Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13#include <asm/processor.h>
14#include <linux/thread_info.h>
15#include <linux/preempt.h>
16#include <linux/cpumask_types.h>
17
18#include <linux/cache.h>
19#include <linux/irqflags_types.h>
20#include <linux/smp_types.h>
21#include <linux/pid_types.h>
22#include <linux/sem_types.h>
23#include <linux/shm.h>
24#include <linux/kmsan_types.h>
25#include <linux/mutex_types.h>
26#include <linux/plist_types.h>
27#include <linux/hrtimer_types.h>
28#include <linux/timer_types.h>
29#include <linux/seccomp_types.h>
30#include <linux/nodemask_types.h>
31#include <linux/refcount_types.h>
32#include <linux/resource.h>
33#include <linux/latencytop.h>
34#include <linux/sched/prio.h>
35#include <linux/sched/types.h>
36#include <linux/signal_types.h>
37#include <linux/spinlock.h>
38#include <linux/syscall_user_dispatch_types.h>
39#include <linux/mm_types_task.h>
40#include <linux/netdevice_xmit.h>
41#include <linux/task_io_accounting.h>
42#include <linux/posix-timers_types.h>
43#include <linux/restart_block.h>
44#include <uapi/linux/rseq.h>
45#include <linux/seqlock_types.h>
46#include <linux/kcsan.h>
47#include <linux/rv.h>
48#include <linux/uidgid_types.h>
49#include <linux/tracepoint-defs.h>
50#include <linux/unwind_deferred_types.h>
51#include <asm/kmap_size.h>
52
53/* task_struct member predeclarations (sorted alphabetically): */
54struct audit_context;
55struct bio_list;
56struct blk_plug;
57struct bpf_local_storage;
58struct bpf_run_ctx;
59struct bpf_net_context;
60struct capture_control;
61struct cfs_rq;
62struct fs_struct;
63struct futex_pi_state;
64struct io_context;
65struct io_uring_task;
66struct mempolicy;
67struct nameidata;
68struct nsproxy;
69struct perf_event_context;
70struct perf_ctx_data;
71struct pid_namespace;
72struct pipe_inode_info;
73struct rcu_node;
74struct reclaim_state;
75struct robust_list_head;
76struct root_domain;
77struct rq;
78struct sched_attr;
79struct sched_dl_entity;
80struct seq_file;
81struct sighand_struct;
82struct signal_struct;
83struct task_delay_info;
84struct task_group;
85struct task_struct;
86struct user_event_mm;
87
88#include <linux/sched/ext.h>
89
90/*
91 * Task state bitmask. NOTE! These bits are also
92 * encoded in fs/proc/array.c: get_task_state().
93 *
94 * We have two separate sets of flags: task->__state
95 * is about runnability, while task->exit_state are
96 * about the task exiting. Confusing, but this way
97 * modifying one set can't modify the other one by
98 * mistake.
99 */
100
101/* Used in tsk->__state: */
102#define TASK_RUNNING 0x00000000
103#define TASK_INTERRUPTIBLE 0x00000001
104#define TASK_UNINTERRUPTIBLE 0x00000002
105#define __TASK_STOPPED 0x00000004
106#define __TASK_TRACED 0x00000008
107/* Used in tsk->exit_state: */
108#define EXIT_DEAD 0x00000010
109#define EXIT_ZOMBIE 0x00000020
110#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
111/* Used in tsk->__state again: */
112#define TASK_PARKED 0x00000040
113#define TASK_DEAD 0x00000080
114#define TASK_WAKEKILL 0x00000100
115#define TASK_WAKING 0x00000200
116#define TASK_NOLOAD 0x00000400
117#define TASK_NEW 0x00000800
118#define TASK_RTLOCK_WAIT 0x00001000
119#define TASK_FREEZABLE 0x00002000
120#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
121#define TASK_FROZEN 0x00008000
122#define TASK_STATE_MAX 0x00010000
123
124#define TASK_ANY (TASK_STATE_MAX-1)
125
126/*
127 * DO NOT ADD ANY NEW USERS !
128 */
129#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
130
131/* Convenience macros for the sake of set_current_state: */
132#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
133#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
134#define TASK_TRACED __TASK_TRACED
135
136#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
137
138/* Convenience macros for the sake of wake_up(): */
139#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
140
141/* get_task_state(): */
142#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
143 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
144 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
145 TASK_PARKED)
146
147#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
148
149#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
150#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
151#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
152
153/*
154 * Special states are those that do not use the normal wait-loop pattern. See
155 * the comment with set_special_state().
156 */
157#define is_special_task_state(state) \
158 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
159 TASK_DEAD | TASK_FROZEN))
160
161#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
162# define debug_normal_state_change(state_value) \
163 do { \
164 WARN_ON_ONCE(is_special_task_state(state_value)); \
165 current->task_state_change = _THIS_IP_; \
166 } while (0)
167
168# define debug_special_state_change(state_value) \
169 do { \
170 WARN_ON_ONCE(!is_special_task_state(state_value)); \
171 current->task_state_change = _THIS_IP_; \
172 } while (0)
173
174# define debug_rtlock_wait_set_state() \
175 do { \
176 current->saved_state_change = current->task_state_change;\
177 current->task_state_change = _THIS_IP_; \
178 } while (0)
179
180# define debug_rtlock_wait_restore_state() \
181 do { \
182 current->task_state_change = current->saved_state_change;\
183 } while (0)
184
185#else
186# define debug_normal_state_change(cond) do { } while (0)
187# define debug_special_state_change(cond) do { } while (0)
188# define debug_rtlock_wait_set_state() do { } while (0)
189# define debug_rtlock_wait_restore_state() do { } while (0)
190#endif
191
192#define trace_set_current_state(state_value) \
193 do { \
194 if (tracepoint_enabled(sched_set_state_tp)) \
195 __trace_set_current_state(state_value); \
196 } while (0)
197
198/*
199 * set_current_state() includes a barrier so that the write of current->__state
200 * is correctly serialised wrt the caller's subsequent test of whether to
201 * actually sleep:
202 *
203 * for (;;) {
204 * set_current_state(TASK_UNINTERRUPTIBLE);
205 * if (CONDITION)
206 * break;
207 *
208 * schedule();
209 * }
210 * __set_current_state(TASK_RUNNING);
211 *
212 * If the caller does not need such serialisation (because, for instance, the
213 * CONDITION test and condition change and wakeup are under the same lock) then
214 * use __set_current_state().
215 *
216 * The above is typically ordered against the wakeup, which does:
217 *
218 * CONDITION = 1;
219 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
220 *
221 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
222 * accessing p->__state.
223 *
224 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
225 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
226 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
227 *
228 * However, with slightly different timing the wakeup TASK_RUNNING store can
229 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
230 * a problem either because that will result in one extra go around the loop
231 * and our @cond test will save the day.
232 *
233 * Also see the comments of try_to_wake_up().
234 */
235#define __set_current_state(state_value) \
236 do { \
237 debug_normal_state_change((state_value)); \
238 trace_set_current_state(state_value); \
239 WRITE_ONCE(current->__state, (state_value)); \
240 } while (0)
241
242#define set_current_state(state_value) \
243 do { \
244 debug_normal_state_change((state_value)); \
245 trace_set_current_state(state_value); \
246 smp_store_mb(current->__state, (state_value)); \
247 } while (0)
248
249/*
250 * set_special_state() should be used for those states when the blocking task
251 * can not use the regular condition based wait-loop. In that case we must
252 * serialize against wakeups such that any possible in-flight TASK_RUNNING
253 * stores will not collide with our state change.
254 */
255#define set_special_state(state_value) \
256 do { \
257 unsigned long flags; /* may shadow */ \
258 \
259 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
260 debug_special_state_change((state_value)); \
261 trace_set_current_state(state_value); \
262 WRITE_ONCE(current->__state, (state_value)); \
263 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
264 } while (0)
265
266/*
267 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
268 *
269 * RT's spin/rwlock substitutions are state preserving. The state of the
270 * task when blocking on the lock is saved in task_struct::saved_state and
271 * restored after the lock has been acquired. These operations are
272 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
273 * lock related wakeups while the task is blocked on the lock are
274 * redirected to operate on task_struct::saved_state to ensure that these
275 * are not dropped. On restore task_struct::saved_state is set to
276 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
277 *
278 * The lock operation looks like this:
279 *
280 * current_save_and_set_rtlock_wait_state();
281 * for (;;) {
282 * if (try_lock())
283 * break;
284 * raw_spin_unlock_irq(&lock->wait_lock);
285 * schedule_rtlock();
286 * raw_spin_lock_irq(&lock->wait_lock);
287 * set_current_state(TASK_RTLOCK_WAIT);
288 * }
289 * current_restore_rtlock_saved_state();
290 */
291#define current_save_and_set_rtlock_wait_state() \
292 do { \
293 lockdep_assert_irqs_disabled(); \
294 raw_spin_lock(¤t->pi_lock); \
295 current->saved_state = current->__state; \
296 debug_rtlock_wait_set_state(); \
297 trace_set_current_state(TASK_RTLOCK_WAIT); \
298 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
299 raw_spin_unlock(¤t->pi_lock); \
300 } while (0);
301
302#define current_restore_rtlock_saved_state() \
303 do { \
304 lockdep_assert_irqs_disabled(); \
305 raw_spin_lock(¤t->pi_lock); \
306 debug_rtlock_wait_restore_state(); \
307 trace_set_current_state(current->saved_state); \
308 WRITE_ONCE(current->__state, current->saved_state); \
309 current->saved_state = TASK_RUNNING; \
310 raw_spin_unlock(¤t->pi_lock); \
311 } while (0);
312
313#define get_current_state() READ_ONCE(current->__state)
314
315/*
316 * Define the task command name length as enum, then it can be visible to
317 * BPF programs.
