at v6.18-rc2 49 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/mm.h> 18#include <linux/types.h> 19#include <linux/scatterlist.h> 20#include <linux/list.h> 21#include <linux/timer.h> 22#include <linux/completion.h> 23#include <linux/device.h> 24#include <linux/mod_devicetable.h> 25#include <linux/interrupt.h> 26#include <linux/reciprocal_div.h> 27#include <hyperv/hvhdk.h> 28 29#define MAX_PAGE_BUFFER_COUNT 32 30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32#pragma pack(push, 1) 33 34/* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74}; 75 76/* Single-page buffer */ 77struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81}; 82 83/* Multiple-page buffer */ 84struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89}; 90 91/* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101}; 102 103/* 0x18 includes the proprietary packet header */ 104#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111#pragma pack(pop) 112 113struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165} __packed; 166 167 168/* 169 * If the requested ring buffer size is at least 8 times the size of the 170 * header, steal space from the ring buffer for the header. Otherwise, add 171 * space for the header so that is doesn't take too much of the ring buffer 172 * space. 173 * 174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a 175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring 176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as 177 * large allocation that will be almost half wasted. As a contrasting example, 178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the 179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring. 180 * In this latter case, we must add 64 Kbytes for the header and not worry 181 * about what's wasted. 182 */ 183#define VMBUS_HEADER_ADJ(payload_sz) \ 184 ((payload_sz) >= 8 * sizeof(struct hv_ring_buffer) ? \ 185 0 : sizeof(struct hv_ring_buffer)) 186 187/* Calculate the proper size of a ringbuffer, it must be page-aligned */ 188#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \ 189 (payload_sz)) 190 191struct hv_ring_buffer_info { 192 struct hv_ring_buffer *ring_buffer; 193 u32 ring_size; /* Include the shared header */ 194 struct reciprocal_value ring_size_div10_reciprocal; 195 spinlock_t ring_lock; 196 197 u32 ring_datasize; /* < ring_size */ 198 u32 priv_read_index; 199 /* 200 * The ring buffer mutex lock. This lock prevents the ring buffer from 201 * being freed while the ring buffer is being accessed. 202 */ 203 struct mutex ring_buffer_mutex; 204 205 /* Buffer that holds a copy of an incoming host packet */ 206 void *pkt_buffer; 207 u32 pkt_buffer_size; 208}; 209 210 211static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 212{ 213 u32 read_loc, write_loc, dsize, read; 214 215 dsize = rbi->ring_datasize; 216 read_loc = rbi->ring_buffer->read_index; 217 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 218 219 read = write_loc >= read_loc ? (write_loc - read_loc) : 220 (dsize - read_loc) + write_loc; 221 222 return read; 223} 224 225static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 226{ 227 u32 read_loc, write_loc, dsize, write; 228 229 dsize = rbi->ring_datasize; 230 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 231 write_loc = rbi->ring_buffer->write_index; 232 233 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 234 read_loc - write_loc; 235 return write; 236} 237 238static inline u32 hv_get_avail_to_write_percent( 239 const struct hv_ring_buffer_info *rbi) 240{ 241 u32 avail_write = hv_get_bytes_to_write(rbi); 242 243 return reciprocal_divide( 244 (avail_write << 3) + (avail_write << 1), 245 rbi->ring_size_div10_reciprocal); 246} 247 248/* 249 * VMBUS version is 32 bit entity broken up into 250 * two 16 bit quantities: major_number. minor_number. 251 * 252 * 0 . 13 (Windows Server 2008) 253 * 1 . 1 (Windows 7, WS2008 R2) 254 * 2 . 4 (Windows 8, WS2012) 255 * 3 . 0 (Windows 8.1, WS2012 R2) 256 * 4 . 0 (Windows 10) 257 * 4 . 1 (Windows 10 RS3) 258 * 5 . 0 (Newer Windows 10) 259 * 5 . 1 (Windows 10 RS4) 260 * 5 . 2 (Windows Server 2019, RS5) 261 * 5 . 3 (Windows Server 2022) 262 * 263 * The WS2008 and WIN7 versions are listed here for 264 * completeness but are no longer supported in the 265 * Linux kernel. 266 */ 267 268#define VERSION_WS2008 ((0 << 16) | (13)) 269#define VERSION_WIN7 ((1 << 16) | (1)) 270#define VERSION_WIN8 ((2 << 16) | (4)) 271#define VERSION_WIN8_1 ((3 << 16) | (0)) 272#define VERSION_WIN10 ((4 << 16) | (0)) 273#define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 274#define VERSION_WIN10_V5 ((5 << 16) | (0)) 275#define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 276#define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 277#define VERSION_WIN10_V5_3 ((5 << 16) | (3)) 278 279/* Make maximum size of pipe payload of 16K */ 280#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 281 282/* Define PipeMode values. */ 283#define VMBUS_PIPE_TYPE_BYTE 0x00000000 284#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 285 286/* The size of the user defined data buffer for non-pipe offers. */ 287#define MAX_USER_DEFINED_BYTES 120 288 289/* The size of the user defined data buffer for pipe offers. */ 290#define MAX_PIPE_USER_DEFINED_BYTES 116 291 292/* 293 * At the center of the Channel Management library is the Channel Offer. This 294 * struct contains the fundamental information about an offer. 295 */ 296struct vmbus_channel_offer { 297 guid_t if_type; 298 guid_t if_instance; 299 300 /* 301 * These two fields are not currently used. 302 */ 303 u64 reserved1; 304 u64 reserved2; 305 306 u16 chn_flags; 307 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 308 309 union { 310 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 311 struct { 312 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 313 } std; 314 315 /* 316 * Pipes: 317 * The following structure is an integrated pipe protocol, which 318 * is implemented on top of standard user-defined data. Pipe 319 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 320 * use. 321 */ 322 struct { 323 u32 pipe_mode; 324 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 325 } pipe; 326 } u; 327 /* 328 * The sub_channel_index is defined in Win8: a value of zero means a 329 * primary channel and a value of non-zero means a sub-channel. 