Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43
44 guard(mutex)(&opp_table->lock);
45
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev)
48 return true;
49
50 return false;
51}
52
53static struct opp_table *_find_opp_table_unlocked(struct device *dev)
54{
55 struct opp_table *opp_table;
56
57 list_for_each_entry(opp_table, &opp_tables, node) {
58 if (_find_opp_dev(dev, opp_table))
59 return dev_pm_opp_get_opp_table_ref(opp_table);
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 if (IS_ERR_OR_NULL(dev)) {
79 pr_err("%s: Invalid parameters\n", __func__);
80 return ERR_PTR(-EINVAL);
81 }
82
83 guard(mutex)(&opp_table_lock);
84 return _find_opp_table_unlocked(dev);
85}
86
87/*
88 * Returns true if multiple clocks aren't there, else returns false with WARN.
89 *
90 * We don't force clk_count == 1 here as there are users who don't have a clock
91 * representation in the OPP table and manage the clock configuration themselves
92 * in an platform specific way.
93 */
94static bool assert_single_clk(struct opp_table *opp_table,
95 unsigned int __always_unused index)
96{
97 return !WARN_ON(opp_table->clk_count > 1);
98}
99
100/*
101 * Returns true if clock table is large enough to contain the clock index.
102 */
103static bool assert_clk_index(struct opp_table *opp_table,
104 unsigned int index)
105{
106 return opp_table->clk_count > index;
107}
108
109/*
110 * Returns true if bandwidth table is large enough to contain the bandwidth index.
111 */
112static bool assert_bandwidth_index(struct opp_table *opp_table,
113 unsigned int index)
114{
115 return opp_table->path_count > index;
116}
117
118/**
119 * dev_pm_opp_get_bw() - Gets the bandwidth corresponding to an opp
120 * @opp: opp for which bandwidth has to be returned for
121 * @peak: select peak or average bandwidth
122 * @index: bandwidth index
123 *
124 * Return: bandwidth in kBps, else return 0
125 */
126unsigned long dev_pm_opp_get_bw(struct dev_pm_opp *opp, bool peak, int index)
127{
128 if (IS_ERR_OR_NULL(opp)) {
129 pr_err("%s: Invalid parameters\n", __func__);
130 return 0;
131 }
132
133 if (index >= opp->opp_table->path_count)
134 return 0;
135
136 if (!opp->bandwidth)
137 return 0;
138
139 return peak ? opp->bandwidth[index].peak : opp->bandwidth[index].avg;
140}
141EXPORT_SYMBOL_GPL(dev_pm_opp_get_bw);
142
143/**
144 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
145 * @opp: opp for which voltage has to be returned for
146 *
147 * Return: voltage in micro volt corresponding to the opp, else
148 * return 0
149 *
150 * This is useful only for devices with single power supply.
151 */
152unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
153{
154 if (IS_ERR_OR_NULL(opp)) {
155 pr_err("%s: Invalid parameters\n", __func__);
156 return 0;
157 }
158
159 return opp->supplies[0].u_volt;
160}
161EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
162
163/**
164 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
165 * @opp: opp for which voltage has to be returned for
166 * @supplies: Placeholder for copying the supply information.
167 *
168 * Return: negative error number on failure, 0 otherwise on success after
169 * setting @supplies.
170 *
171 * This can be used for devices with any number of power supplies. The caller
172 * must ensure the @supplies array must contain space for each regulator.
173 */
174int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
175 struct dev_pm_opp_supply *supplies)
176{
177 if (IS_ERR_OR_NULL(opp) || !supplies) {
178 pr_err("%s: Invalid parameters\n", __func__);
179 return -EINVAL;
180 }
181
182 memcpy(supplies, opp->supplies,
183 sizeof(*supplies) * opp->opp_table->regulator_count);
184 return 0;
185}
186EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
187
188/**
189 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
190 * @opp: opp for which power has to be returned for
191 *
192 * Return: power in micro watt corresponding to the opp, else
193 * return 0
194 *
195 * This is useful only for devices with single power supply.
196 */
197unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
198{
199 unsigned long opp_power = 0;
200 int i;
201
202 if (IS_ERR_OR_NULL(opp)) {
203 pr_err("%s: Invalid parameters\n", __func__);
204 return 0;
205 }
206 for (i = 0; i < opp->opp_table->regulator_count; i++)
207 opp_power += opp->supplies[i].u_watt;
208
209 return opp_power;
210}
211EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
212
213/**
214 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
215 * available opp with specified index
216 * @opp: opp for which frequency has to be returned for
217 * @index: index of the frequency within the required opp
218 *
219 * Return: frequency in hertz corresponding to the opp with specified index,
220 * else return 0
221 */
222unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
223{
224 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
225 pr_err("%s: Invalid parameters\n", __func__);
226 return 0;
227 }
228
229 return opp->rates[index];
230}
231EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
232
233/**
234 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
235 * @opp: opp for which level value has to be returned for
236 *
237 * Return: level read from device tree corresponding to the opp, else
238 * return U32_MAX.
239 */
240unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
241{
242 if (IS_ERR_OR_NULL(opp) || !opp->available) {
243 pr_err("%s: Invalid parameters\n", __func__);
244 return 0;
245 }
246
247 return opp->level;
248}
249EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
250
251/**
252 * dev_pm_opp_get_required_pstate() - Gets the required performance state
253 * corresponding to an available opp
254 * @opp: opp for which performance state has to be returned for
255 * @index: index of the required opp
256 *
257 * Return: performance state read from device tree corresponding to the
258 * required opp, else return U32_MAX.
259 */
260unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
261 unsigned int index)
262{
263 if (IS_ERR_OR_NULL(opp) || !opp->available ||
264 index >= opp->opp_table->required_opp_count) {
265 pr_err("%s: Invalid parameters\n", __func__);
266 return 0;
267 }
268
269 /* required-opps not fully initialized yet */
270 if (lazy_linking_pending(opp->opp_table))
271 return 0;
272
273 /* The required OPP table must belong to a genpd */
274 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
275 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
276 return 0;
277 }
278
279 return opp->required_opps[index]->level;
280}
281EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
282
283/**
284 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
285 * @opp: opp for which turbo mode is being verified
286 *
287 * Turbo OPPs are not for normal use, and can be enabled (under certain
288 * conditions) for short duration of times to finish high throughput work
289 * quickly. Running on them for longer times may overheat the chip.
290 *
291 * Return: true if opp is turbo opp, else false.
292 */
293bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
294{
295 if (IS_ERR_OR_NULL(opp) || !opp->available) {
296 pr_err("%s: Invalid parameters\n", __func__);
297 return false;
298 }
299
300 return opp->turbo;
301}
302EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
303
304/**
305 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
306 * @dev: device for which we do this operation
307 *
308 * Return: This function returns the max clock latency in nanoseconds.
309 */
310unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
311{
312 struct opp_table *opp_table __free(put_opp_table);
313
314 opp_table = _find_opp_table(dev);
315 if (IS_ERR(opp_table))
316 return 0;
317
318 return opp_table->clock_latency_ns_max;
319}
320EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
321
322/**
323 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
324 * @dev: device for which we do this operation
325 *
326 * Return: This function returns the max voltage latency in nanoseconds.
327 */
328unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
329{
330 struct opp_table *opp_table __free(put_opp_table);
331 struct dev_pm_opp *opp;
332 struct regulator *reg;
333 unsigned long latency_ns = 0;
334 int ret, i, count;
335 struct {
336 unsigned long min;
337 unsigned long max;
338 } *uV;
339
340 opp_table = _find_opp_table(dev);
341 if (IS_ERR(opp_table))
342 return 0;
343
344 /* Regulator may not be required for the device */
345 if (!opp_table->regulators)
346 return 0;
347
348 count = opp_table->regulator_count;
349
350 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
351 if (!uV)
352 return 0;
353
354 scoped_guard(mutex, &opp_table->lock) {
355 for (i = 0; i < count; i++) {
356 uV[i].min = ~0;
357 uV[i].max = 0;
358
359 list_for_each_entry(opp, &opp_table->opp_list, node) {
360 if (!opp->available)
361 continue;
362
363 if (opp->supplies[i].u_volt_min < uV[i].min)
364 uV[i].min = opp->supplies[i].u_volt_min;
365 if (opp->supplies[i].u_volt_max > uV[i].max)
366 uV[i].max = opp->supplies[i].u_volt_max;
367 }
368 }
369 }
370
371 /*
372 * The caller needs to ensure that opp_table (and hence the regulator)
373 * isn't freed, while we are executing this routine.
374 */
375 for (i = 0; i < count; i++) {
376 reg = opp_table->regulators[i];
377 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
378 if (ret > 0)
379 latency_ns += ret * 1000;
380 }
381
382 kfree(uV);
383
384 return latency_ns;
385}
386EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
387
388/**
389 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
390 * nanoseconds
391 * @dev: device for which we do this operation
392 *
393 * Return: This function returns the max transition latency, in nanoseconds, to
394 * switch from one OPP to other.
395 */
396unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
397{
398 return dev_pm_opp_get_max_volt_latency(dev) +
399 dev_pm_opp_get_max_clock_latency(dev);
400}
401EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
402
403/**
404 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
405 * @dev: device for which we do this operation
406 *
407 * Return: This function returns the frequency of the OPP marked as suspend_opp
408 * if one is available, else returns 0;
409 */
410unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
411{
412 struct opp_table *opp_table __free(put_opp_table);
413 unsigned long freq = 0;
414
415 opp_table = _find_opp_table(dev);
416 if (IS_ERR(opp_table))
417 return 0;
418
419 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
420 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
421
422 return freq;
423}
424EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
425
426int _get_opp_count(struct opp_table *opp_table)
427{
428 struct dev_pm_opp *opp;
429 int count = 0;
430
431 guard(mutex)(&opp_table->lock);
432
433 list_for_each_entry(opp, &opp_table->opp_list, node) {
434 if (opp->available)
435 count++;
436 }
437
438 return count;
439}
440
441/**
442 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
443 * @dev: device for which we do this operation
444 *
445 * Return: This function returns the number of available opps if there are any,
446 * else returns 0 if none or the corresponding error value.
