at v6.18-rc2 51 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <linux/atomic.h> 9#include <linux/bpf.h> 10#include <linux/refcount.h> 11#include <linux/compat.h> 12#include <linux/skbuff.h> 13#include <linux/linkage.h> 14#include <linux/printk.h> 15#include <linux/workqueue.h> 16#include <linux/sched.h> 17#include <linux/sched/clock.h> 18#include <linux/capability.h> 19#include <linux/set_memory.h> 20#include <linux/kallsyms.h> 21#include <linux/if_vlan.h> 22#include <linux/vmalloc.h> 23#include <linux/sockptr.h> 24#include <crypto/sha1.h> 25#include <linux/u64_stats_sync.h> 26 27#include <net/sch_generic.h> 28 29#include <asm/byteorder.h> 30#include <uapi/linux/filter.h> 31 32struct sk_buff; 33struct sock; 34struct seccomp_data; 35struct bpf_prog_aux; 36struct xdp_rxq_info; 37struct xdp_buff; 38struct sock_reuseport; 39struct ctl_table; 40struct ctl_table_header; 41 42/* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46#define BPF_REG_ARG1 BPF_REG_1 47#define BPF_REG_ARG2 BPF_REG_2 48#define BPF_REG_ARG3 BPF_REG_3 49#define BPF_REG_ARG4 BPF_REG_4 50#define BPF_REG_ARG5 BPF_REG_5 51#define BPF_REG_CTX BPF_REG_6 52#define BPF_REG_FP BPF_REG_10 53 54/* Additional register mappings for converted user programs. */ 55#define BPF_REG_A BPF_REG_0 56#define BPF_REG_X BPF_REG_7 57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61/* Kernel hidden auxiliary/helper register. */ 62#define BPF_REG_AX MAX_BPF_REG 63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66/* unused opcode to mark special call to bpf_tail_call() helper */ 67#define BPF_TAIL_CALL 0xf0 68 69/* unused opcode to mark special load instruction. Same as BPF_ABS */ 70#define BPF_PROBE_MEM 0x20 71 72/* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73#define BPF_PROBE_MEMSX 0x40 74 75/* unused opcode to mark special load instruction. Same as BPF_MSH */ 76#define BPF_PROBE_MEM32 0xa0 77 78/* unused opcode to mark special atomic instruction */ 79#define BPF_PROBE_ATOMIC 0xe0 80 81/* unused opcode to mark special ldsx instruction. Same as BPF_NOSPEC */ 82#define BPF_PROBE_MEM32SX 0xc0 83 84/* unused opcode to mark call to interpreter with arguments */ 85#define BPF_CALL_ARGS 0xe0 86 87/* unused opcode to mark speculation barrier for mitigating 88 * Spectre v1 and v4 89 */ 90#define BPF_NOSPEC 0xc0 91 92/* As per nm, we expose JITed images as text (code) section for 93 * kallsyms. That way, tools like perf can find it to match 94 * addresses. 95 */ 96#define BPF_SYM_ELF_TYPE 't' 97 98/* BPF program can access up to 512 bytes of stack space. */ 99#define MAX_BPF_STACK 512 100 101/* Helper macros for filter block array initializers. */ 102 103/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 104 105#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 106 ((struct bpf_insn) { \ 107 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 108 .dst_reg = DST, \ 109 .src_reg = SRC, \ 110 .off = OFF, \ 111 .imm = 0 }) 112 113#define BPF_ALU64_REG(OP, DST, SRC) \ 114 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 115 116#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 117 ((struct bpf_insn) { \ 118 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 119 .dst_reg = DST, \ 120 .src_reg = SRC, \ 121 .off = OFF, \ 122 .imm = 0 }) 123 124#define BPF_ALU32_REG(OP, DST, SRC) \ 125 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 126 127/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 128 129#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 130 ((struct bpf_insn) { \ 131 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 132 .dst_reg = DST, \ 133 .src_reg = 0, \ 134 .off = OFF, \ 135 .imm = IMM }) 136#define BPF_ALU64_IMM(OP, DST, IMM) \ 137 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 138 139#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 140 ((struct bpf_insn) { \ 141 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 142 .dst_reg = DST, \ 143 .src_reg = 0, \ 144 .off = OFF, \ 145 .imm = IMM }) 146#define BPF_ALU32_IMM(OP, DST, IMM) \ 147 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 148 149/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 150 151#define BPF_ENDIAN(TYPE, DST, LEN) \ 152 ((struct bpf_insn) { \ 153 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 154 .dst_reg = DST, \ 155 .src_reg = 0, \ 156 .off = 0, \ 157 .imm = LEN }) 158 159/* Byte Swap, bswap16/32/64 */ 160 161#define BPF_BSWAP(DST, LEN) \ 162 ((struct bpf_insn) { \ 163 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 164 .dst_reg = DST, \ 165 .src_reg = 0, \ 166 .off = 0, \ 167 .imm = LEN }) 168 169/* Short form of mov, dst_reg = src_reg */ 170 171#define BPF_MOV64_REG(DST, SRC) \ 172 ((struct bpf_insn) { \ 173 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 174 .dst_reg = DST, \ 175 .src_reg = SRC, \ 176 .off = 0, \ 177 .imm = 0 }) 178 179#define BPF_MOV32_REG(DST, SRC) \ 180 ((struct bpf_insn) { \ 181 .code = BPF_ALU | BPF_MOV | BPF_X, \ 182 .dst_reg = DST, \ 183 .src_reg = SRC, \ 184 .off = 0, \ 185 .imm = 0 }) 186 187/* Special (internal-only) form of mov, used to resolve per-CPU addrs: 188 * dst_reg = src_reg + <percpu_base_off> 189 * BPF_ADDR_PERCPU is used as a special insn->off value. 190 */ 191#define BPF_ADDR_PERCPU (-1) 192 193#define BPF_MOV64_PERCPU_REG(DST, SRC) \ 194 ((struct bpf_insn) { \ 195 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 196 .dst_reg = DST, \ 197 .src_reg = SRC, \ 198 .off = BPF_ADDR_PERCPU, \ 199 .imm = 0 }) 200 201static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) 202{ 203 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; 204} 205 206/* Short form of mov, dst_reg = imm32 */ 207 208#define BPF_MOV64_IMM(DST, IMM) \ 209 ((struct bpf_insn) { \ 210 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 211 .dst_reg = DST, \ 212 .src_reg = 0, \ 213 .off = 0, \ 214 .imm = IMM }) 215 216#define BPF_MOV32_IMM(DST, IMM) \ 217 ((struct bpf_insn) { \ 218 .code = BPF_ALU | BPF_MOV | BPF_K, \ 219 .dst_reg = DST, \ 220 .src_reg = 0, \ 221 .off = 0, \ 222 .imm = IMM }) 223 224/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 225 226#define BPF_MOVSX64_REG(DST, SRC, OFF) \ 227 ((struct bpf_insn) { \ 228 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 229 .dst_reg = DST, \ 230 .src_reg = SRC, \ 231 .off = OFF, \ 232 .imm = 0 }) 233 234#define BPF_MOVSX32_REG(DST, SRC, OFF) \ 235 ((struct bpf_insn) { \ 236 .code = BPF_ALU | BPF_MOV | BPF_X, \ 237 .dst_reg = DST, \ 238 .src_reg = SRC, \ 239 .off = OFF, \ 240 .imm = 0 }) 241 242/* Special form of mov32, used for doing explicit zero extension on dst. */ 243#define