Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14/* #define DEBUG */
15/* #define VERBOSE_DEBUG */
16
17#include <linux/blkdev.h>
18#include <linux/dma-buf.h>
19#include <linux/dma-fence.h>
20#include <linux/dma-resv.h>
21#include <linux/pagemap.h>
22#include <linux/export.h>
23#include <linux/fs_parser.h>
24#include <linux/hid.h>
25#include <linux/mm.h>
26#include <linux/module.h>
27#include <linux/scatterlist.h>
28#include <linux/sched/signal.h>
29#include <linux/uio.h>
30#include <linux/vmalloc.h>
31#include <linux/unaligned.h>
32
33#include <linux/usb/ccid.h>
34#include <linux/usb/composite.h>
35#include <linux/usb/functionfs.h>
36#include <linux/usb/func_utils.h>
37
38#include <linux/aio.h>
39#include <linux/kthread.h>
40#include <linux/poll.h>
41#include <linux/eventfd.h>
42
43#include "u_fs.h"
44#include "u_os_desc.h"
45#include "configfs.h"
46
47#define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
48#define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */
49
50#define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51
52MODULE_IMPORT_NS("DMA_BUF");
53
54/* Reference counter handling */
55static void ffs_data_get(struct ffs_data *ffs);
56static void ffs_data_put(struct ffs_data *ffs);
57/* Creates new ffs_data object. */
58static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 __attribute__((malloc));
60
61/* Opened counter handling. */
62static void ffs_data_opened(struct ffs_data *ffs);
63static void ffs_data_closed(struct ffs_data *ffs);
64
65/* Called with ffs->mutex held; take over ownership of data. */
66static int __must_check
67__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68static int __must_check
69__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70
71
72/* The function structure ***************************************************/
73
74struct ffs_ep;
75
76struct ffs_function {
77 struct usb_configuration *conf;
78 struct usb_gadget *gadget;
79 struct ffs_data *ffs;
80
81 struct ffs_ep *eps;
82 u8 eps_revmap[16];
83 short *interfaces_nums;
84
85 struct usb_function function;
86 int cur_alt[MAX_CONFIG_INTERFACES];
87};
88
89
90static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91{
92 return container_of(f, struct ffs_function, function);
93}
94
95
96static inline enum ffs_setup_state
97ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98{
99 return (enum ffs_setup_state)
100 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101}
102
103
104static void ffs_func_eps_disable(struct ffs_function *func);
105static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106
107static int ffs_func_bind(struct usb_configuration *,
108 struct usb_function *);
109static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111static void ffs_func_disable(struct usb_function *);
112static int ffs_func_setup(struct usb_function *,
113 const struct usb_ctrlrequest *);
114static bool ffs_func_req_match(struct usb_function *,
115 const struct usb_ctrlrequest *,
116 bool config0);
117static void ffs_func_suspend(struct usb_function *);
118static void ffs_func_resume(struct usb_function *);
119
120
121static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123
124
125/* The endpoints structures *************************************************/
126
127struct ffs_ep {
128 struct usb_ep *ep; /* P: ffs->eps_lock */
129 struct usb_request *req; /* P: epfile->mutex */
130
131 /* [0]: full speed, [1]: high speed, [2]: super speed */
132 struct usb_endpoint_descriptor *descs[3];
133
134 u8 num;
135};
136
137struct ffs_dmabuf_priv {
138 struct list_head entry;
139 struct kref ref;
140 struct ffs_data *ffs;
141 struct dma_buf_attachment *attach;
142 struct sg_table *sgt;
143 enum dma_data_direction dir;
144 spinlock_t lock;
145 u64 context;
146 struct usb_request *req; /* P: ffs->eps_lock */
147 struct usb_ep *ep; /* P: ffs->eps_lock */
148};
149
150struct ffs_dma_fence {
151 struct dma_fence base;
152 struct ffs_dmabuf_priv *priv;
153 struct work_struct work;
154};
155
156struct ffs_epfile {
157 /* Protects ep->ep and ep->req. */
158 struct mutex mutex;
159
160 struct ffs_data *ffs;
161 struct ffs_ep *ep; /* P: ffs->eps_lock */
162
163 struct dentry *dentry;
164
165 /*
166 * Buffer for holding data from partial reads which may happen since
167 * we’re rounding user read requests to a multiple of a max packet size.
168 *
169 * The pointer is initialised with NULL value and may be set by
170 * __ffs_epfile_read_data function to point to a temporary buffer.
171 *
172 * In normal operation, calls to __ffs_epfile_read_buffered will consume
173 * data from said buffer and eventually free it. Importantly, while the
174 * function is using the buffer, it sets the pointer to NULL. This is
175 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176 * can never run concurrently (they are synchronised by epfile->mutex)
177 * so the latter will not assign a new value to the pointer.
178 *
179 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
181 * value is crux of the synchronisation between ffs_func_eps_disable and
182 * __ffs_epfile_read_data.
183 *
184 * Once __ffs_epfile_read_data is about to finish it will try to set the
185 * pointer back to its old value (as described above), but seeing as the
186 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187 * the buffer.
188 *
189 * == State transitions ==
190 *
191 * • ptr == NULL: (initial state)
192 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193 * ◦ __ffs_epfile_read_buffered: nop
194 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195 * ◦ reading finishes: n/a, not in ‘and reading’ state
196 * • ptr == DROP:
197 * ◦ __ffs_epfile_read_buffer_free: nop
198 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
199 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200 * ◦ reading finishes: n/a, not in ‘and reading’ state
201 * • ptr == buf:
202 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
204 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
205 * is always called first
206 * ◦ reading finishes: n/a, not in ‘and reading’ state
207 * • ptr == NULL and reading:
208 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
210 * ◦ __ffs_epfile_read_data: n/a, mutex is held
211 * ◦ reading finishes and …
212 * … all data read: free buf, go to ptr == NULL
213 * … otherwise: go to ptr == buf and reading
214 * • ptr == DROP and reading:
215 * ◦ __ffs_epfile_read_buffer_free: nop
216 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
217 * ◦ __ffs_epfile_read_data: n/a, mutex is held
218 * ◦ reading finishes: free buf, go to ptr == DROP
219 */
220 struct ffs_buffer *read_buffer;
221#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222
223 char name[5];
224
225 unsigned char in; /* P: ffs->eps_lock */
226 unsigned char isoc; /* P: ffs->eps_lock */
227
228 unsigned char _pad;
229
230 /* Protects dmabufs */
231 struct mutex dmabufs_mutex;
232 struct list_head dmabufs; /* P: dmabufs_mutex */
233 atomic_t seqno;
234};
235
236struct ffs_buffer {
237 size_t length;
238 char *data;
239 char storage[] __counted_by(length);
240};
241
242/* ffs_io_data structure ***************************************************/
243
244struct ffs_io_data {
245 bool aio;
246 bool read;
247
248 struct kiocb *kiocb;
249 struct iov_iter data;
250 const void *to_free;
251 char *buf;
252
253 struct mm_struct *mm;
254 struct work_struct work;
255
256 struct usb_ep *ep;
257 struct usb_request *req;
258 struct sg_table sgt;
259 bool use_sg;
260
261 struct ffs_data *ffs;
262
263 int status;
264 struct completion done;
265};
266
267struct ffs_desc_helper {
268 struct ffs_data *ffs;
269 unsigned interfaces_count;
270 unsigned eps_count;
271};
272
273static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
274static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275
276static struct dentry *
277ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278 const struct file_operations *fops);
279
280/* Devices management *******************************************************/
281
282DEFINE_MUTEX(ffs_lock);
283EXPORT_SYMBOL_GPL(ffs_lock);
284
285static struct ffs_dev *_ffs_find_dev(const char *name);
286static struct ffs_dev *_ffs_alloc_dev(void);
287static void _ffs_free_dev(struct ffs_dev *dev);
288static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289static void ffs_release_dev(struct ffs_dev *ffs_dev);
290static int ffs_ready(struct ffs_data *ffs);
291static void ffs_closed(struct ffs_data *ffs);
292
293/* Misc helper functions ****************************************************/
294
295static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296 __attribute__((warn_unused_result, nonnull));
297static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298 __attribute__((warn_unused_result, nonnull));
299
300
301/* Control file aka ep0 *****************************************************/
302
303static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304{
305 struct ffs_data *ffs = req->context;
306
307 complete(&ffs->ep0req_completion);
308}
309
310static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311 __releases(&ffs->ev.waitq.lock)
312{
313 struct usb_request *req = ffs->ep0req;
314 int ret;
315
316 if (!req) {
317 spin_unlock_irq(&ffs->ev.waitq.lock);
318 return -EINVAL;
319 }
320
321 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
322
323 spin_unlock_irq(&ffs->ev.waitq.lock);
324
325 req->buf = data;
326 req->length = len;
327
328 /*
329 * UDC layer requires to provide a buffer even for ZLP, but should
330 * not use it at all. Let's provide some poisoned pointer to catch
331 * possible bug in the driver.
332 */
333 if (req->buf == NULL)
334 req->buf = (void *)0xDEADBABE;
335
336 reinit_completion(&ffs->ep0req_completion);
337
338 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339 if (ret < 0)
340 return ret;
341
342 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343 if (ret) {
344 usb_ep_dequeue(ffs->gadget->ep0, req);
345 return -EINTR;
346 }
347
348 ffs->setup_state = FFS_NO_SETUP;
349 return req->status ? req->status : req->actual;
350}
351
352static int __ffs_ep0_stall(struct ffs_data *ffs)
353{
354 if (ffs->ev.can_stall) {
355 pr_vdebug("ep0 stall\n");
356 usb_ep_set_halt(ffs->gadget->ep0);
357 ffs->setup_state = FFS_NO_SETUP;
358 return -EL2HLT;
359 } else {
360 pr_debug("bogus ep0 stall!\n");
361 return -ESRCH;
362 }
363}
364
365static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366 size_t len, loff_t *ptr)
367{
368 struct ffs_data *ffs = file->private_data;
369 ssize_t ret;
370 char *data;
371
372 /* Fast check if setup was canceled */
373 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374 return -EIDRM;
375
376 /* Acquire mutex */
377 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378 if (ret < 0)
379 return ret;
380
381 /* Check state */
382 switch (ffs->state) {
383 case FFS_READ_DESCRIPTORS:
384 case FFS_READ_STRINGS:
385 /* Copy data */
386 if (len < 16) {
387 ret = -EINVAL;
388 break;
389 }
390
391 data = ffs_prepare_buffer(buf, len);
392 if (IS_ERR(data)) {
393 ret = PTR_ERR(data);
394 break;
395 }
396
397 /* Handle data */
398 if (ffs->state == FFS_READ_DESCRIPTORS) {
399 pr_info("read descriptors\n");
400 ret = __ffs_data_got_descs(ffs, data, len);
401 if (ret < 0)
402 break;
403
404 ffs->state = FFS_READ_STRINGS;
405 ret = len;
406 } else {
407 pr_info("read strings\n");
408 ret = __ffs_data_got_strings(ffs, data, len);
409 if (ret < 0)
410 break;
411
412 ret = ffs_epfiles_create(ffs);
413 if (ret) {
414 ffs->state = FFS_CLOSING;
415 break;
416 }
417
418 ffs->state = FFS_ACTIVE;
419 mutex_unlock(&ffs->mutex);
420
421 ret = ffs_ready(ffs);
422 if (ret < 0) {
423 ffs->state = FFS_CLOSING;
424 return ret;
425 }
426
427 return len;
428 }
429 break;
430
431 case FFS_ACTIVE:
432 data = NULL;
433 /*
434 * We're called from user space, we can use _irq
435 * rather then _irqsave
436 */
437 spin_lock_irq(&ffs->ev.waitq.lock);
438 switch (ffs_setup_state_clear_cancelled(ffs)) {
439 case FFS_SETUP_CANCELLED:
440 ret = -EIDRM;
441 goto done_spin;
442
443 case FFS_NO_SETUP:
444 ret = -ESRCH;
445 goto done_spin;
446
447 case FFS_SETUP_PENDING:
448 break;
449 }
450
451 /* FFS_SETUP_PENDING */
452 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453 spin_unlock_irq(&ffs->ev.waitq.lock);
454 ret = __ffs_ep0_stall(ffs);
455 break;
456 }
457
458 /* FFS_SETUP_PENDING and not stall */
459 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
460
461 spin_unlock_irq(&ffs->ev.waitq.lock);
462
463 data = ffs_prepare_buffer(buf, len);
464 if (IS_ERR(data)) {
465 ret = PTR_ERR(data);
466 break;
467 }
468
469 spin_lock_irq(&ffs->ev.waitq.lock);
470
471 /*
472 * We are guaranteed to be still in FFS_ACTIVE state
473 * but the state of setup could have changed from
474 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475 * to check for that. If that happened we copied data
476 * from user space in vain but it's unlikely.
477 *
478 * For sure we are not in FFS_NO_SETUP since this is
479 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480 * transition can be performed and it's protected by
481 * mutex.
482 */
483 if (ffs_setup_state_clear_cancelled(ffs) ==
484 FFS_SETUP_CANCELLED) {
485 ret = -EIDRM;
486done_spin:
487 spin_unlock_irq(&ffs->ev.waitq.lock);
488 } else {
489 /* unlocks spinlock */
490 ret = __ffs_ep0_queue_wait(ffs, data, len);
491 }
492 kfree(data);
493 break;
494
495 default:
496 ret = -EBADFD;
497 break;
498 }
499
500 mutex_unlock(&ffs->mutex);
501 return ret;
502}
503
504/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
505static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506 size_t n)
507 __releases(&ffs->ev.waitq.lock)
508{
509 /*
510 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511 * size of ffs->ev.types array (which is four) so that's how much space
512 * we reserve.