447 */
448int dev_pm_opp_get_opp_count(struct device *dev)
449{
450 struct opp_table *opp_table __free(put_opp_table);
451
452 opp_table = _find_opp_table(dev);
453 if (IS_ERR(opp_table)) {
454 dev_dbg(dev, "%s: OPP table not found (%ld)\n",
455 __func__, PTR_ERR(opp_table));
456 return PTR_ERR(opp_table);
457 }
458
459 return _get_opp_count(opp_table);
460}
461EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
462
463/* Helpers to read keys */
464static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
465{
466 return opp->rates[index];
467}
468
469static unsigned long _read_level(struct dev_pm_opp *opp, int index)
470{
471 return opp->level;
472}
473
474static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
475{
476 return opp->bandwidth[index].peak;
477}
478
479static unsigned long _read_opp_key(struct dev_pm_opp *opp, int index,
480 struct dev_pm_opp_key *key)
481{
482 key->bw = opp->bandwidth ? opp->bandwidth[index].peak : 0;
483 key->freq = opp->rates[index];
484 key->level = opp->level;
485
486 return true;
487}
488
489/* Generic comparison helpers */
490static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
491 unsigned long opp_key, unsigned long key)
492{
493 if (opp_key == key) {
494 *opp = temp_opp;
495 return true;
496 }
497
498 return false;
499}
500
501static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
502 unsigned long opp_key, unsigned long key)
503{
504 if (opp_key >= key) {
505 *opp = temp_opp;
506 return true;
507 }
508
509 return false;
510}
511
512static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
513 unsigned long opp_key, unsigned long key)
514{
515 if (opp_key > key)
516 return true;
517
518 *opp = temp_opp;
519 return false;
520}
521
522static bool _compare_opp_key_exact(struct dev_pm_opp **opp,
523 struct dev_pm_opp *temp_opp, struct dev_pm_opp_key *opp_key,
524 struct dev_pm_opp_key *key)
525{
526 bool level_match = (key->level == OPP_LEVEL_UNSET || opp_key->level == key->level);
527 bool freq_match = (key->freq == 0 || opp_key->freq == key->freq);
528 bool bw_match = (key->bw == 0 || opp_key->bw == key->bw);
529
530 if (freq_match && level_match && bw_match) {
531 *opp = temp_opp;
532 return true;
533 }
534
535 return false;
536}
537
538/* Generic key finding helpers */
539static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
540 unsigned long *key, int index, bool available,
541 unsigned long (*read)(struct dev_pm_opp *opp, int index),
542 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
543 unsigned long opp_key, unsigned long key),
544 bool (*assert)(struct opp_table *opp_table, unsigned int index))
545{
546 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
547
548 /* Assert that the requirement is met */
549 if (assert && !assert(opp_table, index))
550 return ERR_PTR(-EINVAL);
551
552 guard(mutex)(&opp_table->lock);
553
554 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
555 if (temp_opp->available == available) {
556 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
557 break;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp)) {
563 *key = read(opp, index);
564 dev_pm_opp_get(opp);
565 }
566
567 return opp;
568}
569
570static struct dev_pm_opp *_opp_table_find_opp_key(struct opp_table *opp_table,
571 struct dev_pm_opp_key *key, bool available,
572 unsigned long (*read)(struct dev_pm_opp *opp, int index,
573 struct dev_pm_opp_key *key),
574 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
575 struct dev_pm_opp_key *opp_key, struct dev_pm_opp_key *key),
576 bool (*assert)(struct opp_table *opp_table, unsigned int index))
577{
578 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
579 struct dev_pm_opp_key temp_key;
580
581 /* Assert that the requirement is met */
582 if (!assert(opp_table, 0))
583 return ERR_PTR(-EINVAL);
584
585 guard(mutex)(&opp_table->lock);
586
587 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
588 if (temp_opp->available == available) {
589 read(temp_opp, 0, &temp_key);
590 if (compare(&opp, temp_opp, &temp_key, key)) {
591 /* Increment the reference count of OPP */
592 dev_pm_opp_get(opp);
593 break;
594 }
595 }
596 }
597
598 return opp;
599}
600
601static struct dev_pm_opp *
602_find_key(struct device *dev, unsigned long *key, int index, bool available,
603 unsigned long (*read)(struct dev_pm_opp *opp, int index),
604 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
605 unsigned long opp_key, unsigned long key),
606 bool (*assert)(struct opp_table *opp_table, unsigned int index))
607{
608 struct opp_table *opp_table __free(put_opp_table);
609
610 opp_table = _find_opp_table(dev);
611 if (IS_ERR(opp_table)) {
612 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
613 PTR_ERR(opp_table));
614 return ERR_CAST(opp_table);
615 }
616
617 return _opp_table_find_key(opp_table, key, index, available, read,
618 compare, assert);
619}
620
621static struct dev_pm_opp *_find_key_exact(struct device *dev,
622 unsigned long key, int index, bool available,
623 unsigned long (*read)(struct dev_pm_opp *opp, int index),
624 bool (*assert)(struct opp_table *opp_table, unsigned int index))
625{
626 /*
627 * The value of key will be updated here, but will be ignored as the
628 * caller doesn't need it.
629 */
630 return _find_key(dev, &key, index, available, read, _compare_exact,
631 assert);
632}
633
634static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
635 unsigned long *key, int index, bool available,
636 unsigned long (*read)(struct dev_pm_opp *opp, int index),
637 bool (*assert)(struct opp_table *opp_table, unsigned int index))
638{
639 return _opp_table_find_key(opp_table, key, index, available, read,
640 _compare_ceil, assert);
641}
642
643static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
644 int index, bool available,
645 unsigned long (*read)(struct dev_pm_opp *opp, int index),
646 bool (*assert)(struct opp_table *opp_table, unsigned int index))
647{
648 return _find_key(dev, key, index, available, read, _compare_ceil,
649 assert);
650}
651
652static struct dev_pm_opp *_find_key_floor(struct device *dev,
653 unsigned long *key, int index, bool available,
654 unsigned long (*read)(struct dev_pm_opp *opp, int index),
655 bool (*assert)(struct opp_table *opp_table, unsigned int index))
656{
657 return _find_key(dev, key, index, available, read, _compare_floor,
658 assert);
659}
660
661/**
662 * dev_pm_opp_find_freq_exact() - search for an exact frequency
663 * @dev: device for which we do this operation
664 * @freq: frequency to search for
665 * @available: true/false - match for available opp
666 *
667 * Return: Searches for exact match in the opp table and returns pointer to the
668 * matching opp if found, else returns ERR_PTR in case of error and should
669 * be handled using IS_ERR. Error return values can be:
670 * EINVAL: for bad pointer
671 * ERANGE: no match found for search
672 * ENODEV: if device not found in list of registered devices
673 *
674 * Note: available is a modifier for the search. if available=true, then the
675 * match is for exact matching frequency and is available in the stored OPP
676 * table. if false, the match is for exact frequency which is not available.
677 *
678 * This provides a mechanism to enable an opp which is not available currently
679 * or the opposite as well.
680 *
681 * The callers are required to call dev_pm_opp_put() for the returned OPP after
682 * use.
683 */
684struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
685 unsigned long freq, bool available)
686{
687 return _find_key_exact(dev, freq, 0, available, _read_freq,
688 assert_single_clk);
689}
690EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
691
692/**
693 * dev_pm_opp_find_key_exact() - Search for an OPP with exact key set
694 * @dev: Device for which the OPP is being searched
695 * @key: OPP key set to match
696 * @available: true/false - match for available OPP
697 *
698 * Search for an exact match of the key set in the OPP table.
699 *
700 * Return: A matching opp on success, else ERR_PTR in case of error.
701 * Possible error values:
702 * EINVAL: for bad pointers
703 * ERANGE: no match found for search
704 * ENODEV: if device not found in list of registered devices
705 *
706 * Note: 'available' is a modifier for the search. If 'available' == true,
707 * then the match is for exact matching key and is available in the stored
708 * OPP table. If false, the match is for exact key which is not available.
709 *
710 * This provides a mechanism to enable an OPP which is not available currently
711 * or the opposite as well.
712 *
713 * The callers are required to call dev_pm_opp_put() for the returned OPP after
714 * use.
715 */
716struct dev_pm_opp *dev_pm_opp_find_key_exact(struct device *dev,
717 struct dev_pm_opp_key *key,
718 bool available)
719{
720 struct opp_table *opp_table __free(put_opp_table) = _find_opp_table(dev);
721
722 if (IS_ERR(opp_table)) {
723 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
724 PTR_ERR(opp_table));
725 return ERR_CAST(opp_table);
726 }
727
728 return _opp_table_find_opp_key(opp_table, key, available,
729 _read_opp_key, _compare_opp_key_exact,
730 assert_single_clk);
731}
732EXPORT_SYMBOL_GPL(dev_pm_opp_find_key_exact);
733
734/**
735 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
736 * clock corresponding to the index
737 * @dev: Device for which we do this operation
738 * @freq: frequency to search for
739 * @index: Clock index
740 * @available: true/false - match for available opp
741 *
742 * Search for the matching exact OPP for the clock corresponding to the
743 * specified index from a starting freq for a device.
744 *
745 * Return: matching *opp , else returns ERR_PTR in case of error and should be
746 * handled using IS_ERR. Error return values can be:
747 * EINVAL: for bad pointer
748 * ERANGE: no match found for search
749 * ENODEV: if device not found in list of registered devices
750 *
751 * The callers are required to call dev_pm_opp_put() for the returned OPP after
752 * use.
753 */
754struct dev_pm_opp *
755dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
756 u32 index, bool available)
757{
758 return _find_key_exact(dev, freq, index, available, _read_freq,
759 assert_clk_index);
760}
761EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
762
763static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
764 unsigned long *freq)
765{
766 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
767 assert_single_clk);
768}
769
770/**
771 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
772 * @dev: device for which we do this operation
773 * @freq: Start frequency
774 *
775 * Search for the matching ceil *available* OPP from a starting freq
776 * for a device.
777 *
778 * Return: matching *opp and refreshes *freq accordingly, else returns
779 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
780 * values can be:
781 * EINVAL: for bad pointer
782 * ERANGE: no match found for search
783 * ENODEV: if device not found in list of registered devices
784 *
785 * The callers are required to call dev_pm_opp_put() for the returned OPP after
786 * use.
787 */
788struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
789 unsigned long *freq)
790{
791 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
792}
793EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
794
795/**
796 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
797 * clock corresponding to the index
798 * @dev: Device for which we do this operation
799 * @freq: Start frequency
800 * @index: Clock index
801 *
802 * Search for the matching ceil *available* OPP for the clock corresponding to
803 * the specified index from a starting freq for a device.
804 *
805 * Return: matching *opp and refreshes *freq accordingly, else returns
806 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
807 * values can be:
808 * EINVAL: for bad pointer
809 * ERANGE: no match found for search
810 * ENODEV: if device not found in list of registered devices
811 *
812 * The callers are required to call dev_pm_opp_put() for the returned OPP after
813 * use.
814 */
815struct dev_pm_opp *
816dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
817 u32 index)
818{
819 return _find_key_ceil(dev, freq, index, true, _read_freq,
820 assert_clk_index);
821}
822EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
823
824/**
825 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
826 * @dev: device for which we do this operation
827 * @freq: Start frequency
828 *
829 * Search for the matching floor *available* OPP from a starting freq
830 * for a device.
831 *
832 * Return: matching *opp and refreshes *freq accordingly, else returns
833 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
834 * values can be:
835 * EINVAL: for bad pointer
836 * ERANGE: no match found for search
837 * ENODEV: if device not found in list of registered devices
838 *
839 * The callers are required to call dev_pm_opp_put() for the returned OPP after
840 * use.
841 */
842struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
843 unsigned long *freq)
844{
845 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
846}
847EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
848
849/**
850 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
851 * clock corresponding to the index
852 * @dev: Device for which we do this operation
853 * @freq: Start frequency
854 * @index: Clock index
855 *
856 * Search for the matching floor *available* OPP for the clock corresponding to
857 * the specified index from a starting freq for a device.