BPF_ZEXT_REG(DST) \ 244 ((struct bpf_insn) { \ 245 .code = BPF_ALU | BPF_MOV | BPF_X, \ 246 .dst_reg = DST, \ 247 .src_reg = DST, \ 248 .off = 0, \ 249 .imm = 1 }) 250 251static inline bool insn_is_zext(const struct bpf_insn *insn) 252{ 253 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 254} 255 256/* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 257 * to pointers in user vma. 258 */ 259static inline bool insn_is_cast_user(const struct bpf_insn *insn) 260{ 261 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 262 insn->off == BPF_ADDR_SPACE_CAST && 263 insn->imm == 1U << 16; 264} 265 266/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 267#define BPF_LD_IMM64(DST, IMM) \ 268 BPF_LD_IMM64_RAW(DST, 0, IMM) 269 270#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 271 ((struct bpf_insn) { \ 272 .code = BPF_LD | BPF_DW | BPF_IMM, \ 273 .dst_reg = DST, \ 274 .src_reg = SRC, \ 275 .off = 0, \ 276 .imm = (__u32) (IMM) }), \ 277 ((struct bpf_insn) { \ 278 .code = 0, /* zero is reserved opcode */ \ 279 .dst_reg = 0, \ 280 .src_reg = 0, \ 281 .off = 0, \ 282 .imm = ((__u64) (IMM)) >> 32 }) 283 284/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 285#define BPF_LD_MAP_FD(DST, MAP_FD) \ 286 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 287 288/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 289 290#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 291 ((struct bpf_insn) { \ 292 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 293 .dst_reg = DST, \ 294 .src_reg = SRC, \ 295 .off = 0, \ 296 .imm = IMM }) 297 298#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 299 ((struct bpf_insn) { \ 300 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 301 .dst_reg = DST, \ 302 .src_reg = SRC, \ 303 .off = 0, \ 304 .imm = IMM }) 305 306/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 307 308#define BPF_LD_ABS(SIZE, IMM) \ 309 ((struct bpf_insn) { \ 310 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 311 .dst_reg = 0, \ 312 .src_reg = 0, \ 313 .off = 0, \ 314 .imm = IMM }) 315 316/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 317 318#define BPF_LD_IND(SIZE, SRC, IMM) \ 319 ((struct bpf_insn) { \ 320 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 321 .dst_reg = 0, \ 322 .src_reg = SRC, \ 323 .off = 0, \ 324 .imm = IMM }) 325 326/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 327 328#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 329 ((struct bpf_insn) { \ 330 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 331 .dst_reg = DST, \ 332 .src_reg = SRC, \ 333 .off = OFF, \ 334 .imm = 0 }) 335 336/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 337 338#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 339 ((struct bpf_insn) { \ 340 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 341 .dst_reg = DST, \ 342 .src_reg = SRC, \ 343 .off = OFF, \ 344 .imm = 0 }) 345 346/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 347 348#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 349 ((struct bpf_insn) { \ 350 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 351 .dst_reg = DST, \ 352 .src_reg = SRC, \ 353 .off = OFF, \ 354 .imm = 0 }) 355 356 357/* 358 * Atomic operations: 359 * 360 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 361 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 362 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 363 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 364 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 365 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 366 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 367 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 368 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 369 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 370 * BPF_LOAD_ACQ dst_reg = smp_load_acquire(src_reg + off16) 371 * BPF_STORE_REL smp_store_release(dst_reg + off16, src_reg) 372 */ 373 374#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 375 ((struct bpf_insn) { \ 376 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 377 .dst_reg = DST, \ 378 .src_reg = SRC, \ 379 .off = OFF, \ 380 .imm = OP }) 381 382/* Legacy alias */ 383#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 384 385/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 386 387#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 388 ((struct bpf_insn) { \ 389 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 390 .dst_reg = DST, \ 391 .src_reg = 0, \ 392 .off = OFF, \ 393 .imm = IMM }) 394 395/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 396 397#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 398 ((struct bpf_insn) { \ 399 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 400 .dst_reg = DST, \ 401 .src_reg = SRC, \ 402 .off = OFF, \ 403 .imm = 0 }) 404 405/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 406 407#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 408 ((struct bpf_insn) { \ 409 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 410 .dst_reg = DST, \ 411 .src_reg = 0, \ 412 .off = OFF, \ 413 .imm = IMM }) 414 415/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 416 417#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 418 ((struct bpf_insn) { \ 419 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 420 .dst_reg = DST, \ 421 .src_reg = SRC, \ 422 .off = OFF, \ 423 .imm = 0 }) 424 425/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 426 427#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 428 ((struct bpf_insn) { \ 429 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 430 .dst_reg = DST, \ 431 .src_reg = 0, \ 432 .off = OFF, \ 433 .imm = IMM }) 434 435/* Unconditional jumps, goto pc + off16 */ 436 437#define BPF_JMP_A(OFF) \ 438 ((struct bpf_insn) { \ 439 .code = BPF_JMP | BPF_JA, \ 440 .dst_reg = 0, \ 441 .src_reg = 0, \ 442 .off = OFF, \ 443 .imm = 0 }) 444 445/* Unconditional jumps, gotol pc + imm32 */ 446 447#define BPF_JMP32_A(IMM) \ 448 ((struct bpf_insn) { \ 449 .code = BPF_JMP32 | BPF_JA, \ 450 .dst_reg = 0, \ 451 .src_reg = 0, \ 452 .off = 0, \ 453 .imm = IMM }) 454 455/* Relative call */ 456 457#define BPF_CALL_REL(TGT) \ 458 ((struct bpf_insn) { \ 459 .code = BPF_JMP | BPF_CALL, \ 460 .dst_reg = 0, \ 461 .src_reg = BPF_PSEUDO_CALL, \ 462 .off = 0, \ 463 .imm = TGT }) 464 465/* Convert function address to BPF immediate */ 466 467#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 468 469#define BPF_EMIT_CALL(FUNC) \ 470 ((struct bpf_insn) { \ 471 .code = BPF_JMP | BPF_CALL, \ 472 .dst_reg = 0, \ 473 .src_reg = 0, \ 474 .off = 0, \ 475 .imm = BPF_CALL_IMM(FUNC) }) 476 477/* Kfunc call */ 478 479#define BPF_CALL_KFUNC(OFF, IMM) \ 480 ((struct bpf_insn) { \ 481 .code = BPF_JMP | BPF_CALL, \ 482 .dst_reg = 0, \ 483 .src_reg = BPF_PSEUDO_KFUNC_CALL, \ 484 .off = OFF, \ 485 .imm = IMM }) 486 487/* Raw code statement block */ 488 489#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 490 ((struct bpf_insn) { \ 491 .code = CODE, \ 492 .dst_reg = DST, \ 493 .src_reg = SRC, \ 494 .off = OFF, \ 495 .imm = IMM }) 496 497/* Program exit */ 498 499#define BPF_EXIT_INSN() \ 500 ((struct bpf_insn) { \ 501 .code = BPF_JMP | BPF_EXIT, \ 502 .dst_reg = 0, \ 503 .src_reg = 0, \ 504 .off = 0, \ 505 .imm = 0 }) 506 507/* Speculation barrier */ 508 509#define BPF_ST_NOSPEC() \ 510 ((struct bpf_insn) { \ 511 .code = BPF_ST | BPF_NOSPEC, \ 512 .dst_reg = 0, \ 513 .src_reg = 0, \ 514 .off = 0, \ 515 .imm = 0 }) 516 517/* Internal classic blocks for direct assignment */ 518 519#define __BPF_STMT(CODE, K) \ 520 ((struct sock_filter) BPF_STMT(CODE, K)) 521 522#define __BPF_JUMP(CODE, K, JT, JF) \ 523 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 524 525#define bytes_to_bpf_size(bytes) \ 526({ \ 527 int bpf_size = -EINVAL; \ 528 \ 529 if (bytes == sizeof(u8)) \ 530 bpf_size = BPF_B; \ 531 else if (bytes == sizeof(u16)) \ 532 bpf_size = BPF_H; \ 533 else if (bytes == sizeof(u32)) \ 534 bpf_size = BPF_W; \ 535 else if (bytes == sizeof(u64)) \ 536 bpf_size = BPF_DW; \ 537 \ 538 bpf_size; \ 539}) 540 541#define bpf_size_to_bytes(bpf_size) \ 542({ \ 543 int bytes = -EINVAL; \ 544 \ 545 if (bpf_size == BPF_B) \ 546 bytes = sizeof(u8); \ 547 else if (bpf_size == BPF_H) \ 548 bytes = sizeof(u16); \ 549 else if (bpf_size == BPF_W) \ 550 bytes = sizeof(u32); \ 551 else if (bpf_size == BPF_DW) \ 552 bytes = sizeof(u64); \ 553 \ 554 bytes; \ 555}) 556 557#define BPF_SIZEOF(type) \ 558 ({ \ 559 const int __size = bytes_to_bpf_size(sizeof(type)); \ 560 BUILD_BUG_ON(__size < 0); \ 561 __size; \ 562 }) 563 564#define BPF_FIELD_SIZEOF(type, field) \ 565 ({ \ 566 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 567 BUILD_BUG_ON(__size < 0); \ 568 __size; \ 569 }) 570 571#define BPF_LDST_BYTES(insn) \ 572 ({ \ 573 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 574 WARN_ON(__size < 0); \ 575 __size; \ 576 }) 577 578#define __BPF_MAP_0(m, v, ...) v 579#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 580#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 581#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 582#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 583#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 584 585#define __BPF_REG_0(...) __BPF_PAD(5) 586#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 587#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 588#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 589#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 590#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 591 592#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 593#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 594 595#define __BPF_CAST(t, a) \ 596 (__force t) \ 597 (__force \ 598 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 599 (unsigned long)0, (t)0))) a 600#define __BPF_V void 601#define __BPF_N 602 603#define __BPF_DECL_ARGS(t, a) t a 604#define __BPF_DECL_REGS(t, a) u64 a 605 606#define __BPF_PAD(n) \ 607 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 608 u64, __ur_3, u64, __ur_4, u64, __ur_5) 609 610#define BPF_CALL_x(x, attr, name, ...) \ 611 static __always_inline \ 612 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 613 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 614 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 615 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 616 { \ 617 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 618 } \ 619 static __always_inline \ 620 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 621 622#define __NOATTR 623#define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 624#define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 625#define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 626#define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 627#define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 628#define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 629 630#define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 631 632#define bpf_ctx_range(TYPE, MEMBER) \ 633 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 634#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 635 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 636#if BITS_PER_LONG == 64 637# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 638 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 639#else 640# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 641 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 642#endif /* BITS_PER_LONG == 64 */ 643 644#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 645 ({ \ 646 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 647 *(PTR_SIZE) = (SIZE); \ 648 offsetof(TYPE, MEMBER); \ 649 }) 650 651/* A struct sock_filter is architecture independent. */ 652struct compat_sock_fprog { 653 u16 len; 654 compat_uptr_t filter; /* struct sock_filter * */ 655}; 656 657struct sock_fprog_kern { 658 u16 len; 659 struct sock_filter *filter; 660}; 661 662/* Some arches need doubleword alignment for their instructions and/or data */ 663#define BPF_IMAGE_ALIGNMENT 8 664 665struct bpf_binary_header { 666 u32 size; 667 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 668}; 669 670struct bpf_prog_stats { 671 u64_stats_t cnt; 672 u64_stats_t nsecs; 673 u64_stats_t misses; 674 struct u64_stats_sync syncp; 675} __aligned(2 * sizeof(u64)); 676 677struct bpf_timed_may_goto { 678 u64 count; 679 u64 timestamp; 680}; 681 682struct sk_filter { 683 refcount_t refcnt; 684 struct rcu_head rcu; 685 struct bpf_prog *prog; 686}; 687 688DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 689 690extern struct mutex nf_conn_btf_access_lock; 691extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 692 const struct bpf_reg_state *reg, 693 int off, int size); 694 695typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 696 const struct bpf_insn *insnsi, 697 unsigned int (*bpf_func)(const void *, 698 const struct bpf_insn *)); 699 700static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 701 const void *ctx, 702 bpf_dispatcher_fn dfunc) 703{ 704 u32 ret; 705 706 cant_migrate(); 707 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 708 struct