at v6.17 38 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/cache.h> 16#include <linux/gfp.h> 17#include <linux/overflow.h> 18#include <linux/types.h> 19#include <linux/rcupdate.h> 20#include <linux/workqueue.h> 21#include <linux/percpu-refcount.h> 22#include <linux/cleanup.h> 23#include <linux/hash.h> 24 25enum _slab_flag_bits { 26 _SLAB_CONSISTENCY_CHECKS, 27 _SLAB_RED_ZONE, 28 _SLAB_POISON, 29 _SLAB_KMALLOC, 30 _SLAB_HWCACHE_ALIGN, 31 _SLAB_CACHE_DMA, 32 _SLAB_CACHE_DMA32, 33 _SLAB_STORE_USER, 34 _SLAB_PANIC, 35 _SLAB_TYPESAFE_BY_RCU, 36 _SLAB_TRACE, 37#ifdef CONFIG_DEBUG_OBJECTS 38 _SLAB_DEBUG_OBJECTS, 39#endif 40 _SLAB_NOLEAKTRACE, 41 _SLAB_NO_MERGE, 42#ifdef CONFIG_FAILSLAB 43 _SLAB_FAILSLAB, 44#endif 45#ifdef CONFIG_MEMCG 46 _SLAB_ACCOUNT, 47#endif 48#ifdef CONFIG_KASAN_GENERIC 49 _SLAB_KASAN, 50#endif 51 _SLAB_NO_USER_FLAGS, 52#ifdef CONFIG_KFENCE 53 _SLAB_SKIP_KFENCE, 54#endif 55#ifndef CONFIG_SLUB_TINY 56 _SLAB_RECLAIM_ACCOUNT, 57#endif 58 _SLAB_OBJECT_POISON, 59 _SLAB_CMPXCHG_DOUBLE, 60#ifdef CONFIG_SLAB_OBJ_EXT 61 _SLAB_NO_OBJ_EXT, 62#endif 63 _SLAB_FLAGS_LAST_BIT 64}; 65 66#define __SLAB_FLAG_BIT(nr) ((slab_flags_t __force)(1U << (nr))) 67#define __SLAB_FLAG_UNUSED ((slab_flags_t __force)(0U)) 68 69/* 70 * Flags to pass to kmem_cache_create(). 71 * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op 72 */ 73/* DEBUG: Perform (expensive) checks on alloc/free */ 74#define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS) 75/* DEBUG: Red zone objs in a cache */ 76#define SLAB_RED_ZONE __SLAB_FLAG_BIT(_SLAB_RED_ZONE) 77/* DEBUG: Poison objects */ 78#define SLAB_POISON __SLAB_FLAG_BIT(_SLAB_POISON) 79/* Indicate a kmalloc slab */ 80#define SLAB_KMALLOC __SLAB_FLAG_BIT(_SLAB_KMALLOC) 81/** 82 * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. 83 * 84 * Sufficiently large objects are aligned on cache line boundary. For object 85 * size smaller than a half of cache line size, the alignment is on the half of 86 * cache line size. In general, if object size is smaller than 1/2^n of cache 87 * line size, the alignment is adjusted to 1/2^n. 88 * 89 * If explicit alignment is also requested by the respective 90 * &struct kmem_cache_args field, the greater of both is alignments is applied. 91 */ 92#define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN) 93/* Use GFP_DMA memory */ 94#define SLAB_CACHE_DMA __SLAB_FLAG_BIT(_SLAB_CACHE_DMA) 95/* Use GFP_DMA32 memory */ 96#define SLAB_CACHE_DMA32 __SLAB_FLAG_BIT(_SLAB_CACHE_DMA32) 97/* DEBUG: Store the last owner for bug hunting */ 98#define SLAB_STORE_USER __SLAB_FLAG_BIT(_SLAB_STORE_USER) 99/* Panic if kmem_cache_create() fails */ 100#define SLAB_PANIC __SLAB_FLAG_BIT(_SLAB_PANIC) 101/** 102 * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 103 * 104 * This delays freeing the SLAB page by a grace period, it does _NOT_ 105 * delay object freeing. This means that if you do kmem_cache_free() 106 * that memory location is free to be reused at any time. Thus it may 107 * be possible to see another object there in the same RCU grace period. 108 * 109 * This feature only ensures the memory location backing the object 110 * stays valid, the trick to using this is relying on an independent 111 * object validation pass. Something like: 112 * 113 * :: 114 * 115 * begin: 116 * rcu_read_lock(); 117 * obj = lockless_lookup(key); 118 * if (obj) { 119 * if (!try_get_ref(obj)) // might fail for free objects 120 * rcu_read_unlock(); 121 * goto begin; 122 * 123 * if (obj->key != key) { // not the object we expected 124 * put_ref(obj); 125 * rcu_read_unlock(); 126 * goto begin; 127 * } 128 * } 129 * rcu_read_unlock(); 130 * 131 * This is useful if we need to approach a kernel structure obliquely, 132 * from its address obtained without the usual locking. We can lock 133 * the structure to stabilize it and check it's still at the given address, 134 * only if we can be sure that the memory has not been meanwhile reused 135 * for some other kind of object (which our subsystem's lock might corrupt). 136 * 137 * rcu_read_lock before reading the address, then rcu_read_unlock after 138 * taking the spinlock within the structure expected at that address. 139 * 140 * Note that object identity check has to be done *after* acquiring a 141 * reference, therefore user has to ensure proper ordering for loads. 142 * Similarly, when initializing objects allocated with SLAB_TYPESAFE_BY_RCU, 143 * the newly allocated object has to be fully initialized *before* its 144 * refcount gets initialized and proper ordering for stores is required. 145 * refcount_{add|inc}_not_zero_acquire() and refcount_set_release() are 146 * designed with the proper fences required for reference counting objects 147 * allocated with SLAB_TYPESAFE_BY_RCU. 148 * 149 * Note that it is not possible to acquire a lock within a structure 150 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference 151 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages 152 * are not zeroed before being given to the slab, which means that any 153 * locks must be initialized after each and every kmem_struct_alloc(). 