858 *
859 * Return: matching *opp and refreshes *freq accordingly, else returns
860 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
861 * values can be:
862 * EINVAL: for bad pointer
863 * ERANGE: no match found for search
864 * ENODEV: if device not found in list of registered devices
865 *
866 * The callers are required to call dev_pm_opp_put() for the returned OPP after
867 * use.
868 */
869struct dev_pm_opp *
870dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
871 u32 index)
872{
873 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
874}
875EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
876
877/**
878 * dev_pm_opp_find_level_exact() - search for an exact level
879 * @dev: device for which we do this operation
880 * @level: level to search for
881 *
882 * Return: Searches for exact match in the opp table and returns pointer to the
883 * matching opp if found, else returns ERR_PTR in case of error and should
884 * be handled using IS_ERR. Error return values can be:
885 * EINVAL: for bad pointer
886 * ERANGE: no match found for search
887 * ENODEV: if device not found in list of registered devices
888 *
889 * The callers are required to call dev_pm_opp_put() for the returned OPP after
890 * use.
891 */
892struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
893 unsigned int level)
894{
895 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
896}
897EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
898
899/**
900 * dev_pm_opp_find_level_ceil() - search for an rounded up level
901 * @dev: device for which we do this operation
902 * @level: level to search for
903 *
904 * Return: Searches for rounded up match in the opp table and returns pointer
905 * to the matching opp if found, else returns ERR_PTR in case of error and
906 * should be handled using IS_ERR. Error return values can be:
907 * EINVAL: for bad pointer
908 * ERANGE: no match found for search
909 * ENODEV: if device not found in list of registered devices
910 *
911 * The callers are required to call dev_pm_opp_put() for the returned OPP after
912 * use.
913 */
914struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
915 unsigned int *level)
916{
917 unsigned long temp = *level;
918 struct dev_pm_opp *opp;
919
920 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
921 if (IS_ERR(opp))
922 return opp;
923
924 /* False match */
925 if (temp == OPP_LEVEL_UNSET) {
926 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
927 dev_pm_opp_put(opp);
928 return ERR_PTR(-ENODEV);
929 }
930
931 *level = temp;
932 return opp;
933}
934EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
935
936/**
937 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
938 * @dev: device for which we do this operation
939 * @level: Start level
940 *
941 * Search for the matching floor *available* OPP from a starting level
942 * for a device.
943 *
944 * Return: matching *opp and refreshes *level accordingly, else returns
945 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
946 * values can be:
947 * EINVAL: for bad pointer
948 * ERANGE: no match found for search
949 * ENODEV: if device not found in list of registered devices
950 *
951 * The callers are required to call dev_pm_opp_put() for the returned OPP after
952 * use.
953 */
954struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
955 unsigned int *level)
956{
957 unsigned long temp = *level;
958 struct dev_pm_opp *opp;
959
960 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
961 *level = temp;
962 return opp;
963}
964EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
965
966/**
967 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
968 * @dev: device for which we do this operation
969 * @bw: start bandwidth
970 * @index: which bandwidth to compare, in case of OPPs with several values
971 *
972 * Search for the matching floor *available* OPP from a starting bandwidth
973 * for a device.
974 *
975 * Return: matching *opp and refreshes *bw accordingly, else returns
976 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
977 * values can be:
978 * EINVAL: for bad pointer
979 * ERANGE: no match found for search
980 * ENODEV: if device not found in list of registered devices
981 *
982 * The callers are required to call dev_pm_opp_put() for the returned OPP after
983 * use.
984 */
985struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
986 int index)
987{
988 unsigned long temp = *bw;
989 struct dev_pm_opp *opp;
990
991 opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
992 assert_bandwidth_index);
993 *bw = temp;
994 return opp;
995}
996EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
997
998/**
999 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
1000 * @dev: device for which we do this operation
1001 * @bw: start bandwidth
1002 * @index: which bandwidth to compare, in case of OPPs with several values
1003 *
1004 * Search for the matching floor *available* OPP from a starting bandwidth
1005 * for a device.
1006 *
1007 * Return: matching *opp and refreshes *bw accordingly, else returns
1008 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
1009 * values can be:
1010 * EINVAL: for bad pointer
1011 * ERANGE: no match found for search
1012 * ENODEV: if device not found in list of registered devices
1013 *
1014 * The callers are required to call dev_pm_opp_put() for the returned OPP after
1015 * use.
1016 */
1017struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
1018 unsigned int *bw, int index)
1019{
1020 unsigned long temp = *bw;
1021 struct dev_pm_opp *opp;
1022
1023 opp = _find_key_floor(dev, &temp, index, true, _read_bw,
1024 assert_bandwidth_index);
1025 *bw = temp;
1026 return opp;
1027}
1028EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
1029
1030static int _set_opp_voltage(struct device *dev, struct regulator *reg,
1031 struct dev_pm_opp_supply *supply)
1032{
1033 int ret;
1034
1035 /* Regulator not available for device */
1036 if (IS_ERR(reg)) {
1037 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
1038 PTR_ERR(reg));
1039 return 0;
1040 }
1041
1042 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
1043 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
1044
1045 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
1046 supply->u_volt, supply->u_volt_max);
1047 if (ret)
1048 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
1049 __func__, supply->u_volt_min, supply->u_volt,
1050 supply->u_volt_max, ret);
1051
1052 return ret;
1053}
1054
1055static int
1056_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
1057 struct dev_pm_opp *opp, void *data, bool scaling_down)
1058{
1059 unsigned long *target = data;
1060 unsigned long freq;
1061 int ret;
1062
1063 /* One of target and opp must be available */
1064 if (target) {
1065 freq = *target;
1066 } else if (opp) {
1067 freq = opp->rates[0];
1068 } else {
1069 WARN_ON(1);
1070 return -EINVAL;
1071 }
1072
1073 ret = clk_set_rate(opp_table->clk, freq);
1074 if (ret) {
1075 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1076 ret);
1077 } else {
1078 opp_table->current_rate_single_clk = freq;
1079 }
1080
1081 return ret;
1082}
1083
1084/*
1085 * Simple implementation for configuring multiple clocks. Configure clocks in
1086 * the order in which they are present in the array while scaling up.
1087 */
1088int dev_pm_opp_config_clks_simple(struct device *dev,
1089 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1090 bool scaling_down)
1091{
1092 int ret, i;
1093
1094 if (scaling_down) {
1095 for (i = opp_table->clk_count - 1; i >= 0; i--) {
1096 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1097 if (ret) {
1098 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1099 ret);
1100 return ret;
1101 }
1102 }
1103 } else {
1104 for (i = 0; i < opp_table->clk_count; i++) {
1105 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1106 if (ret) {
1107 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1108 ret);
1109 return ret;
1110 }
1111 }
1112 }
1113
1114 return 0;
1115}
1116EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1117
1118static int _opp_config_regulator_single(struct device *dev,
1119 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1120 struct regulator **regulators, unsigned int count)
1121{
1122 struct regulator *reg = regulators[0];
1123 int ret;
1124
1125 /* This function only supports single regulator per device */
1126 if (WARN_ON(count > 1)) {
1127 dev_err(dev, "multiple regulators are not supported\n");
1128 return -EINVAL;
1129 }
1130
1131 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1132 if (ret)
1133 return ret;
1134
1135 /*
1136 * Enable the regulator after setting its voltages, otherwise it breaks
1137 * some boot-enabled regulators.
1138 */
1139 if (unlikely(!new_opp->opp_table->enabled)) {
1140 ret = regulator_enable(reg);
1141 if (ret < 0)
1142 dev_warn(dev, "Failed to enable regulator: %d", ret);
1143 }
1144
1145 return 0;
1146}
1147
1148static int _set_opp_bw(const struct opp_table *opp_table,
1149 struct dev_pm_opp *opp, struct device *dev)
1150{
1151 u32 avg, peak;
1152 int i, ret;
1153
1154 if (!opp_table->paths)
1155 return 0;
1156
1157 for (i = 0; i < opp_table->path_count; i++) {
1158 if (!opp) {
1159 avg = 0;
1160 peak = 0;
1161 } else {
1162 avg = opp->bandwidth[i].avg;
1163 peak = opp->bandwidth[i].peak;
1164 }
1165 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1166 if (ret) {
1167 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1168 opp ? "set" : "remove", i, ret);
1169 return ret;
1170 }
1171 }
1172
1173 return 0;
1174}
1175
1176static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1177{
1178 unsigned int level = 0;
1179 int ret = 0;
1180
1181 if (opp) {
1182 if (opp->level == OPP_LEVEL_UNSET)
1183 return 0;
1184
1185 level = opp->level;
1186 }
1187
1188 /* Request a new performance state through the device's PM domain. */
1189 ret = dev_pm_domain_set_performance_state(dev, level);
1190 if (ret)
1191 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1192 ret);
1193
1194 return ret;
1195}
1196
1197/* This is only called for PM domain for now */
1198static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1199 struct dev_pm_opp *opp, bool up)
1200{
1201 struct device **devs = opp_table->required_devs;
1202 struct dev_pm_opp *required_opp;
1203 int index, target, delta, ret;
1204
1205 if (!devs)
1206 return 0;
1207
1208 /* required-opps not fully initialized yet */
1209 if (lazy_linking_pending(opp_table))
1210 return -EBUSY;
1211
1212 /* Scaling up? Set required OPPs in normal order, else reverse */
1213 if (up) {
1214 index = 0;
1215 target = opp_table->required_opp_count;
1216 delta = 1;
1217 } else {
1218 index = opp_table->required_opp_count - 1;
1219 target = -1;
1220 delta = -1;
1221 }
1222
1223 while (index != target) {
1224 if (devs[index]) {
1225 required_opp = opp ? opp->required_opps[index] : NULL;
1226
1227 ret = _set_opp_level(devs[index], required_opp);
1228 if (ret)
1229 return ret;
1230 }
1231
1232 index += delta;
1233 }
1234
1235 return 0;
1236}
1237
1238static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1239{
1240 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1241 unsigned long freq;
1242
1243 if (!IS_ERR(opp_table->clk)) {
1244 freq = clk_get_rate(opp_table->clk);
1245 opp = _find_freq_ceil(opp_table, &freq);
1246 }
1247
1248 /*
1249 * Unable to find the current OPP ? Pick the first from the list since
1250 * it is in ascending order, otherwise rest of the code will need to
1251 * make special checks to validate current_opp.
1252 */
1253 if (IS_ERR(opp)) {
1254 guard(mutex)(&opp_table->lock);
1255 opp = dev_pm_opp_get(list_first_entry(&opp_table->opp_list,
1256 struct dev_pm_opp, node));
1257 }
1258
1259 opp_table->current_opp = opp;
1260}
1261
1262static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1263{
1264 int ret;
1265
1266 if (!opp_table->enabled)
1267 return 0;
1268
1269 /*
1270 * Some drivers need to support cases where some platforms may
1271 * have OPP table for the device, while others don't and
1272 * opp_set_rate() just needs to behave like clk_set_rate().
