Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/jiffies.h>
16#include <linux/kobject.h>
17#include <linux/list.h>
18#include <linux/mod_devicetable.h>
19#include <linux/module.h>
20#include <linux/mutex.h>
21#include <linux/random.h>
22#include <linux/rwsem.h>
23#include <linux/slab.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/workqueue.h>
27
28#include <linux/atomic.h>
29#include <asm/byteorder.h>
30
31#include "core.h"
32
33#define ROOT_DIR_OFFSET 5
34
35void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
36{
37 ci->p = p + 1;
38 ci->end = ci->p + (p[0] >> 16);
39}
40EXPORT_SYMBOL(fw_csr_iterator_init);
41
42int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
43{
44 *key = *ci->p >> 24;
45 *value = *ci->p & 0xffffff;
46
47 return ci->p++ < ci->end;
48}
49EXPORT_SYMBOL(fw_csr_iterator_next);
50
51static const u32 *search_directory(const u32 *directory, int search_key)
52{
53 struct fw_csr_iterator ci;
54 int key, value;
55
56 search_key |= CSR_DIRECTORY;
57
58 fw_csr_iterator_init(&ci, directory);
59 while (fw_csr_iterator_next(&ci, &key, &value)) {
60 if (key == search_key)
61 return ci.p - 1 + value;
62 }
63
64 return NULL;
65}
66
67static const u32 *search_leaf(const u32 *directory, int search_key)
68{
69 struct fw_csr_iterator ci;
70 int last_key = 0, key, value;
71
72 fw_csr_iterator_init(&ci, directory);
73 while (fw_csr_iterator_next(&ci, &key, &value)) {
74 if (last_key == search_key &&
75 key == (CSR_DESCRIPTOR | CSR_LEAF))
76 return ci.p - 1 + value;
77
78 last_key = key;
79 }
80
81 return NULL;
82}
83
84static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
85{
86 unsigned int quadlets, i;
87 char c;
88
89 if (!size || !buf)
90 return -EINVAL;
91
92 quadlets = min(block[0] >> 16, 256U);
93 if (quadlets < 2)
94 return -ENODATA;
95
96 if (block[1] != 0 || block[2] != 0)
97 /* unknown language/character set */
98 return -ENODATA;
99
100 block += 3;
101 quadlets -= 2;
102 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
103 c = block[i / 4] >> (24 - 8 * (i % 4));
104 if (c == '\0')
105 break;
106 buf[i] = c;
107 }
108 buf[i] = '\0';
109
110 return i;
111}
112
113/**
114 * fw_csr_string() - reads a string from the configuration ROM
115 * @directory: e.g. root directory or unit directory
116 * @key: the key of the preceding directory entry
117 * @buf: where to put the string
118 * @size: size of @buf, in bytes
119 *
120 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
121 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
122 * and the zero byte fit into @size.
123 *
124 * Returns strlen(buf) or a negative error code.
125 */
126int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
127{
128 const u32 *leaf = search_leaf(directory, key);
129 if (!leaf)
130 return -ENOENT;
131
132 return textual_leaf_to_string(leaf, buf, size);
133}
134EXPORT_SYMBOL(fw_csr_string);
135
136static void get_ids(const u32 *directory, int *id)
137{
138 struct fw_csr_iterator ci;
139 int key, value;
140
141 fw_csr_iterator_init(&ci, directory);
142 while (fw_csr_iterator_next(&ci, &key, &value)) {
143 switch (key) {
144 case CSR_VENDOR: id[0] = value; break;
145 case CSR_MODEL: id[1] = value; break;
146 case CSR_SPECIFIER_ID: id[2] = value; break;
147 case CSR_VERSION: id[3] = value; break;
148 }
149 }
150}
151
152static void get_modalias_ids(const struct fw_unit *unit, int *id)
153{
154 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
155 const u32 *directories[] = {NULL, NULL, NULL};
156 const u32 *vendor_directory;
157 int i;
158
159 directories[0] = root_directory;
160
161 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
162 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
163 vendor_directory = search_directory(root_directory, CSR_VENDOR);
164 if (!vendor_directory) {
165 directories[1] = unit->directory;
166 } else {
167 directories[1] = vendor_directory;
168 directories[2] = unit->directory;
169 }
170
171 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
172 get_ids(directories[i], id);
173}
174
175static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
176{
177 int match = 0;
178
179 if (id[0] == id_table->vendor_id)
180 match |= IEEE1394_MATCH_VENDOR_ID;
181 if (id[1] == id_table->model_id)
182 match |= IEEE1394_MATCH_MODEL_ID;
183 if (id[2] == id_table->specifier_id)
184 match |= IEEE1394_MATCH_SPECIFIER_ID;
185 if (id[3] == id_table->version)
186 match |= IEEE1394_MATCH_VERSION;
187
188 return (match & id_table->match_flags) == id_table->match_flags;
189}
190
191static const struct ieee1394_device_id *unit_match(struct device *dev,
192 const struct device_driver *drv)
193{
194 const struct ieee1394_device_id *id_table =
195 container_of_const(drv, struct fw_driver, driver)->id_table;
196 int id[] = {0, 0, 0, 0};
197
198 get_modalias_ids(fw_unit(dev), id);
199
200 for (; id_table->match_flags != 0; id_table++)
201 if (match_ids(id_table, id))