318 */
319enum {
320 TASK_COMM_LEN = 16,
321};
322
323extern void sched_tick(void);
324
325#define MAX_SCHEDULE_TIMEOUT LONG_MAX
326
327extern long schedule_timeout(long timeout);
328extern long schedule_timeout_interruptible(long timeout);
329extern long schedule_timeout_killable(long timeout);
330extern long schedule_timeout_uninterruptible(long timeout);
331extern long schedule_timeout_idle(long timeout);
332asmlinkage void schedule(void);
333extern void schedule_preempt_disabled(void);
334asmlinkage void preempt_schedule_irq(void);
335#ifdef CONFIG_PREEMPT_RT
336 extern void schedule_rtlock(void);
337#endif
338
339extern int __must_check io_schedule_prepare(void);
340extern void io_schedule_finish(int token);
341extern long io_schedule_timeout(long timeout);
342extern void io_schedule(void);
343
344/* wrapper functions to trace from this header file */
345DECLARE_TRACEPOINT(sched_set_state_tp);
346extern void __trace_set_current_state(int state_value);
347DECLARE_TRACEPOINT(sched_set_need_resched_tp);
348extern void __trace_set_need_resched(struct task_struct *curr, int tif);
349
350/**
351 * struct prev_cputime - snapshot of system and user cputime
352 * @utime: time spent in user mode
353 * @stime: time spent in system mode
354 * @lock: protects the above two fields
355 *
356 * Stores previous user/system time values such that we can guarantee
357 * monotonicity.
358 */
359struct prev_cputime {
360#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
361 u64 utime;
362 u64 stime;
363 raw_spinlock_t lock;
364#endif
365};
366
367enum vtime_state {
368 /* Task is sleeping or running in a CPU with VTIME inactive: */
369 VTIME_INACTIVE = 0,
370 /* Task is idle */
371 VTIME_IDLE,
372 /* Task runs in kernelspace in a CPU with VTIME active: */
373 VTIME_SYS,
374 /* Task runs in userspace in a CPU with VTIME active: */
375 VTIME_USER,
376 /* Task runs as guests in a CPU with VTIME active: */
377 VTIME_GUEST,
378};
379
380struct vtime {
381 seqcount_t seqcount;
382 unsigned long long starttime;
383 enum vtime_state state;
384 unsigned int cpu;
385 u64 utime;
386 u64 stime;
387 u64 gtime;
388};
389
390/*
391 * Utilization clamp constraints.
392 * @UCLAMP_MIN: Minimum utilization
393 * @UCLAMP_MAX: Maximum utilization
394 * @UCLAMP_CNT: Utilization clamp constraints count
395 */
396enum uclamp_id {
397 UCLAMP_MIN = 0,
398 UCLAMP_MAX,
399 UCLAMP_CNT
400};
401
402extern struct root_domain def_root_domain;
403extern struct mutex sched_domains_mutex;
404extern void sched_domains_mutex_lock(void);
405extern void sched_domains_mutex_unlock(void);
406
407struct sched_param {
408 int sched_priority;
409};
410
411struct sched_info {
412#ifdef CONFIG_SCHED_INFO
413 /* Cumulative counters: */
414
415 /* # of times we have run on this CPU: */
416 unsigned long pcount;
417
418 /* Time spent waiting on a runqueue: */
419 unsigned long long run_delay;
420
421 /* Max time spent waiting on a runqueue: */
422 unsigned long long max_run_delay;
423
424 /* Min time spent waiting on a runqueue: */
425 unsigned long long min_run_delay;
426
427 /* Timestamps: */
428
429 /* When did we last run on a CPU? */
430 unsigned long long last_arrival;
431
432 /* When were we last queued to run? */
433 unsigned long long last_queued;
434
435#endif /* CONFIG_SCHED_INFO */
436};
437
438/*
439 * Integer metrics need fixed point arithmetic, e.g., sched/fair
440 * has a few: load, load_avg, util_avg, freq, and capacity.
441 *
442 * We define a basic fixed point arithmetic range, and then formalize
443 * all these metrics based on that basic range.
444 */
445# define SCHED_FIXEDPOINT_SHIFT 10
446# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
447
448/* Increase resolution of cpu_capacity calculations */
449# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
450# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
451
452struct load_weight {
453 unsigned long weight;
454 u32 inv_weight;
455};
456
457/*
458 * The load/runnable/util_avg accumulates an infinite geometric series
459 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
460 *
461 * [load_avg definition]
462 *
463 * load_avg = runnable% * scale_load_down(load)
464 *
465 * [runnable_avg definition]
466 *
467 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
468 *
469 * [util_avg definition]
470 *
471 * util_avg = running% * SCHED_CAPACITY_SCALE
472 *
473 * where runnable% is the time ratio that a sched_entity is runnable and
474 * running% the time ratio that a sched_entity is running.
475 *
476 * For cfs_rq, they are the aggregated values of all runnable and blocked
477 * sched_entities.
478 *
479 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
480 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
481 * for computing those signals (see update_rq_clock_pelt())
482 *
483 * N.B., the above ratios (runnable% and running%) themselves are in the
484 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
485 * to as large a range as necessary. This is for example reflected by
486 * util_avg's SCHED_CAPACITY_SCALE.
487 *
488 * [Overflow issue]
489 *
490 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
491 * with the highest load (=88761), always runnable on a single cfs_rq,
492 * and should not overflow as the number already hits PID_MAX_LIMIT.
493 *
494 * For all other cases (including 32-bit kernels), struct load_weight's
495 * weight will overflow first before we do, because:
496 *
497 * Max(load_avg) <= Max(load.weight)
498 *
499 * Then it is the load_weight's responsibility to consider overflow
500 * issues.
501 */
502struct sched_avg {
503 u64 last_update_time;
504 u64 load_sum;
505 u64 runnable_sum;
506 u32 util_sum;
507 u32 period_contrib;
508 unsigned long load_avg;
509 unsigned long runnable_avg;
510 unsigned long util_avg;
511 unsigned int util_est;
512} ____cacheline_aligned;
513
514/*
515 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
516 * updates. When a task is dequeued, its util_est should not be updated if its
517 * util_avg has not been updated in the meantime.
518 * This information is mapped into the MSB bit of util_est at dequeue time.
519 * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
520 * it is safe to use MSB.
521 */
522#define UTIL_EST_WEIGHT_SHIFT 2
523#define UTIL_AVG_UNCHANGED 0x80000000
524
525struct sched_statistics {
526#ifdef CONFIG_SCHEDSTATS
527 u64 wait_start;
528 u64 wait_max;
529 u64 wait_count;
530 u64 wait_sum;
531 u64 iowait_count;
532 u64 iowait_sum;
533
534 u64 sleep_start;
535 u64 sleep_max;
536 s64 sum_sleep_runtime;
537
538 u64 block_start;
539 u64 block_max;
540 s64 sum_block_runtime;
541
542 s64 exec_max;
543 u64 slice_max;
544
545 u64 nr_migrations_cold;
546 u64 nr_failed_migrations_affine;
547 u64 nr_failed_migrations_running;
548 u64 nr_failed_migrations_hot;
549 u64 nr_forced_migrations;
550
551 u64 nr_wakeups;
552 u64 nr_wakeups_sync;
553 u64 nr_wakeups_migrate;
554 u64 nr_wakeups_local;
555 u64 nr_wakeups_remote;
556 u64 nr_wakeups_affine;
557 u64 nr_wakeups_affine_attempts;
558 u64 nr_wakeups_passive;
559 u64 nr_wakeups_idle;
560
561#ifdef CONFIG_SCHED_CORE
562 u64 core_forceidle_sum;
563#endif
564#endif /* CONFIG_SCHEDSTATS */
565} ____cacheline_aligned;
566
567struct sched_entity {
568 /* For load-balancing: */
569 struct load_weight load;
570 struct rb_node run_node;
571 u64 deadline;
572 u64 min_vruntime;
573 u64 min_slice;
574
575 struct list_head group_node;
576 unsigned char on_rq;
577 unsigned char sched_delayed;
578 unsigned char rel_deadline;
579 unsigned char custom_slice;
580 /* hole */
581
582 u64 exec_start;
583 u64 sum_exec_runtime;
584 u64 prev_sum_exec_runtime;
585 u64 vruntime;
586 union {
587 /*
588 * When !@on_rq this field is vlag.