154 * Alternatively, make the ctor passed to kmem_cache_create() initialize 155 * the locks at page-allocation time, as is done in __i915_request_ctor(), 156 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers 157 * to safely acquire those ctor-initialized locks under rcu_read_lock() 158 * protection. 159 * 160 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 161 */ 162#define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU) 163/* Trace allocations and frees */ 164#define SLAB_TRACE __SLAB_FLAG_BIT(_SLAB_TRACE) 165 166/* Flag to prevent checks on free */ 167#ifdef CONFIG_DEBUG_OBJECTS 168# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS) 169#else 170# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UNUSED 171#endif 172 173/* Avoid kmemleak tracing */ 174#define SLAB_NOLEAKTRACE __SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE) 175 176/* 177 * Prevent merging with compatible kmem caches. This flag should be used 178 * cautiously. Valid use cases: 179 * 180 * - caches created for self-tests (e.g. kunit) 181 * - general caches created and used by a subsystem, only when a 182 * (subsystem-specific) debug option is enabled 183 * - performance critical caches, should be very rare and consulted with slab 184 * maintainers, and not used together with CONFIG_SLUB_TINY 185 */ 186#define SLAB_NO_MERGE __SLAB_FLAG_BIT(_SLAB_NO_MERGE) 187 188/* Fault injection mark */ 189#ifdef CONFIG_FAILSLAB 190# define SLAB_FAILSLAB __SLAB_FLAG_BIT(_SLAB_FAILSLAB) 191#else 192# define SLAB_FAILSLAB __SLAB_FLAG_UNUSED 193#endif 194/** 195 * define SLAB_ACCOUNT - Account allocations to memcg. 196 * 197 * All object allocations from this cache will be memcg accounted, regardless of 198 * __GFP_ACCOUNT being or not being passed to individual allocations. 199 */ 200#ifdef CONFIG_MEMCG 201# define SLAB_ACCOUNT __SLAB_FLAG_BIT(_SLAB_ACCOUNT) 202#else 203# define SLAB_ACCOUNT __SLAB_FLAG_UNUSED 204#endif 205 206#ifdef CONFIG_KASAN_GENERIC 207#define SLAB_KASAN __SLAB_FLAG_BIT(_SLAB_KASAN) 208#else 209#define SLAB_KASAN __SLAB_FLAG_UNUSED 210#endif 211 212/* 213 * Ignore user specified debugging flags. 214 * Intended for caches created for self-tests so they have only flags 215 * specified in the code and other flags are ignored. 216 */ 217#define SLAB_NO_USER_FLAGS __SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS) 218 219#ifdef CONFIG_KFENCE 220#define SLAB_SKIP_KFENCE __SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE) 221#else 222#define SLAB_SKIP_KFENCE __SLAB_FLAG_UNUSED 223#endif 224 225/* The following flags affect the page allocator grouping pages by mobility */ 226/** 227 * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. 228 * 229 * Use this flag for caches that have an associated shrinker. As a result, slab 230 * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by 231 * mobility, and are accounted in SReclaimable counter in /proc/meminfo 232 */ 233#ifndef CONFIG_SLUB_TINY 234#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT) 235#else 236#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UNUSED 237#endif 238#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 239 240/* Slab created using create_boot_cache */ 241#ifdef CONFIG_SLAB_OBJ_EXT 242#define SLAB_NO_OBJ_EXT __SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT) 243#else 244#define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED 245#endif 246 247/* 248 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 249 * 250 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 251 * 252 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 253 * Both make kfree a no-op. 254 */ 255#define ZERO_SIZE_PTR ((void *)16) 256 257#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 258 (unsigned long)ZERO_SIZE_PTR) 259 260#include <linux/kasan.h> 261 262struct list_lru; 263struct mem_cgroup; 264/* 265 * struct kmem_cache related prototypes 266 */ 267bool slab_is_available(void); 268 269/** 270 * struct kmem_cache_args - Less common arguments for kmem_cache_create() 271 * 272 * Any uninitialized fields of the structure are interpreted as unused. The 273 * exception is @freeptr_offset where %0 is a valid value, so 274 * @use_freeptr_offset must be also set to %true in order to interpret the field 275 * as used. For @useroffset %0 is also valid, but only with non-%0 276 * @usersize. 277 * 278 * When %NULL args is passed to kmem_cache_create(), it is equivalent to all 279 * fields unused. 280 */ 281struct kmem_cache_args { 282 /** 283 * @align: The required alignment for the objects. 284 * 285 * %0 means no specific alignment is requested. 286 */ 287 unsigned int align; 288 /** 289 * @useroffset: Usercopy region offset. 