at v6.17 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_PREEMPT_H 3#define __LINUX_PREEMPT_H 4 5/* 6 * include/linux/preempt.h - macros for accessing and manipulating 7 * preempt_count (used for kernel preemption, interrupt count, etc.) 8 */ 9 10#include <linux/linkage.h> 11#include <linux/cleanup.h> 12#include <linux/types.h> 13 14/* 15 * We put the hardirq and softirq counter into the preemption 16 * counter. The bitmask has the following meaning: 17 * 18 * - bits 0-7 are the preemption count (max preemption depth: 256) 19 * - bits 8-15 are the softirq count (max # of softirqs: 256) 20 * 21 * The hardirq count could in theory be the same as the number of 22 * interrupts in the system, but we run all interrupt handlers with 23 * interrupts disabled, so we cannot have nesting interrupts. Though 24 * there are a few palaeontologic drivers which reenable interrupts in 25 * the handler, so we need more than one bit here. 26 * 27 * PREEMPT_MASK: 0x000000ff 28 * SOFTIRQ_MASK: 0x0000ff00 29 * HARDIRQ_MASK: 0x000f0000 30 * NMI_MASK: 0x00f00000 31 * PREEMPT_NEED_RESCHED: 0x80000000 32 */ 33#define PREEMPT_BITS 8 34#define SOFTIRQ_BITS 8 35#define HARDIRQ_BITS 4 36#define NMI_BITS 4 37 38#define PREEMPT_SHIFT 0 39#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) 40#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) 41#define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) 42 43#define __IRQ_MASK(x) ((1UL << (x))-1) 44 45#define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) 46#define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) 47#define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) 48#define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) 49 50#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) 51#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) 52#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) 53#define NMI_OFFSET (1UL << NMI_SHIFT) 54 55#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) 56 57#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 58 59/* 60 * Disable preemption until the scheduler is running -- use an unconditional 61 * value so that it also works on !PREEMPT_COUNT kernels. 62 * 63 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 64 */ 65#define INIT_PREEMPT_COUNT PREEMPT_OFFSET 66 67/* 68 * Initial preempt_count value; reflects the preempt_count schedule invariant 69 * which states that during context switches: 70 * 71 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 72 * 73 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 74 * Note: See finish_task_switch(). 75 */ 76#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 77 78/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ 79#include <asm/preempt.h> 80 81/** 82 * interrupt_context_level - return interrupt context level 83 * 84 * Returns the current interrupt context level. 85 * 0 - normal context 86 * 1 - softirq context 87 * 2 - hardirq context 88 * 3 - NMI context 89 */ 90static __always_inline unsigned char interrupt_context_level(void) 91{ 92 unsigned long pc = preempt_count(); 93 unsigned char level = 0; 94 95 level += !!(pc & (NMI_MASK)); 96 level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); 97 level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); 98 99 return level; 100} 101 102/* 103 * These macro definitions avoid redundant invocations of preempt_count() 104 * because such invocations would result in redundant loads given that 105 * preempt_count() is commonly implemented with READ_ONCE(). 106 */ 107 108#define nmi_count() (preempt_count() & NMI_MASK) 109#define hardirq_count() (preempt_count() & HARDIRQ_MASK) 110#ifdef CONFIG_PREEMPT_RT 111# define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) 112# define irq_count() ((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | softirq_count()) 113#else 114# define softirq_count() (preempt_count() & SOFTIRQ_MASK) 115# define irq_count() (preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_MASK)) 116#endif 117 118/* 119 * Macros to retrieve the current execution context: 120 * 121 * in_nmi() - We're in NMI context 122 * in_hardirq() - We're in hard IRQ context 123 * in_serving_softirq() - We're in softirq context 124 * in_task() - We're in task context 125 */ 126#define in_nmi() (nmi_count()) 127#define in_hardirq() (hardirq_count()) 128#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) 129#ifdef CONFIG_PREEMPT_RT 130# define in_task() (!