589 * When cfs_rq->curr == se (which implies @on_rq)
590 * this field is vprot. See protect_slice().
591 */
592 s64 vlag;
593 u64 vprot;
594 };
595 u64 slice;
596
597 u64 nr_migrations;
598
599#ifdef CONFIG_FAIR_GROUP_SCHED
600 int depth;
601 struct sched_entity *parent;
602 /* rq on which this entity is (to be) queued: */
603 struct cfs_rq *cfs_rq;
604 /* rq "owned" by this entity/group: */
605 struct cfs_rq *my_q;
606 /* cached value of my_q->h_nr_running */
607 unsigned long runnable_weight;
608#endif
609
610 /*
611 * Per entity load average tracking.
612 *
613 * Put into separate cache line so it does not
614 * collide with read-mostly values above.
615 */
616 struct sched_avg avg;
617};
618
619struct sched_rt_entity {
620 struct list_head run_list;
621 unsigned long timeout;
622 unsigned long watchdog_stamp;
623 unsigned int time_slice;
624 unsigned short on_rq;
625 unsigned short on_list;
626
627 struct sched_rt_entity *back;
628#ifdef CONFIG_RT_GROUP_SCHED
629 struct sched_rt_entity *parent;
630 /* rq on which this entity is (to be) queued: */
631 struct rt_rq *rt_rq;
632 /* rq "owned" by this entity/group: */
633 struct rt_rq *my_q;
634#endif
635} __randomize_layout;
636
637typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
638typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
639
640struct sched_dl_entity {
641 struct rb_node rb_node;
642
643 /*
644 * Original scheduling parameters. Copied here from sched_attr
645 * during sched_setattr(), they will remain the same until
646 * the next sched_setattr().
647 */
648 u64 dl_runtime; /* Maximum runtime for each instance */
649 u64 dl_deadline; /* Relative deadline of each instance */
650 u64 dl_period; /* Separation of two instances (period) */
651 u64 dl_bw; /* dl_runtime / dl_period */
652 u64 dl_density; /* dl_runtime / dl_deadline */
653
654 /*
655 * Actual scheduling parameters. Initialized with the values above,
656 * they are continuously updated during task execution. Note that
657 * the remaining runtime could be < 0 in case we are in overrun.
658 */
659 s64 runtime; /* Remaining runtime for this instance */
660 u64 deadline; /* Absolute deadline for this instance */
661 unsigned int flags; /* Specifying the scheduler behaviour */
662
663 /*
664 * Some bool flags:
665 *
666 * @dl_throttled tells if we exhausted the runtime. If so, the
667 * task has to wait for a replenishment to be performed at the
668 * next firing of dl_timer.
669 *
670 * @dl_yielded tells if task gave up the CPU before consuming
671 * all its available runtime during the last job.
672 *
673 * @dl_non_contending tells if the task is inactive while still
674 * contributing to the active utilization. In other words, it
675 * indicates if the inactive timer has been armed and its handler
676 * has not been executed yet. This flag is useful to avoid race
677 * conditions between the inactive timer handler and the wakeup
678 * code.
679 *
680 * @dl_overrun tells if the task asked to be informed about runtime
681 * overruns.
682 *
683 * @dl_server tells if this is a server entity.
684 *
685 * @dl_defer tells if this is a deferred or regular server. For
686 * now only defer server exists.
687 *
688 * @dl_defer_armed tells if the deferrable server is waiting
689 * for the replenishment timer to activate it.
690 *
691 * @dl_server_active tells if the dlserver is active(started).
692 * dlserver is started on first cfs enqueue on an idle runqueue
693 * and is stopped when a dequeue results in 0 cfs tasks on the
694 * runqueue. In other words, dlserver is active only when cpu's
695 * runqueue has atleast one cfs task.
696 *
697 * @dl_defer_running tells if the deferrable server is actually
698 * running, skipping the defer phase.
699 */
700 unsigned int dl_throttled : 1;
701 unsigned int dl_yielded : 1;
702 unsigned int dl_non_contending : 1;
703 unsigned int dl_overrun : 1;
704 unsigned int dl_server : 1;
705 unsigned int dl_server_active : 1;
706 unsigned int dl_defer : 1;
707 unsigned int dl_defer_armed : 1;
708 unsigned int dl_defer_running : 1;
709
710 /*
711 * Bandwidth enforcement timer. Each -deadline task has its
712 * own bandwidth to be enforced, thus we need one timer per task.
713 */
714 struct hrtimer dl_timer;
715
716 /*
717 * Inactive timer, responsible for decreasing the active utilization
718 * at the "0-lag time". When a -deadline task blocks, it contributes
719 * to GRUB's active utilization until the "0-lag time", hence a
720 * timer is needed to decrease the active utilization at the correct
721 * time.
722 */
723 struct hrtimer inactive_timer;
724
725 /*
726 * Bits for DL-server functionality. Also see the comment near
727 * dl_server_update().
728 *
729 * @rq the runqueue this server is for
730 *
731 * @server_has_tasks() returns true if @server_pick return a
732 * runnable task.
733 */
734 struct rq *rq;
735 dl_server_pick_f server_pick_task;
736
737#ifdef CONFIG_RT_MUTEXES
738 /*
739 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
740 * pi_se points to the donor, otherwise points to the dl_se it belongs
741 * to (the original one/itself).
742 */
743 struct sched_dl_entity *pi_se;
744#endif
745};
746
747#ifdef CONFIG_UCLAMP_TASK
748/* Number of utilization clamp buckets (shorter alias) */
749#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
750
751/*
752 * Utilization clamp for a scheduling entity
753 * @value: clamp value "assigned" to a se
754 * @bucket_id: bucket index corresponding to the "assigned" value
755 * @active: the se is currently refcounted in a rq's bucket
756 * @user_defined: the requested clamp value comes from user-space
757 *
758 * The bucket_id is the index of the clamp bucket matching the clamp value
759 * which is pre-computed and stored to avoid expensive integer divisions from
760 * the fast path.
761 *
762 * The active bit is set whenever a task has got an "effective" value assigned,
763 * which can be different from the clamp value "requested" from user-space.
764 * This allows to know a task is refcounted in the rq's bucket corresponding
765 * to the "effective" bucket_id.
766 *
767 * The user_defined bit is set whenever a task has got a task-specific clamp
768 * value requested from userspace, i.e. the system defaults apply to this task
769 * just as a restriction. This allows to relax default clamps when a less
770 * restrictive task-specific value has been requested, thus allowing to
771 * implement a "nice" semantic. For example, a task running with a 20%
772 * default boost can still drop its own boosting to 0%.
773 */
774struct uclamp_se {
775 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
776 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
777 unsigned int active : 1;
778 unsigned int user_defined : 1;
779};
780#endif /* CONFIG_UCLAMP_TASK */
781
782union rcu_special {
783 struct {
784 u8 blocked;
785 u8 need_qs;
786 u8 exp_hint; /* Hint for performance. */
787 u8 need_mb; /* Readers need smp_mb(). */
788 } b; /* Bits. */
789 u32 s; /* Set of bits. */
790};
791
792enum perf_event_task_context {
793 perf_invalid_context = -1,
794 perf_hw_context = 0,
795 perf_sw_context,
796 perf_nr_task_contexts,
797};
798
799/*
800 * Number of contexts where an event can trigger:
801 * task, softirq, hardirq, nmi.
802 */
803#define PERF_NR_CONTEXTS 4
804
805struct wake_q_node {
806 struct wake_q_node *next;
807};
808
809struct kmap_ctrl {
810#ifdef CONFIG_KMAP_LOCAL
811 int idx;
812 pte_t pteval[KM_MAX_IDX];
813#endif
814};
815
816struct task_struct {
817#ifdef CONFIG_THREAD_INFO_IN_TASK
818 /*
819 * For reasons of header soup (see current_thread_info()), this
820 * must be the first element of task_struct.
821 */
822 struct thread_info thread_info;
823#endif
824 unsigned int __state;
825
826 /* saved state for "spinlock sleepers" */
827 unsigned int saved_state;
828
829 /*
830 * This begins the randomizable portion of task_struct. Only
831 * scheduling-critical items should be added above here.
832 */
833 randomized_struct_fields_start
834
835 void *stack;
836 refcount_t usage;
837 /* Per task flags (PF_*), defined further below: */
838 unsigned int flags;
839 unsigned int ptrace;
840
841#ifdef CONFIG_MEM_ALLOC_PROFILING
842 struct alloc_tag *alloc_tag;
843#endif
844
845 int on_cpu;
846 struct __call_single_node wake_entry;
847 unsigned int wakee_flips;
848 unsigned long wakee_flip_decay_ts;
849 struct task_struct *last_wakee;
850
851 /*
852 * recent_used_cpu is initially set as the last CPU used by a task
853 * that wakes affine another task. Waker/wakee relationships can
854 * push tasks around a CPU where each wakeup moves to the next one.
855 * Tracking a recently used CPU allows a quick search for a recently
856 * used CPU that may be idle.