290 * 291 * %0 is a valid offset, when @usersize is non-%0 292 */ 293 unsigned int useroffset; 294 /** 295 * @usersize: Usercopy region size. 296 * 297 * %0 means no usercopy region is specified. 298 */ 299 unsigned int usersize; 300 /** 301 * @freeptr_offset: Custom offset for the free pointer 302 * in &SLAB_TYPESAFE_BY_RCU caches 303 * 304 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer 305 * outside of the object. This might cause the object to grow in size. 306 * Cache creators that have a reason to avoid this can specify a custom 307 * free pointer offset in their struct where the free pointer will be 308 * placed. 309 * 310 * Note that placing the free pointer inside the object requires the 311 * caller to ensure that no fields are invalidated that are required to 312 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for 313 * details). 314 * 315 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset 316 * is specified, %use_freeptr_offset must be set %true. 317 * 318 * Note that @ctor currently isn't supported with custom free pointers 319 * as a @ctor requires an external free pointer. 320 */ 321 unsigned int freeptr_offset; 322 /** 323 * @use_freeptr_offset: Whether a @freeptr_offset is used. 324 */ 325 bool use_freeptr_offset; 326 /** 327 * @ctor: A constructor for the objects. 328 * 329 * The constructor is invoked for each object in a newly allocated slab 330 * page. It is the cache user's responsibility to free object in the 331 * same state as after calling the constructor, or deal appropriately 332 * with any differences between a freshly constructed and a reallocated 333 * object. 334 * 335 * %NULL means no constructor. 336 */ 337 void (*ctor)(void *); 338}; 339 340struct kmem_cache *__kmem_cache_create_args(const char *name, 341 unsigned int object_size, 342 struct kmem_cache_args *args, 343 slab_flags_t flags); 344static inline struct kmem_cache * 345__kmem_cache_create(const char *name, unsigned int size, unsigned int align, 346 slab_flags_t flags, void (*ctor)(void *)) 347{ 348 struct kmem_cache_args kmem_args = { 349 .align = align, 350 .ctor = ctor, 351 }; 352 353 return __kmem_cache_create_args(name, size, &kmem_args, flags); 354} 355 356/** 357 * kmem_cache_create_usercopy - Create a kmem cache with a region suitable 358 * for copying to userspace. 359 * @name: A string which is used in /proc/slabinfo to identify this cache. 360 * @size: The size of objects to be created in this cache. 361 * @align: The required alignment for the objects. 362 * @flags: SLAB flags 363 * @useroffset: Usercopy region offset 364 * @usersize: Usercopy region size 365 * @ctor: A constructor for the objects, or %NULL. 366 * 367 * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY() 368 * if whitelisting a single field is sufficient, or kmem_cache_create() with 369 * the necessary parameters passed via the args parameter (see 370 * &struct kmem_cache_args) 371 * 372 * Return: a pointer to the cache on success, NULL on failure. 373 */ 374static inline struct kmem_cache * 375kmem_cache_create_usercopy(const char *name, unsigned int size, 376 unsigned int align, slab_flags_t flags, 377 unsigned int useroffset, unsigned int usersize, 378 void (*ctor)(void *)) 379{ 380 struct kmem_cache_args kmem_args = { 381 .align = align, 382 .ctor = ctor, 383 .useroffset = useroffset, 384 .usersize = usersize, 385 }; 386 387 return __kmem_cache_create_args(name, size, &kmem_args, flags); 388} 389 390/* If NULL is passed for @args, use this variant with default arguments. */ 391static inline struct kmem_cache * 392__kmem_cache_default_args(const char *name, unsigned int size, 393 struct kmem_cache_args *args, 394 slab_flags_t flags) 395{ 396 struct kmem_cache_args kmem_default_args = {}; 397 398 /* Make sure we don't get passed garbage. */ 399 if (WARN_ON_ONCE(args)) 400 return ERR_PTR(-EINVAL); 401 402 return __kmem_cache_create_args(name, size, &kmem_default_args, flags); 403} 404 405/** 406 * kmem_cache_create - Create a kmem cache. 407 * @__name: A string which is used in /proc/slabinfo to identify this cache. 408 * @__object_size: The size of objects to be created in this cache. 409 * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL 410 * means defaults will be used for all the arguments. 411 * 412 * This is currently implemented as a macro using ``_Generic()`` to call 413 * either the new variant of the function, or a legacy one. 414 * 415 * The new variant has 4 parameters: 416 * ``kmem_cache_create(name, object_size, args, flags)`` 417 * 418 * See __kmem_cache_create_args() which implements this. 419 * 420 * The legacy variant has 5 parameters: 421 * ``kmem_cache_create(name, object_size, align, flags, ctor)`` 422 * 423 * The align and ctor parameters map to the respective fields of 424 * &struct kmem_cache_args 425 * 426 * Context: Cannot be called within a interrupt, but can be interrupted. 427 * 428 * Return: a pointer to the cache on success, NULL on failure. 