513 */
514 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515 const size_t size = n * sizeof *events;
516 unsigned i = 0;
517
518 memset(events, 0, size);
519
520 do {
521 events[i].type = ffs->ev.types[i];
522 if (events[i].type == FUNCTIONFS_SETUP) {
523 events[i].u.setup = ffs->ev.setup;
524 ffs->setup_state = FFS_SETUP_PENDING;
525 }
526 } while (++i < n);
527
528 ffs->ev.count -= n;
529 if (ffs->ev.count)
530 memmove(ffs->ev.types, ffs->ev.types + n,
531 ffs->ev.count * sizeof *ffs->ev.types);
532
533 spin_unlock_irq(&ffs->ev.waitq.lock);
534 mutex_unlock(&ffs->mutex);
535
536 return copy_to_user(buf, events, size) ? -EFAULT : size;
537}
538
539static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540 size_t len, loff_t *ptr)
541{
542 struct ffs_data *ffs = file->private_data;
543 char *data = NULL;
544 size_t n;
545 int ret;
546
547 /* Fast check if setup was canceled */
548 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549 return -EIDRM;
550
551 /* Acquire mutex */
552 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553 if (ret < 0)
554 return ret;
555
556 /* Check state */
557 if (ffs->state != FFS_ACTIVE) {
558 ret = -EBADFD;
559 goto done_mutex;
560 }
561
562 /*
563 * We're called from user space, we can use _irq rather then
564 * _irqsave
565 */
566 spin_lock_irq(&ffs->ev.waitq.lock);
567
568 switch (ffs_setup_state_clear_cancelled(ffs)) {
569 case FFS_SETUP_CANCELLED:
570 ret = -EIDRM;
571 break;
572
573 case FFS_NO_SETUP:
574 n = len / sizeof(struct usb_functionfs_event);
575 if (!n) {
576 ret = -EINVAL;
577 break;
578 }
579
580 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581 ret = -EAGAIN;
582 break;
583 }
584
585 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586 ffs->ev.count)) {
587 ret = -EINTR;
588 break;
589 }
590
591 /* unlocks spinlock */
592 return __ffs_ep0_read_events(ffs, buf,
593 min_t(size_t, n, ffs->ev.count));
594
595 case FFS_SETUP_PENDING:
596 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597 spin_unlock_irq(&ffs->ev.waitq.lock);
598 ret = __ffs_ep0_stall(ffs);
599 goto done_mutex;
600 }
601
602 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
603
604 spin_unlock_irq(&ffs->ev.waitq.lock);
605
606 if (len) {
607 data = kmalloc(len, GFP_KERNEL);
608 if (!data) {
609 ret = -ENOMEM;
610 goto done_mutex;
611 }
612 }
613
614 spin_lock_irq(&ffs->ev.waitq.lock);
615
616 /* See ffs_ep0_write() */
617 if (ffs_setup_state_clear_cancelled(ffs) ==
618 FFS_SETUP_CANCELLED) {
619 ret = -EIDRM;
620 break;
621 }
622
623 /* unlocks spinlock */
624 ret = __ffs_ep0_queue_wait(ffs, data, len);
625 if ((ret > 0) && (copy_to_user(buf, data, len)))
626 ret = -EFAULT;
627 goto done_mutex;
628
629 default:
630 ret = -EBADFD;
631 break;
632 }
633
634 spin_unlock_irq(&ffs->ev.waitq.lock);
635done_mutex:
636 mutex_unlock(&ffs->mutex);
637 kfree(data);
638 return ret;
639}
640
641static int ffs_ep0_open(struct inode *inode, struct file *file)
642{
643 struct ffs_data *ffs = inode->i_private;
644
645 if (ffs->state == FFS_CLOSING)
646 return -EBUSY;
647
648 file->private_data = ffs;
649 ffs_data_opened(ffs);
650
651 return stream_open(inode, file);
652}
653
654static int ffs_ep0_release(struct inode *inode, struct file *file)
655{
656 struct ffs_data *ffs = file->private_data;
657
658 ffs_data_closed(ffs);
659
660 return 0;
661}
662
663static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664{
665 struct ffs_data *ffs = file->private_data;
666 struct usb_gadget *gadget = ffs->gadget;
667 long ret;
668
669 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670 struct ffs_function *func = ffs->func;
671 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672 } else if (gadget && gadget->ops->ioctl) {
673 ret = gadget->ops->ioctl(gadget, code, value);
674 } else {
675 ret = -ENOTTY;
676 }
677
678 return ret;
679}
680
681static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682{
683 struct ffs_data *ffs = file->private_data;
684 __poll_t mask = EPOLLWRNORM;
685 int ret;
686
687 poll_wait(file, &ffs->ev.waitq, wait);
688
689 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690 if (ret < 0)
691 return mask;
692
693 switch (ffs->state) {
694 case FFS_READ_DESCRIPTORS:
695 case FFS_READ_STRINGS:
696 mask |= EPOLLOUT;
697 break;
698
699 case FFS_ACTIVE:
700 switch (ffs->setup_state) {
701 case FFS_NO_SETUP:
702 if (ffs->ev.count)
703 mask |= EPOLLIN;
704 break;
705
706 case FFS_SETUP_PENDING:
707 case FFS_SETUP_CANCELLED:
708 mask |= (EPOLLIN | EPOLLOUT);
709 break;
710 }
711 break;
712
713 case FFS_CLOSING:
714 break;
715 case FFS_DEACTIVATED:
716 break;
717 }
718
719 mutex_unlock(&ffs->mutex);
720
721 return mask;
722}
723
724static const struct file_operations ffs_ep0_operations = {
725
726 .open = ffs_ep0_open,
727 .write = ffs_ep0_write,
728 .read = ffs_ep0_read,
729 .release = ffs_ep0_release,
730 .unlocked_ioctl = ffs_ep0_ioctl,
731 .poll = ffs_ep0_poll,
732};
733
734
735/* "Normal" endpoints operations ********************************************/
736
737static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
738{
739 struct ffs_io_data *io_data = req->context;
740
741 if (req->status)
742 io_data->status = req->status;
743 else
744 io_data->status = req->actual;
745
746 complete(&io_data->done);
747}
748
749static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
750{
751 ssize_t ret = copy_to_iter(data, data_len, iter);
752 if (ret == data_len)
753 return ret;
754
755 if (iov_iter_count(iter))
756 return -EFAULT;
757
758 /*
759 * Dear user space developer!
760 *
761 * TL;DR: To stop getting below error message in your kernel log, change
762 * user space code using functionfs to align read buffers to a max
763 * packet size.
764 *
765 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
766 * packet size. When unaligned buffer is passed to functionfs, it
767 * internally uses a larger, aligned buffer so that such UDCs are happy.
768 *
769 * Unfortunately, this means that host may send more data than was
770 * requested in read(2) system call. f_fs doesn’t know what to do with
771 * that excess data so it simply drops it.
772 *
773 * Was the buffer aligned in the first place, no such problem would
774 * happen.
775 *
776 * Data may be dropped only in AIO reads. Synchronous reads are handled
777 * by splitting a request into multiple parts. This splitting may still
778 * be a problem though so it’s likely best to align the buffer
779 * regardless of it being AIO or not..
780 *
781 * This only affects OUT endpoints, i.e. reading data with a read(2),
782 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
783 * affected.
784 */
785 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
786 "Align read buffer size to max packet size to avoid the problem.\n",
787 data_len, ret);
788
789 return ret;
790}
791
792/*
793 * allocate a virtually contiguous buffer and create a scatterlist describing it
794 * @sg_table - pointer to a place to be filled with sg_table contents
795 * @size - required buffer size
796 */
797static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
798{
799 struct page **pages;
800 void *vaddr, *ptr;
801 unsigned int n_pages;
802 int i;
803
804 vaddr = vmalloc(sz);
805 if (!vaddr)
806 return NULL;
807
808 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
809 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
810 if (!pages) {
811 vfree(vaddr);
812
813 return NULL;
814 }
815 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
816 pages[i] = vmalloc_to_page(ptr);
817
818 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
819 kvfree(pages);
820 vfree(vaddr);
821
822 return NULL;
823 }
824 kvfree(pages);
825
826 return vaddr;
827}
828
829static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
830 size_t data_len)
831{
832 if (io_data->use_sg)
833 return ffs_build_sg_list(&io_data->sgt, data_len);
834
835 return kmalloc(data_len, GFP_KERNEL);
836}
837
838static inline void ffs_free_buffer(struct ffs_io_data *io_data)
839{
840 if (!io_data->buf)
841 return;
842
843 if (io_data->use_sg) {
844 sg_free_table(&io_data->sgt);
845 vfree(io_data->buf);
846 } else {
847 kfree(io_data->buf);
848 }
849}
850
851static void ffs_user_copy_worker(struct work_struct *work)
852{
853 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
854 work);
855 int ret = io_data->status;
856 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
857
858 if (io_data->read && ret > 0) {
859 kthread_use_mm(io_data->mm);
860 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
861 kthread_unuse_mm(io_data->mm);
862 }
863
864 io_data->kiocb->ki_complete(io_data->kiocb, ret);
865
866 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
867 eventfd_signal(io_data->ffs->ffs_eventfd);
868
869 usb_ep_free_request(io_data->ep, io_data->req);
870
871 if (io_data->read)
872 kfree(io_data->to_free);
873 ffs_free_buffer(io_data);
874 kfree(io_data);
875}
876
877static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
878 struct usb_request *req)
879{
880 struct ffs_io_data *io_data = req->context;
881 struct ffs_data *ffs = io_data->ffs;
882
883 io_data->status = req->status ? req->status : req->actual;
884
885 INIT_WORK(&io_data->work, ffs_user_copy_worker);
886 queue_work(ffs->io_completion_wq, &io_data->work);
887}
888
889static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
890{
891 /*
892 * See comment in struct ffs_epfile for full read_buffer pointer
893 * synchronisation story.
894 */
895 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
896 if (buf && buf != READ_BUFFER_DROP)
897 kfree(buf);
898}
899
900/* Assumes epfile->mutex is held. */
901static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
902 struct iov_iter *iter)
903{
904 /*
905 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
906 * the buffer while we are using it. See comment in struct ffs_epfile
907 * for full read_buffer pointer synchronisation story.
908 */
909 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
910 ssize_t ret;
911 if (!buf || buf == READ_BUFFER_DROP)
912 return 0;
913
914 ret = copy_to_iter(buf->data, buf->length, iter);
915 if (buf->length == ret) {
916 kfree(buf);
917 return ret;
918 }
919
920 if (iov_iter_count(iter)) {
921 ret = -EFAULT;
922 } else {
923 buf->length -= ret;
924 buf->data += ret;
925 }
926
927 if (cmpxchg(&epfile->read_buffer, NULL, buf))
928 kfree(buf);
929
930 return ret;
931}
932
933/* Assumes epfile->mutex is held. */
934static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
935 void *data, int data_len,
936 struct iov_iter *iter)
937{
938 struct ffs_buffer *buf;
939
940 ssize_t ret = copy_to_iter(data, data_len, iter);
941 if (data_len == ret)
942 return ret;
943
944 if (iov_iter_count(iter))
945 return -EFAULT;
946
947 /* See ffs_copy_to_iter for more context. */
948 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
949 data_len, ret);
950
951 data_len -= ret;
952 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
953 if (!buf)
954 return -ENOMEM;
955 buf->length = data_len;
956 buf->data = buf->storage;
957 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
958
959 /*
960 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
961 * ffs_func_eps_disable has been called in the meanwhile). See comment
962 * in struct ffs_epfile for full read_buffer pointer synchronisation
963 * story.
964 */
965 if (cmpxchg(&epfile->read_buffer, NULL, buf))
966 kfree(buf);
967
968 return ret;
969}
970
971static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
972{
973 struct ffs_epfile *epfile = file->private_data;
974 struct ffs_ep *ep;
975 int ret;
976
977 /* Wait for endpoint to be enabled */
978 ep = epfile->ep;
979 if (!ep) {
980 if (file->f_flags & O_NONBLOCK)
981 return ERR_PTR(-EAGAIN);
982
983 ret = wait_event_interruptible(
984 epfile->ffs->wait, (ep = epfile->ep));
985 if (ret)
986 return ERR_PTR(-EINTR);
987 }
988
989 return ep;
990}
991
992static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
993{
994 struct ffs_epfile *epfile = file->private_data;
995 struct usb_request *req;
996 struct ffs_ep *ep;
997 char *data = NULL;
998 ssize_t ret, data_len = -EINVAL;
999 int halt;
1000
1001 /* Are we still active? */
1002 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1003 return -ENODEV;
1004
1005 ep = ffs_epfile_wait_ep(file);
1006 if (IS_ERR(ep))
1007 return PTR_ERR(ep);
1008
1009 /* Do we halt? */
1010 halt = (!io_data->read == !epfile->in);
1011 if (halt && epfile->isoc)
1012 return -EINVAL;
1013
1014 /* We will be using request and read_buffer */
1015 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1016 if (ret)
1017 goto error;
1018
1019 /* Allocate & copy */
1020 if (!halt) {
1021 struct usb_gadget *gadget;
1022
1023 /*
1024 * Do we have buffered data from previous partial read? Check
1025 * that for synchronous case only because we do not have
1026 * facility to ‘wake up’ a pending asynchronous read and push
1027 * buffered data to it which we would need to make things behave
1028 * consistently.
1029 */
1030 if (!io_data->aio && io_data->read) {
1031 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1032 if (ret)
1033 goto error_mutex;
1034 }
1035
1036 /*
1037 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1038 * before the waiting completes, so do not assign to 'gadget'
1039 * earlier
1040 */
1041 gadget = epfile->ffs->gadget;
1042
1043 spin_lock_irq(&epfile->ffs->eps_lock);
1044 /* In the meantime, endpoint got disabled or changed. */
1045 if (epfile->ep != ep) {
1046 ret = -ESHUTDOWN;
1047 goto error_lock;
1048 }
1049 data_len = iov_iter_count(&io_data->data);
1050 /*
1051 * Controller may require buffer size to be aligned to
1052 * maxpacketsize of an out endpoint.
1053 */
1054 if (io_data->read)
1055 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1056
1057 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1058 spin_unlock_irq(&epfile->ffs->eps_lock);
1059
1060 data = ffs_alloc_buffer(io_data, data_len);
1061 if (!data) {
1062 ret = -ENOMEM;
1063 goto error_mutex;
1064 }
1065 if (!io_data->read &&
1066 !copy_from_iter_full(data, data_len, &io_data->data)) {
1067 ret = -EFAULT;
1068 goto error_mutex;
1069 }
1070 }
1071
1072 spin_lock_irq(&epfile->ffs->eps_lock);
1073
1074 if (epfile->ep != ep) {
1075 /* In the meantime, endpoint got disabled or changed. */
1076 ret = -ESHUTDOWN;
1077 } else if (halt) {
1078 ret = usb_ep_set_halt(ep->ep);
1079 if (!ret)
1080 ret = -EBADMSG;
1081 } else if (data_len == -EINVAL) {
1082 /*
1083 * Sanity Check: even though data_len can't be used
1084 * uninitialized at the time I write this comment, some
1085 * compilers complain about this situation.
1086 * In order to keep the code clean from warnings, data_len is
1087 * being initialized to -EINVAL during its declaration, which
1088 * means we can't rely on compiler anymore to warn no future
1089 * changes won't result in data_len being used uninitialized.
1090 * For such reason, we're adding this redundant sanity check
1091 * here.
1092 */
1093 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1094 ret = -EINVAL;
1095 } else if (!io_data->aio) {
1096 bool interrupted = false;
1097
1098 req = ep->req;
1099 if (io_data->use_sg) {
1100 req->buf = NULL;
1101 req->sg = io_data->sgt.sgl;
1102 req->num_sgs = io_data->sgt.nents;
1103 } else {
1104 req->buf = data;
1105 req->num_sgs = 0;
1106 }
1107 req->length = data_len;
1108
1109 io_data->buf = data;
1110
1111 init_completion(&io_data->done);
1112 req->context = io_data;
1113 req->complete = ffs_epfile_io_complete;
1114
1115 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1116 if (ret < 0)
1117 goto error_lock;
1118
1119 spin_unlock_irq(&epfile->ffs->eps_lock);
1120
1121 if (wait_for_completion_interruptible(&io_data->done)) {
1122 spin_lock_irq(&epfile->ffs->eps_lock);
1123 if (epfile->ep != ep) {
1124 ret = -ESHUTDOWN;
1125 goto error_lock;
1126 }
1127 /*
1128 * To avoid race condition with ffs_epfile_io_complete,
1129 * dequeue the request first then check
1130 * status. usb_ep_dequeue API should guarantee no race
1131 * condition with req->complete callback.
1132 */
1133 usb_ep_dequeue(ep->ep, req);
1134 spin_unlock_irq(&epfile->ffs->eps_lock);
1135 wait_for_completion(&io_data->done);
1136 interrupted = io_data->status < 0;
1137 }
1138
1139 if (interrupted)
1140 ret = -EINTR;
1141 else if (io_data->read && io_data->status > 0)
1142 ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1143 &io_data->data);
1144 else
1145 ret = io_data->status;
1146 goto error_mutex;
1147 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1148 ret = -ENOMEM;
1149 } else {
1150 if (io_data->use_sg) {
1151 req->buf = NULL;
1152 req->sg = io_data->sgt.sgl;
1153 req->num_sgs = io_data->sgt.nents;
1154 } else {
1155 req->buf = data;
1156 req->num_sgs = 0;
1157 }
1158 req->length = data_len;
1159
1160 io_data->buf = data;
1161 io_data->ep = ep->ep;
1162 io_data->req = req;
1163 io_data->ffs = epfile->ffs;
1164
1165 req->context = io_data;
1166 req->complete = ffs_epfile_async_io_complete;
1167
1168 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1169 if (ret) {
1170 io_data->req = NULL;
1171 usb_ep_free_request(ep->ep, req);
1172 goto error_lock;
1173 }
1174
1175 ret = -EIOCBQUEUED;
1176 /*
1177 * Do not kfree the buffer in this function. It will be freed
1178 * by ffs_user_copy_worker.