1273 */
1274 if (!_get_opp_count(opp_table))
1275 return 0;
1276
1277 ret = _set_opp_bw(opp_table, NULL, dev);
1278 if (ret)
1279 return ret;
1280
1281 if (opp_table->regulators)
1282 regulator_disable(opp_table->regulators[0]);
1283
1284 ret = _set_opp_level(dev, NULL);
1285 if (ret)
1286 goto out;
1287
1288 ret = _set_required_opps(dev, opp_table, NULL, false);
1289
1290out:
1291 opp_table->enabled = false;
1292 return ret;
1293}
1294
1295static int _set_opp(struct device *dev, struct opp_table *opp_table,
1296 struct dev_pm_opp *opp, void *clk_data, bool forced)
1297{
1298 struct dev_pm_opp *old_opp;
1299 int scaling_down, ret;
1300
1301 if (unlikely(!opp))
1302 return _disable_opp_table(dev, opp_table);
1303
1304 /* Find the currently set OPP if we don't know already */
1305 if (unlikely(!opp_table->current_opp))
1306 _find_current_opp(dev, opp_table);
1307
1308 old_opp = opp_table->current_opp;
1309
1310 /* Return early if nothing to do */
1311 if (!forced && old_opp == opp && opp_table->enabled) {
1312 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1313 return 0;
1314 }
1315
1316 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1317 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1318 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1319 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1320
1321 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1322 if (scaling_down == -1)
1323 scaling_down = 0;
1324
1325 /* Scaling up? Configure required OPPs before frequency */
1326 if (!scaling_down) {
1327 ret = _set_required_opps(dev, opp_table, opp, true);
1328 if (ret) {
1329 dev_err(dev, "Failed to set required opps: %d\n", ret);
1330 return ret;
1331 }
1332
1333 ret = _set_opp_level(dev, opp);
1334 if (ret)
1335 return ret;
1336
1337 ret = _set_opp_bw(opp_table, opp, dev);
1338 if (ret) {
1339 dev_err(dev, "Failed to set bw: %d\n", ret);
1340 return ret;
1341 }
1342
1343 if (opp_table->config_regulators) {
1344 ret = opp_table->config_regulators(dev, old_opp, opp,
1345 opp_table->regulators,
1346 opp_table->regulator_count);
1347 if (ret) {
1348 dev_err(dev, "Failed to set regulator voltages: %d\n",
1349 ret);
1350 return ret;
1351 }
1352 }
1353 }
1354
1355 if (opp_table->config_clks) {
1356 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1357 if (ret)
1358 return ret;
1359 }
1360
1361 /* Scaling down? Configure required OPPs after frequency */
1362 if (scaling_down) {
1363 if (opp_table->config_regulators) {
1364 ret = opp_table->config_regulators(dev, old_opp, opp,
1365 opp_table->regulators,
1366 opp_table->regulator_count);
1367 if (ret) {
1368 dev_err(dev, "Failed to set regulator voltages: %d\n",
1369 ret);
1370 return ret;
1371 }
1372 }
1373
1374 ret = _set_opp_bw(opp_table, opp, dev);
1375 if (ret) {
1376 dev_err(dev, "Failed to set bw: %d\n", ret);
1377 return ret;
1378 }
1379
1380 ret = _set_opp_level(dev, opp);
1381 if (ret)
1382 return ret;
1383
1384 ret = _set_required_opps(dev, opp_table, opp, false);
1385 if (ret) {
1386 dev_err(dev, "Failed to set required opps: %d\n", ret);
1387 return ret;
1388 }
1389 }
1390
1391 opp_table->enabled = true;
1392 dev_pm_opp_put(old_opp);
1393
1394 /* Make sure current_opp doesn't get freed */
1395 opp_table->current_opp = dev_pm_opp_get(opp);
1396
1397 return ret;
1398}
1399
1400/**
1401 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1402 * @dev: device for which we do this operation
1403 * @target_freq: frequency to achieve
1404 *
1405 * This configures the power-supplies to the levels specified by the OPP
1406 * corresponding to the target_freq, and programs the clock to a value <=
1407 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1408 * provided by the opp, should have already rounded to the target OPP's
1409 * frequency.
1410 */
1411int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1412{
1413 struct opp_table *opp_table __free(put_opp_table);
1414 struct dev_pm_opp *opp __free(put_opp) = NULL;
1415 unsigned long freq = 0, temp_freq;
1416 bool forced = false;
1417
1418 opp_table = _find_opp_table(dev);
1419 if (IS_ERR(opp_table)) {
1420 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1421 return PTR_ERR(opp_table);
1422 }
1423
1424 if (target_freq) {
1425 /*
1426 * For IO devices which require an OPP on some platforms/SoCs
1427 * while just needing to scale the clock on some others
1428 * we look for empty OPP tables with just a clock handle and
1429 * scale only the clk. This makes dev_pm_opp_set_rate()
1430 * equivalent to a clk_set_rate()
1431 */
1432 if (!_get_opp_count(opp_table)) {
1433 return opp_table->config_clks(dev, opp_table, NULL,
1434 &target_freq, false);
1435 }
1436
1437 freq = clk_round_rate(opp_table->clk, target_freq);
1438 if ((long)freq <= 0)
1439 freq = target_freq;
1440
1441 /*
1442 * The clock driver may support finer resolution of the
1443 * frequencies than the OPP table, don't update the frequency we
1444 * pass to clk_set_rate() here.
1445 */
1446 temp_freq = freq;
1447 opp = _find_freq_ceil(opp_table, &temp_freq);
1448 if (IS_ERR(opp)) {
1449 dev_err(dev, "%s: failed to find OPP for freq %lu (%ld)\n",
1450 __func__, freq, PTR_ERR(opp));
1451 return PTR_ERR(opp);
1452 }
1453
1454 /*
1455 * An OPP entry specifies the highest frequency at which other
1456 * properties of the OPP entry apply. Even if the new OPP is
1457 * same as the old one, we may still reach here for a different
1458 * value of the frequency. In such a case, do not abort but
1459 * configure the hardware to the desired frequency forcefully.
1460 */
1461 forced = opp_table->current_rate_single_clk != freq;
1462 }
1463
1464 return _set_opp(dev, opp_table, opp, &freq, forced);
1465}
1466EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1467
1468/**
1469 * dev_pm_opp_set_opp() - Configure device for OPP
1470 * @dev: device for which we do this operation
1471 * @opp: OPP to set to
1472 *
1473 * This configures the device based on the properties of the OPP passed to this
1474 * routine.
1475 *
1476 * Return: 0 on success, a negative error number otherwise.
1477 */
1478int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1479{
1480 struct opp_table *opp_table __free(put_opp_table);
1481
1482 opp_table = _find_opp_table(dev);
1483 if (IS_ERR(opp_table)) {
1484 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1485 return PTR_ERR(opp_table);
1486 }
1487
1488 return _set_opp(dev, opp_table, opp, NULL, false);
1489}
1490EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1491
1492/* OPP-dev Helpers */
1493static void _remove_opp_dev(struct opp_device *opp_dev,
1494 struct opp_table *opp_table)
1495{
1496 opp_debug_unregister(opp_dev, opp_table);
1497 list_del(&opp_dev->node);
1498 kfree(opp_dev);
1499}
1500
1501struct opp_device *_add_opp_dev(const struct device *dev,
1502 struct opp_table *opp_table)
1503{
1504 struct opp_device *opp_dev;
1505
1506 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1507 if (!opp_dev)
1508 return NULL;
1509
1510 /* Initialize opp-dev */
1511 opp_dev->dev = dev;
1512
1513 scoped_guard(mutex, &opp_table->lock)
1514 list_add(&opp_dev->node, &opp_table->dev_list);
1515
1516 /* Create debugfs entries for the opp_table */
1517 opp_debug_register(opp_dev, opp_table);
1518
1519 return opp_dev;
1520}
1521
1522static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1523{
1524 struct opp_table *opp_table;
1525 struct opp_device *opp_dev;
1526 int ret;
1527
1528 /*
1529 * Allocate a new OPP table. In the infrequent case where a new
1530 * device is needed to be added, we pay this penalty.
1531 */
1532 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1533 if (!opp_table)
1534 return ERR_PTR(-ENOMEM);
1535
1536 mutex_init(&opp_table->lock);
1537 INIT_LIST_HEAD(&opp_table->dev_list);
1538 INIT_LIST_HEAD(&opp_table->lazy);
1539
1540 opp_table->clk = ERR_PTR(-ENODEV);
1541
1542 /* Mark regulator count uninitialized */
1543 opp_table->regulator_count = -1;
1544
1545 opp_dev = _add_opp_dev(dev, opp_table);
1546 if (!opp_dev) {
1547 ret = -ENOMEM;
1548 goto err;
1549 }
1550
1551 _of_init_opp_table(opp_table, dev, index);
1552
1553 /* Find interconnect path(s) for the device */
1554 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1555 if (ret) {
1556 if (ret == -EPROBE_DEFER)
1557 goto remove_opp_dev;
1558
1559 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1560 __func__, ret);
1561 }
1562
1563 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1564 INIT_LIST_HEAD(&opp_table->opp_list);
1565 kref_init(&opp_table->kref);
1566
1567 return opp_table;
1568
1569remove_opp_dev:
1570 _of_clear_opp_table(opp_table);
1571 _remove_opp_dev(opp_dev, opp_table);
1572 mutex_destroy(&opp_table->lock);
1573err:
1574 kfree(opp_table);
1575 return ERR_PTR(ret);
1576}
1577
1578static struct opp_table *_update_opp_table_clk(struct device *dev,
1579 struct opp_table *opp_table,
1580 bool getclk)
1581{
1582 int ret;
1583
1584 /*
1585 * Return early if we don't need to get clk or we have already done it
1586 * earlier.
1587 */
1588 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1589 opp_table->clks)
1590 return opp_table;
1591
1592 /* Find clk for the device */
1593 opp_table->clk = clk_get(dev, NULL);
1594
1595 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1596 if (!ret) {
1597 opp_table->config_clks = _opp_config_clk_single;
1598 opp_table->clk_count = 1;
1599 return opp_table;
1600 }
1601
1602 if (ret == -ENOENT) {
1603 /*
1604 * There are few platforms which don't want the OPP core to
1605 * manage device's clock settings. In such cases neither the
1606 * platform provides the clks explicitly to us, nor the DT
1607 * contains a valid clk entry. The OPP nodes in DT may still
1608 * contain "opp-hz" property though, which we need to parse and
1609 * allow the platform to find an OPP based on freq later on.
1610 *
1611 * This is a simple solution to take care of such corner cases,
1612 * i.e. make the clk_count 1, which lets us allocate space for
1613 * frequency in opp->rates and also parse the entries in DT.