429 */ 430#define kmem_cache_create(__name, __object_size, __args, ...) \ 431 _Generic((__args), \ 432 struct kmem_cache_args *: __kmem_cache_create_args, \ 433 void *: __kmem_cache_default_args, \ 434 default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__) 435 436void kmem_cache_destroy(struct kmem_cache *s); 437int kmem_cache_shrink(struct kmem_cache *s); 438 439/* 440 * Please use this macro to create slab caches. Simply specify the 441 * name of the structure and maybe some flags that are listed above. 442 * 443 * The alignment of the struct determines object alignment. If you 444 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 445 * then the objects will be properly aligned in SMP configurations. 446 */ 447#define KMEM_CACHE(__struct, __flags) \ 448 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ 449 &(struct kmem_cache_args) { \ 450 .align = __alignof__(struct __struct), \ 451 }, (__flags)) 452 453/* 454 * To whitelist a single field for copying to/from usercopy, use this 455 * macro instead for KMEM_CACHE() above. 456 */ 457#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 458 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ 459 &(struct kmem_cache_args) { \ 460 .align = __alignof__(struct __struct), \ 461 .useroffset = offsetof(struct __struct, __field), \ 462 .usersize = sizeof_field(struct __struct, __field), \ 463 }, (__flags)) 464 465/* 466 * Common kmalloc functions provided by all allocators 467 */ 468void * __must_check krealloc_noprof(const void *objp, size_t new_size, 469 gfp_t flags) __realloc_size(2); 470#define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__)) 471 472void kfree(const void *objp); 473void kfree_sensitive(const void *objp); 474size_t __ksize(const void *objp); 475 476DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T)) 477DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T)) 478 479/** 480 * ksize - Report actual allocation size of associated object 481 * 482 * @objp: Pointer returned from a prior kmalloc()-family allocation. 483 * 484 * This should not be used for writing beyond the originally requested 485 * allocation size. Either use krealloc() or round up the allocation size 486 * with kmalloc_size_roundup() prior to allocation. If this is used to 487 * access beyond the originally requested allocation size, UBSAN_BOUNDS 488 * and/or FORTIFY_SOURCE may trip, since they only know about the 489 * originally allocated size via the __alloc_size attribute. 490 */ 491size_t ksize(const void *objp); 492 493#ifdef CONFIG_PRINTK 494bool kmem_dump_obj(void *object); 495#else 496static inline bool kmem_dump_obj(void *object) { return false; } 497#endif 498 499/* 500 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 501 * alignment larger than the alignment of a 64-bit integer. 502 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 503 */ 504#ifdef ARCH_HAS_DMA_MINALIGN 505#if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) 506#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 507#endif 508#endif 509 510#ifndef ARCH_KMALLOC_MINALIGN 511#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 512#elif ARCH_KMALLOC_MINALIGN > 8 513#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 514#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 515#endif 516 517/* 518 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 519 * Intended for arches that get misalignment faults even for 64 bit integer 520 * aligned buffers. 521 */ 522#ifndef ARCH_SLAB_MINALIGN 523#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 524#endif 525 526/* 527 * Arches can define this function if they want to decide the minimum slab 528 * alignment at runtime. The value returned by the function must be a power 529 * of two and >= ARCH_SLAB_MINALIGN. 530 */ 531#ifndef arch_slab_minalign 532static inline unsigned int arch_slab_minalign(void) 533{ 534 return ARCH_SLAB_MINALIGN; 535} 536#endif 537 538/* 539 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 540 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 541 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 542 */ 543#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 544#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 545#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 546 547/* 548 * Kmalloc array related definitions 549 */ 550 551/* 552 * SLUB directly allocates requests fitting in to an order-1 page 553 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 554 */ 555#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 556#define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT) 557#ifndef KMALLOC_SHIFT_LOW 558#define KMALLOC_SHIFT_LOW 3 559#endif 560 561/* Maximum allocatable size */ 562#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 563/* Maximum size for which we actually use a slab cache */ 564#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 565/* Maximum order allocatable via the slab allocator */ 566#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 567 568/* 569 * Kmalloc subsystem. 