330 * 331 * Before Win8, the field is reserved, meaning it's always zero. 332 */ 333 u16 sub_channel_index; 334 u16 reserved3; 335} __packed; 336 337/* Server Flags */ 338#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 339#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 340#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 341#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 342#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 343#define VMBUS_CHANNEL_PARENT_OFFER 0x200 344#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 345#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 346 347struct vmpacket_descriptor { 348 u16 type; 349 u16 offset8; 350 u16 len8; 351 u16 flags; 352 u64 trans_id; 353} __packed; 354 355struct vmpacket_header { 356 u32 prev_pkt_start_offset; 357 struct vmpacket_descriptor descriptor; 358} __packed; 359 360struct vmtransfer_page_range { 361 u32 byte_count; 362 u32 byte_offset; 363} __packed; 364 365struct vmtransfer_page_packet_header { 366 struct vmpacket_descriptor d; 367 u16 xfer_pageset_id; 368 u8 sender_owns_set; 369 u8 reserved; 370 u32 range_cnt; 371 struct vmtransfer_page_range ranges[]; 372} __packed; 373 374/* 375 * This structure defines a range in guest physical space that can be made to 376 * look virtually contiguous. 377 */ 378struct gpa_range { 379 u32 byte_count; 380 u32 byte_offset; 381 u64 pfn_array[]; 382}; 383 384/* 385 * This is the format for a GPA-Direct packet, which contains a set of GPA 386 * ranges, in addition to commands and/or data. 387 */ 388struct vmdata_gpa_direct { 389 struct vmpacket_descriptor d; 390 u32 reserved; 391 u32 range_cnt; 392 struct gpa_range range[1]; 393} __packed; 394 395#define VMPACKET_DATA_START_ADDRESS(__packet) \ 396 (void *)(((unsigned char *)__packet) + \ 397 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 398 399#define VMPACKET_DATA_LENGTH(__packet) \ 400 ((((struct vmpacket_descriptor)__packet)->len8 - \ 401 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 402 403#define VMPACKET_TRANSFER_MODE(__packet) \ 404 (((struct IMPACT)__packet)->type) 405 406enum vmbus_packet_type { 407 VM_PKT_INVALID = 0x0, 408 VM_PKT_SYNCH = 0x1, 409 VM_PKT_ADD_XFER_PAGESET = 0x2, 410 VM_PKT_RM_XFER_PAGESET = 0x3, 411 VM_PKT_ESTABLISH_GPADL = 0x4, 412 VM_PKT_TEARDOWN_GPADL = 0x5, 413 VM_PKT_DATA_INBAND = 0x6, 414 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 415 VM_PKT_DATA_USING_GPADL = 0x8, 416 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 417 VM_PKT_CANCEL_REQUEST = 0xa, 418 VM_PKT_COMP = 0xb, 419 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 420 VM_PKT_ADDITIONAL_DATA = 0xd 421}; 422 423#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 424 425 426/* Version 1 messages */ 427enum vmbus_channel_message_type { 428 CHANNELMSG_INVALID = 0, 429 CHANNELMSG_OFFERCHANNEL = 1, 430 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 431 CHANNELMSG_REQUESTOFFERS = 3, 432 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 433 CHANNELMSG_OPENCHANNEL = 5, 434 CHANNELMSG_OPENCHANNEL_RESULT = 6, 435 CHANNELMSG_CLOSECHANNEL = 7, 436 CHANNELMSG_GPADL_HEADER = 8, 437 CHANNELMSG_GPADL_BODY = 9, 438 CHANNELMSG_GPADL_CREATED = 10, 439 CHANNELMSG_GPADL_TEARDOWN = 11, 440 CHANNELMSG_GPADL_TORNDOWN = 12, 441 CHANNELMSG_RELID_RELEASED = 13, 442 CHANNELMSG_INITIATE_CONTACT = 14, 443 CHANNELMSG_VERSION_RESPONSE = 15, 444 CHANNELMSG_UNLOAD = 16, 445 CHANNELMSG_UNLOAD_RESPONSE = 17, 446 CHANNELMSG_18 = 18, 447 CHANNELMSG_19 = 19, 448 CHANNELMSG_20 = 20, 449 CHANNELMSG_TL_CONNECT_REQUEST = 21, 450 CHANNELMSG_MODIFYCHANNEL = 22, 451 CHANNELMSG_TL_CONNECT_RESULT = 23, 452 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 453 CHANNELMSG_COUNT 454}; 455 456/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 457#define INVALID_RELID U32_MAX 458 459struct vmbus_channel_message_header { 460 enum vmbus_channel_message_type msgtype; 461 u32 padding; 462} __packed; 463 464/* Query VMBus Version parameters */ 465struct vmbus_channel_query_vmbus_version { 466 struct vmbus_channel_message_header header; 467 u32 version; 468} __packed; 469 470/* VMBus Version Supported parameters */ 471struct vmbus_channel_version_supported { 472 struct vmbus_channel_message_header header; 473 u8 version_supported; 474} __packed; 475 476/* Offer Channel parameters */ 477struct vmbus_channel_offer_channel { 478 struct vmbus_channel_message_header header; 479 struct vmbus_channel_offer offer; 480 u32 child_relid; 481 u8 monitorid; 482 /* 483 * win7 and beyond splits this field into a bit field. 484 */ 485 u8 monitor_allocated:1; 486 u8 reserved:7; 487 /* 488 * These are new fields added in win7 and later. 489 * Do not access these fields without checking the 490 * negotiated protocol. 491 * 492 * If "is_dedicated_interrupt" is set, we must not set the 493 * associated bit in the channel bitmap while sending the 494 * interrupt to the host. 495 * 496 * connection_id is to be used in signaling the host. 497 */ 498 u16 is_dedicated_interrupt:1; 499 u16 reserved1:15; 500 u32 connection_id; 501} __packed; 502 503/* Rescind Offer parameters */ 504struct vmbus_channel_rescind_offer { 505 struct vmbus_channel_message_header header; 506 u32 child_relid; 507} __packed; 508 509/* 510 * Request Offer -- no parameters, SynIC message contains the partition ID 511 * Set Snoop -- no parameters, SynIC message contains the partition ID 512 * Clear Snoop -- no parameters, SynIC message contains the partition ID 513 * All Offers Delivered -- no parameters, SynIC message contains the partition 514 * ID 515 * Flush Client -- no parameters, SynIC message contains the partition ID 516 */ 517 518/* Open Channel parameters */ 519struct vmbus_channel_open_channel { 520 struct vmbus_channel_message_header header; 521 522 /* Identifies the specific VMBus channel that is being opened. */ 523 u32 child_relid; 524 525 /* ID making a particular open request at a channel offer unique. */ 526 u32 openid; 527 528 /* GPADL for the channel's ring buffer. */ 529 u32 ringbuffer_gpadlhandle; 530 531 /* 532 * Starting with win8, this field will be used to specify 533 * the target virtual processor on which to deliver the interrupt for 534 * the host to guest communication. 