1614 */
1615 opp_table->clk_count = 1;
1616
1617 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1618 return opp_table;
1619 }
1620
1621 dev_pm_opp_put_opp_table(opp_table);
1622 dev_err_probe(dev, ret, "Couldn't find clock\n");
1623
1624 return ERR_PTR(ret);
1625}
1626
1627/*
1628 * We need to make sure that the OPP table for a device doesn't get added twice,
1629 * if this routine gets called in parallel with the same device pointer.
1630 *
1631 * The simplest way to enforce that is to perform everything (find existing
1632 * table and if not found, create a new one) under the opp_table_lock, so only
1633 * one creator gets access to the same. But that expands the critical section
1634 * under the lock and may end up causing circular dependencies with frameworks
1635 * like debugfs, interconnect or clock framework as they may be direct or
1636 * indirect users of OPP core.
1637 *
1638 * And for that reason we have to go for a bit tricky implementation here, which
1639 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1640 * of adding an OPP table and others should wait for it to finish.
1641 */
1642struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1643 bool getclk)
1644{
1645 struct opp_table *opp_table;
1646
1647again:
1648 mutex_lock(&opp_table_lock);
1649
1650 opp_table = _find_opp_table_unlocked(dev);
1651 if (!IS_ERR(opp_table))
1652 goto unlock;
1653
1654 /*
1655 * The opp_tables list or an OPP table's dev_list is getting updated by
1656 * another user, wait for it to finish.
1657 */
1658 if (unlikely(opp_tables_busy)) {
1659 mutex_unlock(&opp_table_lock);
1660 cpu_relax();
1661 goto again;
1662 }
1663
1664 opp_tables_busy = true;
1665 opp_table = _managed_opp(dev, index);
1666
1667 /* Drop the lock to reduce the size of critical section */
1668 mutex_unlock(&opp_table_lock);
1669
1670 if (opp_table) {
1671 if (!_add_opp_dev(dev, opp_table)) {
1672 dev_pm_opp_put_opp_table(opp_table);
1673 opp_table = ERR_PTR(-ENOMEM);
1674 }
1675
1676 mutex_lock(&opp_table_lock);
1677 } else {
1678 opp_table = _allocate_opp_table(dev, index);
1679
1680 mutex_lock(&opp_table_lock);
1681 if (!IS_ERR(opp_table))
1682 list_add(&opp_table->node, &opp_tables);
1683 }
1684
1685 opp_tables_busy = false;
1686
1687unlock:
1688 mutex_unlock(&opp_table_lock);
1689
1690 return _update_opp_table_clk(dev, opp_table, getclk);
1691}
1692
1693static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1694{
1695 return _add_opp_table_indexed(dev, 0, getclk);
1696}
1697
1698struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1699{
1700 return _find_opp_table(dev);
1701}
1702EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1703
1704static void _opp_table_kref_release(struct kref *kref)
1705{
1706 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1707 struct opp_device *opp_dev, *temp;
1708 int i;
1709
1710 /* Drop the lock as soon as we can */
1711 list_del(&opp_table->node);
1712 mutex_unlock(&opp_table_lock);
1713
1714 if (opp_table->current_opp)
1715 dev_pm_opp_put(opp_table->current_opp);
1716
1717 _of_clear_opp_table(opp_table);
1718
1719 /* Release automatically acquired single clk */
1720 if (!IS_ERR(opp_table->clk))
1721 clk_put(opp_table->clk);
1722
1723 if (opp_table->paths) {
1724 for (i = 0; i < opp_table->path_count; i++)
1725 icc_put(opp_table->paths[i]);
1726 kfree(opp_table->paths);
1727 }
1728
1729 WARN_ON(!list_empty(&opp_table->opp_list));
1730
1731 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1732 _remove_opp_dev(opp_dev, opp_table);
1733
1734 mutex_destroy(&opp_table->lock);
1735 kfree(opp_table);
1736}
1737
1738struct opp_table *dev_pm_opp_get_opp_table_ref(struct opp_table *opp_table)
1739{
1740 kref_get(&opp_table->kref);
1741 return opp_table;
1742}
1743EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table_ref);
1744
1745void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1746{
1747 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1748 &opp_table_lock);
1749}
1750EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1751
1752void _opp_free(struct dev_pm_opp *opp)
1753{
1754 kfree(opp);
1755}
1756
1757static void _opp_kref_release(struct kref *kref)
1758{
1759 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1760 struct opp_table *opp_table = opp->opp_table;
1761
1762 list_del(&opp->node);
1763 mutex_unlock(&opp_table->lock);
1764
1765 /*
1766 * Notify the changes in the availability of the operable
1767 * frequency/voltage list.
1768 */
1769 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1770 _of_clear_opp(opp_table, opp);
1771 opp_debug_remove_one(opp);
1772 kfree(opp);
1773}
1774
1775struct dev_pm_opp *dev_pm_opp_get(struct dev_pm_opp *opp)
1776{
1777 kref_get(&opp->kref);
1778 return opp;
1779}
1780EXPORT_SYMBOL_GPL(dev_pm_opp_get);
1781
1782void dev_pm_opp_put(struct dev_pm_opp *opp)
1783{
1784 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1785}
1786EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1787
1788/**
1789 * dev_pm_opp_remove() - Remove an OPP from OPP table
1790 * @dev: device for which we do this operation
1791 * @freq: OPP to remove with matching 'freq'
1792 *
1793 * This function removes an opp from the opp table.
1794 */
1795void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1796{
1797 struct opp_table *opp_table __free(put_opp_table);
1798 struct dev_pm_opp *opp = NULL, *iter;
1799
1800 opp_table = _find_opp_table(dev);
1801 if (IS_ERR(opp_table))
1802 return;
1803
1804 if (!assert_single_clk(opp_table, 0))
1805 return;
1806
1807 scoped_guard(mutex, &opp_table->lock) {
1808 list_for_each_entry(iter, &opp_table->opp_list, node) {
1809 if (iter->rates[0] == freq) {
1810 opp = iter;
1811 break;
1812 }
1813 }
1814 }
1815
1816 if (opp) {
1817 dev_pm_opp_put(opp);
1818
1819 /* Drop the reference taken by dev_pm_opp_add() */
1820 dev_pm_opp_put_opp_table(opp_table);
1821 } else {
1822 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1823 __func__, freq);
1824 }
1825}
1826EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1827
1828static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1829 bool dynamic)
1830{
1831 struct dev_pm_opp *opp;
1832
1833 guard(mutex)(&opp_table->lock);
1834
1835 list_for_each_entry(opp, &opp_table->opp_list, node) {
1836 /*
1837 * Refcount must be dropped only once for each OPP by OPP core,
1838 * do that with help of "removed" flag.
1839 */
1840 if (!opp->removed && dynamic == opp->dynamic)
1841 return opp;
1842 }
1843
1844 return NULL;
1845}
1846
1847/*
1848 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1849 * happen lock less to avoid circular dependency issues. This routine must be
1850 * called without the opp_table->lock held.
1851 */
1852static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1853{
1854 struct dev_pm_opp *opp;
1855
1856 while ((opp = _opp_get_next(opp_table, dynamic))) {
1857 opp->removed = true;
1858 dev_pm_opp_put(opp);
1859
1860 /* Drop the references taken by dev_pm_opp_add() */
1861 if (dynamic)
1862 dev_pm_opp_put_opp_table(opp_table);
1863 }
1864}
1865
1866bool _opp_remove_all_static(struct opp_table *opp_table)
1867{
1868 scoped_guard(mutex, &opp_table->lock) {
1869 if (!opp_table->parsed_static_opps)
1870 return false;
1871
1872 if (--opp_table->parsed_static_opps)
1873 return true;
1874 }
1875
1876 _opp_remove_all(opp_table, false);
1877 return true;
1878}
1879
1880/**
1881 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1882 * @dev: device for which we do this operation
1883 *
1884 * This function removes all dynamically created OPPs from the opp table.
1885 */
1886void dev_pm_opp_remove_all_dynamic(struct device *dev)
1887{
1888 struct opp_table *opp_table __free(put_opp_table);
1889
1890 opp_table = _find_opp_table(dev);
1891 if (IS_ERR(opp_table))
1892 return;
1893
1894 _opp_remove_all(opp_table, true);
1895}
1896EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1897
1898struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1899{
1900 struct dev_pm_opp *opp;
1901 int supply_count, supply_size, icc_size, clk_size;
1902
1903 /* Allocate space for at least one supply */
1904 supply_count = opp_table->regulator_count > 0 ?
1905 opp_table->regulator_count : 1;
1906 supply_size = sizeof(*opp->supplies) * supply_count;
1907 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1908 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1909
1910 /* allocate new OPP node and supplies structures */
1911 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1912 if (!opp)
1913 return NULL;
1914
1915 /* Put the supplies, bw and clock at the end of the OPP structure */
1916 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1917
1918 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1919
1920 if (icc_size)
1921 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1922
1923 INIT_LIST_HEAD(&opp->node);
1924
1925 opp->level = OPP_LEVEL_UNSET;
1926
1927 return opp;
1928}
1929
1930static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1931 struct opp_table *opp_table)
1932{
1933 struct regulator *reg;
1934 int i;
1935
1936 if (!opp_table->regulators)
1937 return true;
1938
1939 for (i = 0; i < opp_table->regulator_count; i++) {
1940 reg = opp_table->regulators[i];
1941
1942 if (!regulator_is_supported_voltage(reg,
1943 opp->supplies[i].u_volt_min,
1944 opp->supplies[i].u_volt_max)) {
1945 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1946 __func__, opp->supplies[i].u_volt_min,
1947 opp->supplies[i].u_volt_max);
1948 return false;
1949 }
1950 }
1951
1952 return true;
1953}
1954
1955static int _opp_compare_rate(struct opp_table *opp_table,
1956 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1957{
1958 int i;
1959
1960 for (i = 0; i < opp_table->clk_count; i++) {
1961 if (opp1->rates[i] != opp2->rates[i])
1962 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1963 }
1964
1965 /* Same rates for both OPPs */
1966 return 0;
1967}
1968
1969static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1970 struct dev_pm_opp *opp2)
1971{
1972 int i;
1973
1974 for (i = 0; i < opp_table->path_count; i++) {
1975 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1976 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1977 }
1978
1979 /* Same bw for both OPPs */
1980 return 0;
1981}
1982
1983/*
1984 * Returns
1985 * 0: opp1 == opp2
1986 * 1: opp1 > opp2
1987 * -1: opp1 < opp2
1988 */
1989int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1990 struct dev_pm_opp *opp2)
1991{
1992 int ret;
1993
1994 ret = _opp_compare_rate(opp_table, opp1, opp2);
1995 if (ret)
1996 return ret;
1997
1998 ret = _opp_compare_bw(opp_table, opp1, opp2);
1999 if (ret)
2000 return ret;
2001
2002 if (opp1->level != opp2->level)
2003 return opp1->level < opp2->level ? -1 : 1;
2004
2005 /* Duplicate OPPs */
2006 return 0;
2007}
2008
2009static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
2010 struct opp_table *opp_table,
2011 struct list_head **head)
2012{
2013 struct dev_pm_opp *opp;
2014 int opp_cmp;
2015
2016 /*
2017 * Insert new OPP in order of increasing frequency and discard if
2018 * already present.