570 */ 571#ifndef KMALLOC_MIN_SIZE 572#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 573#endif 574 575/* 576 * This restriction comes from byte sized index implementation. 577 * Page size is normally 2^12 bytes and, in this case, if we want to use 578 * byte sized index which can represent 2^8 entries, the size of the object 579 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 580 * If minimum size of kmalloc is less than 16, we use it as minimum object 581 * size and give up to use byte sized index. 582 */ 583#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 584 (KMALLOC_MIN_SIZE) : 16) 585 586#ifdef CONFIG_RANDOM_KMALLOC_CACHES 587#define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies 588#else 589#define RANDOM_KMALLOC_CACHES_NR 0 590#endif 591 592/* 593 * Whenever changing this, take care of that kmalloc_type() and 594 * create_kmalloc_caches() still work as intended. 595 * 596 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 597 * is for accounted but unreclaimable and non-dma objects. All the other 598 * kmem caches can have both accounted and unaccounted objects. 599 */ 600enum kmalloc_cache_type { 601 KMALLOC_NORMAL = 0, 602#ifndef CONFIG_ZONE_DMA 603 KMALLOC_DMA = KMALLOC_NORMAL, 604#endif 605#ifndef CONFIG_MEMCG 606 KMALLOC_CGROUP = KMALLOC_NORMAL, 607#endif 608 KMALLOC_RANDOM_START = KMALLOC_NORMAL, 609 KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR, 610#ifdef CONFIG_SLUB_TINY 611 KMALLOC_RECLAIM = KMALLOC_NORMAL, 612#else 613 KMALLOC_RECLAIM, 614#endif 615#ifdef CONFIG_ZONE_DMA 616 KMALLOC_DMA, 617#endif 618#ifdef CONFIG_MEMCG 619 KMALLOC_CGROUP, 620#endif 621 NR_KMALLOC_TYPES 622}; 623 624typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1]; 625 626extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES]; 627 628/* 629 * Define gfp bits that should not be set for KMALLOC_NORMAL. 630 */ 631#define KMALLOC_NOT_NORMAL_BITS \ 632 (__GFP_RECLAIMABLE | \ 633 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 634 (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0)) 635 636extern unsigned long random_kmalloc_seed; 637 638static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller) 639{ 640 /* 641 * The most common case is KMALLOC_NORMAL, so test for it 642 * with a single branch for all the relevant flags. 643 */ 644 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 645#ifdef CONFIG_RANDOM_KMALLOC_CACHES 646 /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */ 647 return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed, 648 ilog2(RANDOM_KMALLOC_CACHES_NR + 1)); 649#else 650 return KMALLOC_NORMAL; 651#endif 652 653 /* 654 * At least one of the flags has to be set. Their priorities in 655 * decreasing order are: 656 * 1) __GFP_DMA 657 * 2) __GFP_RECLAIMABLE 658 * 3) __GFP_ACCOUNT 659 */ 660 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 661 return KMALLOC_DMA; 662 if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE)) 663 return KMALLOC_RECLAIM; 664 else 665 return KMALLOC_CGROUP; 666} 667 668/* 669 * Figure out which kmalloc slab an allocation of a certain size 670 * belongs to. 671 * 0 = zero alloc 672 * 1 = 65 .. 96 bytes 673 * 2 = 129 .. 192 bytes 674 * n = 2^(n-1)+1 .. 2^n 675 * 676 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 677 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 678 * Callers where !size_is_constant should only be test modules, where runtime 679 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 680 */ 681static __always_inline unsigned int __kmalloc_index(size_t size, 682 bool size_is_constant) 683{ 684 if (!size) 685 return 0; 686 687 if (size <= KMALLOC_MIN_SIZE) 688 return KMALLOC_SHIFT_LOW; 689 690 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 691 return 1; 692 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 693 return 2; 694 if (size <= 8) return 3; 695 if (size <= 16) return 4; 696 if (size <= 32) return 5; 697 if (size <= 64) return 6; 698 if (size <= 128) return 7; 699 if (size <= 256) return 8; 700 if (size <= 512) return 9; 701 if (size <= 1024) return 10; 702 if (size <= 2 * 1024) return 11; 703 if (size <= 4 * 1024) return 12; 704 if (size <= 8 * 1024) return 13; 705 if (size <= 16 * 1024) return 14; 706 if (size <= 32 * 1024) return 15; 707 if (size <= 64 * 1024) return 16; 708 if (size <= 128 * 1024) return 17; 709 if (size <= 256 * 1024) return 18; 710 if (size <= 512 * 1024) return 19; 711 if (size <= 1024 * 1024) return 20; 712 if (size <= 2 * 1024 * 1024) return 21; 713 714 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 715 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 716 else 717 BUG(); 718 719 /* Will never be reached. Needed because the compiler may complain */ 720 return -1; 721} 722static_assert(PAGE_SHIFT <= 20); 723#define kmalloc_index(s) __kmalloc_index(s, true) 724 725#include <linux/alloc_tag.h> 726 727/** 728 * kmem_cache_alloc - Allocate an object 729 * @cachep: The cache to allocate from. 730 * @flags: See kmalloc(). 