bpf_prog_stats *stats; 709 u64 duration, start = sched_clock(); 710 unsigned long flags; 711 712 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 713 714 duration = sched_clock() - start; 715 stats = this_cpu_ptr(prog->stats); 716 flags = u64_stats_update_begin_irqsave(&stats->syncp); 717 u64_stats_inc(&stats->cnt); 718 u64_stats_add(&stats->nsecs, duration); 719 u64_stats_update_end_irqrestore(&stats->syncp, flags); 720 } else { 721 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 722 } 723 return ret; 724} 725 726static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 727{ 728 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 729} 730 731/* 732 * Use in preemptible and therefore migratable context to make sure that 733 * the execution of the BPF program runs on one CPU. 734 * 735 * This uses migrate_disable/enable() explicitly to document that the 736 * invocation of a BPF program does not require reentrancy protection 737 * against a BPF program which is invoked from a preempting task. 738 */ 739static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 740 const void *ctx) 741{ 742 u32 ret; 743 744 migrate_disable(); 745 ret = bpf_prog_run(prog, ctx); 746 migrate_enable(); 747 return ret; 748} 749 750#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 751 752struct bpf_skb_data_end { 753 struct qdisc_skb_cb qdisc_cb; 754 void *data_meta; 755 void *data_end; 756}; 757 758struct bpf_nh_params { 759 u32 nh_family; 760 union { 761 u32 ipv4_nh; 762 struct in6_addr ipv6_nh; 763 }; 764}; 765 766/* flags for bpf_redirect_info kern_flags */ 767#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 768#define BPF_RI_F_RI_INIT BIT(1) 769#define BPF_RI_F_CPU_MAP_INIT BIT(2) 770#define BPF_RI_F_DEV_MAP_INIT BIT(3) 771#define BPF_RI_F_XSK_MAP_INIT BIT(4) 772 773struct bpf_redirect_info { 774 u64 tgt_index; 775 void *tgt_value; 776 struct bpf_map *map; 777 u32 flags; 778 u32 map_id; 779 enum bpf_map_type map_type; 780 struct bpf_nh_params nh; 781 u32 kern_flags; 782}; 783 784struct bpf_net_context { 785 struct bpf_redirect_info ri; 786 struct list_head cpu_map_flush_list; 787 struct list_head dev_map_flush_list; 788 struct list_head xskmap_map_flush_list; 789}; 790 791static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx) 792{ 793 struct task_struct *tsk = current; 794 795 if (tsk->bpf_net_context != NULL) 796 return NULL; 797 bpf_net_ctx->ri.kern_flags = 0; 798 799 tsk->bpf_net_context = bpf_net_ctx; 800 return bpf_net_ctx; 801} 802 803static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx) 804{ 805 if (bpf_net_ctx) 806 current->bpf_net_context = NULL; 807} 808 809static inline struct bpf_net_context *bpf_net_ctx_get(void) 810{ 811 return current->bpf_net_context; 812} 813 814static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void) 815{ 816 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 817 818 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) { 819 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh)); 820 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT; 821 } 822 823 return &bpf_net_ctx->ri; 824} 825 826static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void) 827{ 828 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 829 830 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) { 831 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list); 832 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT; 833 } 834 835 return &bpf_net_ctx->cpu_map_flush_list; 836} 837 838static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void) 839{ 840 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 841 842 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) { 843 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list); 844 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT; 845 } 846 847 return &bpf_net_ctx->dev_map_flush_list; 848} 849 850static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void) 851{ 852 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 853 854 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) { 855 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list); 856 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT; 857 } 858 859 return &bpf_net_ctx->xskmap_map_flush_list; 860} 861 862static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map, 863 struct list_head **lh_dev, 864 struct list_head **lh_xsk) 865{ 866 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 867 u32 kern_flags = bpf_net_ctx->ri.kern_flags; 868 struct list_head *lh; 869 870 *lh_map = *lh_dev = *lh_xsk = NULL; 871 872 if (!IS_ENABLED(CONFIG_BPF_SYSCALL)) 873 return; 874 875 lh = &bpf_net_ctx->dev_map_flush_list; 876 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh)) 877 *lh_dev = lh; 878 879 lh = &bpf_net_ctx->cpu_map_flush_list; 880 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh)) 881 *lh_map = lh; 882 883 lh = &bpf_net_ctx->xskmap_map_flush_list; 884 if (IS_ENABLED(CONFIG_XDP_SOCKETS) && 885 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh)) 886 *lh_xsk = lh; 887} 888 889/* Compute the linear packet data range [data, data_end) which 890 * will be accessed by various program types (cls_bpf, act_bpf, 891 * lwt, ...). Subsystems allowing direct data access must (!) 892 * ensure that cb[] area can be written to when BPF program is 893 * invoked (otherwise cb[] save/restore is necessary). 894 */ 895static inline void bpf_compute_data_pointers(struct sk_buff *skb) 896{ 897 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 898 899 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 900 cb->data_meta = skb->data - skb_metadata_len(skb); 901 cb->data_end = skb->data + skb_headlen(skb); 902} 903 904/* Similar to bpf_compute_data_pointers(), except that save orginal 905 * data in cb->data and cb->meta_data for restore. 906 */ 907static inline void bpf_compute_and_save_data_end( 908 struct sk_buff *skb, void **saved_data_end) 909{ 910 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 911 912 *saved_data_end = cb->data_end; 913 cb->data_end = skb->data + skb_headlen(skb); 914} 915 916/* Restore data saved by bpf_compute_and_save_data_end(). */ 917static inline void bpf_restore_data_end( 918 struct sk_buff *skb, void *saved_data_end) 919{ 920 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 921 922 cb->data_end = saved_data_end; 923} 924 925static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 926{ 927 /* eBPF programs may read/write skb->cb[] area to transfer meta 928 * data between tail calls. Since this also needs to work with 929 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 930 * 931 * In some socket filter cases, the cb unfortunately needs to be 932 * saved/restored so that protocol specific skb->cb[] data won't 933 * be lost. In any case, due to unpriviledged eBPF programs 934 * attached to sockets, we need to clear the bpf_skb_cb() area 935 * to not leak previous contents to user space. 