2019 *
2020 * Need to use &opp_table->opp_list in the condition part of the 'for'
2021 * loop, don't replace it with head otherwise it will become an infinite
2022 * loop.
2023 */
2024 list_for_each_entry(opp, &opp_table->opp_list, node) {
2025 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
2026 if (opp_cmp > 0) {
2027 *head = &opp->node;
2028 continue;
2029 }
2030
2031 if (opp_cmp < 0)
2032 return 0;
2033
2034 /* Duplicate OPPs */
2035 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
2036 __func__, opp->rates[0], opp->supplies[0].u_volt,
2037 opp->available, new_opp->rates[0],
2038 new_opp->supplies[0].u_volt, new_opp->available);
2039
2040 /* Should we compare voltages for all regulators here ? */
2041 return opp->available &&
2042 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
2043 }
2044
2045 return 0;
2046}
2047
2048void _required_opps_available(struct dev_pm_opp *opp, int count)
2049{
2050 int i;
2051
2052 for (i = 0; i < count; i++) {
2053 if (opp->required_opps[i]->available)
2054 continue;
2055
2056 opp->available = false;
2057 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
2058 __func__, opp->required_opps[i]->np, opp->rates[0]);
2059 return;
2060 }
2061}
2062
2063/*
2064 * Returns:
2065 * 0: On success. And appropriate error message for duplicate OPPs.
2066 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2067 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2068 * sure we don't print error messages unnecessarily if different parts of
2069 * kernel try to initialize the OPP table.
2070 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2071 * should be considered an error by the callers of _opp_add().
2072 */
2073int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2074 struct opp_table *opp_table)
2075{
2076 struct list_head *head;
2077 int ret;
2078
2079 scoped_guard(mutex, &opp_table->lock) {
2080 head = &opp_table->opp_list;
2081
2082 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2083 if (ret)
2084 return ret;
2085
2086 list_add(&new_opp->node, head);
2087 }
2088
2089 new_opp->opp_table = opp_table;
2090 kref_init(&new_opp->kref);
2091
2092 opp_debug_create_one(new_opp, opp_table);
2093
2094 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2095 new_opp->available = false;
2096 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2097 __func__, new_opp->rates[0]);
2098 }
2099
2100 /* required-opps not fully initialized yet */
2101 if (lazy_linking_pending(opp_table))
2102 return 0;
2103
2104 _required_opps_available(new_opp, opp_table->required_opp_count);
2105
2106 return 0;
2107}
2108
2109/**
2110 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2111 * @opp_table: OPP table
2112 * @dev: device for which we do this operation
2113 * @data: The OPP data for the OPP to add
2114 * @dynamic: Dynamically added OPPs.
2115 *
2116 * This function adds an opp definition to the opp table and returns status.
2117 * The opp is made available by default and it can be controlled using
2118 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2119 *
2120 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2121 * and freed by dev_pm_opp_of_remove_table.
2122 *
2123 * Return:
2124 * 0 On success OR
2125 * Duplicate OPPs (both freq and volt are same) and opp->available
2126 * -EEXIST Freq are same and volt are different OR
2127 * Duplicate OPPs (both freq and volt are same) and !opp->available
2128 * -ENOMEM Memory allocation failure
2129 */
2130int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2131 struct dev_pm_opp_data *data, bool dynamic)
2132{
2133 struct dev_pm_opp *new_opp;
2134 unsigned long tol, u_volt = data->u_volt;
2135 int ret;
2136
2137 if (!assert_single_clk(opp_table, 0))
2138 return -EINVAL;
2139
2140 new_opp = _opp_allocate(opp_table);
2141 if (!new_opp)
2142 return -ENOMEM;
2143
2144 /* populate the opp table */
2145 new_opp->rates[0] = data->freq;
2146 new_opp->level = data->level;
2147 new_opp->turbo = data->turbo;
2148 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2149 new_opp->supplies[0].u_volt = u_volt;
2150 new_opp->supplies[0].u_volt_min = u_volt - tol;
2151 new_opp->supplies[0].u_volt_max = u_volt + tol;
2152 new_opp->available = true;
2153 new_opp->dynamic = dynamic;
2154
2155 ret = _opp_add(dev, new_opp, opp_table);
2156 if (ret) {
2157 /* Don't return error for duplicate OPPs */
2158 if (ret == -EBUSY)
2159 ret = 0;
2160 goto free_opp;
2161 }
2162
2163 /*
2164 * Notify the changes in the availability of the operable
2165 * frequency/voltage list.
2166 */
2167 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2168 return 0;
2169
2170free_opp:
2171 _opp_free(new_opp);
2172
2173 return ret;
2174}
2175
2176/*
2177 * This is required only for the V2 bindings, and it enables a platform to
2178 * specify the hierarchy of versions it supports. OPP layer will then enable
2179 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2180 * property.
2181 */
2182static int _opp_set_supported_hw(struct opp_table *opp_table,
2183 const u32 *versions, unsigned int count)
2184{
2185 /* Another CPU that shares the OPP table has set the property ? */
2186 if (opp_table->supported_hw)
2187 return 0;
2188
2189 opp_table->supported_hw = kmemdup_array(versions, count,
2190 sizeof(*versions), GFP_KERNEL);
2191 if (!opp_table->supported_hw)
2192 return -ENOMEM;
2193
2194 opp_table->supported_hw_count = count;
2195
2196 return 0;
2197}
2198
2199static void _opp_put_supported_hw(struct opp_table *opp_table)
2200{
2201 if (opp_table->supported_hw) {
2202 kfree(opp_table->supported_hw);
2203 opp_table->supported_hw = NULL;
2204 opp_table->supported_hw_count = 0;
2205 }
2206}
2207
2208/*
2209 * This is required only for the V2 bindings, and it enables a platform to
2210 * specify the extn to be used for certain property names. The properties to
2211 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2212 * should postfix the property name with -<name> while looking for them.
2213 */
2214static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2215{
2216 /* Another CPU that shares the OPP table has set the property ? */
2217 if (!opp_table->prop_name) {
2218 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2219 if (!opp_table->prop_name)
2220 return -ENOMEM;
2221 }
2222
2223 return 0;
2224}
2225
2226static void _opp_put_prop_name(struct opp_table *opp_table)
2227{
2228 if (opp_table->prop_name) {
2229 kfree(opp_table->prop_name);
2230 opp_table->prop_name = NULL;
2231 }
2232}
2233
2234/*
2235 * In order to support OPP switching, OPP layer needs to know the name of the
2236 * device's regulators, as the core would be required to switch voltages as
2237 * well.
2238 *
2239 * This must be called before any OPPs are initialized for the device.
2240 */
2241static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2242 const char * const names[])
2243{
2244 const char * const *temp = names;
2245 struct regulator *reg;
2246 int count = 0, ret, i;
2247
2248 /* Count number of regulators */
2249 while (*temp++)
2250 count++;
2251
2252 if (!count)
2253 return -EINVAL;
2254
2255 /* Another CPU that shares the OPP table has set the regulators ? */
2256 if (opp_table->regulators)
2257 return 0;
2258
2259 opp_table->regulators = kmalloc_array(count,
2260 sizeof(*opp_table->regulators),
2261 GFP_KERNEL);
2262 if (!opp_table->regulators)
2263 return -ENOMEM;
2264
2265 for (i = 0; i < count; i++) {
2266 reg = regulator_get_optional(dev, names[i]);
2267 if (IS_ERR(reg)) {
2268 ret = dev_err_probe(dev, PTR_ERR(reg),
2269 "%s: no regulator (%s) found\n",
2270 __func__, names[i]);
2271 goto free_regulators;
2272 }
2273
2274 opp_table->regulators[i] = reg;
2275 }
2276
2277 opp_table->regulator_count = count;
2278
2279 /* Set generic config_regulators() for single regulators here */
2280 if (count == 1)
2281 opp_table->config_regulators = _opp_config_regulator_single;
2282
2283 return 0;
2284
2285free_regulators:
2286 while (i != 0)
2287 regulator_put(opp_table->regulators[--i]);
2288
2289 kfree(opp_table->regulators);
2290 opp_table->regulators = NULL;
2291 opp_table->regulator_count = -1;
2292
2293 return ret;
2294}
2295
2296static void _opp_put_regulators(struct opp_table *opp_table)
2297{
2298 int i;
2299
2300 if (!opp_table->regulators)
2301 return;
2302
2303 if (opp_table->enabled) {
2304 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2305 regulator_disable(opp_table->regulators[i]);
2306 }
2307
2308 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2309 regulator_put(opp_table->regulators[i]);
2310
2311 kfree(opp_table->regulators);
2312 opp_table->regulators = NULL;
2313 opp_table->regulator_count = -1;
2314}
2315
2316static void _put_clks(struct opp_table *opp_table, int count)
2317{
2318 int i;
2319
2320 for (i = count - 1; i >= 0; i--)
2321 clk_put(opp_table->clks[i]);
2322
2323 kfree(opp_table->clks);
2324 opp_table->clks = NULL;
2325}
2326
2327/*
2328 * In order to support OPP switching, OPP layer needs to get pointers to the
2329 * clocks for the device. Simple cases work fine without using this routine
2330 * (i.e. by passing connection-id as NULL), but for a device with multiple
2331 * clocks available, the OPP core needs to know the exact names of the clks to
2332 * use.
2333 *
2334 * This must be called before any OPPs are initialized for the device.
2335 */
2336static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2337 const char * const names[],
2338 config_clks_t config_clks)
2339{
2340 const char * const *temp = names;
2341 int count = 0, ret, i;
2342 struct clk *clk;
2343
2344 /* Count number of clks */
2345 while (*temp++)
2346 count++;
2347
2348 /*
2349 * This is a special case where we have a single clock, whose connection
2350 * id name is NULL, i.e. first two entries are NULL in the array.
2351 */
2352 if (!count && !names[1])
2353 count = 1;
2354
2355 /* Fail early for invalid configurations */
2356 if (!count || (!config_clks && count > 1))
2357 return -EINVAL;
2358
2359 /* Another CPU that shares the OPP table has set the clkname ? */
2360 if (opp_table->clks)
2361 return 0;
2362
2363 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2364 GFP_KERNEL);
2365 if (!opp_table->clks)
2366 return -ENOMEM;
2367
2368 /* Find clks for the device */
2369 for (i = 0; i < count; i++) {
2370 clk = clk_get(dev, names[i]);
2371 if (IS_ERR(clk)) {
2372 ret = dev_err_probe(dev, PTR_ERR(clk),
2373 "%s: Couldn't find clock with name: %s\n",
2374 __func__, names[i]);
2375 goto free_clks;
2376 }
2377
2378 opp_table->clks[i] = clk;
2379 }
2380
2381 opp_table->clk_count = count;
2382 opp_table->config_clks = config_clks;
2383
2384 /* Set generic single clk set here */
2385 if (count == 1) {
2386 if (!opp_table->config_clks)
2387 opp_table->config_clks = _opp_config_clk_single;
2388
2389 /*
2390 * We could have just dropped the "clk" field and used "clks"
2391 * everywhere. Instead we kept the "clk" field around for
2392 * following reasons:
2393 *
2394 * - avoiding clks[0] everywhere else.