731 * 732 * Allocate an object from this cache. 733 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. 734 * 735 * Return: pointer to the new object or %NULL in case of error 736 */ 737void *kmem_cache_alloc_noprof(struct kmem_cache *cachep, 738 gfp_t flags) __assume_slab_alignment __malloc; 739#define kmem_cache_alloc(...) alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__)) 740 741void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 742 gfp_t gfpflags) __assume_slab_alignment __malloc; 743#define kmem_cache_alloc_lru(...) alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__)) 744 745/** 746 * kmem_cache_charge - memcg charge an already allocated slab memory 747 * @objp: address of the slab object to memcg charge 748 * @gfpflags: describe the allocation context 749 * 750 * kmem_cache_charge allows charging a slab object to the current memcg, 751 * primarily in cases where charging at allocation time might not be possible 752 * because the target memcg is not known (i.e. softirq context) 753 * 754 * The objp should be pointer returned by the slab allocator functions like 755 * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge 756 * behavior can be controlled through gfpflags parameter, which affects how the 757 * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes 758 * that overcharging is requested instead of failure, but is not applied for the 759 * internal metadata allocation. 760 * 761 * There are several cases where it will return true even if the charging was 762 * not done: 763 * More specifically: 764 * 765 * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems. 766 * 2. Already charged slab objects. 767 * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc() 768 * without __GFP_ACCOUNT 769 * 4. Allocating internal metadata has failed 770 * 771 * Return: true if charge was successful otherwise false. 772 */ 773bool kmem_cache_charge(void *objp, gfp_t gfpflags); 774void kmem_cache_free(struct kmem_cache *s, void *objp); 775 776kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, 777 unsigned int useroffset, unsigned int usersize, 778 void (*ctor)(void *)); 779 780/* 781 * Bulk allocation and freeing operations. These are accelerated in an 782 * allocator specific way to avoid taking locks repeatedly or building 783 * metadata structures unnecessarily. 784 * 785 * Note that interrupts must be enabled when calling these functions. 786 */ 787void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 788 789int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 790#define kmem_cache_alloc_bulk(...) alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__)) 791 792static __always_inline void kfree_bulk(size_t size, void **p) 793{ 794 kmem_cache_free_bulk(NULL, size, p); 795} 796 797void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags, 798 int node) __assume_slab_alignment __malloc; 799#define kmem_cache_alloc_node(...) alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__)) 800 801/* 802 * These macros allow declaring a kmem_buckets * parameter alongside size, which 803 * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call 804 * sites don't have to pass NULL. 805 */ 806#ifdef CONFIG_SLAB_BUCKETS 807#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size), kmem_buckets *(_b) 808#define PASS_BUCKET_PARAMS(_size, _b) (_size), (_b) 809#define PASS_BUCKET_PARAM(_b) (_b) 810#else 811#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size) 812#define PASS_BUCKET_PARAMS(_size, _b) (_size) 813#define PASS_BUCKET_PARAM(_b) NULL 814#endif 815 816/* 817 * The following functions are not to be used directly and are intended only 818 * for internal use from kmalloc() and kmalloc_node() 819 * with the exception of kunit tests 820 */ 821 822void *__kmalloc_noprof(size_t size, gfp_t flags) 823 __assume_kmalloc_alignment __alloc_size(1); 824 825void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 826 __assume_kmalloc_alignment __alloc_size(1); 827 828void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size) 829 __assume_kmalloc_alignment __alloc_size(3); 830 831void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 832 int node, size_t size) 833 __assume_kmalloc_alignment __alloc_size(4); 834 835void *__kmalloc_large_noprof(size_t size, gfp_t flags) 836 __assume_page_alignment __alloc_size(1); 837 838void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 839 __assume_page_alignment __alloc_size(1); 840 841/** 842 * kmalloc - allocate kernel memory 843 * @size: how many bytes of memory are required. 844 * @flags: describe the allocation context 845 * 846 * kmalloc is the normal method of allocating memory 847 * for objects smaller than page size in the kernel. 