202 return id_table;
203
204 return NULL;
205}
206
207static bool is_fw_unit(const struct device *dev);
208
209static int fw_unit_match(struct device *dev, const struct device_driver *drv)
210{
211 /* We only allow binding to fw_units. */
212 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
213}
214
215static int fw_unit_probe(struct device *dev)
216{
217 struct fw_driver *driver =
218 container_of(dev->driver, struct fw_driver, driver);
219
220 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
221}
222
223static void fw_unit_remove(struct device *dev)
224{
225 struct fw_driver *driver =
226 container_of(dev->driver, struct fw_driver, driver);
227
228 driver->remove(fw_unit(dev));
229}
230
231static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
232{
233 int id[] = {0, 0, 0, 0};
234
235 get_modalias_ids(unit, id);
236
237 return snprintf(buffer, buffer_size,
238 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
239 id[0], id[1], id[2], id[3]);
240}
241
242static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
243{
244 const struct fw_unit *unit = fw_unit(dev);
245 char modalias[64];
246
247 get_modalias(unit, modalias, sizeof(modalias));
248
249 if (add_uevent_var(env, "MODALIAS=%s", modalias))
250 return -ENOMEM;
251
252 return 0;
253}
254
255const struct bus_type fw_bus_type = {
256 .name = "firewire",
257 .match = fw_unit_match,
258 .probe = fw_unit_probe,
259 .remove = fw_unit_remove,
260};
261EXPORT_SYMBOL(fw_bus_type);
262
263int fw_device_enable_phys_dma(struct fw_device *device)
264{
265 int generation = device->generation;
266
267 /* device->node_id, accessed below, must not be older than generation */
268 smp_rmb();
269
270 return device->card->driver->enable_phys_dma(device->card,
271 device->node_id,
272 generation);
273}
274EXPORT_SYMBOL(fw_device_enable_phys_dma);
275
276struct config_rom_attribute {
277 struct device_attribute attr;
278 u32 key;
279};
280
281static ssize_t show_immediate(struct device *dev,
282 struct device_attribute *dattr, char *buf)
283{
284 struct config_rom_attribute *attr =
285 container_of(dattr, struct config_rom_attribute, attr);
286 struct fw_csr_iterator ci;
287 const u32 *directories[] = {NULL, NULL};
288 int i, value = -1;
289
290 guard(rwsem_read)(&fw_device_rwsem);
291
292 if (is_fw_unit(dev)) {
293 directories[0] = fw_unit(dev)->directory;
294 } else {
295 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
296 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
297
298 if (!vendor_directory) {
299 directories[0] = root_directory;
300 } else {
301 // Legacy layout of configuration ROM described in Annex 1 of
302 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
303 // Association, TA Document 1999027)'.
304 directories[0] = vendor_directory;
305 directories[1] = root_directory;
306 }
307 }
308
309 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
310 int key, val;
311
312 fw_csr_iterator_init(&ci, directories[i]);
313 while (fw_csr_iterator_next(&ci, &key, &val)) {
314 if (attr->key == key)
315 value = val;
316 }
317 }
318
319 if (value < 0)
320 return -ENOENT;
321
322 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
323 return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
324}
325
326#define IMMEDIATE_ATTR(name, key) \
327 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
328
329static ssize_t show_text_leaf(struct device *dev,
330 struct device_attribute *dattr, char *buf)
331{
332 struct config_rom_attribute *attr =
333 container_of(dattr, struct config_rom_attribute, attr);
334 const u32 *directories[] = {NULL, NULL};
335 size_t bufsize;
336 char dummy_buf[2];
337 int i, ret = -ENOENT;
338
339 guard(rwsem_read)(&fw_device_rwsem);
340
341 if (is_fw_unit(dev)) {
342 directories[0] = fw_unit(dev)->directory;
343 } else {
344 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
345 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
346
347 if (!vendor_directory) {
348 directories[0] = root_directory;
349 } else {
350 // Legacy layout of configuration ROM described in Annex 1 of
351 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
352 // Trading Association, TA Document 1999027)'.
353 directories[0] = root_directory;
354 directories[1] = vendor_directory;
355 }
356 }
357
358 // Note that this function is also called by init_fw_attribute_group() with NULL pointer.
359 if (buf) {
360 bufsize = PAGE_SIZE - 1;
361 } else {
362 buf = dummy_buf;
363 bufsize = 1;
364 }
365
366 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
367 int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
368 // Detected.
369 if (result >= 0) {
370 ret = result;
371 } else if (i == 0 && attr->key == CSR_VENDOR) {
372 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
373 // in the root directory follows to the directory entry for vendor ID
374 // instead of the immediate value for vendor ID.