936 */ 937 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 938 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 939 sizeof_field(struct qdisc_skb_cb, data)); 940 941 return qdisc_skb_cb(skb)->data; 942} 943 944/* Must be invoked with migration disabled */ 945static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 946 const void *ctx) 947{ 948 const struct sk_buff *skb = ctx; 949 u8 *cb_data = bpf_skb_cb(skb); 950 u8 cb_saved[BPF_SKB_CB_LEN]; 951 u32 res; 952 953 if (unlikely(prog->cb_access)) { 954 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 955 memset(cb_data, 0, sizeof(cb_saved)); 956 } 957 958 res = bpf_prog_run(prog, skb); 959 960 if (unlikely(prog->cb_access)) 961 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 962 963 return res; 964} 965 966static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 967 struct sk_buff *skb) 968{ 969 u32 res; 970 971 migrate_disable(); 972 res = __bpf_prog_run_save_cb(prog, skb); 973 migrate_enable(); 974 return res; 975} 976 977static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 978 struct sk_buff *skb) 979{ 980 u8 *cb_data = bpf_skb_cb(skb); 981 u32 res; 982 983 if (unlikely(prog->cb_access)) 984 memset(cb_data, 0, BPF_SKB_CB_LEN); 985 986 res = bpf_prog_run_pin_on_cpu(prog, skb); 987 return res; 988} 989 990DECLARE_BPF_DISPATCHER(xdp) 991 992DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 993 994u32 xdp_master_redirect(struct xdp_buff *xdp); 995 996void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 997 998static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 999{ 1000 return prog->len * sizeof(struct bpf_insn); 1001} 1002 1003static inline unsigned int bpf_prog_size(unsigned int proglen) 1004{ 1005 return max(sizeof(struct bpf_prog), 1006 offsetof(struct bpf_prog, insns[proglen])); 1007} 1008 1009static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 1010{ 1011 /* When classic BPF programs have been loaded and the arch 1012 * does not have a classic BPF JIT (anymore), they have been 1013 * converted via bpf_migrate_filter() to eBPF and thus always 1014 * have an unspec program type. 1015 */ 1016 return prog->type == BPF_PROG_TYPE_UNSPEC; 1017} 1018 1019static inline u32 bpf_ctx_off_adjust_machine(u32 size) 1020{ 1021 const u32 size_machine = sizeof(unsigned long); 1022 1023 if (size > size_machine && size % size_machine == 0) 1024 size = size_machine; 1025 1026 return size; 1027} 1028 1029static inline bool 1030bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 1031{ 1032 return size <= size_default && (size & (size - 1)) == 0; 1033} 1034 1035static inline u8 1036bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 1037{ 1038 u8 access_off = off & (size_default - 1); 1039 1040#ifdef __LITTLE_ENDIAN 1041 return access_off; 1042#else 1043 return size_default - (access_off + size); 1044#endif 1045} 1046 1047#define bpf_ctx_wide_access_ok(off, size, type, field) \ 1048 (size == sizeof(__u64) && \ 1049 off >= offsetof(type, field) && \ 1050 off + sizeof(__u64) <= offsetofend(type, field) && \ 1051 off % sizeof(__u64) == 0) 1052 1053#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 1054 1055static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 1056{ 1057#ifndef CONFIG_BPF_JIT_ALWAYS_ON 1058 if (!fp->jited) { 1059 set_vm_flush_reset_perms(fp); 1060 return set_memory_ro((unsigned long)fp, fp->pages); 1061 } 1062#endif 1063 return 0; 1064} 1065 1066static inline int __must_check 1067bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 1068{ 1069 set_vm_flush_reset_perms(hdr); 1070 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 1071} 1072 1073int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap, 1074 enum skb_drop_reason *reason); 1075 1076static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 1077{ 1078 enum skb_drop_reason ignore_reason; 1079 1080 return sk_filter_trim_cap(sk, skb, 1, &ignore_reason); 1081} 1082 1083static inline int sk_filter_reason(struct sock *sk, struct sk_buff *skb, 1084 enum skb_drop_reason *reason) 1085{ 1086 return sk_filter_trim_cap(sk, skb, 1, reason); 1087} 1088 1089struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 1090void bpf_prog_free(struct bpf_prog *fp); 1091 1092bool bpf_opcode_in_insntable(u8 code); 1093 1094void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 1095 const u32 *insn_to_jit_off); 1096int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 1097void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 1098 1099struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 1100struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 1101struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 1102 gfp_t gfp_extra_flags); 1103void __bpf_prog_free(struct bpf_prog *fp); 1104 1105static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 1106{ 1107 __bpf_prog_free(fp); 1108} 1109 1110typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 1111 unsigned int flen); 1112 1113int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 1114int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1115 bpf_aux_classic_check_t trans, bool save_orig); 1116void bpf_prog_destroy(struct bpf_prog *fp); 1117 1118int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1119int sk_attach_bpf(u32 ufd, struct sock *sk); 1120int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1121int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 1122void sk_reuseport_prog_free(struct bpf_prog *prog); 1123int sk_detach_filter(struct sock *sk); 1124int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 1125 1126bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 1127void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 1128 1129u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 1130#define __bpf_call_base_args \ 1131 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 1132 (void *)__bpf_call_base) 1133 1134struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 1135void bpf_jit_compile(struct bpf_prog *prog); 1136bool bpf_jit_needs_zext(void); 1137bool bpf_jit_inlines_helper_call(s32 imm); 1138bool bpf_jit_supports_subprog_tailcalls(void); 1139bool bpf_jit_supports_percpu_insn(void); 1140bool bpf_jit_supports_kfunc_call(void); 1141bool bpf_jit_supports_far_kfunc_call(void); 1142bool bpf_jit_supports_exceptions(void); 1143bool bpf_jit_supports_ptr_xchg(void); 1144bool bpf_jit_supports_arena(void); 1145bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); 1146bool bpf_jit_supports_private_stack(void); 1147bool bpf_jit_supports_timed_may_goto(void); 1148u64 bpf_arch_uaddress_limit(void); 1149void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 1150u64 arch_bpf_timed_may_goto(void); 1151u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *); 1152bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id); 1153 1154static inline bool bpf_dump_raw_ok(const struct cred *cred) 1155{ 1156 /* Reconstruction of call-sites is dependent on kallsyms, 1157 * thus make dump the same restriction. 