1179 */
1180 data = NULL;
1181 }
1182
1183error_lock:
1184 spin_unlock_irq(&epfile->ffs->eps_lock);
1185error_mutex:
1186 mutex_unlock(&epfile->mutex);
1187error:
1188 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1189 ffs_free_buffer(io_data);
1190 return ret;
1191}
1192
1193static int
1194ffs_epfile_open(struct inode *inode, struct file *file)
1195{
1196 struct ffs_epfile *epfile = inode->i_private;
1197
1198 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1199 return -ENODEV;
1200
1201 file->private_data = epfile;
1202 ffs_data_opened(epfile->ffs);
1203
1204 return stream_open(inode, file);
1205}
1206
1207static int ffs_aio_cancel(struct kiocb *kiocb)
1208{
1209 struct ffs_io_data *io_data = kiocb->private;
1210 int value;
1211
1212 if (io_data && io_data->ep && io_data->req)
1213 value = usb_ep_dequeue(io_data->ep, io_data->req);
1214 else
1215 value = -EINVAL;
1216
1217 return value;
1218}
1219
1220static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1221{
1222 struct ffs_io_data io_data, *p = &io_data;
1223 ssize_t res;
1224
1225 if (!is_sync_kiocb(kiocb)) {
1226 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227 if (!p)
1228 return -ENOMEM;
1229 p->aio = true;
1230 } else {
1231 memset(p, 0, sizeof(*p));
1232 p->aio = false;
1233 }
1234
1235 p->read = false;
1236 p->kiocb = kiocb;
1237 p->data = *from;
1238 p->mm = current->mm;
1239
1240 kiocb->private = p;
1241
1242 if (p->aio)
1243 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1244
1245 res = ffs_epfile_io(kiocb->ki_filp, p);
1246 if (res == -EIOCBQUEUED)
1247 return res;
1248 if (p->aio)
1249 kfree(p);
1250 else
1251 *from = p->data;
1252 return res;
1253}
1254
1255static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1256{
1257 struct ffs_io_data io_data, *p = &io_data;
1258 ssize_t res;
1259
1260 if (!is_sync_kiocb(kiocb)) {
1261 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1262 if (!p)
1263 return -ENOMEM;
1264 p->aio = true;
1265 } else {
1266 memset(p, 0, sizeof(*p));
1267 p->aio = false;
1268 }
1269
1270 p->read = true;
1271 p->kiocb = kiocb;
1272 if (p->aio) {
1273 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1274 if (!iter_is_ubuf(&p->data) && !p->to_free) {
1275 kfree(p);
1276 return -ENOMEM;
1277 }
1278 } else {
1279 p->data = *to;
1280 p->to_free = NULL;
1281 }
1282 p->mm = current->mm;
1283
1284 kiocb->private = p;
1285
1286 if (p->aio)
1287 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1288
1289 res = ffs_epfile_io(kiocb->ki_filp, p);
1290 if (res == -EIOCBQUEUED)
1291 return res;
1292
1293 if (p->aio) {
1294 kfree(p->to_free);
1295 kfree(p);
1296 } else {
1297 *to = p->data;
1298 }
1299 return res;
1300}
1301
1302static void ffs_dmabuf_release(struct kref *ref)
1303{
1304 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1305 struct dma_buf_attachment *attach = priv->attach;
1306 struct dma_buf *dmabuf = attach->dmabuf;
1307
1308 pr_vdebug("FFS DMABUF release\n");
1309 dma_resv_lock(dmabuf->resv, NULL);
1310 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1311 dma_resv_unlock(dmabuf->resv);
1312
1313 dma_buf_detach(attach->dmabuf, attach);
1314 dma_buf_put(dmabuf);
1315 kfree(priv);
1316}
1317
1318static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1319{
1320 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1321
1322 kref_get(&priv->ref);
1323}
1324
1325static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1326{
1327 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1328
1329 kref_put(&priv->ref, ffs_dmabuf_release);
1330}
1331
1332static int
1333ffs_epfile_release(struct inode *inode, struct file *file)
1334{
1335 struct ffs_epfile *epfile = inode->i_private;
1336 struct ffs_dmabuf_priv *priv, *tmp;
1337 struct ffs_data *ffs = epfile->ffs;
1338
1339 mutex_lock(&epfile->dmabufs_mutex);
1340
1341 /* Close all attached DMABUFs */
1342 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1343 /* Cancel any pending transfer */
1344 spin_lock_irq(&ffs->eps_lock);
1345 if (priv->ep && priv->req)
1346 usb_ep_dequeue(priv->ep, priv->req);
1347 spin_unlock_irq(&ffs->eps_lock);
1348
1349 list_del(&priv->entry);
1350 ffs_dmabuf_put(priv->attach);
1351 }
1352
1353 mutex_unlock(&epfile->dmabufs_mutex);
1354
1355 __ffs_epfile_read_buffer_free(epfile);
1356 ffs_data_closed(epfile->ffs);
1357
1358 return 0;
1359}
1360
1361static void ffs_dmabuf_cleanup(struct work_struct *work)
1362{
1363 struct ffs_dma_fence *dma_fence =
1364 container_of(work, struct ffs_dma_fence, work);
1365 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1366 struct dma_buf_attachment *attach = priv->attach;
1367 struct dma_fence *fence = &dma_fence->base;
1368
1369 ffs_dmabuf_put(attach);
1370 dma_fence_put(fence);
1371}
1372
1373static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1374{
1375 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376 struct dma_fence *fence = &dma_fence->base;
1377 bool cookie = dma_fence_begin_signalling();
1378
1379 dma_fence_get(fence);
1380 fence->error = ret;
1381 dma_fence_signal(fence);
1382 dma_fence_end_signalling(cookie);
1383
1384 /*
1385 * The fence will be unref'd in ffs_dmabuf_cleanup.
1386 * It can't be done here, as the unref functions might try to lock
1387 * the resv object, which would deadlock.
1388 */
1389 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1390 queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1391}
1392
1393static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1394 struct usb_request *req)
1395{
1396 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1397 ffs_dmabuf_signal_done(req->context, req->status);
1398 usb_ep_free_request(ep, req);
1399}
1400
1401static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1402{
1403 return "functionfs";
1404}
1405
1406static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1407{
1408 return "";
1409}
1410
1411static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1412{
1413 struct ffs_dma_fence *dma_fence =
1414 container_of(fence, struct ffs_dma_fence, base);
1415
1416 kfree(dma_fence);
1417}
1418
1419static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1420 .get_driver_name = ffs_dmabuf_get_driver_name,
1421 .get_timeline_name = ffs_dmabuf_get_timeline_name,
1422 .release = ffs_dmabuf_fence_release,
1423};
1424
1425static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1426{
1427 if (!nonblock)
1428 return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1429
1430 if (!dma_resv_trylock(dmabuf->resv))
1431 return -EBUSY;
1432
1433 return 0;
1434}
1435
1436static struct dma_buf_attachment *
1437ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1438{
1439 struct device *dev = epfile->ffs->gadget->dev.parent;
1440 struct dma_buf_attachment *attach = NULL;
1441 struct ffs_dmabuf_priv *priv;
1442
1443 mutex_lock(&epfile->dmabufs_mutex);
1444
1445 list_for_each_entry(priv, &epfile->dmabufs, entry) {
1446 if (priv->attach->dev == dev
1447 && priv->attach->dmabuf == dmabuf) {
1448 attach = priv->attach;
1449 break;
1450 }
1451 }
1452
1453 if (attach)
1454 ffs_dmabuf_get(attach);
1455
1456 mutex_unlock(&epfile->dmabufs_mutex);
1457
1458 return attach ?: ERR_PTR(-EPERM);
1459}
1460
1461static int ffs_dmabuf_attach(struct file *file, int fd)
1462{
1463 bool nonblock = file->f_flags & O_NONBLOCK;
1464 struct ffs_epfile *epfile = file->private_data;
1465 struct usb_gadget *gadget = epfile->ffs->gadget;
1466 struct dma_buf_attachment *attach;
1467 struct ffs_dmabuf_priv *priv;
1468 enum dma_data_direction dir;
1469 struct sg_table *sg_table;
1470 struct dma_buf *dmabuf;
1471 int err;
1472
1473 if (!gadget || !gadget->sg_supported)
1474 return -EPERM;
1475
1476 dmabuf = dma_buf_get(fd);
1477 if (IS_ERR(dmabuf))
1478 return PTR_ERR(dmabuf);
1479
1480 attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1481 if (IS_ERR(attach)) {
1482 err = PTR_ERR(attach);
1483 goto err_dmabuf_put;
1484 }
1485
1486 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1487 if (!priv) {
1488 err = -ENOMEM;
1489 goto err_dmabuf_detach;
1490 }
1491
1492 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1493
1494 err = ffs_dma_resv_lock(dmabuf, nonblock);
1495 if (err)
1496 goto err_free_priv;
1497
1498 sg_table = dma_buf_map_attachment(attach, dir);
1499 dma_resv_unlock(dmabuf->resv);
1500
1501 if (IS_ERR(sg_table)) {
1502 err = PTR_ERR(sg_table);
1503 goto err_free_priv;
1504 }
1505
1506 attach->importer_priv = priv;
1507
1508 priv->sgt = sg_table;
1509 priv->dir = dir;
1510 priv->ffs = epfile->ffs;
1511 priv->attach = attach;
1512 spin_lock_init(&priv->lock);
1513 kref_init(&priv->ref);
1514 priv->context = dma_fence_context_alloc(1);
1515
1516 mutex_lock(&epfile->dmabufs_mutex);
1517 list_add(&priv->entry, &epfile->dmabufs);
1518 mutex_unlock(&epfile->dmabufs_mutex);
1519
1520 return 0;
1521
1522err_free_priv:
1523 kfree(priv);
1524err_dmabuf_detach:
1525 dma_buf_detach(dmabuf, attach);
1526err_dmabuf_put:
1527 dma_buf_put(dmabuf);
1528
1529 return err;
1530}
1531
1532static int ffs_dmabuf_detach(struct file *file, int fd)
1533{
1534 struct ffs_epfile *epfile = file->private_data;
1535 struct ffs_data *ffs = epfile->ffs;
1536 struct device *dev = ffs->gadget->dev.parent;
1537 struct ffs_dmabuf_priv *priv, *tmp;
1538 struct dma_buf *dmabuf;
1539 int ret = -EPERM;
1540
1541 dmabuf = dma_buf_get(fd);
1542 if (IS_ERR(dmabuf))
1543 return PTR_ERR(dmabuf);
1544
1545 mutex_lock(&epfile->dmabufs_mutex);
1546
1547 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1548 if (priv->attach->dev == dev
1549 && priv->attach->dmabuf == dmabuf) {
1550 /* Cancel any pending transfer */
1551 spin_lock_irq(&ffs->eps_lock);
1552 if (priv->ep && priv->req)
1553 usb_ep_dequeue(priv->ep, priv->req);
1554 spin_unlock_irq(&ffs->eps_lock);
1555
1556 list_del(&priv->entry);
1557
1558 /* Unref the reference from ffs_dmabuf_attach() */
1559 ffs_dmabuf_put(priv->attach);
1560 ret = 0;
1561 break;
1562 }
1563 }
1564
1565 mutex_unlock(&epfile->dmabufs_mutex);
1566 dma_buf_put(dmabuf);
1567
1568 return ret;
1569}
1570
1571static int ffs_dmabuf_transfer(struct file *file,
1572 const struct usb_ffs_dmabuf_transfer_req *req)
1573{
1574 bool nonblock = file->f_flags & O_NONBLOCK;
1575 struct ffs_epfile *epfile = file->private_data;
1576 struct dma_buf_attachment *attach;
1577 struct ffs_dmabuf_priv *priv;
1578 struct ffs_dma_fence *fence;
1579 struct usb_request *usb_req;
1580 enum dma_resv_usage resv_dir;
1581 struct dma_buf *dmabuf;
1582 unsigned long timeout;
1583 struct ffs_ep *ep;
1584 bool cookie;
1585 u32 seqno;
1586 long retl;
1587 int ret;
1588
1589 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1590 return -EINVAL;
1591
1592 dmabuf = dma_buf_get(req->fd);
1593 if (IS_ERR(dmabuf))
1594 return PTR_ERR(dmabuf);
1595
1596 if (req->length > dmabuf->size || req->length == 0) {
1597 ret = -EINVAL;
1598 goto err_dmabuf_put;
1599 }
1600
1601 attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1602 if (IS_ERR(attach)) {
1603 ret = PTR_ERR(attach);
1604 goto err_dmabuf_put;
1605 }
1606
1607 priv = attach->importer_priv;
1608
1609 ep = ffs_epfile_wait_ep(file);
1610 if (IS_ERR(ep)) {
1611 ret = PTR_ERR(ep);
1612 goto err_attachment_put;
1613 }
1614
1615 ret = ffs_dma_resv_lock(dmabuf, nonblock);
1616 if (ret)
1617 goto err_attachment_put;
1618
1619 /* Make sure we don't have writers */
1620 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1621 retl = dma_resv_wait_timeout(dmabuf->resv,
1622 dma_resv_usage_rw(epfile->in),
1623 true, timeout);
1624 if (retl == 0)
1625 retl = -EBUSY;
1626 if (retl < 0) {
1627 ret = (int)retl;
1628 goto err_resv_unlock;
1629 }
1630
1631 ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1632 if (ret)
1633 goto err_resv_unlock;
1634
1635 fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1636 if (!fence) {
1637 ret = -ENOMEM;
1638 goto err_resv_unlock;
1639 }
1640
1641 fence->priv = priv;
1642
1643 spin_lock_irq(&epfile->ffs->eps_lock);
1644
1645 /* In the meantime, endpoint got disabled or changed. */
1646 if (epfile->ep != ep) {
1647 ret = -ESHUTDOWN;
1648 goto err_fence_put;
1649 }
1650
1651 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1652 if (!usb_req) {
1653 ret = -ENOMEM;
1654 goto err_fence_put;
1655 }
1656
1657 /*
1658 * usb_ep_queue() guarantees that all transfers are processed in the
1659 * order they are enqueued, so we can use a simple incrementing
1660 * sequence number for the dma_fence.