375 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
376 bufsize);
377 if (result >= 0)
378 ret = result;
379 }
380 }
381
382 if (ret < 0)
383 return ret;
384
385 // Strip trailing whitespace and add newline.
386 while (ret > 0 && isspace(buf[ret - 1]))
387 ret--;
388 strcpy(buf + ret, "\n");
389 ret++;
390
391 return ret;
392}
393
394#define TEXT_LEAF_ATTR(name, key) \
395 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
396
397static struct config_rom_attribute config_rom_attributes[] = {
398 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
399 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
400 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
401 IMMEDIATE_ATTR(version, CSR_VERSION),
402 IMMEDIATE_ATTR(model, CSR_MODEL),
403 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
404 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
405 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
406};
407
408static void init_fw_attribute_group(struct device *dev,
409 struct device_attribute *attrs,
410 struct fw_attribute_group *group)
411{
412 struct device_attribute *attr;
413 int i, j;
414
415 for (j = 0; attrs[j].attr.name != NULL; j++)
416 group->attrs[j] = &attrs[j].attr;
417
418 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
419 attr = &config_rom_attributes[i].attr;
420 if (attr->show(dev, attr, NULL) < 0)
421 continue;
422 group->attrs[j++] = &attr->attr;
423 }
424
425 group->attrs[j] = NULL;
426 group->groups[0] = &group->group;
427 group->groups[1] = NULL;
428 group->group.attrs = group->attrs;
429 dev->groups = (const struct attribute_group **) group->groups;
430}
431
432static ssize_t modalias_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
434{
435 struct fw_unit *unit = fw_unit(dev);
436 int length;
437
438 length = get_modalias(unit, buf, PAGE_SIZE);
439 strcpy(buf + length, "\n");
440
441 return length + 1;
442}
443
444static ssize_t rom_index_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
446{
447 struct fw_device *device = fw_device(dev->parent);
448 struct fw_unit *unit = fw_unit(dev);
449
450 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
451}
452
453static struct device_attribute fw_unit_attributes[] = {
454 __ATTR_RO(modalias),
455 __ATTR_RO(rom_index),
456 __ATTR_NULL,
457};
458
459static ssize_t config_rom_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461{
462 struct fw_device *device = fw_device(dev);
463 size_t length;
464
465 guard(rwsem_read)(&fw_device_rwsem);
466
467 length = device->config_rom_length * 4;
468 memcpy(buf, device->config_rom, length);
469
470 return length;
471}
472
473static ssize_t guid_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
475{
476 struct fw_device *device = fw_device(dev);
477
478 guard(rwsem_read)(&fw_device_rwsem);
479
480 return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
481}
482
483static ssize_t is_local_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485{
486 struct fw_device *device = fw_device(dev);
487
488 return sysfs_emit(buf, "%u\n", device->is_local);
489}
490
491static int units_sprintf(char *buf, const u32 *directory)
492{
493 struct fw_csr_iterator ci;
494 int key, value;
495 int specifier_id = 0;
496 int version = 0;
497
498 fw_csr_iterator_init(&ci, directory);
499 while (fw_csr_iterator_next(&ci, &key, &value)) {
500 switch (key) {
501 case CSR_SPECIFIER_ID:
502 specifier_id = value;
503 break;
504 case CSR_VERSION:
505 version = value;
506 break;
507 }
508 }
509
510 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
511}
512
513static ssize_t units_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515{
516 struct fw_device *device = fw_device(dev);
517 struct fw_csr_iterator ci;
518 int key, value, i = 0;
519
520 guard(rwsem_read)(&fw_device_rwsem);
521
522 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
523 while (fw_csr_iterator_next(&ci, &key, &value)) {
524 if (key != (CSR_UNIT | CSR_DIRECTORY))
525 continue;
526 i += units_sprintf(&buf[i], ci.p + value - 1);
527 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
528 break;
529 }
530
531 if (i)
532 buf[i - 1] = '\n';
533
534 return i;
535}
536
537static struct device_attribute fw_device_attributes[] = {
538 __ATTR_RO(config_rom),
539 __ATTR_RO(guid),
540 __ATTR_RO(is_local),
541 __ATTR_RO(units),
542 __ATTR_NULL,
543};
544
545static int read_rom(struct fw_device *device,
546 int generation, int index, u32 *data)
547{
548 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
549 int i, rcode;
550
551 /* device->node_id, accessed below, must not be older than generation */
552 smp_rmb();
553
554 for (i = 10; i < 100; i += 10) {
555 rcode = fw_run_transaction(device->card,
556 TCODE_READ_QUADLET_REQUEST, device->node_id,
557 generation, device->max_speed, offset, data, 4);
558 if (rcode != RCODE_BUSY)
559 break;
560 msleep(i);
561 }
562 be32_to_cpus(data);
563
564 return rcode;
565}
566
567// By quadlet unit.
568#define MAX_CONFIG_ROM_SIZE ((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32))
569
570/*
571 * Read the bus info block, perform a speed probe, and read all of the rest of
572 * the config ROM. We do all this with a cached bus generation. If the bus
573 * generation changes under us, read_config_rom will fail and get retried.