2395 * - not running single clk helpers for multiple clk usecase by
2396 * mistake.
2397 *
2398 * Since this is single-clk case, just update the clk pointer
2399 * too.
2400 */
2401 opp_table->clk = opp_table->clks[0];
2402 }
2403
2404 return 0;
2405
2406free_clks:
2407 _put_clks(opp_table, i);
2408 return ret;
2409}
2410
2411static void _opp_put_clknames(struct opp_table *opp_table)
2412{
2413 if (!opp_table->clks)
2414 return;
2415
2416 opp_table->config_clks = NULL;
2417 opp_table->clk = ERR_PTR(-ENODEV);
2418
2419 _put_clks(opp_table, opp_table->clk_count);
2420}
2421
2422/*
2423 * This is useful to support platforms with multiple regulators per device.
2424 *
2425 * This must be called before any OPPs are initialized for the device.
2426 */
2427static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2428 struct device *dev, config_regulators_t config_regulators)
2429{
2430 /* Another CPU that shares the OPP table has set the helper ? */
2431 if (!opp_table->config_regulators)
2432 opp_table->config_regulators = config_regulators;
2433
2434 return 0;
2435}
2436
2437static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2438{
2439 if (opp_table->config_regulators)
2440 opp_table->config_regulators = NULL;
2441}
2442
2443static int _opp_set_required_dev(struct opp_table *opp_table,
2444 struct device *dev,
2445 struct device *required_dev,
2446 unsigned int index)
2447{
2448 struct opp_table *required_table, *pd_table;
2449 struct device *gdev;
2450
2451 /* Genpd core takes care of propagation to parent genpd */
2452 if (opp_table->is_genpd) {
2453 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2454 return -EOPNOTSUPP;
2455 }
2456
2457 if (index >= opp_table->required_opp_count) {
2458 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2459 return -EINVAL;
2460 }
2461
2462 required_table = opp_table->required_opp_tables[index];
2463 if (IS_ERR(required_table)) {
2464 dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2465 return -ENODEV;
2466 }
2467
2468 /*
2469 * The required_opp_tables parsing is not perfect, as the OPP core does
2470 * the parsing solely based on the DT node pointers. The core sets the
2471 * required_opp_tables entry to the first OPP table in the "opp_tables"
2472 * list, that matches with the node pointer.
2473 *
2474 * If the target DT OPP table is used by multiple devices and they all
2475 * create separate instances of 'struct opp_table' from it, then it is
2476 * possible that the required_opp_tables entry may be set to the
2477 * incorrect sibling device.
2478 *
2479 * Cross check it again and fix if required.
2480 */
2481 gdev = dev_to_genpd_dev(required_dev);
2482 if (IS_ERR(gdev))
2483 return PTR_ERR(gdev);
2484
2485 pd_table = _find_opp_table(gdev);
2486 if (!IS_ERR(pd_table)) {
2487 if (pd_table != required_table) {
2488 dev_pm_opp_put_opp_table(required_table);
2489 opp_table->required_opp_tables[index] = pd_table;
2490 } else {
2491 dev_pm_opp_put_opp_table(pd_table);
2492 }
2493 }
2494
2495 opp_table->required_devs[index] = required_dev;
2496 return 0;
2497}
2498
2499static void _opp_put_required_dev(struct opp_table *opp_table,
2500 unsigned int index)
2501{
2502 opp_table->required_devs[index] = NULL;
2503}
2504
2505static void _opp_clear_config(struct opp_config_data *data)
2506{
2507 if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2508 _opp_put_required_dev(data->opp_table,
2509 data->required_dev_index);
2510 if (data->flags & OPP_CONFIG_REGULATOR)
2511 _opp_put_regulators(data->opp_table);
2512 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2513 _opp_put_supported_hw(data->opp_table);
2514 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2515 _opp_put_config_regulators_helper(data->opp_table);
2516 if (data->flags & OPP_CONFIG_PROP_NAME)
2517 _opp_put_prop_name(data->opp_table);
2518 if (data->flags & OPP_CONFIG_CLK)
2519 _opp_put_clknames(data->opp_table);
2520
2521 dev_pm_opp_put_opp_table(data->opp_table);
2522 kfree(data);
2523}
2524
2525/**
2526 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2527 * @dev: Device for which configuration is being set.
2528 * @config: OPP configuration.
2529 *
2530 * This allows all device OPP configurations to be performed at once.
2531 *
2532 * This must be called before any OPPs are initialized for the device. This may
2533 * be called multiple times for the same OPP table, for example once for each
2534 * CPU that share the same table. This must be balanced by the same number of
2535 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2536 *
2537 * This returns a token to the caller, which must be passed to
2538 * dev_pm_opp_clear_config() to free the resources later. The value of the
2539 * returned token will be >= 1 for success and negative for errors. The minimum
2540 * value of 1 is chosen here to make it easy for callers to manage the resource.
2541 */
2542int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2543{
2544 struct opp_table *opp_table;
2545 struct opp_config_data *data;
2546 unsigned int id;
2547 int ret;
2548
2549 data = kmalloc(sizeof(*data), GFP_KERNEL);
2550 if (!data)
2551 return -ENOMEM;
2552
2553 opp_table = _add_opp_table(dev, false);
2554 if (IS_ERR(opp_table)) {
2555 kfree(data);
2556 return PTR_ERR(opp_table);
2557 }
2558
2559 data->opp_table = opp_table;
2560 data->flags = 0;
2561
2562 /* This should be called before OPPs are initialized */
2563 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2564 ret = -EBUSY;
2565 goto err;
2566 }
2567
2568 /* Configure clocks */
2569 if (config->clk_names) {
2570 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2571 config->config_clks);
2572 if (ret)
2573 goto err;
2574
2575 data->flags |= OPP_CONFIG_CLK;
2576 } else if (config->config_clks) {
2577 /* Don't allow config callback without clocks */
2578 ret = -EINVAL;
2579 goto err;
2580 }
2581
2582 /* Configure property names */
2583 if (config->prop_name) {
2584 ret = _opp_set_prop_name(opp_table, config->prop_name);
2585 if (ret)
2586 goto err;
2587
2588 data->flags |= OPP_CONFIG_PROP_NAME;
2589 }
2590
2591 /* Configure config_regulators helper */
2592 if (config->config_regulators) {
2593 ret = _opp_set_config_regulators_helper(opp_table, dev,
2594 config->config_regulators);
2595 if (ret)
2596 goto err;
2597
2598 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2599 }
2600
2601 /* Configure supported hardware */
2602 if (config->supported_hw) {
2603 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2604 config->supported_hw_count);
2605 if (ret)
2606 goto err;
2607
2608 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2609 }
2610
2611 /* Configure supplies */
2612 if (config->regulator_names) {
2613 ret = _opp_set_regulators(opp_table, dev,
2614 config->regulator_names);
2615 if (ret)
2616 goto err;
2617
2618 data->flags |= OPP_CONFIG_REGULATOR;
2619 }
2620
2621 if (config->required_dev) {
2622 ret = _opp_set_required_dev(opp_table, dev,
2623 config->required_dev,
2624 config->required_dev_index);
2625 if (ret)
2626 goto err;
2627
2628 data->required_dev_index = config->required_dev_index;
2629 data->flags |= OPP_CONFIG_REQUIRED_DEV;
2630 }
2631
2632 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2633 GFP_KERNEL);
2634 if (ret)
2635 goto err;
2636
2637 return id;
2638
2639err:
2640 _opp_clear_config(data);
2641 return ret;
2642}
2643EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2644
2645/**
2646 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2647 * @token: The token returned by dev_pm_opp_set_config() previously.
2648 *
2649 * This allows all device OPP configurations to be cleared at once. This must be
2650 * called once for each call made to dev_pm_opp_set_config(), in order to free
2651 * the OPPs properly.
2652 *
2653 * Currently the first call itself ends up freeing all the OPP configurations,
2654 * while the later ones only drop the OPP table reference. This works well for
2655 * now as we would never want to use an half initialized OPP table and want to
2656 * remove the configurations together.
2657 */
2658void dev_pm_opp_clear_config(int token)
2659{
2660 struct opp_config_data *data;
2661
2662 /*
2663 * This lets the callers call this unconditionally and keep their code
2664 * simple.
2665 */
2666 if (unlikely(token <= 0))
2667 return;
2668
2669 data = xa_erase(&opp_configs, token);
2670 if (WARN_ON(!data))
2671 return;
2672
2673 _opp_clear_config(data);
2674}
2675EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2676
2677static void devm_pm_opp_config_release(void *token)
2678{
2679 dev_pm_opp_clear_config((unsigned long)token);
2680}
2681
2682/**
2683 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2684 * @dev: Device for which configuration is being set.
2685 * @config: OPP configuration.
2686 *
2687 * This allows all device OPP configurations to be performed at once.
2688 * This is a resource-managed variant of dev_pm_opp_set_config().
2689 *
2690 * Return: 0 on success and errorno otherwise.
2691 */
2692int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2693{
2694 int token = dev_pm_opp_set_config(dev, config);
2695
2696 if (token < 0)
2697 return token;
2698
2699 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2700 (void *) ((unsigned long) token));
2701}
2702EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2703
2704/**
2705 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2706 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2707 * @dst_table: Required OPP table of the @src_table.
2708 * @src_opp: OPP from the @src_table.
2709 *
2710 * This function returns the OPP (present in @dst_table) pointed out by the
2711 * "required-opps" property of the @src_opp (present in @src_table).
2712 *
2713 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2714 * use.
2715 *
2716 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2717 */
2718struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2719 struct opp_table *dst_table,
2720 struct dev_pm_opp *src_opp)
2721{
2722 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2723 int i;
2724
2725 if (!src_table || !dst_table || !src_opp ||
2726 !src_table->required_opp_tables)
2727 return ERR_PTR(-EINVAL);
2728
2729 /* required-opps not fully initialized yet */
2730 if (lazy_linking_pending(src_table))
2731 return ERR_PTR(-EBUSY);
2732
2733 for (i = 0; i < src_table->required_opp_count; i++) {
2734 if (src_table->required_opp_tables[i] != dst_table)
2735 continue;
2736
2737 scoped_guard(mutex, &src_table->lock) {
2738 list_for_each_entry(opp, &src_table->opp_list, node) {
2739 if (opp == src_opp) {
2740 dest_opp = dev_pm_opp_get(opp->required_opps[i]);
2741 break;
2742 }
2743 }
2744 break;
2745 }
2746 }
2747
2748 if (IS_ERR(dest_opp)) {
2749 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2750 src_table, dst_table);
2751 }
2752
2753 return dest_opp;
2754}
2755EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2756
2757/**
2758 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2759 * @src_table: OPP table which has dst_table as one of its required OPP table.
2760 * @dst_table: Required OPP table of the src_table.
2761 * @pstate: Current performance state of the src_table.