1661 */
1662 seqno = atomic_add_return(1, &epfile->seqno);
1663
1664 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1665 &priv->lock, priv->context, seqno);
1666
1667 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1668
1669 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1670 dma_resv_unlock(dmabuf->resv);
1671
1672 /* Now that the dma_fence is in place, queue the transfer. */
1673
1674 usb_req->length = req->length;
1675 usb_req->buf = NULL;
1676 usb_req->sg = priv->sgt->sgl;
1677 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1678 usb_req->sg_was_mapped = true;
1679 usb_req->context = fence;
1680 usb_req->complete = ffs_epfile_dmabuf_io_complete;
1681
1682 cookie = dma_fence_begin_signalling();
1683 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1684 dma_fence_end_signalling(cookie);
1685 if (!ret) {
1686 priv->req = usb_req;
1687 priv->ep = ep->ep;
1688 } else {
1689 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1690 ffs_dmabuf_signal_done(fence, ret);
1691 usb_ep_free_request(ep->ep, usb_req);
1692 }
1693
1694 spin_unlock_irq(&epfile->ffs->eps_lock);
1695 dma_buf_put(dmabuf);
1696
1697 return ret;
1698
1699err_fence_put:
1700 spin_unlock_irq(&epfile->ffs->eps_lock);
1701 dma_fence_put(&fence->base);
1702err_resv_unlock:
1703 dma_resv_unlock(dmabuf->resv);
1704err_attachment_put:
1705 ffs_dmabuf_put(attach);
1706err_dmabuf_put:
1707 dma_buf_put(dmabuf);
1708
1709 return ret;
1710}
1711
1712static long ffs_epfile_ioctl(struct file *file, unsigned code,
1713 unsigned long value)
1714{
1715 struct ffs_epfile *epfile = file->private_data;
1716 struct ffs_ep *ep;
1717 int ret;
1718
1719 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1720 return -ENODEV;
1721
1722 switch (code) {
1723 case FUNCTIONFS_DMABUF_ATTACH:
1724 {
1725 int fd;
1726
1727 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1728 ret = -EFAULT;
1729 break;
1730 }
1731
1732 return ffs_dmabuf_attach(file, fd);
1733 }
1734 case FUNCTIONFS_DMABUF_DETACH:
1735 {
1736 int fd;
1737
1738 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1739 ret = -EFAULT;
1740 break;
1741 }
1742
1743 return ffs_dmabuf_detach(file, fd);
1744 }
1745 case FUNCTIONFS_DMABUF_TRANSFER:
1746 {
1747 struct usb_ffs_dmabuf_transfer_req req;
1748
1749 if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1750 ret = -EFAULT;
1751 break;
1752 }
1753
1754 return ffs_dmabuf_transfer(file, &req);
1755 }
1756 default:
1757 break;
1758 }
1759
1760 /* Wait for endpoint to be enabled */
1761 ep = ffs_epfile_wait_ep(file);
1762 if (IS_ERR(ep))
1763 return PTR_ERR(ep);
1764
1765 spin_lock_irq(&epfile->ffs->eps_lock);
1766
1767 /* In the meantime, endpoint got disabled or changed. */
1768 if (epfile->ep != ep) {
1769 spin_unlock_irq(&epfile->ffs->eps_lock);
1770 return -ESHUTDOWN;
1771 }
1772
1773 switch (code) {
1774 case FUNCTIONFS_FIFO_STATUS:
1775 ret = usb_ep_fifo_status(epfile->ep->ep);
1776 break;
1777 case FUNCTIONFS_FIFO_FLUSH:
1778 usb_ep_fifo_flush(epfile->ep->ep);
1779 ret = 0;
1780 break;
1781 case FUNCTIONFS_CLEAR_HALT:
1782 ret = usb_ep_clear_halt(epfile->ep->ep);
1783 break;
1784 case FUNCTIONFS_ENDPOINT_REVMAP:
1785 ret = epfile->ep->num;
1786 break;
1787 case FUNCTIONFS_ENDPOINT_DESC:
1788 {
1789 int desc_idx;
1790 struct usb_endpoint_descriptor desc1, *desc;
1791
1792 switch (epfile->ffs->gadget->speed) {
1793 case USB_SPEED_SUPER:
1794 case USB_SPEED_SUPER_PLUS:
1795 desc_idx = 2;
1796 break;
1797 case USB_SPEED_HIGH:
1798 desc_idx = 1;
1799 break;
1800 default:
1801 desc_idx = 0;
1802 }
1803
1804 desc = epfile->ep->descs[desc_idx];
1805 memcpy(&desc1, desc, desc->bLength);
1806
1807 spin_unlock_irq(&epfile->ffs->eps_lock);
1808 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1809 if (ret)
1810 ret = -EFAULT;
1811 return ret;
1812 }
1813 default:
1814 ret = -ENOTTY;
1815 }
1816 spin_unlock_irq(&epfile->ffs->eps_lock);
1817
1818 return ret;
1819}
1820
1821static const struct file_operations ffs_epfile_operations = {
1822
1823 .open = ffs_epfile_open,
1824 .write_iter = ffs_epfile_write_iter,
1825 .read_iter = ffs_epfile_read_iter,
1826 .release = ffs_epfile_release,
1827 .unlocked_ioctl = ffs_epfile_ioctl,
1828 .compat_ioctl = compat_ptr_ioctl,
1829};
1830
1831
1832/* File system and super block operations ***********************************/
1833
1834/*
1835 * Mounting the file system creates a controller file, used first for
1836 * function configuration then later for event monitoring.
1837 */
1838
1839static struct inode *__must_check
1840ffs_sb_make_inode(struct super_block *sb, void *data,
1841 const struct file_operations *fops,
1842 const struct inode_operations *iops,
1843 struct ffs_file_perms *perms)
1844{
1845 struct inode *inode;
1846
1847 inode = new_inode(sb);
1848
1849 if (inode) {
1850 struct timespec64 ts = inode_set_ctime_current(inode);
1851
1852 inode->i_ino = get_next_ino();
1853 inode->i_mode = perms->mode;
1854 inode->i_uid = perms->uid;
1855 inode->i_gid = perms->gid;
1856 inode_set_atime_to_ts(inode, ts);
1857 inode_set_mtime_to_ts(inode, ts);
1858 inode->i_private = data;
1859 if (fops)
1860 inode->i_fop = fops;
1861 if (iops)
1862 inode->i_op = iops;
1863 }
1864
1865 return inode;
1866}
1867
1868/* Create "regular" file */
1869static struct dentry *ffs_sb_create_file(struct super_block *sb,
1870 const char *name, void *data,
1871 const struct file_operations *fops)
1872{
1873 struct ffs_data *ffs = sb->s_fs_info;
1874 struct dentry *dentry;
1875 struct inode *inode;
1876
1877 dentry = d_alloc_name(sb->s_root, name);
1878 if (!dentry)
1879 return NULL;
1880
1881 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1882 if (!inode) {
1883 dput(dentry);
1884 return NULL;
1885 }
1886
1887 d_add(dentry, inode);
1888 return dentry;
1889}
1890
1891/* Super block */
1892static const struct super_operations ffs_sb_operations = {
1893 .statfs = simple_statfs,
1894 .drop_inode = inode_just_drop,
1895};
1896
1897struct ffs_sb_fill_data {
1898 struct ffs_file_perms perms;
1899 umode_t root_mode;
1900 const char *dev_name;
1901 bool no_disconnect;
1902 struct ffs_data *ffs_data;
1903};
1904
1905static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1906{
1907 struct ffs_sb_fill_data *data = fc->fs_private;
1908 struct inode *inode;
1909 struct ffs_data *ffs = data->ffs_data;
1910
1911 ffs->sb = sb;
1912 data->ffs_data = NULL;
1913 sb->s_fs_info = ffs;
1914 sb->s_blocksize = PAGE_SIZE;
1915 sb->s_blocksize_bits = PAGE_SHIFT;
1916 sb->s_magic = FUNCTIONFS_MAGIC;
1917 sb->s_op = &ffs_sb_operations;
1918 sb->s_time_gran = 1;
1919
1920 /* Root inode */
1921 data->perms.mode = data->root_mode;
1922 inode = ffs_sb_make_inode(sb, NULL,
1923 &simple_dir_operations,
1924 &simple_dir_inode_operations,
1925 &data->perms);
1926 sb->s_root = d_make_root(inode);
1927 if (!sb->s_root)
1928 return -ENOMEM;
1929
1930 /* EP0 file */
1931 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1932 return -ENOMEM;
1933
1934 return 0;
1935}
1936
1937enum {
1938 Opt_no_disconnect,
1939 Opt_rmode,
1940 Opt_fmode,
1941 Opt_mode,
1942 Opt_uid,
1943 Opt_gid,
1944};
1945
1946static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1947 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1948 fsparam_u32 ("rmode", Opt_rmode),
1949 fsparam_u32 ("fmode", Opt_fmode),
1950 fsparam_u32 ("mode", Opt_mode),
1951 fsparam_u32 ("uid", Opt_uid),
1952 fsparam_u32 ("gid", Opt_gid),
1953 {}
1954};
1955
1956static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1957{
1958 struct ffs_sb_fill_data *data = fc->fs_private;
1959 struct fs_parse_result result;
1960 int opt;
1961
1962 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1963 if (opt < 0)
1964 return opt;
1965
1966 switch (opt) {
1967 case Opt_no_disconnect:
1968 data->no_disconnect = result.boolean;
1969 break;
1970 case Opt_rmode:
1971 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1972 break;
1973 case Opt_fmode:
1974 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1975 break;
1976 case Opt_mode:
1977 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1978 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1979 break;
1980
1981 case Opt_uid:
1982 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1983 if (!uid_valid(data->perms.uid))
1984 goto unmapped_value;
1985 break;
1986 case Opt_gid:
1987 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1988 if (!gid_valid(data->perms.gid))
1989 goto unmapped_value;
1990 break;
1991
1992 default:
1993 return -ENOPARAM;
1994 }
1995
1996 return 0;
1997
1998unmapped_value:
1999 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2000}
2001
2002/*
2003 * Set up the superblock for a mount.
2004 */
2005static int ffs_fs_get_tree(struct fs_context *fc)
2006{
2007 struct ffs_sb_fill_data *ctx = fc->fs_private;
2008 struct ffs_data *ffs;
2009 int ret;
2010
2011 if (!fc->source)
2012 return invalf(fc, "No source specified");
2013
2014 ffs = ffs_data_new(fc->source);
2015 if (!ffs)
2016 return -ENOMEM;
2017 ffs->file_perms = ctx->perms;
2018 ffs->no_disconnect = ctx->no_disconnect;
2019
2020 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2021 if (!ffs->dev_name) {
2022 ffs_data_put(ffs);
2023 return -ENOMEM;
2024 }
2025
2026 ret = ffs_acquire_dev(ffs->dev_name, ffs);
2027 if (ret) {
2028 ffs_data_put(ffs);
2029 return ret;
2030 }
2031
2032 ctx->ffs_data = ffs;
2033 return get_tree_nodev(fc, ffs_sb_fill);
2034}
2035
2036static void ffs_fs_free_fc(struct fs_context *fc)
2037{
2038 struct ffs_sb_fill_data *ctx = fc->fs_private;
2039
2040 if (ctx) {
2041 if (ctx->ffs_data) {
2042 ffs_data_put(ctx->ffs_data);
2043 }
2044
2045 kfree(ctx);
2046 }
2047}
2048
2049static const struct fs_context_operations ffs_fs_context_ops = {
2050 .free = ffs_fs_free_fc,
2051 .parse_param = ffs_fs_parse_param,
2052 .get_tree = ffs_fs_get_tree,
2053};
2054
2055static int ffs_fs_init_fs_context(struct fs_context *fc)
2056{
2057 struct ffs_sb_fill_data *ctx;
2058
2059 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2060 if (!ctx)
2061 return -ENOMEM;
2062
2063 ctx->perms.mode = S_IFREG | 0600;
2064 ctx->perms.uid = GLOBAL_ROOT_UID;
2065 ctx->perms.gid = GLOBAL_ROOT_GID;
2066 ctx->root_mode = S_IFDIR | 0500;
2067 ctx->no_disconnect = false;
2068
2069 fc->fs_private = ctx;
2070 fc->ops = &ffs_fs_context_ops;
2071 return 0;
2072}
2073
2074static void
2075ffs_fs_kill_sb(struct super_block *sb)
2076{
2077 kill_litter_super(sb);
2078 if (sb->s_fs_info)
2079 ffs_data_closed(sb->s_fs_info);
2080}
2081
2082static struct file_system_type ffs_fs_type = {
2083 .owner = THIS_MODULE,
2084 .name = "functionfs",
2085 .init_fs_context = ffs_fs_init_fs_context,
2086 .parameters = ffs_fs_fs_parameters,
2087 .kill_sb = ffs_fs_kill_sb,
2088};
2089MODULE_ALIAS_FS("functionfs");
2090
2091
2092/* Driver's main init/cleanup functions *************************************/
2093
2094static int functionfs_init(void)
2095{
2096 int ret;
2097
2098 ret = register_filesystem(&ffs_fs_type);
2099 if (!ret)
2100 pr_info("file system registered\n");
2101 else
2102 pr_err("failed registering file system (%d)\n", ret);
2103
2104 return ret;
2105}
2106
2107static void functionfs_cleanup(void)
2108{
2109 pr_info("unloading\n");
2110 unregister_filesystem(&ffs_fs_type);
2111}
2112
2113
2114/* ffs_data and ffs_function construction and destruction code **************/
2115
2116static void ffs_data_clear(struct ffs_data *ffs);
2117static void ffs_data_reset(struct ffs_data *ffs);
2118
2119static void ffs_data_get(struct ffs_data *ffs)
2120{
2121 refcount_inc(&ffs->ref);
2122}
2123
2124static void ffs_data_opened(struct ffs_data *ffs)
2125{
2126 refcount_inc(&ffs->ref);
2127 if (atomic_add_return(1, &ffs->opened) == 1 &&
2128 ffs->state == FFS_DEACTIVATED) {
2129 ffs->state = FFS_CLOSING;
2130 ffs_data_reset(ffs);
2131 }
2132}
2133
2134static void ffs_data_put(struct ffs_data *ffs)
2135{
2136 if (refcount_dec_and_test(&ffs->ref)) {
2137 pr_info("%s(): freeing\n", __func__);
2138 ffs_data_clear(ffs);
2139 ffs_release_dev(ffs->private_data);
2140 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2141 swait_active(&ffs->ep0req_completion.wait) ||
2142 waitqueue_active(&ffs->wait));
2143 destroy_workqueue(ffs->io_completion_wq);
2144 kfree(ffs->dev_name);
2145 kfree(ffs);
2146 }
2147}
2148
2149static void ffs_data_closed(struct ffs_data *ffs)
2150{
2151 struct ffs_epfile *epfiles;
2152 unsigned long flags;
2153
2154 if (atomic_dec_and_test(&ffs->opened)) {
2155 if (ffs->no_disconnect) {
2156 ffs->state = FFS_DEACTIVATED;
2157 spin_lock_irqsave(&ffs->eps_lock, flags);
2158 epfiles = ffs->epfiles;
2159 ffs->epfiles = NULL;
2160 spin_unlock_irqrestore(&ffs->eps_lock,
2161 flags);
2162
2163 if (epfiles)
2164 ffs_epfiles_destroy(epfiles,
2165 ffs->eps_count);
2166
2167 if (ffs->setup_state == FFS_SETUP_PENDING)
2168 __ffs_ep0_stall(ffs);
2169 } else {
2170 ffs->state = FFS_CLOSING;
2171 ffs_data_reset(ffs);
2172 }
2173 }
2174 if (atomic_read(&ffs->opened) < 0) {
2175 ffs->state = FFS_CLOSING;
2176 ffs_data_reset(ffs);
2177 }
2178
2179 ffs_data_put(ffs);
2180}
2181
2182static struct ffs_data *ffs_data_new(const char *dev_name)
2183{
2184 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2185 if (!ffs)
2186 return NULL;
2187
2188 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2189 if (!ffs->io_completion_wq) {
2190 kfree(ffs);
2191 return NULL;
2192 }
2193
2194 refcount_set(&ffs->ref, 1);
2195 atomic_set(&ffs->opened, 0);
2196 ffs->state = FFS_READ_DESCRIPTORS;
2197 mutex_init(&ffs->mutex);
2198 spin_lock_init(&ffs->eps_lock);
2199 init_waitqueue_head(&ffs->ev.waitq);
2200 init_waitqueue_head(&ffs->wait);
2201 init_completion(&ffs->ep0req_completion);
2202
2203 /* XXX REVISIT need to update it in some places, or do we? */
2204 ffs->ev.can_stall = 1;
2205
2206 return ffs;
2207}
2208
2209static void ffs_data_clear(struct ffs_data *ffs)
2210{
2211 struct ffs_epfile *epfiles;
2212 unsigned long flags;
2213
2214 ffs_closed(ffs);
2215
2216 BUG_ON(ffs->gadget);
2217
2218 spin_lock_irqsave(&ffs->eps_lock, flags);
2219 epfiles = ffs->epfiles;
2220 ffs->epfiles = NULL;
2221 spin_unlock_irqrestore(&ffs->eps_lock, flags);
2222
2223 /*
2224 * potential race possible between ffs_func_eps_disable
2225 * & ffs_epfile_release therefore maintaining a local
2226 * copy of epfile will save us from use-after-free.