574 * It's better to start all over in this case because the node from which we
575 * are reading the ROM may have changed the ROM during the reset.
576 * Returns either a result code or a negative error code.
577 */
578static int read_config_rom(struct fw_device *device, int generation)
579{
580 struct fw_card *card = device->card;
581 const u32 *old_rom, *new_rom;
582 u32 *rom, *stack;
583 u32 sp, key;
584 int i, end, length, ret;
585
586 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
587 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
588 if (rom == NULL)
589 return -ENOMEM;
590
591 stack = &rom[MAX_CONFIG_ROM_SIZE];
592 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
593
594 device->max_speed = SCODE_100;
595
596 /* First read the bus info block. */
597 for (i = 0; i < 5; i++) {
598 ret = read_rom(device, generation, i, &rom[i]);
599 if (ret != RCODE_COMPLETE)
600 goto out;
601 /*
602 * As per IEEE1212 7.2, during initialization, devices can
603 * reply with a 0 for the first quadlet of the config
604 * rom to indicate that they are booting (for example,
605 * if the firmware is on the disk of a external
606 * harddisk). In that case we just fail, and the
607 * retry mechanism will try again later.
608 */
609 if (i == 0 && rom[i] == 0) {
610 ret = RCODE_BUSY;
611 goto out;
612 }
613 }
614
615 device->max_speed = device->node->max_speed;
616
617 /*
618 * Determine the speed of
619 * - devices with link speed less than PHY speed,
620 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
621 * - all devices if there are 1394b repeaters.
622 * Note, we cannot use the bus info block's link_spd as starting point
623 * because some buggy firmwares set it lower than necessary and because
624 * 1394-1995 nodes do not have the field.
625 */
626 if ((rom[2] & 0x7) < device->max_speed ||
627 device->max_speed == SCODE_BETA ||
628 card->beta_repeaters_present) {
629 u32 dummy;
630
631 /* for S1600 and S3200 */
632 if (device->max_speed == SCODE_BETA)
633 device->max_speed = card->link_speed;
634
635 while (device->max_speed > SCODE_100) {
636 if (read_rom(device, generation, 0, &dummy) ==
637 RCODE_COMPLETE)
638 break;
639 device->max_speed--;
640 }
641 }
642
643 /*
644 * Now parse the config rom. The config rom is a recursive
645 * directory structure so we parse it using a stack of
646 * references to the blocks that make up the structure. We
647 * push a reference to the root directory on the stack to
648 * start things off.
649 */
650 length = i;
651 sp = 0;
652 stack[sp++] = 0xc0000005;
653 while (sp > 0) {
654 /*
655 * Pop the next block reference of the stack. The
656 * lower 24 bits is the offset into the config rom,
657 * the upper 8 bits are the type of the reference the
658 * block.
659 */
660 key = stack[--sp];
661 i = key & 0xffffff;
662 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
663 ret = -ENXIO;
664 goto out;
665 }
666
667 /* Read header quadlet for the block to get the length. */
668 ret = read_rom(device, generation, i, &rom[i]);
669 if (ret != RCODE_COMPLETE)
670 goto out;
671 end = i + (rom[i] >> 16) + 1;
672 if (end > MAX_CONFIG_ROM_SIZE) {
673 /*
674 * This block extends outside the config ROM which is
675 * a firmware bug. Ignore this whole block, i.e.
676 * simply set a fake block length of 0.
677 */
678 fw_err(card, "skipped invalid ROM block %x at %llx\n",
679 rom[i],
680 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
681 rom[i] = 0;
682 end = i;
683 }
684 i++;
685
686 /*
687 * Now read in the block. If this is a directory
688 * block, check the entries as we read them to see if
689 * it references another block, and push it in that case.
690 */
691 for (; i < end; i++) {
692 ret = read_rom(device, generation, i, &rom[i]);
693 if (ret != RCODE_COMPLETE)
694 goto out;
695
696 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
697 continue;
698 /*
699 * Offset points outside the ROM. May be a firmware
700 * bug or an Extended ROM entry (IEEE 1212-2001 clause
701 * 7.7.18). Simply overwrite this pointer here by a
702 * fake immediate entry so that later iterators over
703 * the ROM don't have to check offsets all the time.