857 */
858 int recent_used_cpu;
859 int wake_cpu;
860 int on_rq;
861
862 int prio;
863 int static_prio;
864 int normal_prio;
865 unsigned int rt_priority;
866
867 struct sched_entity se;
868 struct sched_rt_entity rt;
869 struct sched_dl_entity dl;
870 struct sched_dl_entity *dl_server;
871#ifdef CONFIG_SCHED_CLASS_EXT
872 struct sched_ext_entity scx;
873#endif
874 const struct sched_class *sched_class;
875
876#ifdef CONFIG_SCHED_CORE
877 struct rb_node core_node;
878 unsigned long core_cookie;
879 unsigned int core_occupation;
880#endif
881
882#ifdef CONFIG_CGROUP_SCHED
883 struct task_group *sched_task_group;
884#endif
885
886
887#ifdef CONFIG_UCLAMP_TASK
888 /*
889 * Clamp values requested for a scheduling entity.
890 * Must be updated with task_rq_lock() held.
891 */
892 struct uclamp_se uclamp_req[UCLAMP_CNT];
893 /*
894 * Effective clamp values used for a scheduling entity.
895 * Must be updated with task_rq_lock() held.
896 */
897 struct uclamp_se uclamp[UCLAMP_CNT];
898#endif
899
900 struct sched_statistics stats;
901
902#ifdef CONFIG_PREEMPT_NOTIFIERS
903 /* List of struct preempt_notifier: */
904 struct hlist_head preempt_notifiers;
905#endif
906
907#ifdef CONFIG_BLK_DEV_IO_TRACE
908 unsigned int btrace_seq;
909#endif
910
911 unsigned int policy;
912 unsigned long max_allowed_capacity;
913 int nr_cpus_allowed;
914 const cpumask_t *cpus_ptr;
915 cpumask_t *user_cpus_ptr;
916 cpumask_t cpus_mask;
917 void *migration_pending;
918 unsigned short migration_disabled;
919 unsigned short migration_flags;
920
921#ifdef CONFIG_PREEMPT_RCU
922 int rcu_read_lock_nesting;
923 union rcu_special rcu_read_unlock_special;
924 struct list_head rcu_node_entry;
925 struct rcu_node *rcu_blocked_node;
926#endif /* #ifdef CONFIG_PREEMPT_RCU */
927
928#ifdef CONFIG_TASKS_RCU
929 unsigned long rcu_tasks_nvcsw;
930 u8 rcu_tasks_holdout;
931 u8 rcu_tasks_idx;
932 int rcu_tasks_idle_cpu;
933 struct list_head rcu_tasks_holdout_list;
934 int rcu_tasks_exit_cpu;
935 struct list_head rcu_tasks_exit_list;
936#endif /* #ifdef CONFIG_TASKS_RCU */
937
938#ifdef CONFIG_TASKS_TRACE_RCU
939 int trc_reader_nesting;
940 int trc_ipi_to_cpu;
941 union rcu_special trc_reader_special;
942 struct list_head trc_holdout_list;
943 struct list_head trc_blkd_node;
944 int trc_blkd_cpu;
945#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
946
947 struct sched_info sched_info;
948
949 struct list_head tasks;
950 struct plist_node pushable_tasks;
951 struct rb_node pushable_dl_tasks;
952
953 struct mm_struct *mm;
954 struct mm_struct *active_mm;
955 struct address_space *faults_disabled_mapping;
956
957 int exit_state;
958 int exit_code;
959 int exit_signal;
960 /* The signal sent when the parent dies: */
961 int pdeath_signal;
962 /* JOBCTL_*, siglock protected: */
963 unsigned long jobctl;
964
965 /* Used for emulating ABI behavior of previous Linux versions: */
966 unsigned int personality;
967
968 /* Scheduler bits, serialized by scheduler locks: */
969 unsigned sched_reset_on_fork:1;
970 unsigned sched_contributes_to_load:1;
971 unsigned sched_migrated:1;
972 unsigned sched_task_hot:1;
973
974 /* Force alignment to the next boundary: */
975 unsigned :0;
976
977 /* Unserialized, strictly 'current' */
978
979 /*
980 * This field must not be in the scheduler word above due to wakelist
981 * queueing no longer being serialized by p->on_cpu. However:
982 *
983 * p->XXX = X; ttwu()
984 * schedule() if (p->on_rq && ..) // false
985 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
986 * deactivate_task() ttwu_queue_wakelist())
987 * p->on_rq = 0; p->sched_remote_wakeup = Y;
988 *
989 * guarantees all stores of 'current' are visible before
990 * ->sched_remote_wakeup gets used, so it can be in this word.
991 */
992 unsigned sched_remote_wakeup:1;
993#ifdef CONFIG_RT_MUTEXES
994 unsigned sched_rt_mutex:1;
995#endif
996
997 /* Bit to tell TOMOYO we're in execve(): */
998 unsigned in_execve:1;
999 unsigned in_iowait:1;
1000#ifndef TIF_RESTORE_SIGMASK
1001 unsigned restore_sigmask:1;
1002#endif
1003#ifdef CONFIG_MEMCG_V1
1004 unsigned in_user_fault:1;
1005#endif
1006#ifdef CONFIG_LRU_GEN
1007 /* whether the LRU algorithm may apply to this access */
1008 unsigned in_lru_fault:1;
1009#endif
1010#ifdef CONFIG_COMPAT_BRK
1011 unsigned brk_randomized:1;
1012#endif
1013#ifdef CONFIG_CGROUPS
1014 /* disallow userland-initiated cgroup migration */
1015 unsigned no_cgroup_migration:1;
1016 /* task is frozen/stopped (used by the cgroup freezer) */
1017 unsigned frozen:1;
1018#endif
1019#ifdef CONFIG_BLK_CGROUP
1020 unsigned use_memdelay:1;
1021#endif
1022#ifdef CONFIG_PSI
1023 /* Stalled due to lack of memory */
1024 unsigned in_memstall:1;
1025#endif
1026#ifdef CONFIG_PAGE_OWNER
1027 /* Used by page_owner=on to detect recursion in page tracking. */
1028 unsigned in_page_owner:1;
1029#endif
1030#ifdef CONFIG_EVENTFD
1031 /* Recursion prevention for eventfd_signal() */
1032 unsigned in_eventfd:1;
1033#endif
1034#ifdef CONFIG_ARCH_HAS_CPU_PASID
1035 unsigned pasid_activated:1;
1036#endif
1037#ifdef CONFIG_X86_BUS_LOCK_DETECT
1038 unsigned reported_split_lock:1;
1039#endif
1040#ifdef CONFIG_TASK_DELAY_ACCT
1041 /* delay due to memory thrashing */
1042 unsigned in_thrashing:1;
1043#endif
1044 unsigned in_nf_duplicate:1;
1045#ifdef CONFIG_PREEMPT_RT
1046 struct netdev_xmit net_xmit;
1047#endif
1048 unsigned long atomic_flags; /* Flags requiring atomic access. */
1049
1050 struct restart_block restart_block;
1051
1052 pid_t pid;
1053 pid_t tgid;
1054
1055#ifdef CONFIG_STACKPROTECTOR
1056 /* Canary value for the -fstack-protector GCC feature: */
1057 unsigned long stack_canary;
1058#endif
1059 /*
1060 * Pointers to the (original) parent process, youngest child, younger sibling,
1061 * older sibling, respectively. (p->father can be replaced with
1062 * p->real_parent->pid)
1063 */
1064
1065 /* Real parent process: */
1066 struct task_struct __rcu *real_parent;
1067
1068 /* Recipient of SIGCHLD, wait4() reports: */
1069 struct task_struct __rcu *parent;
1070
1071 /*
1072 * Children/sibling form the list of natural children:
1073 */
1074 struct list_head children;
1075 struct list_head sibling;
1076 struct task_struct *group_leader;
1077
1078 /*
1079 * 'ptraced' is the list of tasks this task is using ptrace() on.
1080 *
1081 * This includes both natural children and PTRACE_ATTACH targets.
1082 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1083 */
1084 struct list_head ptraced;
1085 struct list_head ptrace_entry;
1086
1087 /* PID/PID hash table linkage. */
1088 struct pid *thread_pid;
1089 struct hlist_node pid_links[PIDTYPE_MAX];
1090 struct list_head thread_node;
1091
1092 struct completion *vfork_done;
1093
1094 /* CLONE_CHILD_SETTID: */
1095 int __user *set_child_tid;
1096
1097 /* CLONE_CHILD_CLEARTID: */
1098 int __user *clear_child_tid;
1099
1100 /* PF_KTHREAD | PF_IO_WORKER */
1101 void *worker_private;
1102
1103 u64 utime;
1104 u64 stime;
1105#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1106 u64 utimescaled;
1107 u64 stimescaled;
1108#endif
1109 u64 gtime;
1110 struct prev_cputime prev_cputime;
1111#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1112 struct vtime vtime;
1113#endif
1114
1115#ifdef CONFIG_NO_HZ_FULL
1116 atomic_t tick_dep_mask;
1117#endif
1118 /* Context switch counts: */
1119 unsigned long nvcsw;
1120 unsigned long nivcsw;
1121
1122 /* Monotonic time in nsecs: */
1123 u64 start_time;
1124
1125 /* Boot based time in nsecs: */
1126 u64 start_boottime;
1127
1128 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1129 unsigned long min_flt;
1130 unsigned long maj_flt;
1131
1132 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1133 struct posix_cputimers posix_cputimers;
1134
1135#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1136 struct posix_cputimers_work posix_cputimers_work;
1137#endif
1138
1139 /* Process credentials: */
1140
1141 /* Tracer's credentials at attach: */
1142 const struct cred __rcu *ptracer_cred;
1143
1144 /* Objective and real subjective task credentials (COW): */
1145 const struct cred __rcu *real_cred;
1146
1147 /* Effective (overridable) subjective task credentials (COW): */
1148 const struct cred __rcu *cred;
1149
1150#ifdef CONFIG_KEYS
1151 /* Cached requested key. */
1152 struct key *cached_requested_key;
1153#endif
1154
1155 /*
1156 * executable name, excluding path.