2227 */
2228 if (epfiles) {
2229 ffs_epfiles_destroy(epfiles, ffs->eps_count);
2230 ffs->epfiles = NULL;
2231 }
2232
2233 if (ffs->ffs_eventfd) {
2234 eventfd_ctx_put(ffs->ffs_eventfd);
2235 ffs->ffs_eventfd = NULL;
2236 }
2237
2238 kfree(ffs->raw_descs_data);
2239 kfree(ffs->raw_strings);
2240 kfree(ffs->stringtabs);
2241}
2242
2243static void ffs_data_reset(struct ffs_data *ffs)
2244{
2245 ffs_data_clear(ffs);
2246
2247 ffs->raw_descs_data = NULL;
2248 ffs->raw_descs = NULL;
2249 ffs->raw_strings = NULL;
2250 ffs->stringtabs = NULL;
2251
2252 ffs->raw_descs_length = 0;
2253 ffs->fs_descs_count = 0;
2254 ffs->hs_descs_count = 0;
2255 ffs->ss_descs_count = 0;
2256
2257 ffs->strings_count = 0;
2258 ffs->interfaces_count = 0;
2259 ffs->eps_count = 0;
2260
2261 ffs->ev.count = 0;
2262
2263 ffs->state = FFS_READ_DESCRIPTORS;
2264 ffs->setup_state = FFS_NO_SETUP;
2265 ffs->flags = 0;
2266
2267 ffs->ms_os_descs_ext_prop_count = 0;
2268 ffs->ms_os_descs_ext_prop_name_len = 0;
2269 ffs->ms_os_descs_ext_prop_data_len = 0;
2270}
2271
2272
2273static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2274{
2275 struct usb_gadget_strings **lang;
2276 int first_id;
2277
2278 if ((ffs->state != FFS_ACTIVE
2279 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2280 return -EBADFD;
2281
2282 first_id = usb_string_ids_n(cdev, ffs->strings_count);
2283 if (first_id < 0)
2284 return first_id;
2285
2286 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2287 if (!ffs->ep0req)
2288 return -ENOMEM;
2289 ffs->ep0req->complete = ffs_ep0_complete;
2290 ffs->ep0req->context = ffs;
2291
2292 lang = ffs->stringtabs;
2293 if (lang) {
2294 for (; *lang; ++lang) {
2295 struct usb_string *str = (*lang)->strings;
2296 int id = first_id;
2297 for (; str->s; ++id, ++str)
2298 str->id = id;
2299 }
2300 }
2301
2302 ffs->gadget = cdev->gadget;
2303 ffs_data_get(ffs);
2304 return 0;
2305}
2306
2307static void functionfs_unbind(struct ffs_data *ffs)
2308{
2309 if (!WARN_ON(!ffs->gadget)) {
2310 /* dequeue before freeing ep0req */
2311 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2312 mutex_lock(&ffs->mutex);
2313 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2314 ffs->ep0req = NULL;
2315 ffs->gadget = NULL;
2316 clear_bit(FFS_FL_BOUND, &ffs->flags);
2317 mutex_unlock(&ffs->mutex);
2318 ffs_data_put(ffs);
2319 }
2320}
2321
2322static int ffs_epfiles_create(struct ffs_data *ffs)
2323{
2324 struct ffs_epfile *epfile, *epfiles;
2325 unsigned i, count;
2326
2327 count = ffs->eps_count;
2328 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2329 if (!epfiles)
2330 return -ENOMEM;
2331
2332 epfile = epfiles;
2333 for (i = 1; i <= count; ++i, ++epfile) {
2334 epfile->ffs = ffs;
2335 mutex_init(&epfile->mutex);
2336 mutex_init(&epfile->dmabufs_mutex);
2337 INIT_LIST_HEAD(&epfile->dmabufs);
2338 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2339 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2340 else
2341 sprintf(epfile->name, "ep%u", i);
2342 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2343 epfile,
2344 &ffs_epfile_operations);
2345 if (!epfile->dentry) {
2346 ffs_epfiles_destroy(epfiles, i - 1);
2347 return -ENOMEM;
2348 }
2349 }
2350
2351 ffs->epfiles = epfiles;
2352 return 0;
2353}
2354
2355static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2356{
2357 struct ffs_epfile *epfile = epfiles;
2358
2359 for (; count; --count, ++epfile) {
2360 BUG_ON(mutex_is_locked(&epfile->mutex));
2361 if (epfile->dentry) {
2362 simple_recursive_removal(epfile->dentry, NULL);
2363 epfile->dentry = NULL;
2364 }
2365 }
2366
2367 kfree(epfiles);
2368}
2369
2370static void ffs_func_eps_disable(struct ffs_function *func)
2371{
2372 struct ffs_ep *ep;
2373 struct ffs_epfile *epfile;
2374 unsigned short count;
2375 unsigned long flags;
2376
2377 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2378 count = func->ffs->eps_count;
2379 epfile = func->ffs->epfiles;
2380 ep = func->eps;
2381 while (count--) {
2382 /* pending requests get nuked */
2383 if (ep->ep)
2384 usb_ep_disable(ep->ep);
2385 ++ep;
2386
2387 if (epfile) {
2388 epfile->ep = NULL;
2389 __ffs_epfile_read_buffer_free(epfile);
2390 ++epfile;
2391 }
2392 }
2393 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2394}
2395
2396static int ffs_func_eps_enable(struct ffs_function *func)
2397{
2398 struct ffs_data *ffs;
2399 struct ffs_ep *ep;
2400 struct ffs_epfile *epfile;
2401 unsigned short count;
2402 unsigned long flags;
2403 int ret = 0;
2404
2405 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2406 ffs = func->ffs;
2407 ep = func->eps;
2408 epfile = ffs->epfiles;
2409 count = ffs->eps_count;
2410 if (!epfile) {
2411 ret = -ENOMEM;
2412 goto done;
2413 }
2414
2415 while (count--) {
2416 ep->ep->driver_data = ep;
2417
2418 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2419 if (ret) {
2420 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2421 __func__, ep->ep->name, ret);
2422 break;
2423 }
2424
2425 ret = usb_ep_enable(ep->ep);
2426 if (!ret) {
2427 epfile->ep = ep;
2428 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2429 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2430 } else {
2431 break;
2432 }
2433
2434 ++ep;
2435 ++epfile;
2436 }
2437
2438 wake_up_interruptible(&ffs->wait);
2439done:
2440 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2441
2442 return ret;
2443}
2444
2445
2446/* Parsing and building descriptors and strings *****************************/
2447
2448/*
2449 * This validates if data pointed by data is a valid USB descriptor as
2450 * well as record how many interfaces, endpoints and strings are
2451 * required by given configuration. Returns address after the
2452 * descriptor or NULL if data is invalid.
2453 */
2454
2455enum ffs_entity_type {
2456 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2457};
2458
2459enum ffs_os_desc_type {
2460 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2461};
2462
2463typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2464 u8 *valuep,
2465 struct usb_descriptor_header *desc,
2466 void *priv);
2467
2468typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2469 struct usb_os_desc_header *h, void *data,
2470 unsigned len, void *priv);
2471
2472static int __must_check ffs_do_single_desc(char *data, unsigned len,
2473 ffs_entity_callback entity,
2474 void *priv, int *current_class, int *current_subclass)
2475{
2476 struct usb_descriptor_header *_ds = (void *)data;
2477 u8 length;
2478 int ret;
2479
2480 /* At least two bytes are required: length and type */
2481 if (len < 2) {
2482 pr_vdebug("descriptor too short\n");
2483 return -EINVAL;
2484 }
2485
2486 /* If we have at least as many bytes as the descriptor takes? */
2487 length = _ds->bLength;
2488 if (len < length) {
2489 pr_vdebug("descriptor longer then available data\n");
2490 return -EINVAL;
2491 }
2492
2493#define __entity_check_INTERFACE(val) 1
2494#define __entity_check_STRING(val) (val)
2495#define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2496#define __entity(type, val) do { \
2497 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2498 if (!__entity_check_ ##type(val)) { \
2499 pr_vdebug("invalid entity's value\n"); \
2500 return -EINVAL; \
2501 } \
2502 ret = entity(FFS_ ##type, &val, _ds, priv); \
2503 if (ret < 0) { \
2504 pr_debug("entity " #type "(%02x); ret = %d\n", \
2505 (val), ret); \
2506 return ret; \
2507 } \
2508 } while (0)
2509
2510 /* Parse descriptor depending on type. */
2511 switch (_ds->bDescriptorType) {
2512 case USB_DT_DEVICE:
2513 case USB_DT_CONFIG:
2514 case USB_DT_STRING:
2515 case USB_DT_DEVICE_QUALIFIER:
2516 /* function can't have any of those */
2517 pr_vdebug("descriptor reserved for gadget: %d\n",
2518 _ds->bDescriptorType);
2519 return -EINVAL;
2520
2521 case USB_DT_INTERFACE: {
2522 struct usb_interface_descriptor *ds = (void *)_ds;
2523 pr_vdebug("interface descriptor\n");
2524 if (length != sizeof *ds)
2525 goto inv_length;
2526
2527 __entity(INTERFACE, ds->bInterfaceNumber);
2528 if (ds->iInterface)
2529 __entity(STRING, ds->iInterface);
2530 *current_class = ds->bInterfaceClass;
2531 *current_subclass = ds->bInterfaceSubClass;
2532 }
2533 break;
2534
2535 case USB_DT_ENDPOINT: {
2536 struct usb_endpoint_descriptor *ds = (void *)_ds;
2537 pr_vdebug("endpoint descriptor\n");
2538 if (length != USB_DT_ENDPOINT_SIZE &&
2539 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2540 goto inv_length;
2541 __entity(ENDPOINT, ds->bEndpointAddress);
2542 }
2543 break;
2544
2545 case USB_TYPE_CLASS | 0x01:
2546 if (*current_class == USB_INTERFACE_CLASS_HID) {
2547 pr_vdebug("hid descriptor\n");
2548 if (length != sizeof(struct hid_descriptor))
2549 goto inv_length;
2550 break;
2551 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2552 pr_vdebug("ccid descriptor\n");
2553 if (length != sizeof(struct ccid_descriptor))
2554 goto inv_length;
2555 break;
2556 } else if (*current_class == USB_CLASS_APP_SPEC &&
2557 *current_subclass == USB_SUBCLASS_DFU) {
2558 pr_vdebug("dfu functional descriptor\n");
2559 if (length != sizeof(struct usb_dfu_functional_descriptor))
2560 goto inv_length;
2561 break;
2562 } else {
2563 pr_vdebug("unknown descriptor: %d for class %d\n",
2564 _ds->bDescriptorType, *current_class);
2565 return -EINVAL;
2566 }
2567
2568 case USB_DT_OTG:
2569 if (length != sizeof(struct usb_otg_descriptor))
2570 goto inv_length;
2571 break;
2572
2573 case USB_DT_INTERFACE_ASSOCIATION: {
2574 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2575 pr_vdebug("interface association descriptor\n");
2576 if (length != sizeof *ds)
2577 goto inv_length;
2578 if (ds->iFunction)
2579 __entity(STRING, ds->iFunction);
2580 }
2581 break;
2582
2583 case USB_DT_SS_ENDPOINT_COMP:
2584 pr_vdebug("EP SS companion descriptor\n");
2585 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2586 goto inv_length;
2587 break;
2588
2589 case USB_DT_OTHER_SPEED_CONFIG:
2590 case USB_DT_INTERFACE_POWER:
2591 case USB_DT_DEBUG:
2592 case USB_DT_SECURITY:
2593 case USB_DT_CS_RADIO_CONTROL:
2594 /* TODO */
2595 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2596 return -EINVAL;
2597
2598 default:
2599 /* We should never be here */
2600 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2601 return -EINVAL;
2602
2603inv_length:
2604 pr_vdebug("invalid length: %d (descriptor %d)\n",
2605 _ds->bLength, _ds->bDescriptorType);
2606 return -EINVAL;
2607 }
2608
2609#undef __entity
2610#undef __entity_check_DESCRIPTOR
2611#undef __entity_check_INTERFACE
2612#undef __entity_check_STRING
2613#undef __entity_check_ENDPOINT
2614
2615 return length;
2616}
2617
2618static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2619 ffs_entity_callback entity, void *priv)
2620{
2621 const unsigned _len = len;
2622 unsigned long num = 0;
2623 int current_class = -1;
2624 int current_subclass = -1;
2625
2626 for (;;) {
2627 int ret;
2628
2629 if (num == count)
2630 data = NULL;
2631
2632 /* Record "descriptor" entity */
2633 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2634 if (ret < 0) {
2635 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2636 num, ret);
2637 return ret;
2638 }
2639
2640 if (!data)
2641 return _len - len;
2642
2643 ret = ffs_do_single_desc(data, len, entity, priv,
2644 ¤t_class, ¤t_subclass);
2645 if (ret < 0) {
2646 pr_debug("%s returns %d\n", __func__, ret);
2647 return ret;
2648 }
2649
2650 len -= ret;
2651 data += ret;
2652 ++num;
2653 }
2654}
2655
2656static int __ffs_data_do_entity(enum ffs_entity_type type,
2657 u8 *valuep, struct usb_descriptor_header *desc,
2658 void *priv)
2659{
2660 struct ffs_desc_helper *helper = priv;
2661 struct usb_endpoint_descriptor *d;
2662
2663 switch (type) {
2664 case FFS_DESCRIPTOR:
2665 break;
2666
2667 case FFS_INTERFACE:
2668 /*
2669 * Interfaces are indexed from zero so if we
2670 * encountered interface "n" then there are at least
2671 * "n+1" interfaces.
2672 */
2673 if (*valuep >= helper->interfaces_count)
2674 helper->interfaces_count = *valuep + 1;
2675 break;
2676
2677 case FFS_STRING:
2678 /*
2679 * Strings are indexed from 1 (0 is reserved
2680 * for languages list)
2681 */
2682 if (*valuep > helper->ffs->strings_count)
2683 helper->ffs->strings_count = *valuep;
2684 break;
2685
2686 case FFS_ENDPOINT:
2687 d = (void *)desc;
2688 helper->eps_count++;
2689 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2690 return -EINVAL;
2691 /* Check if descriptors for any speed were already parsed */
2692 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2693 helper->ffs->eps_addrmap[helper->eps_count] =
2694 d->bEndpointAddress;
2695 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2696 d->bEndpointAddress)
2697 return -EINVAL;
2698 break;
2699 }
2700
2701 return 0;
2702}
2703
2704static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2705 struct usb_os_desc_header *desc)
2706{
2707 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2708 u16 w_index = le16_to_cpu(desc->wIndex);
2709
2710 if (bcd_version == 0x1) {
2711 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2712 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2713 } else if (bcd_version != 0x100) {
2714 pr_vdebug("unsupported os descriptors version: 0x%x\n",
2715 bcd_version);
2716 return -EINVAL;
2717 }
2718 switch (w_index) {
2719 case 0x4:
2720 *next_type = FFS_OS_DESC_EXT_COMPAT;
2721 break;
2722 case 0x5:
2723 *next_type = FFS_OS_DESC_EXT_PROP;
2724 break;
2725 default:
2726 pr_vdebug("unsupported os descriptor type: %d", w_index);
2727 return -EINVAL;
2728 }
2729
2730 return sizeof(*desc);
2731}
2732
2733/*
2734 * Process all extended compatibility/extended property descriptors
2735 * of a feature descriptor
2736 */
2737static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2738 enum ffs_os_desc_type type,
2739 u16 feature_count,
2740 ffs_os_desc_callback entity,
2741 void *priv,
2742 struct usb_os_desc_header *h)
2743{
2744 int ret;
2745 const unsigned _len = len;
2746
2747 /* loop over all ext compat/ext prop descriptors */
2748 while (feature_count--) {
2749 ret = entity(type, h, data, len, priv);
2750 if (ret < 0) {
2751 pr_debug("bad OS descriptor, type: %d\n", type);
2752 return ret;
2753 }
2754 data += ret;
2755 len -= ret;
2756 }
2757 return _len - len;
2758}
2759
2760/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2761static int __must_check ffs_do_os_descs(unsigned count,
2762 char *data, unsigned len,
2763 ffs_os_desc_callback entity, void *priv)
2764{
2765 const unsigned _len = len;
2766 unsigned long num = 0;
2767
2768 for (num = 0; num < count; ++num) {
2769 int ret;
2770 enum ffs_os_desc_type type;
2771 u16 feature_count;
2772 struct usb_os_desc_header *desc = (void *)data;
2773
2774 if (len < sizeof(*desc))
2775 return -EINVAL;
2776
2777 /*
2778 * Record "descriptor" entity.