704 */
705 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
706 fw_err(card,
707 "skipped unsupported ROM entry %x at %llx\n",
708 rom[i],
709 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
710 rom[i] = 0;
711 continue;
712 }
713 stack[sp++] = i + rom[i];
714 }
715 if (length < i)
716 length = i;
717 }
718
719 old_rom = device->config_rom;
720 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
721 if (new_rom == NULL) {
722 ret = -ENOMEM;
723 goto out;
724 }
725
726 scoped_guard(rwsem_write, &fw_device_rwsem) {
727 device->config_rom = new_rom;
728 device->config_rom_length = length;
729 }
730
731 kfree(old_rom);
732 ret = RCODE_COMPLETE;
733 device->max_rec = rom[2] >> 12 & 0xf;
734 device->cmc = rom[2] >> 30 & 1;
735 device->irmc = rom[2] >> 31 & 1;
736 out:
737 kfree(rom);
738
739 return ret;
740}
741
742static void fw_unit_release(struct device *dev)
743{
744 struct fw_unit *unit = fw_unit(dev);
745
746 fw_device_put(fw_parent_device(unit));
747 kfree(unit);
748}
749
750static struct device_type fw_unit_type = {
751 .uevent = fw_unit_uevent,
752 .release = fw_unit_release,
753};
754
755static bool is_fw_unit(const struct device *dev)
756{
757 return dev->type == &fw_unit_type;
758}
759
760static void create_units(struct fw_device *device)
761{
762 struct fw_csr_iterator ci;
763 struct fw_unit *unit;
764 int key, value, i;
765
766 i = 0;
767 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
768 while (fw_csr_iterator_next(&ci, &key, &value)) {
769 if (key != (CSR_UNIT | CSR_DIRECTORY))
770 continue;
771
772 /*
773 * Get the address of the unit directory and try to
774 * match the drivers id_tables against it.
775 */
776 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
777 if (unit == NULL)
778 continue;
779
780 unit->directory = ci.p + value - 1;
781 unit->device.bus = &fw_bus_type;
782 unit->device.type = &fw_unit_type;
783 unit->device.parent = &device->device;
784 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
785
786 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
787 ARRAY_SIZE(fw_unit_attributes) +
788 ARRAY_SIZE(config_rom_attributes));
789 init_fw_attribute_group(&unit->device,
790 fw_unit_attributes,
791 &unit->attribute_group);
792
793 fw_device_get(device);
794 if (device_register(&unit->device) < 0) {
795 put_device(&unit->device);
796 continue;
797 }
798 }
799}
800
801static int shutdown_unit(struct device *device, void *data)
802{
803 device_unregister(device);
804
805 return 0;
806}
807
808/*
809 * fw_device_rwsem acts as dual purpose mutex:
810 * - serializes accesses to fw_device.config_rom/.config_rom_length and
811 * fw_unit.directory, unless those accesses happen at safe occasions
812 */
813DECLARE_RWSEM(fw_device_rwsem);
814
815DEFINE_XARRAY_ALLOC(fw_device_xa);
816int fw_cdev_major;
817
818struct fw_device *fw_device_get_by_devt(dev_t devt)
819{
820 struct fw_device *device;
821
822 device = xa_load(&fw_device_xa, MINOR(devt));
823 if (device)
824 fw_device_get(device);
825
826 return device;
827}
828
829struct workqueue_struct *fw_workqueue;
830EXPORT_SYMBOL(fw_workqueue);
831
832static void fw_schedule_device_work(struct fw_device *device,
833 unsigned long delay)
834{
835 queue_delayed_work(fw_workqueue, &device->work, delay);
836}
837
838/*
839 * These defines control the retry behavior for reading the config
840 * rom. It shouldn't be necessary to tweak these; if the device
841 * doesn't respond to a config rom read within 10 seconds, it's not
842 * going to respond at all. As for the initial delay, a lot of
843 * devices will be able to respond within half a second after bus
844 * reset. On the other hand, it's not really worth being more
845 * aggressive than that, since it scales pretty well; if 10 devices
846 * are plugged in, they're all getting read within one second.
847 */
848
849#define MAX_RETRIES 10
850#define RETRY_DELAY secs_to_jiffies(3)
851#define INITIAL_DELAY msecs_to_jiffies(500)
852#define SHUTDOWN_DELAY secs_to_jiffies(2)
853
854static void fw_device_shutdown(struct work_struct *work)
855{
856 struct fw_device *device = from_work(device, work, work.work);
857
858 if (time_is_after_jiffies64(device->card->reset_jiffies + SHUTDOWN_DELAY)
859 && !list_empty(&device->card->link)) {
860 fw_schedule_device_work(device, SHUTDOWN_DELAY);
861 return;
862 }
863
864 if (atomic_cmpxchg(&device->state,
865 FW_DEVICE_GONE,
866 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
867 return;
868
869 fw_device_cdev_remove(device);
870 device_for_each_child(&device->device, NULL, shutdown_unit);
871 device_unregister(&device->device);
872
873 xa_erase(&fw_device_xa, MINOR(device->device.devt));
874
875 fw_device_put(device);
876}
877
878static void fw_device_release(struct device *dev)
879{
880 struct fw_device *device = fw_device(dev);
881 struct fw_card *card = device->card;
882
883 /*
884 * Take the card lock so we don't set this to NULL while a
885 * FW_NODE_UPDATED callback is being handled or while the
886 * bus manager work looks at this node.