535 * Prior to win8, incoming channel interrupts would only 536 * be delivered on cpu 0. Setting this value to 0 would 537 * preserve the earlier behavior. 538 */ 539 u32 target_vp; 540 541 /* 542 * The upstream ring buffer begins at offset zero in the memory 543 * described by RingBufferGpadlHandle. The downstream ring buffer 544 * follows it at this offset (in pages). 545 */ 546 u32 downstream_ringbuffer_pageoffset; 547 548 /* User-specific data to be passed along to the server endpoint. */ 549 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 550} __packed; 551 552/* Open Channel Result parameters */ 553struct vmbus_channel_open_result { 554 struct vmbus_channel_message_header header; 555 u32 child_relid; 556 u32 openid; 557 u32 status; 558} __packed; 559 560/* Modify Channel Result parameters */ 561struct vmbus_channel_modifychannel_response { 562 struct vmbus_channel_message_header header; 563 u32 child_relid; 564 u32 status; 565} __packed; 566 567/* Close channel parameters; */ 568struct vmbus_channel_close_channel { 569 struct vmbus_channel_message_header header; 570 u32 child_relid; 571} __packed; 572 573/* Channel Message GPADL */ 574#define GPADL_TYPE_RING_BUFFER 1 575#define GPADL_TYPE_SERVER_SAVE_AREA 2 576#define GPADL_TYPE_TRANSACTION 8 577 578/* 579 * The number of PFNs in a GPADL message is defined by the number of 580 * pages that would be spanned by ByteCount and ByteOffset. If the 581 * implied number of PFNs won't fit in this packet, there will be a 582 * follow-up packet that contains more. 583 */ 584struct vmbus_channel_gpadl_header { 585 struct vmbus_channel_message_header header; 586 u32 child_relid; 587 u32 gpadl; 588 u16 range_buflen; 589 u16 rangecount; 590 struct gpa_range range[]; 591} __packed; 592 593/* This is the followup packet that contains more PFNs. */ 594struct vmbus_channel_gpadl_body { 595 struct vmbus_channel_message_header header; 596 u32 msgnumber; 597 u32 gpadl; 598 u64 pfn[]; 599} __packed; 600 601struct vmbus_channel_gpadl_created { 602 struct vmbus_channel_message_header header; 603 u32 child_relid; 604 u32 gpadl; 605 u32 creation_status; 606} __packed; 607 608struct vmbus_channel_gpadl_teardown { 609 struct vmbus_channel_message_header header; 610 u32 child_relid; 611 u32 gpadl; 612} __packed; 613 614struct vmbus_channel_gpadl_torndown { 615 struct vmbus_channel_message_header header; 616 u32 gpadl; 617} __packed; 618 619struct vmbus_channel_relid_released { 620 struct vmbus_channel_message_header header; 621 u32 child_relid; 622} __packed; 623 624struct vmbus_channel_initiate_contact { 625 struct vmbus_channel_message_header header; 626 u32 vmbus_version_requested; 627 u32 target_vcpu; /* The VCPU the host should respond to */ 628 union { 629 u64 interrupt_page; 630 struct { 631 u8 msg_sint; 632 u8 msg_vtl; 633 u8 reserved[6]; 634 }; 635 }; 636 u64 monitor_page1; 637 u64 monitor_page2; 638} __packed; 639 640/* Hyper-V socket: guest's connect()-ing to host */ 641struct vmbus_channel_tl_connect_request { 642 struct vmbus_channel_message_header header; 643 guid_t guest_endpoint_id; 644 guid_t host_service_id; 645} __packed; 646 647/* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 648struct vmbus_channel_modifychannel { 649 struct vmbus_channel_message_header header; 650 u32 child_relid; 651 u32 target_vp; 652} __packed; 653 654struct vmbus_channel_version_response { 655 struct vmbus_channel_message_header header; 656 u8 version_supported; 657 658 u8 connection_state; 659 u16 padding; 660 661 /* 662 * On new hosts that support VMBus protocol 5.0, we must use 663 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 664 * and for subsequent messages, we must use the Message Connection ID 665 * field in the host-returned Version Response Message. 666 * 667 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 668 */ 669 u32 msg_conn_id; 670} __packed; 671 672enum vmbus_channel_state { 673 CHANNEL_OFFER_STATE, 674 CHANNEL_OPENING_STATE, 675 CHANNEL_OPEN_STATE, 676 CHANNEL_OPENED_STATE, 677}; 678 679/* 680 * Represents each channel msg on the vmbus connection This is a 681 * variable-size data structure depending on the msg type itself 682 */ 683struct vmbus_channel_msginfo { 684 /* Bookkeeping stuff */ 685 struct list_head msglistentry; 686 687 /* So far, this is only used to handle gpadl body message */ 688 struct list_head submsglist; 689 690 /* Synchronize the request/response if needed */ 691 struct completion waitevent; 692 struct vmbus_channel *waiting_channel; 693 union { 694 struct vmbus_channel_version_supported version_supported; 695 struct vmbus_channel_open_result open_result; 696 struct vmbus_channel_gpadl_torndown gpadl_torndown; 697 struct vmbus_channel_gpadl_created gpadl_created; 698 struct vmbus_channel_version_response version_response; 699 struct vmbus_channel_modifychannel_response modify_response; 700 } response; 701 702 u32 msgsize; 703 /* 704 * The channel message that goes out on the "wire". 