2779 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2780 * Move the data pointer to the beginning of extended
2781 * compatibilities proper or extended properties proper
2782 * portions of the data
2783 */
2784 if (le32_to_cpu(desc->dwLength) > len)
2785 return -EINVAL;
2786
2787 ret = __ffs_do_os_desc_header(&type, desc);
2788 if (ret < 0) {
2789 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2790 num, ret);
2791 return ret;
2792 }
2793 /*
2794 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2795 */
2796 feature_count = le16_to_cpu(desc->wCount);
2797 if (type == FFS_OS_DESC_EXT_COMPAT &&
2798 (feature_count > 255 || desc->Reserved))
2799 return -EINVAL;
2800 len -= ret;
2801 data += ret;
2802
2803 /*
2804 * Process all function/property descriptors
2805 * of this Feature Descriptor
2806 */
2807 ret = ffs_do_single_os_desc(data, len, type,
2808 feature_count, entity, priv, desc);
2809 if (ret < 0) {
2810 pr_debug("%s returns %d\n", __func__, ret);
2811 return ret;
2812 }
2813
2814 len -= ret;
2815 data += ret;
2816 }
2817 return _len - len;
2818}
2819
2820/*
2821 * Validate contents of the buffer from userspace related to OS descriptors.
2822 */
2823static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2824 struct usb_os_desc_header *h, void *data,
2825 unsigned len, void *priv)
2826{
2827 struct ffs_data *ffs = priv;
2828 u8 length;
2829
2830 switch (type) {
2831 case FFS_OS_DESC_EXT_COMPAT: {
2832 struct usb_ext_compat_desc *d = data;
2833 int i;
2834
2835 if (len < sizeof(*d) ||
2836 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2837 return -EINVAL;
2838 if (d->Reserved1 != 1) {
2839 /*
2840 * According to the spec, Reserved1 must be set to 1
2841 * but older kernels incorrectly rejected non-zero
2842 * values. We fix it here to avoid returning EINVAL
2843 * in response to values we used to accept.
2844 */
2845 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2846 d->Reserved1 = 1;
2847 }
2848 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2849 if (d->Reserved2[i])
2850 return -EINVAL;
2851
2852 length = sizeof(struct usb_ext_compat_desc);
2853 }
2854 break;
2855 case FFS_OS_DESC_EXT_PROP: {
2856 struct usb_ext_prop_desc *d = data;
2857 u32 type, pdl;
2858 u16 pnl;
2859
2860 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2861 return -EINVAL;
2862 length = le32_to_cpu(d->dwSize);
2863 if (len < length)
2864 return -EINVAL;
2865 type = le32_to_cpu(d->dwPropertyDataType);
2866 if (type < USB_EXT_PROP_UNICODE ||
2867 type > USB_EXT_PROP_UNICODE_MULTI) {
2868 pr_vdebug("unsupported os descriptor property type: %d",
2869 type);
2870 return -EINVAL;
2871 }
2872 pnl = le16_to_cpu(d->wPropertyNameLength);
2873 if (length < 14 + pnl) {
2874 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2875 length, pnl, type);
2876 return -EINVAL;
2877 }
2878 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2879 if (length != 14 + pnl + pdl) {
2880 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2881 length, pnl, pdl, type);
2882 return -EINVAL;
2883 }
2884 ++ffs->ms_os_descs_ext_prop_count;
2885 /* property name reported to the host as "WCHAR"s */
2886 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2887 ffs->ms_os_descs_ext_prop_data_len += pdl;
2888 }
2889 break;
2890 default:
2891 pr_vdebug("unknown descriptor: %d\n", type);
2892 return -EINVAL;
2893 }
2894 return length;
2895}
2896
2897static int __ffs_data_got_descs(struct ffs_data *ffs,
2898 char *const _data, size_t len)
2899{
2900 char *data = _data, *raw_descs;
2901 unsigned os_descs_count = 0, counts[3], flags;
2902 int ret = -EINVAL, i;
2903 struct ffs_desc_helper helper;
2904
2905 if (get_unaligned_le32(data + 4) != len)
2906 goto error;
2907
2908 switch (get_unaligned_le32(data)) {
2909 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2910 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2911 data += 8;
2912 len -= 8;
2913 break;
2914 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2915 flags = get_unaligned_le32(data + 8);
2916 ffs->user_flags = flags;
2917 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2918 FUNCTIONFS_HAS_HS_DESC |
2919 FUNCTIONFS_HAS_SS_DESC |
2920 FUNCTIONFS_HAS_MS_OS_DESC |
2921 FUNCTIONFS_VIRTUAL_ADDR |
2922 FUNCTIONFS_EVENTFD |
2923 FUNCTIONFS_ALL_CTRL_RECIP |
2924 FUNCTIONFS_CONFIG0_SETUP)) {
2925 ret = -ENOSYS;
2926 goto error;
2927 }
2928 data += 12;
2929 len -= 12;
2930 break;
2931 default:
2932 goto error;
2933 }
2934
2935 if (flags & FUNCTIONFS_EVENTFD) {
2936 if (len < 4)
2937 goto error;
2938 ffs->ffs_eventfd =
2939 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2940 if (IS_ERR(ffs->ffs_eventfd)) {
2941 ret = PTR_ERR(ffs->ffs_eventfd);
2942 ffs->ffs_eventfd = NULL;
2943 goto error;
2944 }
2945 data += 4;
2946 len -= 4;
2947 }
2948
2949 /* Read fs_count, hs_count and ss_count (if present) */
2950 for (i = 0; i < 3; ++i) {
2951 if (!(flags & (1 << i))) {
2952 counts[i] = 0;
2953 } else if (len < 4) {
2954 goto error;
2955 } else {
2956 counts[i] = get_unaligned_le32(data);
2957 data += 4;
2958 len -= 4;
2959 }
2960 }
2961 if (flags & (1 << i)) {
2962 if (len < 4) {
2963 goto error;
2964 }
2965 os_descs_count = get_unaligned_le32(data);
2966 data += 4;
2967 len -= 4;
2968 }
2969
2970 /* Read descriptors */
2971 raw_descs = data;
2972 helper.ffs = ffs;
2973 for (i = 0; i < 3; ++i) {
2974 if (!counts[i])
2975 continue;
2976 helper.interfaces_count = 0;
2977 helper.eps_count = 0;
2978 ret = ffs_do_descs(counts[i], data, len,
2979 __ffs_data_do_entity, &helper);
2980 if (ret < 0)
2981 goto error;
2982 if (!ffs->eps_count && !ffs->interfaces_count) {
2983 ffs->eps_count = helper.eps_count;
2984 ffs->interfaces_count = helper.interfaces_count;
2985 } else {
2986 if (ffs->eps_count != helper.eps_count) {
2987 ret = -EINVAL;
2988 goto error;
2989 }
2990 if (ffs->interfaces_count != helper.interfaces_count) {
2991 ret = -EINVAL;
2992 goto error;
2993 }
2994 }
2995 data += ret;
2996 len -= ret;
2997 }
2998 if (os_descs_count) {
2999 ret = ffs_do_os_descs(os_descs_count, data, len,
3000 __ffs_data_do_os_desc, ffs);
3001 if (ret < 0)
3002 goto error;
3003 data += ret;
3004 len -= ret;
3005 }
3006
3007 if (raw_descs == data || len) {
3008 ret = -EINVAL;
3009 goto error;
3010 }
3011
3012 ffs->raw_descs_data = _data;
3013 ffs->raw_descs = raw_descs;
3014 ffs->raw_descs_length = data - raw_descs;
3015 ffs->fs_descs_count = counts[0];
3016 ffs->hs_descs_count = counts[1];
3017 ffs->ss_descs_count = counts[2];
3018 ffs->ms_os_descs_count = os_descs_count;
3019
3020 return 0;
3021
3022error:
3023 kfree(_data);
3024 return ret;
3025}
3026
3027static int __ffs_data_got_strings(struct ffs_data *ffs,
3028 char *const _data, size_t len)
3029{
3030 u32 str_count, needed_count, lang_count;
3031 struct usb_gadget_strings **stringtabs, *t;
3032 const char *data = _data;
3033 struct usb_string *s;
3034
3035 if (len < 16 ||
3036 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3037 get_unaligned_le32(data + 4) != len)
3038 goto error;
3039 str_count = get_unaligned_le32(data + 8);
3040 lang_count = get_unaligned_le32(data + 12);
3041
3042 /* if one is zero the other must be zero */
3043 if (!str_count != !lang_count)
3044 goto error;
3045
3046 /* Do we have at least as many strings as descriptors need? */
3047 needed_count = ffs->strings_count;
3048 if (str_count < needed_count)
3049 goto error;
3050
3051 /*
3052 * If we don't need any strings just return and free all
3053 * memory.
3054 */
3055 if (!needed_count) {
3056 kfree(_data);
3057 return 0;
3058 }
3059
3060 /* Allocate everything in one chunk so there's less maintenance. */
3061 {
3062 unsigned i = 0;
3063 vla_group(d);
3064 vla_item(d, struct usb_gadget_strings *, stringtabs,
3065 size_add(lang_count, 1));
3066 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3067 vla_item(d, struct usb_string, strings,
3068 size_mul(lang_count, (needed_count + 1)));
3069
3070 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3071
3072 if (!vlabuf) {
3073 kfree(_data);
3074 return -ENOMEM;
3075 }
3076
3077 /* Initialize the VLA pointers */
3078 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3079 t = vla_ptr(vlabuf, d, stringtab);
3080 i = lang_count;
3081 do {
3082 *stringtabs++ = t++;
3083 } while (--i);
3084 *stringtabs = NULL;
3085
3086 /* stringtabs = vlabuf = d_stringtabs for later kfree */
3087 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3088 t = vla_ptr(vlabuf, d, stringtab);
3089 s = vla_ptr(vlabuf, d, strings);
3090 }
3091
3092 /* For each language */
3093 data += 16;
3094 len -= 16;
3095
3096 do { /* lang_count > 0 so we can use do-while */
3097 unsigned needed = needed_count;
3098 u32 str_per_lang = str_count;
3099
3100 if (len < 3)
3101 goto error_free;
3102 t->language = get_unaligned_le16(data);
3103 t->strings = s;
3104 ++t;
3105
3106 data += 2;
3107 len -= 2;
3108
3109 /* For each string */
3110 do { /* str_count > 0 so we can use do-while */
3111 size_t length = strnlen(data, len);
3112
3113 if (length == len)
3114 goto error_free;
3115
3116 /*
3117 * User may provide more strings then we need,
3118 * if that's the case we simply ignore the
3119 * rest
3120 */
3121 if (needed) {
3122 /*
3123 * s->id will be set while adding
3124 * function to configuration so for
3125 * now just leave garbage here.
3126 */
3127 s->s = data;
3128 --needed;
3129 ++s;
3130 }
3131
3132 data += length + 1;
3133 len -= length + 1;
3134 } while (--str_per_lang);
3135
3136 s->id = 0; /* terminator */
3137 s->s = NULL;
3138 ++s;
3139
3140 } while (--lang_count);
3141
3142 /* Some garbage left? */
3143 if (len)
3144 goto error_free;
3145
3146 /* Done! */
3147 ffs->stringtabs = stringtabs;
3148 ffs->raw_strings = _data;
3149
3150 return 0;
3151
3152error_free:
3153 kfree(stringtabs);
3154error:
3155 kfree(_data);
3156 return -EINVAL;
3157}
3158
3159
3160/* Events handling and management *******************************************/
3161
3162static void __ffs_event_add(struct ffs_data *ffs,
3163 enum usb_functionfs_event_type type)
3164{
3165 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3166 int neg = 0;
3167
3168 /*
3169 * Abort any unhandled setup
3170 *
3171 * We do not need to worry about some cmpxchg() changing value
3172 * of ffs->setup_state without holding the lock because when
3173 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3174 * the source does nothing.
3175 */
3176 if (ffs->setup_state == FFS_SETUP_PENDING)
3177 ffs->setup_state = FFS_SETUP_CANCELLED;
3178
3179 /*
3180 * Logic of this function guarantees that there are at most four pending
3181 * evens on ffs->ev.types queue. This is important because the queue
3182 * has space for four elements only and __ffs_ep0_read_events function
3183 * depends on that limit as well. If more event types are added, those
3184 * limits have to be revisited or guaranteed to still hold.
3185 */
3186 switch (type) {
3187 case FUNCTIONFS_RESUME:
3188 rem_type2 = FUNCTIONFS_SUSPEND;
3189 fallthrough;
3190 case FUNCTIONFS_SUSPEND:
3191 case FUNCTIONFS_SETUP:
3192 rem_type1 = type;
3193 /* Discard all similar events */
3194 break;
3195
3196 case FUNCTIONFS_BIND:
3197 case FUNCTIONFS_UNBIND:
3198 case FUNCTIONFS_DISABLE:
3199 case FUNCTIONFS_ENABLE:
3200 /* Discard everything other then power management. */
3201 rem_type1 = FUNCTIONFS_SUSPEND;
3202 rem_type2 = FUNCTIONFS_RESUME;
3203 neg = 1;
3204 break;
3205
3206 default:
3207 WARN(1, "%d: unknown event, this should not happen\n", type);
3208 return;
3209 }
3210
3211 {
3212 u8 *ev = ffs->ev.types, *out = ev;
3213 unsigned n = ffs->ev.count;
3214 for (; n; --n, ++ev)
3215 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3216 *out++ = *ev;
3217 else
3218 pr_vdebug("purging event %d\n", *ev);
3219 ffs->ev.count = out - ffs->ev.types;
3220 }
3221
3222 pr_vdebug("adding event %d\n", type);
3223 ffs->ev.types[ffs->ev.count++] = type;
3224 wake_up_locked(&ffs->ev.waitq);
3225 if (ffs->ffs_eventfd)
3226 eventfd_signal(ffs->ffs_eventfd);
3227}
3228
3229static void ffs_event_add(struct ffs_data *ffs,
3230 enum usb_functionfs_event_type type)
3231{
3232 unsigned long flags;
3233 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3234 __ffs_event_add(ffs, type);
3235 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3236}
3237
3238/* Bind/unbind USB function hooks *******************************************/
3239
3240static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3241{
3242 int i;
3243
3244 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3245 if (ffs->eps_addrmap[i] == endpoint_address)
3246 return i;
3247 return -ENOENT;
3248}
3249
3250static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3251 struct usb_descriptor_header *desc,
3252 void *priv)
3253{
3254 struct usb_endpoint_descriptor *ds = (void *)desc;
3255 struct ffs_function *func = priv;
3256 struct ffs_ep *ffs_ep;
3257 unsigned ep_desc_id;
3258 int idx;
3259 static const char *speed_names[] = { "full", "high", "super" };
3260
3261 if (type != FFS_DESCRIPTOR)
3262 return 0;
3263
3264 /*
3265 * If ss_descriptors is not NULL, we are reading super speed
3266 * descriptors; if hs_descriptors is not NULL, we are reading high
3267 * speed descriptors; otherwise, we are reading full speed
3268 * descriptors.