848 * 849 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 850 * bytes. For @size of power of two bytes, the alignment is also guaranteed 851 * to be at least to the size. For other sizes, the alignment is guaranteed to 852 * be at least the largest power-of-two divisor of @size. 853 * 854 * The @flags argument may be one of the GFP flags defined at 855 * include/linux/gfp_types.h and described at 856 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 857 * 858 * The recommended usage of the @flags is described at 859 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 860 * 861 * Below is a brief outline of the most useful GFP flags 862 * 863 * %GFP_KERNEL 864 * Allocate normal kernel ram. May sleep. 865 * 866 * %GFP_NOWAIT 867 * Allocation will not sleep. 868 * 869 * %GFP_ATOMIC 870 * Allocation will not sleep. May use emergency pools. 871 * 872 * Also it is possible to set different flags by OR'ing 873 * in one or more of the following additional @flags: 874 * 875 * %__GFP_ZERO 876 * Zero the allocated memory before returning. Also see kzalloc(). 877 * 878 * %__GFP_HIGH 879 * This allocation has high priority and may use emergency pools. 880 * 881 * %__GFP_NOFAIL 882 * Indicate that this allocation is in no way allowed to fail 883 * (think twice before using). 884 * 885 * %__GFP_NORETRY 886 * If memory is not immediately available, 887 * then give up at once. 888 * 889 * %__GFP_NOWARN 890 * If allocation fails, don't issue any warnings. 891 * 892 * %__GFP_RETRY_MAYFAIL 893 * Try really hard to succeed the allocation but fail 894 * eventually. 895 */ 896static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags) 897{ 898 if (__builtin_constant_p(size) && size) { 899 unsigned int index; 900 901 if (size > KMALLOC_MAX_CACHE_SIZE) 902 return __kmalloc_large_noprof(size, flags); 903 904 index = kmalloc_index(size); 905 return __kmalloc_cache_noprof( 906 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 907 flags, size); 908 } 909 return __kmalloc_noprof(size, flags); 910} 911#define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__)) 912 913#define kmem_buckets_alloc(_b, _size, _flags) \ 914 alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) 915 916#define kmem_buckets_alloc_track_caller(_b, _size, _flags) \ 917 alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_)) 918 919static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node) 920{ 921 if (__builtin_constant_p(size) && size) { 922 unsigned int index; 923 924 if (size > KMALLOC_MAX_CACHE_SIZE) 925 return __kmalloc_large_node_noprof(size, flags, node); 926 927 index = kmalloc_index(size); 928 return __kmalloc_cache_node_noprof( 929 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 930 flags, node, size); 931 } 932 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node); 933} 934#define kmalloc_node(...) alloc_hooks(kmalloc_node_noprof(__VA_ARGS__)) 935 936/** 937 * kmalloc_array - allocate memory for an array. 938 * @n: number of elements. 939 * @size: element size. 940 * @flags: the type of memory to allocate (see kmalloc). 941 */ 942static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 943{ 944 size_t bytes; 945 946 if (unlikely(check_mul_overflow(n, size, &bytes))) 947 return NULL; 948 return kmalloc_noprof(bytes, flags); 949} 950#define kmalloc_array(...) alloc_hooks(kmalloc_array_noprof(__VA_ARGS__)) 951 952/** 953 * krealloc_array - reallocate memory for an array. 954 * @p: pointer to the memory chunk to reallocate 955 * @new_n: new number of elements to alloc 956 * @new_size: new size of a single member of the array 957 * @flags: the type of memory to allocate (see kmalloc) 958 * 959 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 960 * initial memory allocation, every subsequent call to this API for the same 961 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 962 * __GFP_ZERO is not fully honored by this API. 963 * 964 * See krealloc_noprof() for further details. 965 * 966 * In any case, the contents of the object pointed to are preserved up to the 967 * lesser of the new and old sizes. 968 */ 969static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p, 970 size_t new_n, 971 size_t new_size, 972 gfp_t flags) 973{ 974 size_t bytes; 975 976 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 977 return NULL; 978 979 return krealloc_noprof(p, bytes, flags); 980} 981#define krealloc_array(...) alloc_hooks(krealloc_array_noprof(__VA_ARGS__)) 982 983/** 984 * kcalloc - allocate memory for an array. The memory is set to zero. 985 * @n: number of elements. 986 * @size: element size. 987 * @flags: the type of memory to allocate (see kmalloc). 988 */ 989#define kcalloc(n, size, flags) kmalloc_array(n, size, (flags) | __GFP_ZERO) 990 991void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node, 992 unsigned long caller) __alloc_size(1); 993#define kmalloc_node_track_caller_noprof(size, flags, node, caller) \ 994 __kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller) 995#define kmalloc_node_track_caller(...) \ 996 alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_)) 997 998/* 999 * kmalloc_track_caller is a special version of kmalloc that records the 1000 * calling function of the routine calling it for slab leak tracking instead 1001 * of just the calling function (confusing, eh?). 