1157 *
1158 * - normally initialized begin_new_exec()
1159 * - set it with set_task_comm()
1160 * - strscpy_pad() to ensure it is always NUL-terminated and
1161 * zero-padded
1162 * - task_lock() to ensure the operation is atomic and the name is
1163 * fully updated.
1164 */
1165 char comm[TASK_COMM_LEN];
1166
1167 struct nameidata *nameidata;
1168
1169#ifdef CONFIG_SYSVIPC
1170 struct sysv_sem sysvsem;
1171 struct sysv_shm sysvshm;
1172#endif
1173#ifdef CONFIG_DETECT_HUNG_TASK
1174 unsigned long last_switch_count;
1175 unsigned long last_switch_time;
1176#endif
1177 /* Filesystem information: */
1178 struct fs_struct *fs;
1179
1180 /* Open file information: */
1181 struct files_struct *files;
1182
1183#ifdef CONFIG_IO_URING
1184 struct io_uring_task *io_uring;
1185#endif
1186
1187 /* Namespaces: */
1188 struct nsproxy *nsproxy;
1189
1190 /* Signal handlers: */
1191 struct signal_struct *signal;
1192 struct sighand_struct __rcu *sighand;
1193 sigset_t blocked;
1194 sigset_t real_blocked;
1195 /* Restored if set_restore_sigmask() was used: */
1196 sigset_t saved_sigmask;
1197 struct sigpending pending;
1198 unsigned long sas_ss_sp;
1199 size_t sas_ss_size;
1200 unsigned int sas_ss_flags;
1201
1202 struct callback_head *task_works;
1203
1204#ifdef CONFIG_AUDIT
1205#ifdef CONFIG_AUDITSYSCALL
1206 struct audit_context *audit_context;
1207#endif
1208 kuid_t loginuid;
1209 unsigned int sessionid;
1210#endif
1211 struct seccomp seccomp;
1212 struct syscall_user_dispatch syscall_dispatch;
1213
1214 /* Thread group tracking: */
1215 u64 parent_exec_id;
1216 u64 self_exec_id;
1217
1218 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1219 spinlock_t alloc_lock;
1220
1221 /* Protection of the PI data structures: */
1222 raw_spinlock_t pi_lock;
1223
1224 struct wake_q_node wake_q;
1225
1226#ifdef CONFIG_RT_MUTEXES
1227 /* PI waiters blocked on a rt_mutex held by this task: */
1228 struct rb_root_cached pi_waiters;
1229 /* Updated under owner's pi_lock and rq lock */
1230 struct task_struct *pi_top_task;
1231 /* Deadlock detection and priority inheritance handling: */
1232 struct rt_mutex_waiter *pi_blocked_on;
1233#endif
1234
1235 struct mutex *blocked_on; /* lock we're blocked on */
1236
1237#ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1238 /*
1239 * Encoded lock address causing task block (lower 2 bits = type from
1240 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1241 */
1242 unsigned long blocker;
1243#endif
1244
1245#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1246 int non_block_count;
1247#endif
1248
1249#ifdef CONFIG_TRACE_IRQFLAGS
1250 struct irqtrace_events irqtrace;
1251 unsigned int hardirq_threaded;
1252 u64 hardirq_chain_key;
1253 int softirqs_enabled;
1254 int softirq_context;
1255 int irq_config;
1256#endif
1257#ifdef CONFIG_PREEMPT_RT
1258 int softirq_disable_cnt;
1259#endif
1260
1261#ifdef CONFIG_LOCKDEP
1262# define MAX_LOCK_DEPTH 48UL
1263 u64 curr_chain_key;
1264 int lockdep_depth;
1265 unsigned int lockdep_recursion;
1266 struct held_lock held_locks[MAX_LOCK_DEPTH];
1267#endif
1268
1269#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1270 unsigned int in_ubsan;
1271#endif
1272
1273 /* Journalling filesystem info: */
1274 void *journal_info;
1275
1276 /* Stacked block device info: */
1277 struct bio_list *bio_list;
1278
1279 /* Stack plugging: */
1280 struct blk_plug *plug;
1281
1282 /* VM state: */
1283 struct reclaim_state *reclaim_state;
1284
1285 struct io_context *io_context;
1286
1287#ifdef CONFIG_COMPACTION
1288 struct capture_control *capture_control;
1289#endif
1290 /* Ptrace state: */
1291 unsigned long ptrace_message;
1292 kernel_siginfo_t *last_siginfo;
1293
1294 struct task_io_accounting ioac;
1295#ifdef CONFIG_PSI
1296 /* Pressure stall state */
1297 unsigned int psi_flags;
1298#endif
1299#ifdef CONFIG_TASK_XACCT
1300 /* Accumulated RSS usage: */
1301 u64 acct_rss_mem1;
1302 /* Accumulated virtual memory usage: */
1303 u64 acct_vm_mem1;
1304 /* stime + utime since last update: */
1305 u64 acct_timexpd;
1306#endif
1307#ifdef CONFIG_CPUSETS
1308 /* Protected by ->alloc_lock: */
1309 nodemask_t mems_allowed;
1310 /* Sequence number to catch updates: */
1311 seqcount_spinlock_t mems_allowed_seq;
1312 int cpuset_mem_spread_rotor;
1313#endif
1314#ifdef CONFIG_CGROUPS
1315 /* Control Group info protected by css_set_lock: */
1316 struct css_set __rcu *cgroups;
1317 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1318 struct list_head cg_list;
1319#endif
1320#ifdef CONFIG_X86_CPU_RESCTRL
1321 u32 closid;
1322 u32 rmid;
1323#endif
1324#ifdef CONFIG_FUTEX
1325 struct robust_list_head __user *robust_list;
1326#ifdef CONFIG_COMPAT
1327 struct compat_robust_list_head __user *compat_robust_list;
1328#endif
1329 struct list_head pi_state_list;
1330 struct futex_pi_state *pi_state_cache;
1331 struct mutex futex_exit_mutex;
1332 unsigned int futex_state;
1333#endif
1334#ifdef CONFIG_PERF_EVENTS
1335 u8 perf_recursion[PERF_NR_CONTEXTS];
1336 struct perf_event_context *perf_event_ctxp;
1337 struct mutex perf_event_mutex;
1338 struct list_head perf_event_list;
1339 struct perf_ctx_data __rcu *perf_ctx_data;
1340#endif
1341#ifdef CONFIG_DEBUG_PREEMPT
1342 unsigned long preempt_disable_ip;
1343#endif
1344#ifdef CONFIG_NUMA
1345 /* Protected by alloc_lock: */
1346 struct mempolicy *mempolicy;
1347 short il_prev;
1348 u8 il_weight;
1349 short pref_node_fork;
1350#endif
1351#ifdef CONFIG_NUMA_BALANCING
1352 int numa_scan_seq;
1353 unsigned int numa_scan_period;
1354 unsigned int numa_scan_period_max;
1355 int numa_preferred_nid;
1356 unsigned long numa_migrate_retry;
1357 /* Migration stamp: */
1358 u64 node_stamp;
1359 u64 last_task_numa_placement;
1360 u64 last_sum_exec_runtime;
1361 struct callback_head numa_work;
1362
1363 /*
1364 * This pointer is only modified for current in syscall and
1365 * pagefault context (and for tasks being destroyed), so it can be read
1366 * from any of the following contexts:
1367 * - RCU read-side critical section
1368 * - current->numa_group from everywhere
1369 * - task's runqueue locked, task not running
1370 */
1371 struct numa_group __rcu *numa_group;
1372
1373 /*
1374 * numa_faults is an array split into four regions:
1375 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1376 * in this precise order.
1377 *
1378 * faults_memory: Exponential decaying average of faults on a per-node
1379 * basis. Scheduling placement decisions are made based on these
1380 * counts. The values remain static for the duration of a PTE scan.
1381 * faults_cpu: Track the nodes the process was running on when a NUMA
1382 * hinting fault was incurred.
1383 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1384 * during the current scan window. When the scan completes, the counts
1385 * in faults_memory and faults_cpu decay and these values are copied.