3269 */
3270 if (func->function.ss_descriptors) {
3271 ep_desc_id = 2;
3272 func->function.ss_descriptors[(long)valuep] = desc;
3273 } else if (func->function.hs_descriptors) {
3274 ep_desc_id = 1;
3275 func->function.hs_descriptors[(long)valuep] = desc;
3276 } else {
3277 ep_desc_id = 0;
3278 func->function.fs_descriptors[(long)valuep] = desc;
3279 }
3280
3281 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3282 return 0;
3283
3284 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3285 if (idx < 0)
3286 return idx;
3287
3288 ffs_ep = func->eps + idx;
3289
3290 if (ffs_ep->descs[ep_desc_id]) {
3291 pr_err("two %sspeed descriptors for EP %d\n",
3292 speed_names[ep_desc_id],
3293 usb_endpoint_num(ds));
3294 return -EINVAL;
3295 }
3296 ffs_ep->descs[ep_desc_id] = ds;
3297
3298 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
3299 if (ffs_ep->ep) {
3300 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3301 if (!ds->wMaxPacketSize)
3302 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3303 } else {
3304 struct usb_request *req;
3305 struct usb_ep *ep;
3306 u8 bEndpointAddress;
3307 u16 wMaxPacketSize;
3308
3309 /*
3310 * We back up bEndpointAddress because autoconfig overwrites
3311 * it with physical endpoint address.
3312 */
3313 bEndpointAddress = ds->bEndpointAddress;
3314 /*
3315 * We back up wMaxPacketSize because autoconfig treats
3316 * endpoint descriptors as if they were full speed.
3317 */
3318 wMaxPacketSize = ds->wMaxPacketSize;
3319 pr_vdebug("autoconfig\n");
3320 ep = usb_ep_autoconfig(func->gadget, ds);
3321 if (!ep)
3322 return -ENOTSUPP;
3323 ep->driver_data = func->eps + idx;
3324
3325 req = usb_ep_alloc_request(ep, GFP_KERNEL);
3326 if (!req)
3327 return -ENOMEM;
3328
3329 ffs_ep->ep = ep;
3330 ffs_ep->req = req;
3331 func->eps_revmap[ds->bEndpointAddress &
3332 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3333 /*
3334 * If we use virtual address mapping, we restore
3335 * original bEndpointAddress value.
3336 */
3337 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3338 ds->bEndpointAddress = bEndpointAddress;
3339 /*
3340 * Restore wMaxPacketSize which was potentially
3341 * overwritten by autoconfig.
3342 */
3343 ds->wMaxPacketSize = wMaxPacketSize;
3344 }
3345 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3346
3347 return 0;
3348}
3349
3350static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3351 struct usb_descriptor_header *desc,
3352 void *priv)
3353{
3354 struct ffs_function *func = priv;
3355 unsigned idx;
3356 u8 newValue;
3357
3358 switch (type) {
3359 default:
3360 case FFS_DESCRIPTOR:
3361 /* Handled in previous pass by __ffs_func_bind_do_descs() */
3362 return 0;
3363
3364 case FFS_INTERFACE:
3365 idx = *valuep;
3366 if (func->interfaces_nums[idx] < 0) {
3367 int id = usb_interface_id(func->conf, &func->function);
3368 if (id < 0)
3369 return id;
3370 func->interfaces_nums[idx] = id;
3371 }
3372 newValue = func->interfaces_nums[idx];
3373 break;
3374
3375 case FFS_STRING:
3376 /* String' IDs are allocated when fsf_data is bound to cdev */
3377 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3378 break;
3379
3380 case FFS_ENDPOINT:
3381 /*
3382 * USB_DT_ENDPOINT are handled in
3383 * __ffs_func_bind_do_descs().
3384 */
3385 if (desc->bDescriptorType == USB_DT_ENDPOINT)
3386 return 0;
3387
3388 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3389 if (!func->eps[idx].ep)
3390 return -EINVAL;
3391
3392 {
3393 struct usb_endpoint_descriptor **descs;
3394 descs = func->eps[idx].descs;
3395 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3396 }
3397 break;
3398 }
3399
3400 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3401 *valuep = newValue;
3402 return 0;
3403}
3404
3405static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3406 struct usb_os_desc_header *h, void *data,
3407 unsigned len, void *priv)
3408{
3409 struct ffs_function *func = priv;
3410 u8 length = 0;
3411
3412 switch (type) {
3413 case FFS_OS_DESC_EXT_COMPAT: {
3414 struct usb_ext_compat_desc *desc = data;
3415 struct usb_os_desc_table *t;
3416
3417 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3418 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3419 memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3420 sizeof_field(struct usb_ext_compat_desc, IDs));
3421 length = sizeof(*desc);
3422 }
3423 break;
3424 case FFS_OS_DESC_EXT_PROP: {
3425 struct usb_ext_prop_desc *desc = data;
3426 struct usb_os_desc_table *t;
3427 struct usb_os_desc_ext_prop *ext_prop;
3428 char *ext_prop_name;
3429 char *ext_prop_data;
3430
3431 t = &func->function.os_desc_table[h->interface];
3432 t->if_id = func->interfaces_nums[h->interface];
3433
3434 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3435 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3436
3437 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3438 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3439 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3440 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3441 length = ext_prop->name_len + ext_prop->data_len + 14;
3442
3443 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3444 func->ffs->ms_os_descs_ext_prop_name_avail +=
3445 ext_prop->name_len;
3446
3447 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3448 func->ffs->ms_os_descs_ext_prop_data_avail +=
3449 ext_prop->data_len;
3450 memcpy(ext_prop_data,
3451 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3452 ext_prop->data_len);
3453 /* unicode data reported to the host as "WCHAR"s */
3454 switch (ext_prop->type) {
3455 case USB_EXT_PROP_UNICODE:
3456 case USB_EXT_PROP_UNICODE_ENV:
3457 case USB_EXT_PROP_UNICODE_LINK:
3458 case USB_EXT_PROP_UNICODE_MULTI:
3459 ext_prop->data_len *= 2;
3460 break;
3461 }
3462 ext_prop->data = ext_prop_data;
3463
3464 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3465 ext_prop->name_len);
3466 /* property name reported to the host as "WCHAR"s */
3467 ext_prop->name_len *= 2;
3468 ext_prop->name = ext_prop_name;
3469
3470 t->os_desc->ext_prop_len +=
3471 ext_prop->name_len + ext_prop->data_len + 14;
3472 ++t->os_desc->ext_prop_count;
3473 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3474 }
3475 break;
3476 default:
3477 pr_vdebug("unknown descriptor: %d\n", type);
3478 }
3479
3480 return length;
3481}
3482
3483static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3484 struct usb_configuration *c)
3485{
3486 struct ffs_function *func = ffs_func_from_usb(f);
3487 struct f_fs_opts *ffs_opts =
3488 container_of(f->fi, struct f_fs_opts, func_inst);
3489 struct ffs_data *ffs_data;
3490 int ret;
3491
3492 /*
3493 * Legacy gadget triggers binding in functionfs_ready_callback,
3494 * which already uses locking; taking the same lock here would
3495 * cause a deadlock.
3496 *
3497 * Configfs-enabled gadgets however do need ffs_dev_lock.
3498 */
3499 if (!ffs_opts->no_configfs)
3500 ffs_dev_lock();
3501 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3502 ffs_data = ffs_opts->dev->ffs_data;
3503 if (!ffs_opts->no_configfs)
3504 ffs_dev_unlock();
3505 if (ret)
3506 return ERR_PTR(ret);
3507
3508 func->ffs = ffs_data;
3509 func->conf = c;
3510 func->gadget = c->cdev->gadget;
3511
3512 /*
3513 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3514 * configurations are bound in sequence with list_for_each_entry,
3515 * in each configuration its functions are bound in sequence
3516 * with list_for_each_entry, so we assume no race condition
3517 * with regard to ffs_opts->bound access
3518 */
3519 if (!ffs_opts->refcnt) {
3520 ret = functionfs_bind(func->ffs, c->cdev);
3521 if (ret)
3522 return ERR_PTR(ret);
3523 }
3524 ffs_opts->refcnt++;
3525 func->function.strings = func->ffs->stringtabs;
3526
3527 return ffs_opts;
3528}
3529
3530static int _ffs_func_bind(struct usb_configuration *c,
3531 struct usb_function *f)
3532{
3533 struct ffs_function *func = ffs_func_from_usb(f);
3534 struct ffs_data *ffs = func->ffs;
3535
3536 const int full = !!func->ffs->fs_descs_count;
3537 const int high = !!func->ffs->hs_descs_count;
3538 const int super = !!func->ffs->ss_descs_count;
3539
3540 int fs_len, hs_len, ss_len, ret, i;
3541 struct ffs_ep *eps_ptr;
3542
3543 /* Make it a single chunk, less management later on */
3544 vla_group(d);
3545 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3546 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3547 full ? ffs->fs_descs_count + 1 : 0);
3548 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3549 high ? ffs->hs_descs_count + 1 : 0);
3550 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3551 super ? ffs->ss_descs_count + 1 : 0);
3552 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3553 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3554 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3555 vla_item_with_sz(d, char[16], ext_compat,
3556 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3557 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3558 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3559 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3560 ffs->ms_os_descs_ext_prop_count);
3561 vla_item_with_sz(d, char, ext_prop_name,
3562 ffs->ms_os_descs_ext_prop_name_len);
3563 vla_item_with_sz(d, char, ext_prop_data,
3564 ffs->ms_os_descs_ext_prop_data_len);
3565 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3566 char *vlabuf;
3567
3568 /* Has descriptors only for speeds gadget does not support */
3569 if (!(full | high | super))
3570 return -ENOTSUPP;
3571
3572 /* Allocate a single chunk, less management later on */
3573 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3574 if (!vlabuf)
3575 return -ENOMEM;
3576
3577 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3578 ffs->ms_os_descs_ext_prop_name_avail =
3579 vla_ptr(vlabuf, d, ext_prop_name);
3580 ffs->ms_os_descs_ext_prop_data_avail =
3581 vla_ptr(vlabuf, d, ext_prop_data);
3582
3583 /* Copy descriptors */
3584 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3585 ffs->raw_descs_length);
3586
3587 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3588 eps_ptr = vla_ptr(vlabuf, d, eps);
3589 for (i = 0; i < ffs->eps_count; i++)
3590 eps_ptr[i].num = -1;
3591
3592 /* Save pointers
3593 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3594 */
3595 func->eps = vla_ptr(vlabuf, d, eps);
3596 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3597
3598 /*
3599 * Go through all the endpoint descriptors and allocate
3600 * endpoints first, so that later we can rewrite the endpoint
3601 * numbers without worrying that it may be described later on.
3602 */
3603 if (full) {
3604 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3605 fs_len = ffs_do_descs(ffs->fs_descs_count,
3606 vla_ptr(vlabuf, d, raw_descs),
3607 d_raw_descs__sz,
3608 __ffs_func_bind_do_descs, func);
3609 if (fs_len < 0) {
3610 ret = fs_len;
3611 goto error;
3612 }
3613 } else {
3614 fs_len = 0;
3615 }
3616
3617 if (high) {
3618 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3619 hs_len = ffs_do_descs(ffs->hs_descs_count,
3620 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3621 d_raw_descs__sz - fs_len,
3622 __ffs_func_bind_do_descs, func);
3623 if (hs_len < 0) {
3624 ret = hs_len;
3625 goto error;
3626 }
3627 } else {
3628 hs_len = 0;
3629 }
3630
3631 if (super) {
3632 func->function.ss_descriptors = func->function.ssp_descriptors =
3633 vla_ptr(vlabuf, d, ss_descs);
3634 ss_len = ffs_do_descs(ffs->ss_descs_count,
3635 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3636 d_raw_descs__sz - fs_len - hs_len,
3637 __ffs_func_bind_do_descs, func);
3638 if (ss_len < 0) {
3639 ret = ss_len;
3640 goto error;
3641 }
3642 } else {
3643 ss_len = 0;
3644 }
3645
3646 /*
3647 * Now handle interface numbers allocation and interface and
3648 * endpoint numbers rewriting. We can do that in one go
3649 * now.
3650 */
3651 ret = ffs_do_descs(ffs->fs_descs_count +
3652 (high ? ffs->hs_descs_count : 0) +
3653 (super ? ffs->ss_descs_count : 0),
3654 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3655 __ffs_func_bind_do_nums, func);
3656 if (ret < 0)
3657 goto error;
3658
3659 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3660 if (c->cdev->use_os_string) {
3661 for (i = 0; i < ffs->interfaces_count; ++i) {
3662 struct usb_os_desc *desc;
3663
3664 desc = func->function.os_desc_table[i].os_desc =
3665 vla_ptr(vlabuf, d, os_desc) +
3666 i * sizeof(struct usb_os_desc);
3667 desc->ext_compat_id =
3668 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3669 INIT_LIST_HEAD(&desc->ext_prop);
3670 }
3671 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3672 vla_ptr(vlabuf, d, raw_descs) +
3673 fs_len + hs_len + ss_len,
3674 d_raw_descs__sz - fs_len - hs_len -
3675 ss_len,
3676 __ffs_func_bind_do_os_desc, func);
3677 if (ret < 0)
3678 goto error;
3679 }
3680 func->function.os_desc_n =
3681 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3682
3683 /* And we're done */
3684 ffs_event_add(ffs, FUNCTIONFS_BIND);
3685 return 0;
3686
3687error:
3688 /* XXX Do we need to release all claimed endpoints here? */
3689 return ret;
3690}
3691
3692static int ffs_func_bind(struct usb_configuration *c,
3693 struct usb_function *f)
3694{
3695 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3696 struct ffs_function *func = ffs_func_from_usb(f);
3697 int ret;
3698
3699 if (IS_ERR(ffs_opts))
3700 return PTR_ERR(ffs_opts);
3701
3702 ret = _ffs_func_bind(c, f);
3703 if (ret && !--ffs_opts->refcnt)
3704 functionfs_unbind(func->ffs);
3705
3706 return ret;
3707}
3708
3709
3710/* Other USB function hooks *************************************************/
3711
3712static void ffs_reset_work(struct work_struct *work)
3713{
3714 struct ffs_data *ffs = container_of(work,
3715 struct ffs_data, reset_work);
3716 ffs_data_reset(ffs);
3717}
3718
3719static int ffs_func_get_alt(struct usb_function *f,
3720 unsigned int interface)
3721{
3722 struct ffs_function *func = ffs_func_from_usb(f);
3723 int intf = ffs_func_revmap_intf(func, interface);
3724
3725 return (intf < 0) ? intf : func->cur_alt[interface];
3726}
3727
3728static int ffs_func_set_alt(struct usb_function *f,
3729 unsigned interface, unsigned alt)
3730{
3731 struct ffs_function *func = ffs_func_from_usb(f);
3732 struct ffs_data *ffs = func->ffs;
3733 int ret = 0, intf;
3734
3735 if (alt > MAX_ALT_SETTINGS)
3736 return -EINVAL;
3737
3738 intf = ffs_func_revmap_intf(func, interface);
3739 if (intf < 0)
3740 return intf;
3741
3742 if (ffs->func)
3743 ffs_func_eps_disable(ffs->func);
3744
3745 if (ffs->state == FFS_DEACTIVATED) {
3746 ffs->state = FFS_CLOSING;
3747 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3748 schedule_work(&ffs->reset_work);
3749 return -ENODEV;
3750 }
3751
3752 if (ffs->state != FFS_ACTIVE)
3753 return -ENODEV;
3754
3755 ffs->func = func;
3756 ret = ffs_func_eps_enable(func);
3757 if (ret >= 0) {
3758 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3759 func->cur_alt[interface] = alt;
3760 }
3761 return ret;
3762}
3763
3764static void ffs_func_disable(struct usb_function *f)
3765{
3766 struct ffs_function *func = ffs_func_from_usb(f);
3767 struct ffs_data *ffs = func->ffs;
3768
3769 if (ffs->func)
3770 ffs_func_eps_disable(ffs->func);
3771
3772 if (ffs->state == FFS_DEACTIVATED) {
3773 ffs->state = FFS_CLOSING;
3774 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3775 schedule_work(&ffs->reset_work);
3776 return;
3777 }
3778
3779 if (ffs->state == FFS_ACTIVE) {
3780 ffs->func = NULL;
3781 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3782 }
3783}
3784
3785static int ffs_func_setup(struct usb_function *f,
3786 const struct usb_ctrlrequest *creq)
3787{
3788 struct ffs_function *func = ffs_func_from_usb(f);
3789 struct ffs_data *ffs = func->ffs;
3790 unsigned long flags;
3791 int ret;
3792
3793 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3794 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3795 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3796 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3797 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3798
3799 /*
3800 * Most requests directed to interface go through here
3801 * (notable exceptions are set/get interface) so we need to
3802 * handle them. All other either handled by composite or
3803 * passed to usb_configuration->setup() (if one is set). No
3804 * matter, we will handle requests directed to endpoint here
3805 * as well (as it's straightforward). Other request recipient
3806 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3807 * is being used.