1158 */ 1159 return kallsyms_show_value(cred); 1160} 1161 1162struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 1163 const struct bpf_insn *patch, u32 len); 1164int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 1165 1166static inline bool xdp_return_frame_no_direct(void) 1167{ 1168 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1169 1170 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1171} 1172 1173static inline void xdp_set_return_frame_no_direct(void) 1174{ 1175 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1176 1177 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1178} 1179 1180static inline void xdp_clear_return_frame_no_direct(void) 1181{ 1182 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1183 1184 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1185} 1186 1187static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1188 unsigned int pktlen) 1189{ 1190 unsigned int len; 1191 1192 if (unlikely(!(fwd->flags & IFF_UP))) 1193 return -ENETDOWN; 1194 1195 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1196 if (pktlen > len) 1197 return -EMSGSIZE; 1198 1199 return 0; 1200} 1201 1202/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1203 * same cpu context. Further for best results no more than a single map 1204 * for the do_redirect/do_flush pair should be used. This limitation is 1205 * because we only track one map and force a flush when the map changes. 1206 * This does not appear to be a real limitation for existing software. 1207 */ 1208int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1209 struct xdp_buff *xdp, const struct bpf_prog *prog); 1210int xdp_do_redirect(struct net_device *dev, 1211 struct xdp_buff *xdp, 1212 const struct bpf_prog *prog); 1213int xdp_do_redirect_frame(struct net_device *dev, 1214 struct xdp_buff *xdp, 1215 struct xdp_frame *xdpf, 1216 const struct bpf_prog *prog); 1217void xdp_do_flush(void); 1218 1219void bpf_warn_invalid_xdp_action(const struct net_device *dev, 1220 const struct bpf_prog *prog, u32 act); 1221 1222#ifdef CONFIG_INET 1223struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1224 struct bpf_prog *prog, struct sk_buff *skb, 1225 struct sock *migrating_sk, 1226 u32 hash); 1227#else 1228static inline struct sock * 1229bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1230 struct bpf_prog *prog, struct sk_buff *skb, 1231 struct sock *migrating_sk, 1232 u32 hash) 1233{ 1234 return NULL; 1235} 1236#endif 1237 1238#ifdef CONFIG_BPF_JIT 1239extern int bpf_jit_enable; 1240extern int bpf_jit_harden; 1241extern int bpf_jit_kallsyms; 1242extern long bpf_jit_limit; 1243extern long bpf_jit_limit_max; 1244 1245typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1246 1247void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1248 1249struct bpf_binary_header * 1250bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1251 unsigned int alignment, 1252 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1253void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1254u64 bpf_jit_alloc_exec_limit(void); 1255void *bpf_jit_alloc_exec(unsigned long size); 1256void bpf_jit_free_exec(void *addr); 1257void bpf_jit_free(struct bpf_prog *fp); 1258struct bpf_binary_header * 1259bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1260 1261void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1262void bpf_prog_pack_free(void *ptr, u32 size); 1263 1264static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1265{ 1266 return list_empty(&fp->aux->ksym.lnode) || 1267 fp->aux->ksym.lnode.prev == LIST_POISON2; 1268} 1269 1270struct bpf_binary_header * 1271bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1272 unsigned int alignment, 1273 struct bpf_binary_header **rw_hdr, 1274 u8 **rw_image, 1275 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1276int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, 1277 struct bpf_binary_header *rw_header); 1278void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1279 struct bpf_binary_header *rw_header); 1280 1281int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1282 struct bpf_jit_poke_descriptor *poke); 1283 1284int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1285 const struct bpf_insn *insn, bool extra_pass, 1286 u64 *func_addr, bool *func_addr_fixed); 1287 1288const char *bpf_jit_get_prog_name(struct bpf_prog *prog); 1289 1290struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1291void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1292 1293static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1294 u32 pass, void *image) 1295{ 1296 pr_err("flen=%u proglen=%u pass=%u image=%p from=%s pid=%d\n", flen, 1297 proglen, pass, image, current->comm, task_pid_nr(current)); 1298 1299 if (image) 1300 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1301 16, 1, image, proglen, false); 1302} 1303 1304static inline bool bpf_jit_is_ebpf(void) 1305{ 1306# ifdef CONFIG_HAVE_EBPF_JIT 1307 return true; 1308# else 1309 return false; 1310# endif 1311} 1312 1313static inline bool ebpf_jit_enabled(void) 1314{ 1315 return bpf_jit_enable && bpf_jit_is_ebpf(); 1316} 1317 1318static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1319{ 1320 return fp->jited && bpf_jit_is_ebpf(); 1321} 1322 1323static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1324{ 1325 /* These are the prerequisites, should someone ever have the 1326 * idea to call blinding outside of them, we make sure to 1327 * bail out. 1328 */ 1329 if (!bpf_jit_is_ebpf()) 1330 return false; 1331 if (!prog->jit_requested) 1332 return false; 1333 if (!bpf_jit_harden) 1334 return false; 1335 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1336 return false; 1337 1338 return true; 1339} 1340 1341static inline bool bpf_jit_kallsyms_enabled(void) 1342{ 1343 /* There are a couple of corner cases where kallsyms should 1344 * not be enabled f.e. on hardening. 