2762 *
2763 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2764 * "required-opps" property of the OPP (present in @src_table) which has
2765 * performance state set to @pstate.
2766 *
2767 * Return: Zero or positive performance state on success, otherwise negative
2768 * value on errors.
2769 */
2770int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2771 struct opp_table *dst_table,
2772 unsigned int pstate)
2773{
2774 struct dev_pm_opp *opp;
2775 int i;
2776
2777 /*
2778 * Normally the src_table will have the "required_opps" property set to
2779 * point to one of the OPPs in the dst_table, but in some cases the
2780 * genpd and its master have one to one mapping of performance states
2781 * and so none of them have the "required-opps" property set. Return the
2782 * pstate of the src_table as it is in such cases.
2783 */
2784 if (!src_table || !src_table->required_opp_count)
2785 return pstate;
2786
2787 /* Both OPP tables must belong to genpds */
2788 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2789 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2790 return -EINVAL;
2791 }
2792
2793 /* required-opps not fully initialized yet */
2794 if (lazy_linking_pending(src_table))
2795 return -EBUSY;
2796
2797 for (i = 0; i < src_table->required_opp_count; i++) {
2798 if (src_table->required_opp_tables[i]->np == dst_table->np)
2799 break;
2800 }
2801
2802 if (unlikely(i == src_table->required_opp_count)) {
2803 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2804 __func__, src_table, dst_table);
2805 return -EINVAL;
2806 }
2807
2808 guard(mutex)(&src_table->lock);
2809
2810 list_for_each_entry(opp, &src_table->opp_list, node) {
2811 if (opp->level == pstate)
2812 return opp->required_opps[i]->level;
2813 }
2814
2815 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2816 dst_table);
2817
2818 return -EINVAL;
2819}
2820
2821/**
2822 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2823 * @dev: The device for which we do this operation
2824 * @data: The OPP data for the OPP to add
2825 *
2826 * This function adds an opp definition to the opp table and returns status.
2827 * The opp is made available by default and it can be controlled using
2828 * dev_pm_opp_enable/disable functions.
2829 *
2830 * Return:
2831 * 0 On success OR
2832 * Duplicate OPPs (both freq and volt are same) and opp->available
2833 * -EEXIST Freq are same and volt are different OR
2834 * Duplicate OPPs (both freq and volt are same) and !opp->available
2835 * -ENOMEM Memory allocation failure
2836 */
2837int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2838{
2839 struct opp_table *opp_table;
2840 int ret;
2841
2842 opp_table = _add_opp_table(dev, true);
2843 if (IS_ERR(opp_table))
2844 return PTR_ERR(opp_table);
2845
2846 /* Fix regulator count for dynamic OPPs */
2847 opp_table->regulator_count = 1;
2848
2849 ret = _opp_add_v1(opp_table, dev, data, true);
2850 if (ret)
2851 dev_pm_opp_put_opp_table(opp_table);
2852
2853 return ret;
2854}
2855EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2856
2857/**
2858 * _opp_set_availability() - helper to set the availability of an opp
2859 * @dev: device for which we do this operation
2860 * @freq: OPP frequency to modify availability
2861 * @availability_req: availability status requested for this opp
2862 *
2863 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2864 * which is isolated here.
2865 *
2866 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2867 * copy operation, returns 0 if no modification was done OR modification was
2868 * successful.
2869 */
2870static int _opp_set_availability(struct device *dev, unsigned long freq,
2871 bool availability_req)
2872{
2873 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp;
2874 struct opp_table *opp_table __free(put_opp_table);
2875
2876 /* Find the opp_table */
2877 opp_table = _find_opp_table(dev);
2878 if (IS_ERR(opp_table)) {
2879 dev_warn(dev, "%s: Device OPP not found (%ld)\n", __func__,
2880 PTR_ERR(opp_table));
2881 return PTR_ERR(opp_table);
2882 }
2883
2884 if (!assert_single_clk(opp_table, 0))
2885 return -EINVAL;
2886
2887 scoped_guard(mutex, &opp_table->lock) {
2888 /* Do we have the frequency? */
2889 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2890 if (tmp_opp->rates[0] == freq) {
2891 opp = dev_pm_opp_get(tmp_opp);
2892
2893 /* Is update really needed? */
2894 if (opp->available == availability_req)
2895 return 0;
2896
2897 opp->available = availability_req;
2898 break;
2899 }
2900 }
2901 }
2902
2903 if (IS_ERR(opp))
2904 return PTR_ERR(opp);
2905
2906 /* Notify the change of the OPP availability */
2907 if (availability_req)
2908 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2909 opp);
2910 else
2911 blocking_notifier_call_chain(&opp_table->head,
2912 OPP_EVENT_DISABLE, opp);
2913
2914 return 0;
2915}
2916
2917/**
2918 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2919 * @dev: device for which we do this operation
2920 * @freq: OPP frequency to adjust voltage of
2921 * @u_volt: new OPP target voltage
2922 * @u_volt_min: new OPP min voltage
2923 * @u_volt_max: new OPP max voltage
2924 *
2925 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2926 * copy operation, returns 0 if no modifcation was done OR modification was
2927 * successful.
2928 */
2929int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2930 unsigned long u_volt, unsigned long u_volt_min,
2931 unsigned long u_volt_max)
2932
2933{
2934 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp;
2935 struct opp_table *opp_table __free(put_opp_table);
2936 int r;
2937
2938 /* Find the opp_table */
2939 opp_table = _find_opp_table(dev);
2940 if (IS_ERR(opp_table)) {
2941 r = PTR_ERR(opp_table);
2942 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2943 return r;
2944 }
2945
2946 if (!assert_single_clk(opp_table, 0))
2947 return -EINVAL;
2948
2949 scoped_guard(mutex, &opp_table->lock) {
2950 /* Do we have the frequency? */
2951 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2952 if (tmp_opp->rates[0] == freq) {
2953 opp = dev_pm_opp_get(tmp_opp);
2954
2955 /* Is update really needed? */
2956 if (opp->supplies->u_volt == u_volt)
2957 return 0;
2958
2959 opp->supplies->u_volt = u_volt;
2960 opp->supplies->u_volt_min = u_volt_min;
2961 opp->supplies->u_volt_max = u_volt_max;
2962
2963 break;
2964 }
2965 }
2966 }
2967
2968 if (IS_ERR(opp))
2969 return PTR_ERR(opp);
2970
2971 /* Notify the voltage change of the OPP */
2972 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2973 opp);
2974
2975 return 0;
2976}
2977EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2978
2979/**
2980 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2981 * @dev: device for which we do this operation
2982 *
2983 * Sync voltage state of the OPP table regulators.
2984 *
2985 * Return: 0 on success or a negative error value.
2986 */
2987int dev_pm_opp_sync_regulators(struct device *dev)
2988{
2989 struct opp_table *opp_table __free(put_opp_table);
2990 struct regulator *reg;
2991 int ret, i;
2992
2993 /* Device may not have OPP table */
2994 opp_table = _find_opp_table(dev);
2995 if (IS_ERR(opp_table))
2996 return 0;
2997
2998 /* Regulator may not be required for the device */
2999 if (unlikely(!opp_table->regulators))
3000 return 0;
3001
3002 /* Nothing to sync if voltage wasn't changed */
3003 if (!opp_table->enabled)
3004 return 0;
3005
3006 for (i = 0; i < opp_table->regulator_count; i++) {
3007 reg = opp_table->regulators[i];
3008 ret = regulator_sync_voltage(reg);
3009 if (ret)
3010 return ret;
3011 }
3012
3013 return 0;
3014}
3015EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3016
3017/**
3018 * dev_pm_opp_enable() - Enable a specific OPP
3019 * @dev: device for which we do this operation
3020 * @freq: OPP frequency to enable
3021 *
3022 * Enables a provided opp. If the operation is valid, this returns 0, else the
3023 * corresponding error value. It is meant to be used for users an OPP available
3024 * after being temporarily made unavailable with dev_pm_opp_disable.
3025 *
3026 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3027 * copy operation, returns 0 if no modification was done OR modification was
3028 * successful.
3029 */
3030int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3031{
3032 return _opp_set_availability(dev, freq, true);
3033}
3034EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3035
3036/**
3037 * dev_pm_opp_disable() - Disable a specific OPP
3038 * @dev: device for which we do this operation
3039 * @freq: OPP frequency to disable
3040 *
3041 * Disables a provided opp. If the operation is valid, this returns
3042 * 0, else the corresponding error value. It is meant to be a temporary
3043 * control by users to make this OPP not available until the circumstances are
3044 * right to make it available again (with a call to dev_pm_opp_enable).
3045 *
3046 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3047 * copy operation, returns 0 if no modification was done OR modification was
3048 * successful.
3049 */
3050int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3051{
3052 return _opp_set_availability(dev, freq, false);
3053}
3054EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3055
3056/**
3057 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3058 * @dev: Device for which notifier needs to be registered
3059 * @nb: Notifier block to be registered
3060 *
3061 * Return: 0 on success or a negative error value.
3062 */
3063int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3064{
3065 struct opp_table *opp_table __free(put_opp_table);
3066
3067 opp_table = _find_opp_table(dev);
3068 if (IS_ERR(opp_table))
3069 return PTR_ERR(opp_table);
3070
3071 return blocking_notifier_chain_register(&opp_table->head, nb);
3072}
3073EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3074
3075/**
3076 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3077 * @dev: Device for which notifier needs to be unregistered
3078 * @nb: Notifier block to be unregistered
3079 *
3080 * Return: 0 on success or a negative error value.
3081 */
3082int dev_pm_opp_unregister_notifier(struct device *dev,
3083 struct notifier_block *nb)
3084{
3085 struct opp_table *opp_table __free(put_opp_table);
3086
3087 opp_table = _find_opp_table(dev);
3088 if (IS_ERR(opp_table))
3089 return PTR_ERR(opp_table);
3090
3091 return blocking_notifier_chain_unregister(&opp_table->head, nb);
3092}
3093EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3094
3095/**
3096 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3097 * @dev: device pointer used to lookup OPP table.
3098 *
3099 * Free both OPPs created using static entries present in DT and the
3100 * dynamically added entries.
3101 */
3102void dev_pm_opp_remove_table(struct device *dev)
3103{
3104 struct opp_table *opp_table __free(put_opp_table);
3105
3106 /* Check for existing table for 'dev' */
3107 opp_table = _find_opp_table(dev);
3108 if (IS_ERR(opp_table)) {
3109 int error = PTR_ERR(opp_table);
3110
3111 if (error != -ENODEV)
3112 WARN(1, "%s: opp_table: %d\n",
3113 IS_ERR_OR_NULL(dev) ?
3114 "Invalid device" : dev_name(dev),
3115 error);
3116 return;
3117 }
3118
3119 /*
3120 * Drop the extra reference only if the OPP table was successfully added
3121 * with dev_pm_opp_of_add_table() earlier.
3122 **/
3123 if (_opp_remove_all_static(opp_table))
3124 dev_pm_opp_put_opp_table(opp_table);
3125}
3126EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);