((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | in_serving_softirq())) 131#else 132# define in_task() (!(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 133#endif 134 135/* 136 * The following macros are deprecated and should not be used in new code: 137 * in_irq() - Obsolete version of in_hardirq() 138 * in_softirq() - We have BH disabled, or are processing softirqs 139 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled 140 */ 141#define in_irq() (hardirq_count()) 142#define in_softirq() (softirq_count()) 143#define in_interrupt() (irq_count()) 144 145/* 146 * The preempt_count offset after preempt_disable(); 147 */ 148#if defined(CONFIG_PREEMPT_COUNT) 149# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET 150#else 151# define PREEMPT_DISABLE_OFFSET 0 152#endif 153 154/* 155 * The preempt_count offset after spin_lock() 156 */ 157#if !defined(CONFIG_PREEMPT_RT) 158#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET 159#else 160/* Locks on RT do not disable preemption */ 161#define PREEMPT_LOCK_OFFSET 0 162#endif 163 164/* 165 * The preempt_count offset needed for things like: 166 * 167 * spin_lock_bh() 168 * 169 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and 170 * softirqs, such that unlock sequences of: 171 * 172 * spin_unlock(); 173 * local_bh_enable(); 174 * 175 * Work as expected. 176 */ 177#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) 178 179/* 180 * Are we running in atomic context? WARNING: this macro cannot 181 * always detect atomic context; in particular, it cannot know about 182 * held spinlocks in non-preemptible kernels. Thus it should not be 183 * used in the general case to determine whether sleeping is possible. 184 * Do not use in_atomic() in driver code. 185 */ 186#define in_atomic() (preempt_count() != 0) 187 188/* 189 * Check whether we were atomic before we did preempt_disable(): 190 * (used by the scheduler) 191 */ 192#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) 193 194#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 195extern void preempt_count_add(int val); 196extern void preempt_count_sub(int val); 197#define preempt_count_dec_and_test() \ 198 ({ preempt_count_sub(1); should_resched(0); }) 199#else 200#define preempt_count_add(val) __preempt_count_add(val) 201#define preempt_count_sub(val) __preempt_count_sub(val) 202#define preempt_count_dec_and_test() __preempt_count_dec_and_test() 203#endif 204 205#define __preempt_count_inc() __preempt_count_add(1) 206#define __preempt_count_dec() __preempt_count_sub(1) 207 208#define preempt_count_inc() preempt_count_add(1) 209#define preempt_count_dec() preempt_count_sub(1) 210 211#ifdef CONFIG_PREEMPT_COUNT 212 213#define preempt_disable() \ 214do { \ 215 preempt_count_inc(); \ 216 barrier(); \ 217} while (0) 218 219#define sched_preempt_enable_no_resched() \ 220do { \ 221 barrier(); \ 222 preempt_count_dec(); \ 223} while (0) 224 225#define preempt_enable_no_resched() sched_preempt_enable_no_resched() 226 227#define preemptible() (preempt_count() == 0 && !irqs_disabled()) 228 229#ifdef CONFIG_PREEMPTION 230#define preempt_enable() \ 231do { \ 232 barrier(); \ 233 if (unlikely(preempt_count_dec_and_test())) \ 234 __preempt_schedule(); \ 235} while (0) 236 237#define preempt_enable_notrace() \ 238do { \ 239 barrier(); \ 240 if (unlikely(__preempt_count_dec_and_test())) \ 241 __preempt_schedule_notrace(); \ 242} while (0) 243 244#define preempt_check_resched() \ 245do { \ 246 if (should_resched(0)) \ 247 __preempt_schedule(); \ 248} while (0) 249 250#else /* !CONFIG_PREEMPTION */ 251#define preempt_enable() \ 252do { \ 253 barrier(); \ 254 preempt_count_dec(); \ 255} while (0) 256 257#define preempt_enable_notrace() \ 258do { \ 259 barrier(); \ 260 __preempt_count_dec(); \ 261} while (0) 262 263#define preempt_check_resched() do { } while (0) 264#endif /* CONFIG_PREEMPTION */ 265 266#define preempt_disable_notrace() \ 267do { \ 268 __preempt_count_inc(); \ 269 barrier(); \ 270} while (0) 271 272#define preempt_enable_no_resched_notrace() \ 273do { \ 274 barrier(); \ 275 __preempt_count_dec(); \ 276} while (0) 277 278#else /* !CONFIG_PREEMPT_COUNT */ 279 280/* 281 * Even if we don't have any preemption, we need preempt disable/enable 282 * to be barriers, so that we don't have things like get_user/put_user 283 * that can cause faults and scheduling migrate into our preempt-protected 284 * region. 