1345 */ 1346 if (bpf_jit_harden) 1347 return false; 1348 if (!bpf_jit_kallsyms) 1349 return false; 1350 if (bpf_jit_kallsyms == 1) 1351 return true; 1352 1353 return false; 1354} 1355 1356int __bpf_address_lookup(unsigned long addr, unsigned long *size, 1357 unsigned long *off, char *sym); 1358bool is_bpf_text_address(unsigned long addr); 1359int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1360 char *sym); 1361struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1362 1363static inline int 1364bpf_address_lookup(unsigned long addr, unsigned long *size, 1365 unsigned long *off, char **modname, char *sym) 1366{ 1367 int ret = __bpf_address_lookup(addr, size, off, sym); 1368 1369 if (ret && modname) 1370 *modname = NULL; 1371 return ret; 1372} 1373 1374void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1375void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1376 1377#else /* CONFIG_BPF_JIT */ 1378 1379static inline bool ebpf_jit_enabled(void) 1380{ 1381 return false; 1382} 1383 1384static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1385{ 1386 return false; 1387} 1388 1389static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1390{ 1391 return false; 1392} 1393 1394static inline int 1395bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1396 struct bpf_jit_poke_descriptor *poke) 1397{ 1398 return -ENOTSUPP; 1399} 1400 1401static inline void bpf_jit_free(struct bpf_prog *fp) 1402{ 1403 bpf_prog_unlock_free(fp); 1404} 1405 1406static inline bool bpf_jit_kallsyms_enabled(void) 1407{ 1408 return false; 1409} 1410 1411static inline int 1412__bpf_address_lookup(unsigned long addr, unsigned long *size, 1413 unsigned long *off, char *sym) 1414{ 1415 return 0; 1416} 1417 1418static inline bool is_bpf_text_address(unsigned long addr) 1419{ 1420 return false; 1421} 1422 1423static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1424 char *type, char *sym) 1425{ 1426 return -ERANGE; 1427} 1428 1429static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1430{ 1431 return NULL; 1432} 1433 1434static inline int 1435bpf_address_lookup(unsigned long addr, unsigned long *size, 1436 unsigned long *off, char **modname, char *sym) 1437{ 1438 return 0; 1439} 1440 1441static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1442{ 1443} 1444 1445static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1446{ 1447} 1448 1449#endif /* CONFIG_BPF_JIT */ 1450 1451void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1452 1453#define BPF_ANC BIT(15) 1454 1455static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1456{ 1457 switch (first->code) { 1458 case BPF_RET | BPF_K: 1459 case BPF_LD | BPF_W | BPF_LEN: 1460 return false; 1461 1462 case BPF_LD | BPF_W | BPF_ABS: 1463 case BPF_LD | BPF_H | BPF_ABS: 1464 case BPF_LD | BPF_B | BPF_ABS: 1465 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1466 return true; 1467 return false; 1468 1469 default: 1470 return true; 1471 } 1472} 1473 1474static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1475{ 1476 BUG_ON(ftest->code & BPF_ANC); 1477 1478 switch (ftest->code) { 1479 case BPF_LD | BPF_W | BPF_ABS: 1480 case BPF_LD | BPF_H | BPF_ABS: 1481 case BPF_LD | BPF_B | BPF_ABS: 1482#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1483 return BPF_ANC | SKF_AD_##CODE 1484 switch (ftest->k) { 1485 BPF_ANCILLARY(PROTOCOL); 1486 BPF_ANCILLARY(PKTTYPE); 1487 BPF_ANCILLARY(IFINDEX); 1488 BPF_ANCILLARY(NLATTR); 1489 BPF_ANCILLARY(NLATTR_NEST); 1490 BPF_ANCILLARY(MARK); 1491 BPF_ANCILLARY(QUEUE); 1492 BPF_ANCILLARY(HATYPE); 1493 BPF_ANCILLARY(RXHASH); 1494 BPF_ANCILLARY(CPU); 1495 BPF_ANCILLARY(ALU_XOR_X); 1496 BPF_ANCILLARY(VLAN_TAG); 1497 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1498 BPF_ANCILLARY(PAY_OFFSET); 1499 BPF_ANCILLARY(RANDOM); 1500 BPF_ANCILLARY(VLAN_TPID); 1501 } 1502 fallthrough; 1503 default: 1504 return ftest->code; 1505 } 1506} 1507 1508void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1509 int k, unsigned int size); 1510 1511static inline int bpf_tell_extensions(void) 1512{ 1513 return SKF_AD_MAX; 1514} 1515 1516struct bpf_sock_addr_kern { 1517 struct sock *sk; 1518 struct sockaddr *uaddr; 1519 /* Temporary "register" to make indirect stores to nested structures 1520 * defined above. We need three registers to make such a store, but 1521 * only two (src and dst) are available at convert_ctx_access time 1522 */ 1523 u64 tmp_reg; 1524 void *t_ctx; /* Attach type specific context. */ 1525 u32 uaddrlen; 1526}; 1527 1528struct bpf_sock_ops_kern { 1529 struct sock *sk; 1530 union { 1531 u32 args[4]; 1532 u32 reply; 1533 u32 replylong[4]; 1534 }; 1535 struct sk_buff *syn_skb; 1536 struct sk_buff *skb; 1537 void *skb_data_end; 1538 u8 op; 1539 u8 is_fullsock; 1540 u8 is_locked_tcp_sock; 1541 u8 remaining_opt_len; 1542 u64 temp; /* temp and everything after is not 1543 * initialized to 0 before calling 1544 * the BPF program. New fields that 1545 * should be initialized to 0 should 1546 * be inserted before temp. 1547 * temp is scratch storage used by 1548 * sock_ops_convert_ctx_access 1549 * as temporary storage of a register. 1550 */ 1551}; 1552 1553struct bpf_sysctl_kern { 1554 struct ctl_table_header *head; 1555 const struct ctl_table *table; 1556 void *cur_val; 1557 size_t cur_len; 1558 void *new_val; 1559 size_t new_len; 1560 int new_updated; 1561 int write; 1562 loff_t *ppos; 1563 /* Temporary "register" for indirect stores to ppos. */ 1564 u64 tmp_reg; 1565}; 1566 1567#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1568struct bpf_sockopt_buf { 1569 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1570}; 1571 1572struct bpf_sockopt_kern { 1573 struct sock *sk; 1574 u8 *optval; 1575 u8 *optval_end; 1576 s32 level; 1577 s32 optname; 1578 s32 optlen; 1579 /* for retval in struct bpf_cg_run_ctx */ 1580 struct task_struct *current_task; 1581 /* Temporary "register" for indirect stores to ppos. */ 1582 u64 tmp_reg; 1583}; 1584 1585int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1586 1587struct bpf_sk_lookup_kern { 1588 u16 family; 1589 u16 protocol; 1590 __be16 sport; 1591 u16 dport; 1592 struct { 1593 __be32 saddr; 1594 __be32 daddr; 1595 } v4; 1596 struct { 1597 const struct in6_addr *saddr; 1598 const struct in6_addr *daddr; 1599 } v6; 1600 struct sock *selected_sk; 1601 u32 ingress_ifindex; 1602 bool no_reuseport; 1603}; 1604 1605extern struct static_key_false bpf_sk_lookup_enabled; 1606 1607/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1608 * 1609 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1610 * SK_DROP. Their meaning is as follows: 1611 * 1612 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1613 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1614 * SK_DROP : terminate lookup with -ECONNREFUSED 1615 * 1616 * This macro aggregates return values and selected sockets from 1617 * multiple BPF programs according to following rules in order: 1618 * 1619 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1620 * macro result is SK_PASS and last ctx.selected_sk is used. 1621 * 2. If any program returned SK_DROP return value, 1622 * macro result is SK_DROP. 1623 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1624 * 1625 * Caller must ensure that the prog array is non-NULL, and that the 1626 * array as well as the programs it contains remain valid. 