705 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 706 */ 707 unsigned char msg[]; 708}; 709 710enum vmbus_device_type { 711 HV_IDE = 0, 712 HV_SCSI, 713 HV_FC, 714 HV_NIC, 715 HV_ND, 716 HV_PCIE, 717 HV_FB, 718 HV_KBD, 719 HV_MOUSE, 720 HV_KVP, 721 HV_TS, 722 HV_HB, 723 HV_SHUTDOWN, 724 HV_FCOPY, 725 HV_BACKUP, 726 HV_DM, 727 HV_UNKNOWN, 728}; 729 730/* 731 * Provides request ids for VMBus. Encapsulates guest memory 732 * addresses and stores the next available slot in req_arr 733 * to generate new ids in constant time. 734 */ 735struct vmbus_requestor { 736 u64 *req_arr; 737 unsigned long *req_bitmap; /* is a given slot available? */ 738 u32 size; 739 u64 next_request_id; 740 spinlock_t req_lock; /* provides atomicity */ 741}; 742 743#define VMBUS_NO_RQSTOR U64_MAX 744#define VMBUS_RQST_ERROR (U64_MAX - 1) 745#define VMBUS_RQST_ADDR_ANY U64_MAX 746/* NetVSC-specific */ 747#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 748/* StorVSC-specific */ 749#define VMBUS_RQST_INIT (U64_MAX - 2) 750#define VMBUS_RQST_RESET (U64_MAX - 3) 751 752struct vmbus_device { 753 /* preferred ring buffer size in KB, 0 means no preferred size for this device */ 754 size_t pref_ring_size; 755 u16 dev_type; 756 guid_t guid; 757 bool perf_device; 758 bool allowed_in_isolated; 759}; 760 761#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 762 763struct vmbus_gpadl { 764 u32 gpadl_handle; 765 u32 size; 766 void *buffer; 767 bool decrypted; 768}; 769 770struct vmbus_channel { 771 struct list_head listentry; 772 773 struct hv_device *device_obj; 774 775 enum vmbus_channel_state state; 776 777 struct vmbus_channel_offer_channel offermsg; 778 /* 779 * These are based on the OfferMsg.MonitorId. 780 * Save it here for easy access. 781 */ 782 u8 monitor_grp; 783 u8 monitor_bit; 784 785 bool rescind; /* got rescind msg */ 786 bool rescind_ref; /* got rescind msg, got channel reference */ 787 struct completion rescind_event; 788 789 struct vmbus_gpadl ringbuffer_gpadlhandle; 790 791 /* Allocated memory for ring buffer */ 792 struct page *ringbuffer_page; 793 u32 ringbuffer_pagecount; 794 u32 ringbuffer_send_offset; 795 struct hv_ring_buffer_info outbound; /* send to parent */ 796 struct hv_ring_buffer_info inbound; /* receive from parent */ 797 798 struct vmbus_channel_close_channel close_msg; 799 800 /* Statistics */ 801 u64 interrupts; /* Host to Guest interrupts */ 802 u64 sig_events; /* Guest to Host events */ 803 804 /* 805 * Guest to host interrupts caused by the outbound ring buffer changing 806 * from empty to not empty. 807 */ 808 u64 intr_out_empty; 809 810 /* 811 * Indicates that a full outbound ring buffer was encountered. The flag 812 * is set to true when a full outbound ring buffer is encountered and 813 * set to false when a write to the outbound ring buffer is completed. 814 */ 815 bool out_full_flag; 816 817 /* Channel callback's invoked in softirq context */ 818 struct tasklet_struct callback_event; 819 void (*onchannel_callback)(void *context); 820 void *channel_callback_context; 821 822 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 823 u32 old, u32 new); 824 825 /* 826 * Synchronize channel scheduling and channel removal; see the inline 827 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 828 */ 829 spinlock_t sched_lock; 830 831 /* 832 * A channel can be marked for one of three modes of reading: 833 * BATCHED - callback called from taslket and should read 834 * channel until empty. Interrupts from the host 835 * are masked while read is in process (default). 836 * DIRECT - callback called from tasklet (softirq). 837 * ISR - callback called in interrupt context and must 838 * invoke its own deferred processing. 839 * Host interrupts are disabled and must be re-enabled 840 * when ring is empty. 841 */ 842 enum hv_callback_mode { 843 HV_CALL_BATCHED, 844 HV_CALL_DIRECT, 845 HV_CALL_ISR 846 } callback_mode; 847 848 bool is_dedicated_interrupt; 849 u64 sig_event; 850 851 /* 852 * Starting with win8, this field will be used to specify the 853 * target CPU on which to deliver the interrupt for the host 854 * to guest communication. 855 * 856 * Prior to win8, incoming channel interrupts would only be 857 * delivered on CPU 0. Setting this value to 0 would preserve 858 * the earlier behavior. 859 */ 860 u32 target_cpu; 861 /* 862 * Support for sub-channels. For high performance devices, 863 * it will be useful to have multiple sub-channels to support 864 * a scalable communication infrastructure with the host. 865 * The support for sub-channels is implemented as an extension 866 * to the current infrastructure. 867 * The initial offer is considered the primary channel and this 868 * offer message will indicate if the host supports sub-channels. 869 * The guest is free to ask for sub-channels to be offered and can 870 * open these sub-channels as a normal "primary" channel. However, 871 * all sub-channels will have the same type and instance guids as the 872 * primary channel. Requests sent on a given channel will result in a 873 * response on the same channel. 874 */ 875 876 /* 877 * Sub-channel creation callback. This callback will be called in 878 * process context when a sub-channel offer is received from the host. 879 * The guest can open the sub-channel in the context of this callback. 880 */ 881 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 882 883 /* 884 * Channel rescind callback. Some channels (the hvsock ones), need to 885 * register a callback which is invoked in vmbus_onoffer_rescind(). 886 */ 887 void (*chn_rescind_callback)(struct vmbus_channel *channel); 888 889 /* 890 * All Sub-channels of a primary channel are linked here. 891 */ 892 struct list_head sc_list; 893 /* 894 * The primary channel this sub-channel belongs to. 895 * This will be NULL for the primary channel. 896 */ 897 struct vmbus_channel *primary_channel; 898 /* 899 * Support per-channel state for use by vmbus drivers. 900 */ 901 void *per_channel_state; 902 903 /* 904 * Defer freeing channel until after all cpu's have 905 * gone through grace period. 906 */ 907 struct rcu_head rcu; 908 909 /* 910 * For sysfs per-channel properties. 911 */ 912 struct kobject kobj; 913 914 /* 915 * For performance critical channels (storage, networking 916 * etc,), Hyper-V has a mechanism to enhance the throughput 917 * at the expense of latency: 918 * When the host is to be signaled, we just set a bit in a shared page 919 * and this bit will be inspected by the hypervisor within a certain 920 * window and if the bit is set, the host will be signaled. The window 921 * of time is the monitor latency - currently around 100 usecs. This 922 * mechanism improves throughput by: 923 * 924 * A) Making the host more efficient - each time it wakes up, 925 * potentially it will process more number of packets. The 926 * monitor latency allows a batch to build up. 927 * B) By deferring the hypercall to signal, we will also minimize 928 * the interrupts. 