1386 */
1387 unsigned long *numa_faults;
1388 unsigned long total_numa_faults;
1389
1390 /*
1391 * numa_faults_locality tracks if faults recorded during the last
1392 * scan window were remote/local or failed to migrate. The task scan
1393 * period is adapted based on the locality of the faults with different
1394 * weights depending on whether they were shared or private faults
1395 */
1396 unsigned long numa_faults_locality[3];
1397
1398 unsigned long numa_pages_migrated;
1399#endif /* CONFIG_NUMA_BALANCING */
1400
1401#ifdef CONFIG_RSEQ
1402 struct rseq __user *rseq;
1403 u32 rseq_len;
1404 u32 rseq_sig;
1405 /*
1406 * RmW on rseq_event_mask must be performed atomically
1407 * with respect to preemption.
1408 */
1409 unsigned long rseq_event_mask;
1410# ifdef CONFIG_DEBUG_RSEQ
1411 /*
1412 * This is a place holder to save a copy of the rseq fields for
1413 * validation of read-only fields. The struct rseq has a
1414 * variable-length array at the end, so it cannot be used
1415 * directly. Reserve a size large enough for the known fields.
1416 */
1417 char rseq_fields[sizeof(struct rseq)];
1418# endif
1419#endif
1420
1421#ifdef CONFIG_SCHED_MM_CID
1422 int mm_cid; /* Current cid in mm */
1423 int last_mm_cid; /* Most recent cid in mm */
1424 int migrate_from_cpu;
1425 int mm_cid_active; /* Whether cid bitmap is active */
1426 struct callback_head cid_work;
1427#endif
1428
1429 struct tlbflush_unmap_batch tlb_ubc;
1430
1431 /* Cache last used pipe for splice(): */
1432 struct pipe_inode_info *splice_pipe;
1433
1434 struct page_frag task_frag;
1435
1436#ifdef CONFIG_TASK_DELAY_ACCT
1437 struct task_delay_info *delays;
1438#endif
1439
1440#ifdef CONFIG_FAULT_INJECTION
1441 int make_it_fail;
1442 unsigned int fail_nth;
1443#endif
1444 /*
1445 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1446 * balance_dirty_pages() for a dirty throttling pause:
1447 */
1448 int nr_dirtied;
1449 int nr_dirtied_pause;
1450 /* Start of a write-and-pause period: */
1451 unsigned long dirty_paused_when;
1452
1453#ifdef CONFIG_LATENCYTOP
1454 int latency_record_count;
1455 struct latency_record latency_record[LT_SAVECOUNT];
1456#endif
1457 /*
1458 * Time slack values; these are used to round up poll() and
1459 * select() etc timeout values. These are in nanoseconds.
1460 */
1461 u64 timer_slack_ns;
1462 u64 default_timer_slack_ns;
1463
1464#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1465 unsigned int kasan_depth;
1466#endif
1467
1468#ifdef CONFIG_KCSAN
1469 struct kcsan_ctx kcsan_ctx;
1470#ifdef CONFIG_TRACE_IRQFLAGS
1471 struct irqtrace_events kcsan_save_irqtrace;
1472#endif
1473#ifdef CONFIG_KCSAN_WEAK_MEMORY
1474 int kcsan_stack_depth;
1475#endif
1476#endif
1477
1478#ifdef CONFIG_KMSAN
1479 struct kmsan_ctx kmsan_ctx;
1480#endif
1481
1482#if IS_ENABLED(CONFIG_KUNIT)
1483 struct kunit *kunit_test;
1484#endif
1485
1486#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1487 /* Index of current stored address in ret_stack: */
1488 int curr_ret_stack;
1489 int curr_ret_depth;
1490
1491 /* Stack of return addresses for return function tracing: */
1492 unsigned long *ret_stack;
1493
1494 /* Timestamp for last schedule: */
1495 unsigned long long ftrace_timestamp;
1496 unsigned long long ftrace_sleeptime;
1497
1498 /*
1499 * Number of functions that haven't been traced
1500 * because of depth overrun:
1501 */
1502 atomic_t trace_overrun;
1503
1504 /* Pause tracing: */
1505 atomic_t tracing_graph_pause;
1506#endif
1507
1508#ifdef CONFIG_TRACING
1509 /* Bitmask and counter of trace recursion: */
1510 unsigned long trace_recursion;
1511#endif /* CONFIG_TRACING */
1512
1513#ifdef CONFIG_KCOV
1514 /* See kernel/kcov.c for more details. */
1515
1516 /* Coverage collection mode enabled for this task (0 if disabled): */
1517 unsigned int kcov_mode;
1518
1519 /* Size of the kcov_area: */
1520 unsigned int kcov_size;
1521
1522 /* Buffer for coverage collection: */
1523 void *kcov_area;
1524
1525 /* KCOV descriptor wired with this task or NULL: */
1526 struct kcov *kcov;
1527
1528 /* KCOV common handle for remote coverage collection: */
1529 u64 kcov_handle;
1530
1531 /* KCOV sequence number: */
1532 int kcov_sequence;
1533
1534 /* Collect coverage from softirq context: */
1535 unsigned int kcov_softirq;
1536#endif
1537
1538#ifdef CONFIG_MEMCG_V1
1539 struct mem_cgroup *memcg_in_oom;
1540#endif
1541
1542#ifdef CONFIG_MEMCG
1543 /* Number of pages to reclaim on returning to userland: */
1544 unsigned int memcg_nr_pages_over_high;
1545
1546 /* Used by memcontrol for targeted memcg charge: */
1547 struct mem_cgroup *active_memcg;
1548
1549 /* Cache for current->cgroups->memcg->objcg lookups: */
1550 struct obj_cgroup *objcg;
1551#endif
1552
1553#ifdef CONFIG_BLK_CGROUP
1554 struct gendisk *throttle_disk;
1555#endif
1556
1557#ifdef CONFIG_UPROBES
1558 struct uprobe_task *utask;
1559#endif
1560#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1561 unsigned int sequential_io;
1562 unsigned int sequential_io_avg;
1563#endif
1564 struct kmap_ctrl kmap_ctrl;
1565#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1566 unsigned long task_state_change;
1567# ifdef CONFIG_PREEMPT_RT
1568 unsigned long saved_state_change;
1569# endif
1570#endif
1571 struct rcu_head rcu;
1572 refcount_t rcu_users;
1573 int pagefault_disabled;
1574#ifdef CONFIG_MMU
1575 struct task_struct *oom_reaper_list;
1576 struct timer_list oom_reaper_timer;
1577#endif
1578#ifdef CONFIG_VMAP_STACK
1579 struct vm_struct *stack_vm_area;
1580#endif
1581#ifdef CONFIG_THREAD_INFO_IN_TASK
1582 /* A live task holds one reference: */
1583 refcount_t stack_refcount;
1584#endif
1585#ifdef CONFIG_LIVEPATCH
1586 int patch_state;
1587#endif
1588#ifdef CONFIG_SECURITY
1589 /* Used by LSM modules for access restriction: */
1590 void *security;
1591#endif
1592#ifdef CONFIG_BPF_SYSCALL
1593 /* Used by BPF task local storage */
1594 struct bpf_local_storage __rcu *bpf_storage;
1595 /* Used for BPF run context */
1596 struct bpf_run_ctx *bpf_ctx;
1597#endif
1598 /* Used by BPF for per-TASK xdp storage */
1599 struct bpf_net_context *bpf_net_context;
1600
1601#ifdef CONFIG_KSTACK_ERASE
1602 unsigned long lowest_stack;
1603#endif
1604#ifdef CONFIG_KSTACK_ERASE_METRICS
1605 unsigned long prev_lowest_stack;
1606#endif
1607
1608#ifdef CONFIG_X86_MCE
1609 void __user *mce_vaddr;
1610 __u64 mce_kflags;
1611 u64 mce_addr;
1612 __u64 mce_ripv : 1,
1613 mce_whole_page : 1,
1614 __mce_reserved : 62;
1615 struct callback_head mce_kill_me;
1616 int mce_count;
1617#endif
1618
1619#ifdef CONFIG_KRETPROBES
1620 struct llist_head kretprobe_instances;
1621#endif
1622#ifdef CONFIG_RETHOOK
1623 struct llist_head rethooks;
1624#endif
1625
1626#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1627 /*
1628 * If L1D flush is supported on mm context switch
1629 * then we use this callback head to queue kill work
1630 * to kill tasks that are not running on SMT disabled
1631 * cores
1632 */
1633 struct callback_head l1d_flush_kill;
1634#endif
1635
1636#ifdef CONFIG_RV
1637 /*
1638 * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS.
1639 * If memory becomes a concern, we can think about a dynamic method.
1640 */
1641 union rv_task_monitor rv[CONFIG_RV_PER_TASK_MONITORS];
1642#endif
1643
1644#ifdef CONFIG_USER_EVENTS
1645 struct user_event_mm *user_event_mm;
1646#endif
1647
1648#ifdef CONFIG_UNWIND_USER
1649 struct unwind_task_info unwind_info;
1650#endif
1651
1652 /* CPU-specific state of this task: */
1653 struct thread_struct thread;
1654
1655 /*
1656 * New fields for task_struct should be added above here, so that
1657 * they are included in the randomized portion of task_struct.