1002 * It's useful when the call to kmalloc comes from a widely-used standard 1003 * allocator where we care about the real place the memory allocation 1004 * request comes from. 1005 */ 1006#define kmalloc_track_caller(...) kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE) 1007 1008#define kmalloc_track_caller_noprof(...) \ 1009 kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_) 1010 1011static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, 1012 int node) 1013{ 1014 size_t bytes; 1015 1016 if (unlikely(check_mul_overflow(n, size, &bytes))) 1017 return NULL; 1018 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 1019 return kmalloc_node_noprof(bytes, flags, node); 1020 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node); 1021} 1022#define kmalloc_array_node(...) alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__)) 1023 1024#define kcalloc_node(_n, _size, _flags, _node) \ 1025 kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node) 1026 1027/* 1028 * Shortcuts 1029 */ 1030#define kmem_cache_zalloc(_k, _flags) kmem_cache_alloc(_k, (_flags)|__GFP_ZERO) 1031 1032/** 1033 * kzalloc - allocate memory. The memory is set to zero. 1034 * @size: how many bytes of memory are required. 1035 * @flags: the type of memory to allocate (see kmalloc). 1036 */ 1037static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags) 1038{ 1039 return kmalloc_noprof(size, flags | __GFP_ZERO); 1040} 1041#define kzalloc(...) alloc_hooks(kzalloc_noprof(__VA_ARGS__)) 1042#define kzalloc_node(_size, _flags, _node) kmalloc_node(_size, (_flags)|__GFP_ZERO, _node) 1043 1044void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1); 1045#define kvmalloc_node_noprof(size, flags, node) \ 1046 __kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node) 1047#define kvmalloc_node(...) alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__)) 1048 1049#define kvmalloc(_size, _flags) kvmalloc_node(_size, _flags, NUMA_NO_NODE) 1050#define kvmalloc_noprof(_size, _flags) kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE) 1051#define kvzalloc(_size, _flags) kvmalloc(_size, (_flags)|__GFP_ZERO) 1052 1053#define kvzalloc_node(_size, _flags, _node) kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node) 1054#define kmem_buckets_valloc(_b, _size, _flags) \ 1055 alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) 1056 1057static inline __alloc_size(1, 2) void * 1058kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node) 1059{ 1060 size_t bytes; 1061 1062 if (unlikely(check_mul_overflow(n, size, &bytes))) 1063 return NULL; 1064 1065 return kvmalloc_node_noprof(bytes, flags, node); 1066} 1067 1068#define kvmalloc_array_noprof(...) kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE) 1069#define kvcalloc_node_noprof(_n,_s,_f,_node) kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node) 1070#define kvcalloc_noprof(...) kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE) 1071 1072#define kvmalloc_array(...) alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__)) 1073#define kvcalloc_node(...) alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__)) 1074#define kvcalloc(...) alloc_hooks(kvcalloc_noprof(__VA_ARGS__)) 1075 1076void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 1077 __realloc_size(2); 1078#define kvrealloc(...) alloc_hooks(kvrealloc_noprof(__VA_ARGS__)) 1079 1080extern void kvfree(const void *addr); 1081DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T)) 1082 1083extern void kvfree_sensitive(const void *addr, size_t len); 1084 1085unsigned int kmem_cache_size(struct kmem_cache *s); 1086 1087#ifndef CONFIG_KVFREE_RCU_BATCHED 1088static inline void kvfree_rcu_barrier(void) 1089{ 1090 rcu_barrier(); 1091} 1092 1093static inline void kfree_rcu_scheduler_running(void) { } 1094#else 1095void kvfree_rcu_barrier(void); 1096 1097void kfree_rcu_scheduler_running(void); 1098#endif 1099 1100/** 1101 * kmalloc_size_roundup - Report allocation bucket size for the given size 1102 * 1103 * @size: Number of bytes to round up from. 1104 * 1105 * This returns the number of bytes that would be available in a kmalloc() 1106 * allocation of @size bytes. For example, a 126 byte request would be 1107 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 1108 * for the general-purpose kmalloc()-based allocations, and is not for the 1109 * pre-sized kmem_cache_alloc()-based allocations.) 1110 * 1111 * Use this to kmalloc() the full bucket size ahead of time instead of using 1112 * ksize() to query the size after an allocation. 1113 */ 1114size_t kmalloc_size_roundup(size_t size); 1115 1116void __init kmem_cache_init_late(void); 1117void __init kvfree_rcu_init(void); 1118 1119#endif /* _LINUX_SLAB_H */