285 */ 286#define preempt_disable() barrier() 287#define sched_preempt_enable_no_resched() barrier() 288#define preempt_enable_no_resched() barrier() 289#define preempt_enable() barrier() 290#define preempt_check_resched() do { } while (0) 291 292#define preempt_disable_notrace() barrier() 293#define preempt_enable_no_resched_notrace() barrier() 294#define preempt_enable_notrace() barrier() 295#define preemptible() 0 296 297#endif /* CONFIG_PREEMPT_COUNT */ 298 299#ifdef MODULE 300/* 301 * Modules have no business playing preemption tricks. 302 */ 303#undef sched_preempt_enable_no_resched 304#undef preempt_enable_no_resched 305#undef preempt_enable_no_resched_notrace 306#undef preempt_check_resched 307#endif 308 309#define preempt_set_need_resched() \ 310do { \ 311 set_preempt_need_resched(); \ 312} while (0) 313#define preempt_fold_need_resched() \ 314do { \ 315 if (tif_need_resched()) \ 316 set_preempt_need_resched(); \ 317} while (0) 318 319#ifdef CONFIG_PREEMPT_NOTIFIERS 320 321struct preempt_notifier; 322struct task_struct; 323 324/** 325 * preempt_ops - notifiers called when a task is preempted and rescheduled 326 * @sched_in: we're about to be rescheduled: 327 * notifier: struct preempt_notifier for the task being scheduled 328 * cpu: cpu we're scheduled on 329 * @sched_out: we've just been preempted 330 * notifier: struct preempt_notifier for the task being preempted 331 * next: the task that's kicking us out 332 * 333 * Please note that sched_in and out are called under different 334 * contexts. sched_out is called with rq lock held and irq disabled 335 * while sched_in is called without rq lock and irq enabled. This 336 * difference is intentional and depended upon by its users. 337 */ 338struct preempt_ops { 339 void (*sched_in)(struct preempt_notifier *notifier, int cpu); 340 void (*sched_out)(struct preempt_notifier *notifier, 341 struct task_struct *next); 342}; 343 344/** 345 * preempt_notifier - key for installing preemption notifiers 346 * @link: internal use 347 * @ops: defines the notifier functions to be called 348 * 349 * Usually used in conjunction with container_of(). 350 */ 351struct preempt_notifier { 352 struct hlist_node link; 353 struct preempt_ops *ops; 354}; 355 356void preempt_notifier_inc(void); 357void preempt_notifier_dec(void); 358void preempt_notifier_register(struct preempt_notifier *notifier); 359void preempt_notifier_unregister(struct preempt_notifier *notifier); 360 361static inline void preempt_notifier_init(struct preempt_notifier *notifier, 362 struct preempt_ops *ops) 363{ 364 /* INIT_HLIST_NODE() open coded, to avoid dependency on list.h */ 365 notifier->link.next = NULL; 366 notifier->link.pprev = NULL; 367 notifier->ops = ops; 368} 369 370#endif 371 372/* 373 * Migrate-Disable and why it is undesired. 374 * 375 * When a preempted task becomes elegible to run under the ideal model (IOW it 376 * becomes one of the M highest priority tasks), it might still have to wait 377 * for the preemptee's migrate_disable() section to complete. Thereby suffering 378 * a reduction in bandwidth in the exact duration of the migrate_disable() 379 * section. 380 * 381 * Per this argument, the change from preempt_disable() to migrate_disable() 382 * gets us: 383 * 384 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() 385 * it would have had to wait for the lower priority task. 386 * 387 * - a lower priority tasks; which under preempt_disable() could've instantly 388 * migrated away when another CPU becomes available, is now constrained 389 * by the ability to push the higher priority task away, which might itself be 390 * in a migrate_disable() section, reducing it's available bandwidth. 391 * 392 * IOW it trades latency / moves the interference term, but it stays in the 393 * system, and as long as it remains unbounded, the system is not fully 394 * deterministic. 395 * 396 * 397 * The reason we have it anyway. 398 * 399 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a 400 * number of primitives into becoming preemptible, they would also allow 401 * migration. This turns out to break a bunch of per-cpu usage. To this end, 402 * all these primitives employ migirate_disable() to restore this implicit 403 * assumption. 