887 */
888 scoped_guard(spinlock_irqsave, &card->lock)
889 fw_node_set_device(device->node, NULL);
890
891 fw_node_put(device->node);
892 kfree(device->config_rom);
893 kfree(device);
894 fw_card_put(card);
895}
896
897static struct device_type fw_device_type = {
898 .release = fw_device_release,
899};
900
901static bool is_fw_device(const struct device *dev)
902{
903 return dev->type == &fw_device_type;
904}
905
906static int update_unit(struct device *dev, void *data)
907{
908 struct fw_unit *unit = fw_unit(dev);
909 struct fw_driver *driver = (struct fw_driver *)dev->driver;
910
911 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
912 device_lock(dev);
913 driver->update(unit);
914 device_unlock(dev);
915 }
916
917 return 0;
918}
919
920static void fw_device_update(struct work_struct *work)
921{
922 struct fw_device *device = from_work(device, work, work.work);
923
924 fw_device_cdev_update(device);
925 device_for_each_child(&device->device, NULL, update_unit);
926}
927
928enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
929
930static void set_broadcast_channel(struct fw_device *device, int generation)
931{
932 struct fw_card *card = device->card;
933 __be32 data;
934 int rcode;
935
936 if (!card->broadcast_channel_allocated)
937 return;
938
939 /*
940 * The Broadcast_Channel Valid bit is required by nodes which want to
941 * transmit on this channel. Such transmissions are practically
942 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
943 * to be IRM capable and have a max_rec of 8 or more. We use this fact
944 * to narrow down to which nodes we send Broadcast_Channel updates.
945 */
946 if (!device->irmc || device->max_rec < 8)
947 return;
948
949 /*
950 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
951 * Perform a read test first.
952 */
953 if (device->bc_implemented == BC_UNKNOWN) {
954 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
955 device->node_id, generation, device->max_speed,
956 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
957 &data, 4);
958 switch (rcode) {
959 case RCODE_COMPLETE:
960 if (data & cpu_to_be32(1 << 31)) {
961 device->bc_implemented = BC_IMPLEMENTED;
962 break;
963 }
964 fallthrough; /* to case address error */
965 case RCODE_ADDRESS_ERROR:
966 device->bc_implemented = BC_UNIMPLEMENTED;
967 }
968 }
969
970 if (device->bc_implemented == BC_IMPLEMENTED) {
971 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
972 BROADCAST_CHANNEL_VALID);
973 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
974 device->node_id, generation, device->max_speed,
975 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
976 &data, 4);
977 }
978}
979
980int fw_device_set_broadcast_channel(struct device *dev, void *gen)
981{
982 if (is_fw_device(dev))
983 set_broadcast_channel(fw_device(dev), (long)gen);
984
985 return 0;
986}
987
988static int compare_configuration_rom(struct device *dev, const void *data)
989{
990 const struct fw_device *old = fw_device(dev);
991 const u32 *config_rom = data;
992
993 if (!is_fw_device(dev))
994 return 0;
995
996 // Compare the bus information block and root_length/root_crc.
997 return !memcmp(old->config_rom, config_rom, 6 * 4);
998}
999
1000static void fw_device_init(struct work_struct *work)
1001{
1002 struct fw_device *device = from_work(device, work, work.work);
1003 struct fw_card *card = device->card;
1004 struct device *found;
1005 u32 minor;
1006 int ret;
1007
1008 /*
1009 * All failure paths here call fw_node_set_device(node, NULL), so that we
1010 * don't try to do device_for_each_child() on a kfree()'d
1011 * device.
1012 */
1013
1014 ret = read_config_rom(device, device->generation);
1015 if (ret != RCODE_COMPLETE) {
1016 if (device->config_rom_retries < MAX_RETRIES &&
1017 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1018 device->config_rom_retries++;
1019 fw_schedule_device_work(device, RETRY_DELAY);
1020 } else {
1021 if (device->node->link_on)
1022 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1023 device->node_id,
1024 fw_rcode_string(ret));
1025 if (device->node == card->root_node)
1026 fw_schedule_bm_work(card, 0);
1027 fw_device_release(&device->device);
1028 }
1029 return;
1030 }
1031
1032 // If a device was pending for deletion because its node went away but its bus info block
1033 // and root directory header matches that of a newly discovered device, revive the
1034 // existing fw_device. The newly allocated fw_device becomes obsolete instead.
1035 //
1036 // serialize config_rom access.