1658 */
1659 randomized_struct_fields_end
1660} __attribute__ ((aligned (64)));
1661
1662#ifdef CONFIG_SCHED_PROXY_EXEC
1663DECLARE_STATIC_KEY_TRUE(__sched_proxy_exec);
1664static inline bool sched_proxy_exec(void)
1665{
1666 return static_branch_likely(&__sched_proxy_exec);
1667}
1668#else
1669static inline bool sched_proxy_exec(void)
1670{
1671 return false;
1672}
1673#endif
1674
1675#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1676#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1677
1678static inline unsigned int __task_state_index(unsigned int tsk_state,
1679 unsigned int tsk_exit_state)
1680{
1681 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1682
1683 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1684
1685 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1686 state = TASK_REPORT_IDLE;
1687
1688 /*
1689 * We're lying here, but rather than expose a completely new task state
1690 * to userspace, we can make this appear as if the task has gone through
1691 * a regular rt_mutex_lock() call.
1692 * Report frozen tasks as uninterruptible.
1693 */
1694 if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1695 state = TASK_UNINTERRUPTIBLE;
1696
1697 return fls(state);
1698}
1699
1700static inline unsigned int task_state_index(struct task_struct *tsk)
1701{
1702 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1703}
1704
1705static inline char task_index_to_char(unsigned int state)
1706{
1707 static const char state_char[] = "RSDTtXZPI";
1708
1709 BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1710
1711 return state_char[state];
1712}
1713
1714static inline char task_state_to_char(struct task_struct *tsk)
1715{
1716 return task_index_to_char(task_state_index(tsk));
1717}
1718
1719extern struct pid *cad_pid;
1720
1721/*
1722 * Per process flags
1723 */
1724#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1725#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1726#define PF_EXITING 0x00000004 /* Getting shut down */
1727#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1728#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1729#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1730#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1731#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1732#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1733#define PF_DUMPCORE 0x00000200 /* Dumped core */
1734#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1735#define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1736#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1737#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1738#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1739#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1740#define PF_KCOMPACTD 0x00010000 /* I am kcompactd */
1741#define PF_KSWAPD 0x00020000 /* I am kswapd */
1742#define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1743#define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1744#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1745 * I am cleaning dirty pages from some other bdi. */
1746#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1747#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1748#define PF__HOLE__00800000 0x00800000
1749#define PF__HOLE__01000000 0x01000000
1750#define PF__HOLE__02000000 0x02000000
1751#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1752#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1753#define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
1754 * See memalloc_pin_save() */
1755#define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
1756#define PF__HOLE__40000000 0x40000000
1757#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1758
1759/*
1760 * Only the _current_ task can read/write to tsk->flags, but other
1761 * tasks can access tsk->flags in readonly mode for example
1762 * with tsk_used_math (like during threaded core dumping).
1763 * There is however an exception to this rule during ptrace
1764 * or during fork: the ptracer task is allowed to write to the
1765 * child->flags of its traced child (same goes for fork, the parent
1766 * can write to the child->flags), because we're guaranteed the
1767 * child is not running and in turn not changing child->flags
1768 * at the same time the parent does it.
1769 */
1770#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1771#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1772#define clear_used_math() clear_stopped_child_used_math(current)
1773#define set_used_math() set_stopped_child_used_math(current)
1774
1775#define conditional_stopped_child_used_math(condition, child) \
1776 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1777
1778#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1779
1780#define copy_to_stopped_child_used_math(child) \
1781 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1782
1783/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1784#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1785#define used_math() tsk_used_math(current)
1786
1787static __always_inline bool is_percpu_thread(void)
1788{
1789 return (current->flags & PF_NO_SETAFFINITY) &&
1790 (current->nr_cpus_allowed == 1);
1791}
1792
1793/* Per-process atomic flags. */
1794#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1795#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1796#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1797#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1798#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1799#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1800#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1801#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1802
1803#define TASK_PFA_TEST(name, func) \
1804 static inline bool task_##func(struct task_struct *p) \
1805 { return test_bit(PFA_##name, &p->atomic_flags); }
1806
1807#define TASK_PFA_SET(name, func) \
1808 static inline void task_set_##func(struct task_struct *p) \
1809 { set_bit(PFA_##name, &p->atomic_flags); }
1810
1811#define TASK_PFA_CLEAR(name, func) \
1812 static inline void task_clear_##func(struct task_struct *p) \
1813 { clear_bit(PFA_##name, &p->atomic_flags); }
1814
1815TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1816TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1817
1818TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1819TASK_PFA_SET(SPREAD_PAGE, spread_page)
1820TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1821
1822TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1823TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1824TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1825
1826TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1827TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1828TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1829
1830TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1831TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1832TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1833
1834TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1835TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1836
1837TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1838TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1839TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1840
1841TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1842TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1843
1844static inline void
1845current_restore_flags(unsigned long orig_flags, unsigned long flags)
1846{
1847 current->flags &= ~flags;
1848 current->flags |= orig_flags & flags;
1849}
1850
1851extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1852extern int task_can_attach(struct task_struct *p);
1853extern int dl_bw_alloc(int cpu, u64 dl_bw);
1854extern void dl_bw_free(int cpu, u64 dl_bw);
1855
1856/* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1857extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1858
1859/**
1860 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1861 * @p: the task
1862 * @new_mask: CPU affinity mask
1863 *
1864 * Return: zero if successful, or a negative error code
1865 */
1866extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1867extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1868extern void release_user_cpus_ptr(struct task_struct *p);
1869extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1870extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1871extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1872
1873extern int yield_to(struct task_struct *p, bool preempt);
1874extern void set_user_nice(struct task_struct *p, long nice);
1875extern int task_prio(const struct task_struct *p);
1876
1877/**
1878 * task_nice - return the nice value of a given task.
1879 * @p: the task in question.
1880 *
1881 * Return: The nice value [ -20 ... 0 ... 19 ].
1882 */
1883static inline int task_nice(const struct task_struct *p)
1884{
1885 return PRIO_TO_NICE((p)->static_prio);
1886}
1887
1888extern int can_nice(const struct task_struct *p, const int nice);
1889extern int task_curr(const struct task_struct *p);
1890extern int idle_cpu(int cpu);
1891extern int available_idle_cpu(int cpu);
1892extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1893extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1894extern void sched_set_fifo(struct task_struct *p);
1895extern void sched_set_fifo_low(struct task_struct *p);
1896extern void sched_set_normal(struct task_struct *p, int nice);
1897extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1898extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1899extern struct task_struct *idle_task(int cpu);
1900
1901/**
1902 * is_idle_task - is the specified task an idle task?
1903 * @p: the task in question.
1904 *
1905 * Return: 1 if @p is an idle task. 0 otherwise.
1906 */
1907static __always_inline bool is_idle_task(const struct task_struct *p)
1908{
1909 return !!(p->flags & PF_IDLE);
1910}
1911
1912extern struct task_struct *curr_task(int cpu);
1913extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1914
1915void yield(void);
1916
1917union thread_union {
1918 struct task_struct task;
1919#ifndef CONFIG_THREAD_INFO_IN_TASK
1920 struct thread_info thread_info;
1921#endif
1922 unsigned long stack[THREAD_SIZE/sizeof(long)];
1923};
1924
1925#ifndef CONFIG_THREAD_INFO_IN_TASK
1926extern struct thread_info init_thread_info;
1927#endif
1928
1929extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1930
1931#ifdef CONFIG_THREAD_INFO_IN_TASK
1932# define task_thread_info(task) (&(task)->thread_info)
1933#else
1934# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1935#endif
1936
1937/*
1938 * find a task by one of its numerical ids
1939 *
1940 * find_task_by_pid_ns():
1941 * finds a task by its pid in the specified namespace
1942 * find_task_by_vpid():
1943 * finds a task by its virtual pid
1944 *
1945 * see also find_vpid() etc in include/linux/pid.h
1946 */
1947
1948extern struct task_struct *find_task_by_vpid(pid_t nr);
1949extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1950
1951/*
1952 * find a task by its virtual pid and get the task struct
1953 */
1954extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1955
1956extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1957extern int wake_up_process(struct task_struct *tsk);
1958extern void wake_up_new_task(struct task_struct *tsk);
1959
1960extern void kick_process(struct task_struct *tsk);
1961
1962extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1963#define set_task_comm(tsk, from) ({ \
1964 BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN); \
1965 __set_task_comm(tsk, from, false); \
1966})
1967
1968/*
1969 * - Why not use task_lock()?
1970 * User space can randomly change their names anyway, so locking for readers
1971 * doesn't make sense. For writers, locking is probably necessary, as a race
1972 * condition could lead to long-term mixed results.
1973 * The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1974 * always NUL-terminated and zero-padded. Therefore the race condition between
1975 * reader and writer is not an issue.
1976 *
1977 * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1978 * Since the callers don't perform any return value checks, this safeguard is
1979 * necessary.