3808 */
3809 if (ffs->state != FFS_ACTIVE)
3810 return -ENODEV;
3811
3812 switch (creq->bRequestType & USB_RECIP_MASK) {
3813 case USB_RECIP_INTERFACE:
3814 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3815 if (ret < 0)
3816 return ret;
3817 break;
3818
3819 case USB_RECIP_ENDPOINT:
3820 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3821 if (ret < 0)
3822 return ret;
3823 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3824 ret = func->ffs->eps_addrmap[ret];
3825 break;
3826
3827 default:
3828 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3829 ret = le16_to_cpu(creq->wIndex);
3830 else
3831 return -EOPNOTSUPP;
3832 }
3833
3834 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3835 ffs->ev.setup = *creq;
3836 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3837 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3838 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3839
3840 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3841}
3842
3843static bool ffs_func_req_match(struct usb_function *f,
3844 const struct usb_ctrlrequest *creq,
3845 bool config0)
3846{
3847 struct ffs_function *func = ffs_func_from_usb(f);
3848
3849 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3850 return false;
3851
3852 switch (creq->bRequestType & USB_RECIP_MASK) {
3853 case USB_RECIP_INTERFACE:
3854 return (ffs_func_revmap_intf(func,
3855 le16_to_cpu(creq->wIndex)) >= 0);
3856 case USB_RECIP_ENDPOINT:
3857 return (ffs_func_revmap_ep(func,
3858 le16_to_cpu(creq->wIndex)) >= 0);
3859 default:
3860 return (bool) (func->ffs->user_flags &
3861 FUNCTIONFS_ALL_CTRL_RECIP);
3862 }
3863}
3864
3865static void ffs_func_suspend(struct usb_function *f)
3866{
3867 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3868}
3869
3870static void ffs_func_resume(struct usb_function *f)
3871{
3872 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3873}
3874
3875
3876/* Endpoint and interface numbers reverse mapping ***************************/
3877
3878static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3879{
3880 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3881 return num ? num : -EDOM;
3882}
3883
3884static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3885{
3886 short *nums = func->interfaces_nums;
3887 unsigned count = func->ffs->interfaces_count;
3888
3889 for (; count; --count, ++nums) {
3890 if (*nums >= 0 && *nums == intf)
3891 return nums - func->interfaces_nums;
3892 }
3893
3894 return -EDOM;
3895}
3896
3897
3898/* Devices management *******************************************************/
3899
3900static LIST_HEAD(ffs_devices);
3901
3902static struct ffs_dev *_ffs_do_find_dev(const char *name)
3903{
3904 struct ffs_dev *dev;
3905
3906 if (!name)
3907 return NULL;
3908
3909 list_for_each_entry(dev, &ffs_devices, entry) {
3910 if (strcmp(dev->name, name) == 0)
3911 return dev;
3912 }
3913
3914 return NULL;
3915}
3916
3917/*
3918 * ffs_lock must be taken by the caller of this function
3919 */
3920static struct ffs_dev *_ffs_get_single_dev(void)
3921{
3922 struct ffs_dev *dev;
3923
3924 if (list_is_singular(&ffs_devices)) {
3925 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3926 if (dev->single)
3927 return dev;
3928 }
3929
3930 return NULL;
3931}
3932
3933/*
3934 * ffs_lock must be taken by the caller of this function
3935 */
3936static struct ffs_dev *_ffs_find_dev(const char *name)
3937{
3938 struct ffs_dev *dev;
3939
3940 dev = _ffs_get_single_dev();
3941 if (dev)
3942 return dev;
3943
3944 return _ffs_do_find_dev(name);
3945}
3946
3947/* Configfs support *********************************************************/
3948
3949static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3950{
3951 return container_of(to_config_group(item), struct f_fs_opts,
3952 func_inst.group);
3953}
3954
3955static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3956{
3957 struct f_fs_opts *opts = to_ffs_opts(item);
3958 int ready;
3959
3960 ffs_dev_lock();
3961 ready = opts->dev->desc_ready;
3962 ffs_dev_unlock();
3963
3964 return sprintf(page, "%d\n", ready);
3965}
3966
3967CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3968
3969static struct configfs_attribute *ffs_attrs[] = {
3970 &f_fs_opts_attr_ready,
3971 NULL,
3972};
3973
3974static void ffs_attr_release(struct config_item *item)
3975{
3976 struct f_fs_opts *opts = to_ffs_opts(item);
3977
3978 usb_put_function_instance(&opts->func_inst);
3979}
3980
3981static struct configfs_item_operations ffs_item_ops = {
3982 .release = ffs_attr_release,
3983};
3984
3985static const struct config_item_type ffs_func_type = {
3986 .ct_item_ops = &ffs_item_ops,
3987 .ct_attrs = ffs_attrs,
3988 .ct_owner = THIS_MODULE,
3989};
3990
3991
3992/* Function registration interface ******************************************/
3993
3994static void ffs_free_inst(struct usb_function_instance *f)
3995{
3996 struct f_fs_opts *opts;
3997
3998 opts = to_f_fs_opts(f);
3999 ffs_release_dev(opts->dev);
4000 ffs_dev_lock();
4001 _ffs_free_dev(opts->dev);
4002 ffs_dev_unlock();
4003 kfree(opts);
4004}
4005
4006static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4007{
4008 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4009 return -ENAMETOOLONG;
4010 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4011}
4012
4013static struct usb_function_instance *ffs_alloc_inst(void)
4014{
4015 struct f_fs_opts *opts;
4016 struct ffs_dev *dev;
4017
4018 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4019 if (!opts)
4020 return ERR_PTR(-ENOMEM);
4021
4022 opts->func_inst.set_inst_name = ffs_set_inst_name;
4023 opts->func_inst.free_func_inst = ffs_free_inst;
4024 ffs_dev_lock();
4025 dev = _ffs_alloc_dev();
4026 ffs_dev_unlock();
4027 if (IS_ERR(dev)) {
4028 kfree(opts);
4029 return ERR_CAST(dev);
4030 }
4031 opts->dev = dev;
4032 dev->opts = opts;
4033
4034 config_group_init_type_name(&opts->func_inst.group, "",
4035 &ffs_func_type);
4036 return &opts->func_inst;
4037}
4038
4039static void ffs_free(struct usb_function *f)
4040{
4041 kfree(ffs_func_from_usb(f));
4042}
4043
4044static void ffs_func_unbind(struct usb_configuration *c,
4045 struct usb_function *f)
4046{
4047 struct ffs_function *func = ffs_func_from_usb(f);
4048 struct ffs_data *ffs = func->ffs;
4049 struct f_fs_opts *opts =
4050 container_of(f->fi, struct f_fs_opts, func_inst);
4051 struct ffs_ep *ep = func->eps;
4052 unsigned count = ffs->eps_count;
4053 unsigned long flags;
4054
4055 if (ffs->func == func) {
4056 ffs_func_eps_disable(func);
4057 ffs->func = NULL;
4058 }
4059
4060 /* Drain any pending AIO completions */
4061 drain_workqueue(ffs->io_completion_wq);
4062
4063 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4064 if (!--opts->refcnt)
4065 functionfs_unbind(ffs);
4066
4067 /* cleanup after autoconfig */
4068 spin_lock_irqsave(&func->ffs->eps_lock, flags);
4069 while (count--) {
4070 if (ep->ep && ep->req)
4071 usb_ep_free_request(ep->ep, ep->req);
4072 ep->req = NULL;
4073 ++ep;
4074 }
4075 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4076 kfree(func->eps);
4077 func->eps = NULL;
4078 /*
4079 * eps, descriptors and interfaces_nums are allocated in the
4080 * same chunk so only one free is required.
4081 */
4082 func->function.fs_descriptors = NULL;
4083 func->function.hs_descriptors = NULL;
4084 func->function.ss_descriptors = NULL;
4085 func->function.ssp_descriptors = NULL;
4086 func->interfaces_nums = NULL;
4087
4088}
4089
4090static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4091{
4092 struct ffs_function *func;
4093
4094 func = kzalloc(sizeof(*func), GFP_KERNEL);
4095 if (!func)
4096 return ERR_PTR(-ENOMEM);
4097
4098 func->function.name = "Function FS Gadget";
4099
4100 func->function.bind = ffs_func_bind;
4101 func->function.unbind = ffs_func_unbind;
4102 func->function.set_alt = ffs_func_set_alt;
4103 func->function.get_alt = ffs_func_get_alt;
4104 func->function.disable = ffs_func_disable;
4105 func->function.setup = ffs_func_setup;
4106 func->function.req_match = ffs_func_req_match;
4107 func->function.suspend = ffs_func_suspend;
4108 func->function.resume = ffs_func_resume;
4109 func->function.free_func = ffs_free;
4110
4111 return &func->function;
4112}
4113
4114/*
4115 * ffs_lock must be taken by the caller of this function
4116 */
4117static struct ffs_dev *_ffs_alloc_dev(void)
4118{
4119 struct ffs_dev *dev;
4120 int ret;
4121
4122 if (_ffs_get_single_dev())
4123 return ERR_PTR(-EBUSY);
4124
4125 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4126 if (!dev)
4127 return ERR_PTR(-ENOMEM);
4128
4129 if (list_empty(&ffs_devices)) {
4130 ret = functionfs_init();
4131 if (ret) {
4132 kfree(dev);
4133 return ERR_PTR(ret);
4134 }
4135 }
4136
4137 list_add(&dev->entry, &ffs_devices);
4138
4139 return dev;
4140}
4141
4142int ffs_name_dev(struct ffs_dev *dev, const char *name)
4143{
4144 struct ffs_dev *existing;
4145 int ret = 0;
4146
4147 ffs_dev_lock();
4148
4149 existing = _ffs_do_find_dev(name);
4150 if (!existing)
4151 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4152 else if (existing != dev)
4153 ret = -EBUSY;
4154
4155 ffs_dev_unlock();
4156
4157 return ret;
4158}
4159EXPORT_SYMBOL_GPL(ffs_name_dev);
4160
4161int ffs_single_dev(struct ffs_dev *dev)
4162{
4163 int ret;
4164
4165 ret = 0;
4166 ffs_dev_lock();
4167
4168 if (!list_is_singular(&ffs_devices))
4169 ret = -EBUSY;
4170 else
4171 dev->single = true;
4172
4173 ffs_dev_unlock();
4174 return ret;
4175}
4176EXPORT_SYMBOL_GPL(ffs_single_dev);
4177
4178/*
4179 * ffs_lock must be taken by the caller of this function
4180 */
4181static void _ffs_free_dev(struct ffs_dev *dev)
4182{
4183 list_del(&dev->entry);
4184
4185 kfree(dev);
4186 if (list_empty(&ffs_devices))
4187 functionfs_cleanup();
4188}
4189
4190static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4191{
4192 int ret = 0;
4193 struct ffs_dev *ffs_dev;
4194
4195 ffs_dev_lock();
4196
4197 ffs_dev = _ffs_find_dev(dev_name);
4198 if (!ffs_dev) {
4199 ret = -ENOENT;
4200 } else if (ffs_dev->mounted) {
4201 ret = -EBUSY;
4202 } else if (ffs_dev->ffs_acquire_dev_callback &&
4203 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4204 ret = -ENOENT;
4205 } else {
4206 ffs_dev->mounted = true;
4207 ffs_dev->ffs_data = ffs_data;
4208 ffs_data->private_data = ffs_dev;
4209 }
4210
4211 ffs_dev_unlock();
4212 return ret;
4213}
4214
4215static void ffs_release_dev(struct ffs_dev *ffs_dev)
4216{
4217 ffs_dev_lock();
4218
4219 if (ffs_dev && ffs_dev->mounted) {
4220 ffs_dev->mounted = false;
4221 if (ffs_dev->ffs_data) {
4222 ffs_dev->ffs_data->private_data = NULL;
4223 ffs_dev->ffs_data = NULL;
4224 }
4225
4226 if (ffs_dev->ffs_release_dev_callback)
4227 ffs_dev->ffs_release_dev_callback(ffs_dev);
4228 }
4229
4230 ffs_dev_unlock();
4231}
4232
4233static int ffs_ready(struct ffs_data *ffs)
4234{
4235 struct ffs_dev *ffs_obj;
4236 int ret = 0;
4237
4238 ffs_dev_lock();
4239
4240 ffs_obj = ffs->private_data;
4241 if (!ffs_obj) {
4242 ret = -EINVAL;
4243 goto done;
4244 }
4245 if (WARN_ON(ffs_obj->desc_ready)) {
4246 ret = -EBUSY;
4247 goto done;
4248 }
4249
4250 ffs_obj->desc_ready = true;
4251
4252 if (ffs_obj->ffs_ready_callback) {
4253 ret = ffs_obj->ffs_ready_callback(ffs);
4254 if (ret)
4255 goto done;
4256 }
4257
4258 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4259done:
4260 ffs_dev_unlock();
4261 return ret;
4262}
4263
4264static void ffs_closed(struct ffs_data *ffs)
4265{
4266 struct ffs_dev *ffs_obj;
4267 struct f_fs_opts *opts;
4268 struct config_item *ci;
4269
4270 ffs_dev_lock();
4271
4272 ffs_obj = ffs->private_data;
4273 if (!ffs_obj)
4274 goto done;
4275
4276 ffs_obj->desc_ready = false;
4277
4278 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4279 ffs_obj->ffs_closed_callback)
4280 ffs_obj->ffs_closed_callback(ffs);
4281
4282 if (ffs_obj->opts)
4283 opts = ffs_obj->opts;
4284 else
4285 goto done;
4286
4287 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4288 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4289 goto done;
4290
4291 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4292 ffs_dev_unlock();
4293
4294 if (test_bit(FFS_FL_BOUND, &ffs->flags))
4295 unregister_gadget_item(ci);
4296 return;
4297done:
4298 ffs_dev_unlock();
4299}
4300
4301/* Misc helper functions ****************************************************/
4302
4303static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4304{
4305 return nonblock
4306 ? mutex_trylock(mutex) ? 0 : -EAGAIN
4307 : mutex_lock_interruptible(mutex);
4308}
4309
4310static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4311{
4312 char *data;
4313
4314 if (!len)
4315 return NULL;
4316
4317 data = memdup_user(buf, len);
4318 if (IS_ERR(data))
4319 return data;
4320
4321 pr_vdebug("Buffer from user space:\n");
4322 ffs_dump_mem("", data, len);
4323
4324 return data;
4325}
4326
4327DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4328MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4329MODULE_LICENSE("GPL");
4330MODULE_AUTHOR("Michal Nazarewicz");