1037 scoped_guard(rwsem_read, &fw_device_rwsem) {
1038 found = device_find_child(card->device, device->config_rom,
1039 compare_configuration_rom);
1040 }
1041 if (found) {
1042 struct fw_device *reused = fw_device(found);
1043
1044 if (atomic_cmpxchg(&reused->state,
1045 FW_DEVICE_GONE,
1046 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1047 // serialize node access
1048 scoped_guard(spinlock_irq, &card->lock) {
1049 struct fw_node *current_node = device->node;
1050 struct fw_node *obsolete_node = reused->node;
1051
1052 device->node = obsolete_node;
1053 fw_node_set_device(device->node, device);
1054 reused->node = current_node;
1055 fw_node_set_device(reused->node, reused);
1056
1057 reused->max_speed = device->max_speed;
1058 reused->node_id = current_node->node_id;
1059 smp_wmb(); /* update node_id before generation */
1060 reused->generation = card->generation;
1061 reused->config_rom_retries = 0;
1062 fw_notice(card, "rediscovered device %s\n",
1063 dev_name(found));
1064
1065 reused->workfn = fw_device_update;
1066 fw_schedule_device_work(reused, 0);
1067
1068 if (current_node == card->root_node)
1069 fw_schedule_bm_work(card, 0);
1070 }
1071
1072 put_device(found);
1073 fw_device_release(&device->device);
1074
1075 return;
1076 }
1077
1078 put_device(found);
1079 }
1080
1081 device_initialize(&device->device);
1082
1083 fw_device_get(device);
1084
1085 // The index of allocated entry is used for minor identifier of device node.
1086 ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL);
1087 if (ret < 0)
1088 goto error;
1089
1090 device->device.bus = &fw_bus_type;
1091 device->device.type = &fw_device_type;
1092 device->device.parent = card->device;
1093 device->device.devt = MKDEV(fw_cdev_major, minor);
1094 dev_set_name(&device->device, "fw%d", minor);
1095
1096 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1097 ARRAY_SIZE(fw_device_attributes) +
1098 ARRAY_SIZE(config_rom_attributes));
1099 init_fw_attribute_group(&device->device,
1100 fw_device_attributes,
1101 &device->attribute_group);
1102
1103 if (device_add(&device->device)) {
1104 fw_err(card, "failed to add device\n");
1105 goto error_with_cdev;
1106 }
1107
1108 create_units(device);
1109
1110 /*
1111 * Transition the device to running state. If it got pulled
1112 * out from under us while we did the initialization work, we
1113 * have to shut down the device again here. Normally, though,
1114 * fw_node_event will be responsible for shutting it down when
1115 * necessary. We have to use the atomic cmpxchg here to avoid
1116 * racing with the FW_NODE_DESTROYED case in
1117 * fw_node_event().
1118 */
1119 if (atomic_cmpxchg(&device->state,
1120 FW_DEVICE_INITIALIZING,
1121 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1122 device->workfn = fw_device_shutdown;
1123 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1124 } else {
1125 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1126 dev_name(&device->device),
1127 device->config_rom[3], device->config_rom[4],
1128 1 << device->max_speed);
1129 device->config_rom_retries = 0;
1130
1131 set_broadcast_channel(device, device->generation);
1132
1133 add_device_randomness(&device->config_rom[3], 8);
1134 }
1135
1136 /*
1137 * Reschedule the IRM work if we just finished reading the
1138 * root node config rom. If this races with a bus reset we
1139 * just end up running the IRM work a couple of extra times -
1140 * pretty harmless.
1141 */
1142 if (device->node == card->root_node)
1143 fw_schedule_bm_work(card, 0);
1144
1145 return;
1146
1147 error_with_cdev:
1148 xa_erase(&fw_device_xa, minor);
1149 error:
1150 fw_device_put(device); // fw_device_xa's reference.
1151
1152 put_device(&device->device); /* our reference */
1153}
1154
1155/* Reread and compare bus info block and header of root directory */
1156static int reread_config_rom(struct fw_device *device, int generation,
1157 bool *changed)
1158{
1159 u32 q;
1160 int i, rcode;
1161
1162 for (i = 0; i < 6; i++) {
1163 rcode = read_rom(device, generation, i, &q);
1164 if (rcode != RCODE_COMPLETE)
1165 return rcode;
1166
1167 if (i == 0 && q == 0)
1168 /* inaccessible (see read_config_rom); retry later */
1169 return RCODE_BUSY;
1170
1171 if (q != device->config_rom[i]) {
1172 *changed = true;
1173 return RCODE_COMPLETE;
1174 }
1175 }
1176
1177 *changed = false;
1178 return RCODE_COMPLETE;
1179}
1180
1181static void fw_device_refresh(struct work_struct *work)
1182{
1183 struct fw_device *device = from_work(device, work, work.work);
1184 struct fw_card *card = device->card;
1185 int ret, node_id = device->node_id;
1186 bool changed;
1187
1188 ret = reread_config_rom(device, device->generation, &changed);
1189 if (ret != RCODE_COMPLETE)
1190 goto failed_config_rom;
1191
1192 if (!changed) {
1193 if (atomic_cmpxchg(&device->state,
1194 FW_DEVICE_INITIALIZING,
1195 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1196 goto gone;
1197
1198 fw_device_update(work);
1199 device->config_rom_retries = 0;
1200 goto out;
1201 }
1202
1203 /*
1204 * Something changed. We keep things simple and don't investigate
1205 * further. We just destroy all previous units and create new ones.
