{ 3959 return mode & (S_ISUID | S_ISGID); 3960} 3961 3962static inline int check_sticky(struct mnt_idmap *idmap, 3963 struct inode *dir, struct inode *inode) 3964{ 3965 if (!(dir->i_mode & S_ISVTX)) 3966 return 0; 3967 3968 return __check_sticky(idmap, dir, inode); 3969} 3970 3971static inline void inode_has_no_xattr(struct inode *inode) 3972{ 3973 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3974 inode->i_flags |= S_NOSEC; 3975} 3976 3977static inline bool is_root_inode(struct inode *inode) 3978{ 3979 return inode == inode->i_sb->s_root->d_inode; 3980} 3981 3982static inline bool dir_emit(struct dir_context *ctx, 3983 const char *name, int namelen, 3984 u64 ino, unsigned type) 3985{ 3986 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3987} 3988static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3989{ 3990 return ctx->actor(ctx, ".", 1, ctx->pos, 3991 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3992} 3993static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3994{ 3995 return ctx->actor(ctx, "..", 2, ctx->pos, 3996 d_parent_ino(file->f_path.dentry), DT_DIR); 3997} 3998static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3999{ 4000 if (ctx->pos == 0) { 4001 if (!dir_emit_dot(file, ctx)) 4002 return false; 4003 ctx->pos = 1; 4004 } 4005 if (ctx->pos == 1) { 4006 if (!dir_emit_dotdot(file, ctx)) 4007 return false; 4008 ctx->pos = 2; 4009 } 4010 return true; 4011} 4012static inline bool dir_relax(struct inode *inode) 4013{ 4014 inode_unlock(inode); 4015 inode_lock(inode); 4016 return !IS_DEADDIR(inode); 4017} 4018 4019static inline bool dir_relax_shared(struct inode *inode) 4020{ 4021 inode_unlock_shared(inode); 4022 inode_lock_shared(inode); 4023 return !IS_DEADDIR(inode); 4024} 4025 4026extern bool path_noexec(const struct path *path); 4027extern void inode_nohighmem(struct inode *inode); 4028 4029/* mm/fadvise.c */ 4030extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 4031 int advice); 4032extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 4033 int advice); 4034 4035static inline bool vfs_empty_path(int dfd, const char __user *path) 4036{ 4037 char c; 4038 4039 if (dfd < 0) 4040 return false; 4041 4042 /* We now allow NULL to be used for empty path. */ 4043 if (!path) 4044 return true; 4045 4046 if (unlikely(get_user(c, path))) 4047 return false; 4048 4049 return !c; 4050} 4051 4052int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 4053 4054static inline bool extensible_ioctl_valid(unsigned int cmd_a, 4055 unsigned int cmd_b, size_t min_size) 4056{ 4057 if (_IOC_DIR(cmd_a) != _IOC_DIR(cmd_b)) 4058 return false; 4059 if (_IOC_TYPE(cmd_a) != _IOC_TYPE(cmd_b)) 4060 return false; 4061 if (_IOC_NR(cmd_a) != _IOC_NR(cmd_b)) 4062 return false; 4063 if (_IOC_SIZE(cmd_a) < min_size) 4064 return false; 4065 return true; 4066} 4067 4068#endif /* _LINUX_FS_H */