929 * 930 * Clearly, these optimizations improve throughput at the expense of 931 * latency. Furthermore, since the channel is shared for both 932 * control and data messages, control messages currently suffer 933 * unnecessary latency adversely impacting performance and boot 934 * time. To fix this issue, permit tagging the channel as being 935 * in "low latency" mode. In this mode, we will bypass the monitor 936 * mechanism. 937 */ 938 bool low_latency; 939 940 bool probe_done; 941 942 /* 943 * Cache the device ID here for easy access; this is useful, in 944 * particular, in situations where the channel's device_obj has 945 * not been allocated/initialized yet. 946 */ 947 u16 device_id; 948 949 /* 950 * We must offload the handling of the primary/sub channels 951 * from the single-threaded vmbus_connection.work_queue to 952 * two different workqueue, otherwise we can block 953 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 954 */ 955 struct work_struct add_channel_work; 956 957 /* 958 * Guest to host interrupts caused by the inbound ring buffer changing 959 * from full to not full while a packet is waiting. 960 */ 961 u64 intr_in_full; 962 963 /* 964 * The total number of write operations that encountered a full 965 * outbound ring buffer. 966 */ 967 u64 out_full_total; 968 969 /* 970 * The number of write operations that were the first to encounter a 971 * full outbound ring buffer. 972 */ 973 u64 out_full_first; 974 975 /* enabling/disabling fuzz testing on the channel (default is false)*/ 976 bool fuzz_testing_state; 977 978 /* 979 * Interrupt delay will delay the guest from emptying the ring buffer 980 * for a specific amount of time. The delay is in microseconds and will 981 * be between 1 to a maximum of 1000, its default is 0 (no delay). 982 * The Message delay will delay guest reading on a per message basis 983 * in microseconds between 1 to 1000 with the default being 0 984 * (no delay). 985 */ 986 u32 fuzz_testing_interrupt_delay; 987 u32 fuzz_testing_message_delay; 988 989 /* callback to generate a request ID from a request address */ 990 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 991 /* callback to retrieve a request address from a request ID */ 992 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 993 994 /* request/transaction ids for VMBus */ 995 struct vmbus_requestor requestor; 996 u32 rqstor_size; 997 998 /* The max size of a packet on this channel */ 999 u32 max_pkt_size; 1000 1001 /* function to mmap ring buffer memory to the channel's sysfs ring attribute */ 1002 int (*mmap_ring_buffer)(struct vmbus_channel *channel, struct vm_area_struct *vma); 1003 1004 /* boolean to control visibility of sysfs for ring buffer */ 1005 bool ring_sysfs_visible; 1006}; 1007 1008#define lock_requestor(channel, flags) \ 1009do { \ 1010 struct vmbus_requestor *rqstor = &(channel)->requestor; \ 1011 \ 1012 spin_lock_irqsave(&rqstor->req_lock, flags); \ 1013} while (0) 1014 1015static __always_inline void unlock_requestor(struct vmbus_channel *channel, 1016 unsigned long flags) 1017{ 1018 struct vmbus_requestor *rqstor = &channel->requestor; 1019 1020 spin_unlock_irqrestore(&rqstor->req_lock, flags); 1021} 1022 1023u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1024u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1025 u64 rqst_addr); 1026u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1027 u64 rqst_addr); 1028u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1029 1030static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o) 1031{ 1032 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1033} 1034 1035static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1036{ 1037 return is_hvsock_offer(&c->offermsg); 1038} 1039 1040static inline bool is_sub_channel(const struct vmbus_channel *c) 1041{ 1042 return c->offermsg.offer.sub_channel_index != 0; 1043} 1044 1045static inline void set_channel_read_mode(struct vmbus_channel *c, 1046 enum hv_callback_mode mode) 1047{ 1048 c->callback_mode = mode; 1049} 1050 1051static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1052{ 1053 c->per_channel_state = s; 1054} 1055 1056static inline void *get_per_channel_state(struct vmbus_channel *c) 1057{ 1058 return c->per_channel_state; 1059} 1060 1061static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1062 u32 size) 1063{ 1064 unsigned long flags; 1065 1066 if (size) { 1067 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1068 ++c->out_full_total; 1069 1070 if (!c->out_full_flag) { 1071 ++c->out_full_first; 1072 c->out_full_flag = true; 1073 } 1074 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1075 } else { 1076 c->out_full_flag = false; 1077 } 1078 1079 c->outbound.ring_buffer->pending_send_sz = size; 1080} 1081 1082void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1083 1084int vmbus_request_offers(void); 1085 1086/* 1087 * APIs for managing sub-channels. 1088 */ 1089 1090void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1091 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1092 1093void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1094 void (*chn_rescind_cb)(struct vmbus_channel *)); 1095 1096/* The format must be the same as struct vmdata_gpa_direct */ 1097struct vmbus_channel_packet_page_buffer { 1098 u16 type; 1099 u16 dataoffset8; 1100 u16 length8; 1101 u16 flags; 1102 u64 transactionid; 1103 u32 reserved; 1104 u32 rangecount; 1105 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1106} __packed; 1107 1108/* The format must be the same as struct vmdata_gpa_direct */ 1109struct vmbus_channel_packet_multipage_buffer { 1110 u16 type; 1111 u16 dataoffset8; 1112 u16 length8; 1113 u16 flags; 1114 u64 transactionid; 1115 u32 reserved; 1116 u32 rangecount; /* Always 1 in this case */ 1117 struct hv_multipage_buffer range; 1118} __packed; 1119 1120/* The format must be the same as struct vmdata_gpa_direct */ 1121struct vmbus_packet_mpb_array { 1122 u16 type; 1123 u16 dataoffset8; 1124 u16 length8; 1125 