1206 */
1207 device_for_each_child(&device->device, NULL, shutdown_unit);
1208
1209 ret = read_config_rom(device, device->generation);
1210 if (ret != RCODE_COMPLETE)
1211 goto failed_config_rom;
1212
1213 fw_device_cdev_update(device);
1214 create_units(device);
1215
1216 /* Userspace may want to re-read attributes. */
1217 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1218
1219 if (atomic_cmpxchg(&device->state,
1220 FW_DEVICE_INITIALIZING,
1221 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1222 goto gone;
1223
1224 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1225 device->config_rom_retries = 0;
1226 goto out;
1227
1228 failed_config_rom:
1229 if (device->config_rom_retries < MAX_RETRIES &&
1230 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1231 device->config_rom_retries++;
1232 fw_schedule_device_work(device, RETRY_DELAY);
1233 return;
1234 }
1235
1236 fw_notice(card, "giving up on refresh of device %s: %s\n",
1237 dev_name(&device->device), fw_rcode_string(ret));
1238 gone:
1239 atomic_set(&device->state, FW_DEVICE_GONE);
1240 device->workfn = fw_device_shutdown;
1241 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1242 out:
1243 if (node_id == card->root_node->node_id)
1244 fw_schedule_bm_work(card, 0);
1245}
1246
1247static void fw_device_workfn(struct work_struct *work)
1248{
1249 struct fw_device *device = from_work(device, to_delayed_work(work), work);
1250 device->workfn(work);
1251}
1252
1253void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1254{
1255 struct fw_device *device;
1256
1257 switch (event) {
1258 case FW_NODE_CREATED:
1259 /*
1260 * Attempt to scan the node, regardless whether its self ID has
1261 * the L (link active) flag set or not. Some broken devices
1262 * send L=0 but have an up-and-running link; others send L=1
1263 * without actually having a link.
1264 */
1265 create:
1266 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1267 if (device == NULL)
1268 break;
1269
1270 /*
1271 * Do minimal initialization of the device here, the
1272 * rest will happen in fw_device_init().
1273 *
1274 * Attention: A lot of things, even fw_device_get(),
1275 * cannot be done before fw_device_init() finished!
1276 * You can basically just check device->state and
1277 * schedule work until then, but only while holding
1278 * card->lock.
1279 */
1280 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1281 device->card = fw_card_get(card);
1282 device->node = fw_node_get(node);
1283 device->node_id = node->node_id;
1284 device->generation = card->generation;
1285 device->is_local = node == card->local_node;
1286 mutex_init(&device->client_list_mutex);
1287 INIT_LIST_HEAD(&device->client_list);
1288
1289 /*
1290 * Set the node data to point back to this device so
1291 * FW_NODE_UPDATED callbacks can update the node_id
1292 * and generation for the device.
1293 */
1294 fw_node_set_device(node, device);
1295
1296 /*
1297 * Many devices are slow to respond after bus resets,
1298 * especially if they are bus powered and go through
1299 * power-up after getting plugged in. We schedule the
1300 * first config rom scan half a second after bus reset.
1301 */
1302 device->workfn = fw_device_init;
1303 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1304 fw_schedule_device_work(device, INITIAL_DELAY);
1305 break;
1306
1307 case FW_NODE_INITIATED_RESET:
1308 case FW_NODE_LINK_ON:
1309 device = fw_node_get_device(node);
1310 if (device == NULL)
1311 goto create;
1312
1313 device->node_id = node->node_id;
1314 smp_wmb(); /* update node_id before generation */
1315 device->generation = card->generation;
1316 if (atomic_cmpxchg(&device->state,
1317 FW_DEVICE_RUNNING,
1318 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1319 device->workfn = fw_device_refresh;
1320 fw_schedule_device_work(device,
1321 device->is_local ? 0 : INITIAL_DELAY);
1322 }
1323 break;
1324
1325 case FW_NODE_UPDATED:
1326 device = fw_node_get_device(node);
1327 if (device == NULL)
1328 break;
1329
1330 device->node_id = node->node_id;
1331 smp_wmb(); /* update node_id before generation */
1332 device->generation = card->generation;
1333 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1334 device->workfn = fw_device_update;
1335 fw_schedule_device_work(device, 0);
1336 }
1337 break;
1338
1339 case FW_NODE_DESTROYED:
1340 case FW_NODE_LINK_OFF:
1341 if (!fw_node_get_device(node))
1342 break;
1343
1344 /*
1345 * Destroy the device associated with the node. There
1346 * are two cases here: either the device is fully
1347 * initialized (FW_DEVICE_RUNNING) or we're in the
1348 * process of reading its config rom
1349 * (FW_DEVICE_INITIALIZING). If it is fully
1350 * initialized we can reuse device->work to schedule a
1351 * full fw_device_shutdown(). If not, there's work
1352 * scheduled to read it's config rom, and we just put
1353 * the device in shutdown state to have that code fail
1354 * to create the device.
1355 */
1356 device = fw_node_get_device(node);
1357 if (atomic_xchg(&device->state,
1358 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1359 device->workfn = fw_device_shutdown;
1360 fw_schedule_device_work(device,
1361 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1362 }
1363 break;
1364 }
1365}
1366
1367#ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1368#include "device-attribute-test.c"
1369#endif