404 * 405 * This is a 'temporary' work-around at best. The correct solution is getting 406 * rid of the above assumptions and reworking the code to employ explicit 407 * per-cpu locking or short preempt-disable regions. 408 * 409 * The end goal must be to get rid of migrate_disable(), alternatively we need 410 * a schedulability theory that does not depend on abritrary migration. 411 * 412 * 413 * Notes on the implementation. 414 * 415 * The implementation is particularly tricky since existing code patterns 416 * dictate neither migrate_disable() nor migrate_enable() is allowed to block. 417 * This means that it cannot use cpus_read_lock() to serialize against hotplug, 418 * nor can it easily migrate itself into a pending affinity mask change on 419 * migrate_enable(). 420 * 421 * 422 * Note: even non-work-conserving schedulers like semi-partitioned depends on 423 * migration, so migrate_disable() is not only a problem for 424 * work-conserving schedulers. 425 * 426 */ 427extern void migrate_disable(void); 428extern void migrate_enable(void); 429 430/** 431 * preempt_disable_nested - Disable preemption inside a normally preempt disabled section 432 * 433 * Use for code which requires preemption protection inside a critical 434 * section which has preemption disabled implicitly on non-PREEMPT_RT 435 * enabled kernels, by e.g.: 436 * - holding a spinlock/rwlock 437 * - soft interrupt context 438 * - regular interrupt handlers 439 * 440 * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft 441 * interrupt context and regular interrupt handlers are preemptible and 442 * only prevent migration. preempt_disable_nested() ensures that preemption 443 * is disabled for cases which require CPU local serialization even on 444 * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP. 445 * 446 * The use cases are code sequences which are not serialized by a 447 * particular lock instance, e.g.: 448 * - seqcount write side critical sections where the seqcount is not 449 * associated to a particular lock and therefore the automatic 450 * protection mechanism does not work. This prevents a live lock 451 * against a preempting high priority reader. 452 * - RMW per CPU variable updates like vmstat. 453 */ 454/* Macro to avoid header recursion hell vs. lockdep */ 455#define preempt_disable_nested() \ 456do { \ 457 if (IS_ENABLED(CONFIG_PREEMPT_RT)) \ 458 preempt_disable(); \ 459 else \ 460 lockdep_assert_preemption_disabled(); \ 461} while (0) 462 463/** 464 * preempt_enable_nested - Undo the effect of preempt_disable_nested() 465 */ 466static __always_inline void preempt_enable_nested(void) 467{ 468 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 469 preempt_enable(); 470} 471 472DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable()) 473DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace()) 474DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable()) 475 476#ifdef CONFIG_PREEMPT_DYNAMIC 477 478extern bool preempt_model_none(void); 479extern bool preempt_model_voluntary(void); 480extern bool preempt_model_full(void); 481extern bool preempt_model_lazy(void); 482 483#else 484 485static inline bool preempt_model_none(void) 486{ 487 return IS_ENABLED(CONFIG_PREEMPT_NONE); 488} 489static inline bool preempt_model_voluntary(void) 490{ 491 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); 492} 493static inline bool preempt_model_full(void) 494{ 495 return IS_ENABLED(CONFIG_PREEMPT); 496} 497 498static inline bool preempt_model_lazy(void) 499{ 500 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 501} 502 503#endif 504 505static inline bool preempt_model_rt(void) 506{ 507 return IS_ENABLED(CONFIG_PREEMPT_RT); 508} 509 510extern const char *preempt_model_str(void); 511 512/* 513 * Does the preemption model allow non-cooperative preemption? 514 * 515 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with 516 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the 517 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the 518 * PREEMPT_NONE model. 519 */ 520static inline bool preempt_model_preemptible(void) 521{ 522 return preempt_model_full() || preempt_model_lazy() || preempt_model_rt(); 523} 524 525#endif /* __LINUX_PREEMPT_H */