u16 flags; 1126 u64 transactionid; 1127 u32 reserved; 1128 u32 rangecount; /* Always 1 in this case */ 1129 struct hv_mpb_array range; 1130} __packed; 1131 1132int vmbus_alloc_ring(struct vmbus_channel *channel, 1133 u32 send_size, u32 recv_size); 1134void vmbus_free_ring(struct vmbus_channel *channel); 1135 1136int vmbus_connect_ring(struct vmbus_channel *channel, 1137 void (*onchannel_callback)(void *context), 1138 void *context); 1139int vmbus_disconnect_ring(struct vmbus_channel *channel); 1140 1141extern int vmbus_open(struct vmbus_channel *channel, 1142 u32 send_ringbuffersize, 1143 u32 recv_ringbuffersize, 1144 void *userdata, 1145 u32 userdatalen, 1146 void (*onchannel_callback)(void *context), 1147 void *context); 1148 1149extern void vmbus_close(struct vmbus_channel *channel); 1150 1151extern int vmbus_sendpacket_getid(struct vmbus_channel *channel, 1152 void *buffer, 1153 u32 bufferLen, 1154 u64 requestid, 1155 u64 *trans_id, 1156 enum vmbus_packet_type type, 1157 u32 flags); 1158extern int vmbus_sendpacket(struct vmbus_channel *channel, 1159 void *buffer, 1160 u32 bufferLen, 1161 u64 requestid, 1162 enum vmbus_packet_type type, 1163 u32 flags); 1164 1165extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1166 struct vmbus_packet_mpb_array *mpb, 1167 u32 desc_size, 1168 void *buffer, 1169 u32 bufferlen, 1170 u64 requestid); 1171 1172extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1173 void *kbuffer, 1174 u32 size, 1175 struct vmbus_gpadl *gpadl); 1176 1177extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1178 struct vmbus_gpadl *gpadl); 1179 1180void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1181 1182extern int vmbus_recvpacket(struct vmbus_channel *channel, 1183 void *buffer, 1184 u32 bufferlen, 1185 u32 *buffer_actual_len, 1186 u64 *requestid); 1187 1188extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1189 void *buffer, 1190 u32 bufferlen, 1191 u32 *buffer_actual_len, 1192 u64 *requestid); 1193 1194/* Base driver object */ 1195struct hv_driver { 1196 const char *name; 1197 1198 /* 1199 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1200 * channel flag, actually doesn't mean a synthetic device because the 1201 * offer's if_type/if_instance can change for every new hvsock 1202 * connection. 1203 * 1204 * However, to facilitate the notification of new-offer/rescind-offer 1205 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1206 * a special vmbus device, and hence we need the below flag to 1207 * indicate if the driver is the hvsock driver or not: we need to 1208 * specially treat the hvosck offer & driver in vmbus_match(). 1209 */ 1210 bool hvsock; 1211 1212 /* the device type supported by this driver */ 1213 guid_t dev_type; 1214 const struct hv_vmbus_device_id *id_table; 1215 1216 struct device_driver driver; 1217 1218 /* dynamic device GUID's */ 1219 struct { 1220 spinlock_t lock; 1221 struct list_head list; 1222 } dynids; 1223 1224 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1225 void (*remove)(struct hv_device *dev); 1226 void (*shutdown)(struct hv_device *); 1227 1228 int (*suspend)(struct hv_device *); 1229 int (*resume)(struct hv_device *); 1230 1231}; 1232 1233/* Base device object */ 1234struct hv_device { 1235 /* the device type id of this device */ 1236 guid_t dev_type; 1237 1238 /* the device instance id of this device */ 1239 guid_t dev_instance; 1240 u16 vendor_id; 1241 u16 device_id; 1242 1243 struct device device; 1244 /* 1245 * Driver name to force a match. Do not set directly, because core 1246 * frees it. Use driver_set_override() to set or clear it. 1247 */ 1248 const char *driver_override; 1249 1250 struct vmbus_channel *channel; 1251 struct kset *channels_kset; 1252 struct device_dma_parameters dma_parms; 1253 u64 dma_mask; 1254 1255 /* place holder to keep track of the dir for hv device in debugfs */ 1256 struct dentry *debug_dir; 1257 1258}; 1259 1260 1261#define device_to_hv_device(d) container_of_const(d, struct hv_device, device) 1262#define drv_to_hv_drv(d) container_of_const(d, struct hv_driver, driver) 1263 1264static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1265{ 1266 dev_set_drvdata(&dev->device, data); 1267} 1268 1269static inline void *hv_get_drvdata(struct hv_device *dev) 1270{ 1271 return dev_get_drvdata(&dev->device); 1272} 1273 1274struct device *hv_get_vmbus_root_device(void); 1275 1276struct hv_ring_buffer_debug_info { 1277 u32 current_interrupt_mask; 1278 u32 current_read_index; 1279 u32 current_write_index; 1280 u32 bytes_avail_toread; 1281 u32 bytes_avail_towrite; 1282}; 1283 1284 1285int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1286 struct hv_ring_buffer_debug_info *debug_info); 1287 1288bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel); 1289 1290/* Vmbus interface */ 1291#define vmbus_driver_register(driver) \ 1292 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1293int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1294 struct module *owner, 1295 const char *mod_name); 1296void vmbus_driver_unregister(struct hv_driver *hv_driver); 1297 1298void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1299 1300int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1301 resource_size_t min, resource_size_t max, 1302 resource_size_t size, resource_size_t align, 1303 bool fb_overlap_ok); 1304void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1305 1306/* 1307 * GUID definitions of various offer types - services offered to the guest. 