1627 */ 1628#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1629 ({ \ 1630 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1631 struct bpf_prog_array_item *_item; \ 1632 struct sock *_selected_sk = NULL; \ 1633 bool _no_reuseport = false; \ 1634 struct bpf_prog *_prog; \ 1635 bool _all_pass = true; \ 1636 u32 _ret; \ 1637 \ 1638 migrate_disable(); \ 1639 _item = &(array)->items[0]; \ 1640 while ((_prog = READ_ONCE(_item->prog))) { \ 1641 /* restore most recent selection */ \ 1642 _ctx->selected_sk = _selected_sk; \ 1643 _ctx->no_reuseport = _no_reuseport; \ 1644 \ 1645 _ret = func(_prog, _ctx); \ 1646 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1647 /* remember last non-NULL socket */ \ 1648 _selected_sk = _ctx->selected_sk; \ 1649 _no_reuseport = _ctx->no_reuseport; \ 1650 } else if (_ret == SK_DROP && _all_pass) { \ 1651 _all_pass = false; \ 1652 } \ 1653 _item++; \ 1654 } \ 1655 _ctx->selected_sk = _selected_sk; \ 1656 _ctx->no_reuseport = _no_reuseport; \ 1657 migrate_enable(); \ 1658 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1659 }) 1660 1661static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol, 1662 const __be32 saddr, const __be16 sport, 1663 const __be32 daddr, const u16 dport, 1664 const int ifindex, struct sock **psk) 1665{ 1666 struct bpf_prog_array *run_array; 1667 struct sock *selected_sk = NULL; 1668 bool no_reuseport = false; 1669 1670 rcu_read_lock(); 1671 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1672 if (run_array) { 1673 struct bpf_sk_lookup_kern ctx = { 1674 .family = AF_INET, 1675 .protocol = protocol, 1676 .v4.saddr = saddr, 1677 .v4.daddr = daddr, 1678 .sport = sport, 1679 .dport = dport, 1680 .ingress_ifindex = ifindex, 1681 }; 1682 u32 act; 1683 1684 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1685 if (act == SK_PASS) { 1686 selected_sk = ctx.selected_sk; 1687 no_reuseport = ctx.no_reuseport; 1688 } else { 1689 selected_sk = ERR_PTR(-ECONNREFUSED); 1690 } 1691 } 1692 rcu_read_unlock(); 1693 *psk = selected_sk; 1694 return no_reuseport; 1695} 1696 1697#if IS_ENABLED(CONFIG_IPV6) 1698static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol, 1699 const struct in6_addr *saddr, 1700 const __be16 sport, 1701 const struct in6_addr *daddr, 1702 const u16 dport, 1703 const int ifindex, struct sock **psk) 1704{ 1705 struct bpf_prog_array *run_array; 1706 struct sock *selected_sk = NULL; 1707 bool no_reuseport = false; 1708 1709 rcu_read_lock(); 1710 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1711 if (run_array) { 1712 struct bpf_sk_lookup_kern ctx = { 1713 .family = AF_INET6, 1714 .protocol = protocol, 1715 .v6.saddr = saddr, 1716 .v6.daddr = daddr, 1717 .sport = sport, 1718 .dport = dport, 1719 .ingress_ifindex = ifindex, 1720 }; 1721 u32 act; 1722 1723 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1724 if (act == SK_PASS) { 1725 selected_sk = ctx.selected_sk; 1726 no_reuseport = ctx.no_reuseport; 1727 } else { 1728 selected_sk = ERR_PTR(-ECONNREFUSED); 1729 } 1730 } 1731 rcu_read_unlock(); 1732 *psk = selected_sk; 1733 return no_reuseport; 1734} 1735#endif /* IS_ENABLED(CONFIG_IPV6) */ 1736 1737static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1738 u64 flags, const u64 flag_mask, 1739 void *lookup_elem(struct bpf_map *map, u32 key)) 1740{ 1741 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1742 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1743 1744 /* Lower bits of the flags are used as return code on lookup failure */ 1745 if (unlikely(flags & ~(action_mask | flag_mask))) 1746 return XDP_ABORTED; 1747 1748 ri->tgt_value = lookup_elem(map, index); 1749 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1750 /* If the lookup fails we want to clear out the state in the 1751 * redirect_info struct completely, so that if an eBPF program 1752 * performs multiple lookups, the last one always takes 1753 * precedence. 1754 */ 1755 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1756 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1757 return flags & action_mask; 1758 } 1759 1760 ri->tgt_index = index; 1761 ri->map_id = map->id; 1762 ri->map_type = map->map_type; 1763 1764 if (flags & BPF_F_BROADCAST) { 1765 WRITE_ONCE(ri->map, map); 1766 ri->flags = flags; 1767 } else { 1768 WRITE_ONCE(ri->map, NULL); 1769 ri->flags = 0; 1770 } 1771 1772 return XDP_REDIRECT; 1773} 1774 1775#ifdef CONFIG_NET 1776int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1777int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1778 u32 len, u64 flags); 1779int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1780int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1781void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1782void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1783 void *buf, unsigned long len, bool flush); 1784void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset); 1785#else /* CONFIG_NET */ 1786static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1787 void *to, u32 len) 1788{ 1789 return -EOPNOTSUPP; 1790} 1791 1792static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1793 const void *from, u32 len, u64 flags) 1794{ 1795 return -EOPNOTSUPP; 1796} 1797 1798static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1799 void *buf, u32 len) 1800{ 1801 return -EOPNOTSUPP; 1802} 1803 1804static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1805 void *buf, u32 len) 1806{ 1807 return -EOPNOTSUPP; 1808} 1809 1810static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1811{ 1812 return NULL; 1813} 1814 1815static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1816 unsigned long len, bool flush) 1817{ 1818} 1819 1820static inline void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset) 1821{ 1822 return ERR_PTR(-EOPNOTSUPP); 1823} 1824#endif /* CONFIG_NET */ 1825 1826#endif /* __LINUX_FILTER_H__ */