1980 */
1981#define get_task_comm(buf, tsk) ({ \
1982 BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN); \
1983 strscpy_pad(buf, (tsk)->comm); \
1984 buf; \
1985})
1986
1987static __always_inline void scheduler_ipi(void)
1988{
1989 /*
1990 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1991 * TIF_NEED_RESCHED remotely (for the first time) will also send
1992 * this IPI.
1993 */
1994 preempt_fold_need_resched();
1995}
1996
1997extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1998
1999/*
2000 * Set thread flags in other task's structures.
2001 * See asm/thread_info.h for TIF_xxxx flags available:
2002 */
2003static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2004{
2005 set_ti_thread_flag(task_thread_info(tsk), flag);
2006}
2007
2008static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2009{
2010 clear_ti_thread_flag(task_thread_info(tsk), flag);
2011}
2012
2013static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2014 bool value)
2015{
2016 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2017}
2018
2019static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2020{
2021 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2022}
2023
2024static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2025{
2026 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2027}
2028
2029static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2030{
2031 return test_ti_thread_flag(task_thread_info(tsk), flag);
2032}
2033
2034static inline void set_tsk_need_resched(struct task_struct *tsk)
2035{
2036 if (tracepoint_enabled(sched_set_need_resched_tp) &&
2037 !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED))
2038 __trace_set_need_resched(tsk, TIF_NEED_RESCHED);
2039 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2040}
2041
2042static inline void clear_tsk_need_resched(struct task_struct *tsk)
2043{
2044 atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2045 (atomic_long_t *)&task_thread_info(tsk)->flags);
2046}
2047
2048static inline int test_tsk_need_resched(struct task_struct *tsk)
2049{
2050 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2051}
2052
2053/*
2054 * cond_resched() and cond_resched_lock(): latency reduction via
2055 * explicit rescheduling in places that are safe. The return
2056 * value indicates whether a reschedule was done in fact.
2057 * cond_resched_lock() will drop the spinlock before scheduling,
2058 */
2059#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2060extern int __cond_resched(void);
2061
2062#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2063
2064DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2065
2066static __always_inline int _cond_resched(void)
2067{
2068 return static_call_mod(cond_resched)();
2069}
2070
2071#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2072
2073extern int dynamic_cond_resched(void);
2074
2075static __always_inline int _cond_resched(void)
2076{
2077 return dynamic_cond_resched();
2078}
2079
2080#else /* !CONFIG_PREEMPTION */
2081
2082static inline int _cond_resched(void)
2083{
2084 return __cond_resched();
2085}
2086
2087#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2088
2089#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2090
2091static inline int _cond_resched(void)
2092{
2093 return 0;
2094}
2095
2096#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2097
2098#define cond_resched() ({ \
2099 __might_resched(__FILE__, __LINE__, 0); \
2100 _cond_resched(); \
2101})
2102
2103extern int __cond_resched_lock(spinlock_t *lock);
2104extern int __cond_resched_rwlock_read(rwlock_t *lock);
2105extern int __cond_resched_rwlock_write(rwlock_t *lock);
2106
2107#define MIGHT_RESCHED_RCU_SHIFT 8
2108#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2109
2110#ifndef CONFIG_PREEMPT_RT
2111/*
2112 * Non RT kernels have an elevated preempt count due to the held lock,
2113 * but are not allowed to be inside a RCU read side critical section
2114 */
2115# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2116#else
2117/*
2118 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2119 * cond_resched*lock() has to take that into account because it checks for
2120 * preempt_count() and rcu_preempt_depth().
2121 */
2122# define PREEMPT_LOCK_RESCHED_OFFSETS \
2123 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2124#endif
2125
2126#define cond_resched_lock(lock) ({ \
2127 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2128 __cond_resched_lock(lock); \
2129})
2130
2131#define cond_resched_rwlock_read(lock) ({ \
2132 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2133 __cond_resched_rwlock_read(lock); \
2134})
2135
2136#define cond_resched_rwlock_write(lock) ({ \
2137 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2138 __cond_resched_rwlock_write(lock); \
2139})
2140
2141#ifndef CONFIG_PREEMPT_RT
2142static inline struct mutex *__get_task_blocked_on(struct task_struct *p)
2143{
2144 struct mutex *m = p->blocked_on;
2145
2146 if (m)
2147 lockdep_assert_held_once(&m->wait_lock);
2148 return m;
2149}
2150
2151static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m)
2152{
2153 struct mutex *blocked_on = READ_ONCE(p->blocked_on);
2154
2155 WARN_ON_ONCE(!m);
2156 /* The task should only be setting itself as blocked */
2157 WARN_ON_ONCE(p != current);
2158 /* Currently we serialize blocked_on under the mutex::wait_lock */
2159 lockdep_assert_held_once(&m->wait_lock);
2160 /*
2161 * Check ensure we don't overwrite existing mutex value
2162 * with a different mutex. Note, setting it to the same
2163 * lock repeatedly is ok.
2164 */
2165 WARN_ON_ONCE(blocked_on && blocked_on != m);
2166 WRITE_ONCE(p->blocked_on, m);
2167}
2168
2169static inline void set_task_blocked_on(struct task_struct *p, struct mutex *m)
2170{
2171 guard(raw_spinlock_irqsave)(&m->wait_lock);
2172 __set_task_blocked_on(p, m);
2173}
2174
2175static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2176{
2177 if (m) {
2178 struct mutex *blocked_on = READ_ONCE(p->blocked_on);
2179
2180 /* Currently we serialize blocked_on under the mutex::wait_lock */
2181 lockdep_assert_held_once(&m->wait_lock);
2182 /*
2183 * There may be cases where we re-clear already cleared
2184 * blocked_on relationships, but make sure we are not
2185 * clearing the relationship with a different lock.
2186 */
2187 WARN_ON_ONCE(blocked_on && blocked_on != m);
2188 }
2189 WRITE_ONCE(p->blocked_on, NULL);
2190}
2191
2192static inline void clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2193{
2194 guard(raw_spinlock_irqsave)(&m->wait_lock);
2195 __clear_task_blocked_on(p, m);
2196}
2197#else
2198static inline void __clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2199{
2200}
2201
2202static inline void clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2203{
2204}
2205#endif /* !CONFIG_PREEMPT_RT */
2206
2207static __always_inline bool need_resched(void)
2208{
2209 return unlikely(tif_need_resched());
2210}
2211
2212/*
2213 * Wrappers for p->thread_info->cpu access. No-op on UP.
2214 */
2215#ifdef CONFIG_SMP
2216
2217static inline unsigned int task_cpu(const struct task_struct *p)
2218{
2219 return READ_ONCE(task_thread_info(p)->cpu);
2220}
2221
2222extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2223
2224#else
2225
2226static inline unsigned int task_cpu(const struct task_struct *p)
2227{
2228 return 0;
2229}
2230
2231static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2232{
2233}
2234
2235#endif /* CONFIG_SMP */
2236
2237static inline bool task_is_runnable(struct task_struct *p)
2238{
2239 return p->on_rq && !p->se.sched_delayed;
2240}
2241
2242extern bool sched_task_on_rq(struct task_struct *p);
2243extern unsigned long get_wchan(struct task_struct *p);
2244extern struct task_struct *cpu_curr_snapshot(int cpu);
2245
2246/*
2247 * In order to reduce various lock holder preemption latencies provide an
2248 * interface to see if a vCPU is currently running or not.
2249 *
2250 * This allows us to terminate optimistic spin loops and block, analogous to
2251 * the native optimistic spin heuristic of testing if the lock owner task is
2252 * running or not.
2253 */
2254#ifndef vcpu_is_preempted
2255static inline bool vcpu_is_preempted(int cpu)
2256{
2257 return false;
2258}
2259#endif
2260
2261extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2262extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2263
2264#ifndef TASK_SIZE_OF
2265#define TASK_SIZE_OF(tsk) TASK_SIZE
2266#endif
2267
2268static inline bool owner_on_cpu(struct task_struct *owner)
2269{
2270 /*
2271 * As lock holder preemption issue, we both skip spinning if
2272 * task is not on cpu or its cpu is preempted
2273 */
2274 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2275}
2276
2277/* Returns effective CPU energy utilization, as seen by the scheduler */
2278unsigned long sched_cpu_util(int cpu);
2279
2280#ifdef CONFIG_SCHED_CORE
2281extern void sched_core_free(struct task_struct *tsk);
2282extern void sched_core_fork(struct task_struct *p);
2283extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2284 unsigned long uaddr);
2285extern int sched_core_idle_cpu(int cpu);
2286#else
2287static inline void sched_core_free(struct task_struct *tsk) { }
2288static inline void sched_core_fork(struct task_struct *p) { }
2289static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2290#endif
2291
2292extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2293
2294#ifdef CONFIG_MEM_ALLOC_PROFILING
2295static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2296{
2297 swap(current->alloc_tag, tag);
2298 return tag;
2299}
2300
2301static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2302{
2303#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2304 WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2305#endif
2306 current->alloc_tag = old;
2307}
2308#else
2309#define alloc_tag_save(_tag) NULL
2310#define alloc_tag_restore(_tag, _old) do {} while (0)
2311#endif
2312
2313#endif