1308 */ 1309 1310/* 1311 * Network GUID 1312 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1313 */ 1314#define HV_NIC_GUID \ 1315 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1316 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1317 1318/* 1319 * IDE GUID 1320 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1321 */ 1322#define HV_IDE_GUID \ 1323 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1324 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1325 1326/* 1327 * SCSI GUID 1328 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1329 */ 1330#define HV_SCSI_GUID \ 1331 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1332 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1333 1334/* 1335 * Shutdown GUID 1336 * {0e0b6031-5213-4934-818b-38d90ced39db} 1337 */ 1338#define HV_SHUTDOWN_GUID \ 1339 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1340 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1341 1342/* 1343 * Time Synch GUID 1344 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1345 */ 1346#define HV_TS_GUID \ 1347 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1348 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1349 1350/* 1351 * Heartbeat GUID 1352 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1353 */ 1354#define HV_HEART_BEAT_GUID \ 1355 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1356 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1357 1358/* 1359 * KVP GUID 1360 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1361 */ 1362#define HV_KVP_GUID \ 1363 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1364 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1365 1366/* 1367 * Dynamic memory GUID 1368 * {525074dc-8985-46e2-8057-a307dc18a502} 1369 */ 1370#define HV_DM_GUID \ 1371 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1372 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1373 1374/* 1375 * Mouse GUID 1376 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1377 */ 1378#define HV_MOUSE_GUID \ 1379 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1380 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1381 1382/* 1383 * Keyboard GUID 1384 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1385 */ 1386#define HV_KBD_GUID \ 1387 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1388 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1389 1390/* 1391 * VSS (Backup/Restore) GUID 1392 */ 1393#define HV_VSS_GUID \ 1394 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1395 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1396/* 1397 * Synthetic Video GUID 1398 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1399 */ 1400#define HV_SYNTHVID_GUID \ 1401 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1402 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1403 1404/* 1405 * Synthetic FC GUID 1406 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1407 */ 1408#define HV_SYNTHFC_GUID \ 1409 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1410 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1411 1412/* 1413 * Guest File Copy Service 1414 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1415 */ 1416 1417#define HV_FCOPY_GUID \ 1418 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1419 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1420 1421/* 1422 * NetworkDirect. This is the guest RDMA service. 1423 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1424 */ 1425#define HV_ND_GUID \ 1426 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1427 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1428 1429/* 1430 * PCI Express Pass Through 1431 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1432 */ 1433 1434#define HV_PCIE_GUID \ 1435 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1436 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1437 1438/* 1439 * Linux doesn't support these 4 devices: the first two are for 1440 * Automatic Virtual Machine Activation, the third is for 1441 * Remote Desktop Virtualization, and the fourth is Initial 1442 * Machine Configuration (IMC) used only by Windows guests. 1443 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1444 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1445 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1446 * {c376c1c3-d276-48d2-90a9-c04748072c60} 1447 */ 1448 1449#define HV_AVMA1_GUID \ 1450 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1451 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1452 1453#define HV_AVMA2_GUID \ 1454 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1455 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1456 1457#define HV_RDV_GUID \ 1458 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1459 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1460 1461#define HV_IMC_GUID \ 1462 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \ 1463 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60) 1464 1465/* 1466 * Common header for Hyper-V ICs 1467 */ 1468 1469#define ICMSGTYPE_NEGOTIATE 0 1470#define ICMSGTYPE_HEARTBEAT 1 1471#define ICMSGTYPE_KVPEXCHANGE 2 1472#define ICMSGTYPE_SHUTDOWN 3 1473#define ICMSGTYPE_TIMESYNC 4 1474#define ICMSGTYPE_VSS 5 1475#define ICMSGTYPE_FCOPY 7 1476 1477#define ICMSGHDRFLAG_TRANSACTION 1 1478#define ICMSGHDRFLAG_REQUEST 2 1479#define ICMSGHDRFLAG_RESPONSE 4 1480 1481 1482/* 1483 * While we want to handle util services as regular devices, 1484 * there is only one instance of each of these services; so 1485 * we statically allocate the service specific state. 1486 */ 1487 1488struct hv_util_service { 1489 u8 *recv_buffer; 1490 void *channel; 1491 void (*util_cb)(void *); 1492 int (*util_init)(struct hv_util_service *); 1493 int (*util_init_transport)(void); 1494 void (*util_deinit)(void); 1495 int (*util_pre_suspend)(void); 1496 int (*util_pre_resume)(void); 1497}; 1498 1499struct vmbuspipe_hdr { 1500 u32 flags; 1501 u32 msgsize; 1502} __packed; 1503 1504struct ic_version { 1505 u16 major; 1506 u16 minor; 1507} __packed; 1508 1509struct icmsg_hdr { 1510 struct ic_version icverframe; 1511 u16 icmsgtype; 1512 struct ic_version icvermsg; 1513 u16 icmsgsize; 1514 u32 status; 1515 u8 ictransaction_id; 1516 u8 icflags; 1517 u8 reserved[2]; 1518} __packed; 1519 1520#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1521#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1522#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1523 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1524 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1525 1526struct icmsg_negotiate { 1527 u16 icframe_vercnt; 1528 u16 icmsg_vercnt; 1529 u32 reserved; 1530 struct ic_version icversion_data[]; /* any size array */ 1531} __packed; 1532 1533struct shutdown_msg_data { 1534 u32 reason_code; 1535 u32 timeout_seconds; 1536 u32 flags; 1537 u8 display_message[2048]; 1538} __packed; 1539 1540struct heartbeat_msg_data { 1541 u64 seq_num; 1542 u32 reserved[8]; 1543} __packed; 1544 1545/* Time Sync IC defs */ 1546#define ICTIMESYNCFLAG_PROBE 0 1547#define ICTIMESYNCFLAG_SYNC 1 1548#define ICTIMESYNCFLAG_SAMPLE 2 1549 1550#ifdef __x86_64__ 1551#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1552#else 1553#define WLTIMEDELTA 116444736000000000LL 1554#endif 1555 1556struct ictimesync_data { 1557 u64 parenttime; 1558 u64 childtime; 1559 u64 roundtriptime; 1560 u8 flags; 1561} __packed; 1562 1563struct ictimesync_ref_data { 1564 u64 parenttime; 1565 u64 vmreferencetime; 1566 u8 flags; 1567 char leapflags; 1568 char stratum; 1569 u8 reserved[3]; 1570} __packed; 1571 1572struct hyperv_service_callback { 1573 u8 msg_type; 1574 char *log_msg; 1575 guid_t data; 1576 struct vmbus_channel *channel; 1577 void (*callback)(void *context); 1578}; 1579 1580struct hv_dma_range { 1581 dma_addr_t dma; 1582 u32 mapping_size; 1583}; 1584 1585#define MAX_SRV_VER 0x7ffffff 1586extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1587 const int *fw_version, int fw_vercnt, 1588 const int *srv_version, int srv_vercnt, 1589 int *nego_fw_version, int *nego_srv_version); 1590 1591void hv_process_channel_removal(struct vmbus_channel *channel); 1592 1593void vmbus_setevent(struct vmbus_channel *channel); 1594/* 1595 * Negotiated version with the Host. 1596 */ 1597 1598extern __u32 vmbus_proto_version; 1599 1600int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1601 const guid_t *shv_host_servie_id); 1602int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1603void vmbus_set_event(struct vmbus_channel *channel); 1604int vmbus_channel_set_cpu(struct vmbus_channel *channel, u32 target_cpu); 1605 1606/* Get the start of the ring buffer. */ 1607static inline void * 1608hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1609{ 1610 return ring_info->ring_buffer->buffer; 1611} 1612 1613/* 1614 * Mask off host interrupt callback notifications 1615 */ 1616static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1617{ 1618 rbi->ring_buffer->interrupt_mask = 1; 1619 1620 /* make sure mask update is not reordered */ 1621 virt_mb(); 1622} 1623 1624/* 1625 * Re-enable host callback and return number of outstanding bytes 1626 */ 1627static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1628{ 1629 1630 rbi->ring_buffer->interrupt_mask = 0; 1631 1632 /* make sure mask update is not reordered */ 1633 virt_mb(); 1634 1635 /* 1636 * Now check to see if the ring buffer is still empty. 1637 * If it is not, we raced and we need to process new 1638 * incoming messages. 1639 */ 1640 return hv_get_bytes_to_read(rbi); 1641} 1642 1643/* 1644 * An API to support in-place processing of incoming VMBUS packets. 1645 */ 1646 1647/* Get data payload associated with descriptor */ 1648static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1649{ 1650 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1651} 1652 1653/* Get data size associated with descriptor */ 1654static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1655{ 1656 return (desc->len8 << 3) - (desc->offset8 << 3); 1657} 1658 1659/* Get packet length associated with descriptor */ 1660static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc) 1661{ 1662 return desc->len8 << 3; 1663} 1664 1665struct vmpacket_descriptor * 1666hv_pkt_iter_first(struct vmbus_channel *channel); 1667 1668struct vmpacket_descriptor * 1669__hv_pkt_iter_next(struct vmbus_channel *channel, 1670 const struct vmpacket_descriptor *pkt); 1671 1672void hv_pkt_iter_close(struct vmbus_channel *channel); 1673 1674static inline struct vmpacket_descriptor * 1675hv_pkt_iter_next(struct vmbus_channel *channel, 1676 const struct vmpacket_descriptor *pkt) 1677{ 1678 struct vmpacket_descriptor *nxt; 1679 1680 nxt = __hv_pkt_iter_next(channel, pkt); 1681 if (!nxt) 1682 hv_pkt_iter_close(channel); 1683 1684 return nxt; 1685} 1686 1687#define foreach_vmbus_pkt(pkt, channel) \ 1688 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1689 pkt = hv_pkt_iter_next(channel, pkt)) 1690 1691/* 1692 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1693 * sends requests to read and write blocks. Each block must be 128 bytes or 1694 * smaller. Optionally, the VF driver can register a callback function which 1695 * will be invoked when the host says that one or more of the first 64 block 1696 * IDs is "invalid" which means that the VF driver should reread them. 1697 */ 1698#define HV_CONFIG_BLOCK_SIZE_MAX 128 1699 1700int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1701 unsigned int block_id, unsigned int *bytes_returned); 1702int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1703 unsigned int block_id); 1704int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1705 void (*block_invalidate)(void *context, 1706 u64 block_mask)); 1707 1708struct hyperv_pci_block_ops { 1709 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1710 unsigned int block_id, unsigned int *bytes_returned); 1711 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1712 unsigned int block_id); 1713 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1714 void (*block_invalidate)(void *context, 1715 u64 block_mask)); 1716}; 1717 1718extern struct hyperv_pci_block_ops hvpci_block_ops; 1719 1720static inline unsigned long virt_to_hvpfn(void *addr) 1721{ 1722 phys_addr_t paddr; 1723 1724 if (is_vmalloc_addr(addr)) 1725 paddr = page_to_phys(vmalloc_to_page(addr)) + 1726 offset_in_page(addr); 1727 else 1728 paddr = __pa(addr); 1729 1730 return paddr >> HV_HYP_PAGE_SHIFT; 1731} 1732 1733#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1734#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1735#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1736#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1737#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1738 1739#endif /* _HYPERV_H */