at v6.17 178 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43#include <linux/netdev_features.h> 44#include <linux/neighbour.h> 45#include <linux/netdevice_xmit.h> 46#include <uapi/linux/netdevice.h> 47#include <uapi/linux/if_bonding.h> 48#include <uapi/linux/pkt_cls.h> 49#include <uapi/linux/netdev.h> 50#include <linux/hashtable.h> 51#include <linux/rbtree.h> 52#include <net/net_trackers.h> 53#include <net/net_debug.h> 54#include <net/dropreason-core.h> 55#include <net/neighbour_tables.h> 56 57struct netpoll_info; 58struct device; 59struct ethtool_ops; 60struct kernel_hwtstamp_config; 61struct phy_device; 62struct dsa_port; 63struct ip_tunnel_parm_kern; 64struct macsec_context; 65struct macsec_ops; 66struct netdev_config; 67struct netdev_name_node; 68struct sd_flow_limit; 69struct sfp_bus; 70/* 802.11 specific */ 71struct wireless_dev; 72/* 802.15.4 specific */ 73struct wpan_dev; 74struct mpls_dev; 75/* UDP Tunnel offloads */ 76struct udp_tunnel_info; 77struct udp_tunnel_nic_info; 78struct udp_tunnel_nic; 79struct bpf_prog; 80struct xdp_buff; 81struct xdp_frame; 82struct xdp_metadata_ops; 83struct xdp_md; 84struct ethtool_netdev_state; 85struct phy_link_topology; 86struct hwtstamp_provider; 87 88typedef u32 xdp_features_t; 89 90void synchronize_net(void); 91void netdev_set_default_ethtool_ops(struct net_device *dev, 92 const struct ethtool_ops *ops); 93void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 94 95/* Backlog congestion levels */ 96#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 97#define NET_RX_DROP 1 /* packet dropped */ 98 99#define MAX_NEST_DEV 8 100 101/* 102 * Transmit return codes: transmit return codes originate from three different 103 * namespaces: 104 * 105 * - qdisc return codes 106 * - driver transmit return codes 107 * - errno values 108 * 109 * Drivers are allowed to return any one of those in their hard_start_xmit() 110 * function. Real network devices commonly used with qdiscs should only return 111 * the driver transmit return codes though - when qdiscs are used, the actual 112 * transmission happens asynchronously, so the value is not propagated to 113 * higher layers. Virtual network devices transmit synchronously; in this case 114 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 115 * others are propagated to higher layers. 116 */ 117 118/* qdisc ->enqueue() return codes. */ 119#define NET_XMIT_SUCCESS 0x00 120#define NET_XMIT_DROP 0x01 /* skb dropped */ 121#define NET_XMIT_CN 0x02 /* congestion notification */ 122#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 123 124/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 125 * indicates that the device will soon be dropping packets, or already drops 126 * some packets of the same priority; prompting us to send less aggressively. */ 127#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 128#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 129 130/* Driver transmit return codes */ 131#define NETDEV_TX_MASK 0xf0 132 133enum netdev_tx { 134 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 135 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 136 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 137}; 138typedef enum netdev_tx netdev_tx_t; 139 140/* 141 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 142 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 143 */ 144static inline bool dev_xmit_complete(int rc) 145{ 146 /* 147 * Positive cases with an skb consumed by a driver: 148 * - successful transmission (rc == NETDEV_TX_OK) 149 * - error while transmitting (rc < 0) 150 * - error while queueing to a different device (rc & NET_XMIT_MASK) 151 */ 152 if (likely(rc < NET_XMIT_MASK)) 153 return true; 154 155 return false; 156} 157 158/* 159 * Compute the worst-case header length according to the protocols 160 * used. 161 */ 162 163#if defined(CONFIG_HYPERV_NET) 164# define LL_MAX_HEADER 128 165#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 166# if defined(CONFIG_MAC80211_MESH) 167# define LL_MAX_HEADER 128 168# else 169# define LL_MAX_HEADER 96 170# endif 171#else 172# define LL_MAX_HEADER 32 173#endif 174 175#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 176 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 177#define MAX_HEADER LL_MAX_HEADER 178#else 179#define MAX_HEADER (LL_MAX_HEADER + 48) 180#endif 181 182/* 183 * Old network device statistics. Fields are native words 184 * (unsigned long) so they can be read and written atomically. 185 */ 186 187#define NET_DEV_STAT(FIELD) \ 188 union { \ 189 unsigned long FIELD; \ 190 atomic_long_t __##FIELD; \ 191 } 192 193struct net_device_stats { 194 NET_DEV_STAT(rx_packets); 195 NET_DEV_STAT(tx_packets); 196 NET_DEV_STAT(rx_bytes); 197 NET_DEV_STAT(tx_bytes); 198 NET_DEV_STAT(rx_errors); 199 NET_DEV_STAT(tx_errors); 200 NET_DEV_STAT(rx_dropped); 201 NET_DEV_STAT(tx_dropped); 202 NET_DEV_STAT(multicast); 203 NET_DEV_STAT(collisions); 204 NET_DEV_STAT(rx_length_errors); 205 NET_DEV_STAT(rx_over_errors); 206 NET_DEV_STAT(rx_crc_errors); 207 NET_DEV_STAT(rx_frame_errors); 208 NET_DEV_STAT(rx_fifo_errors); 209 NET_DEV_STAT(rx_missed_errors); 210 NET_DEV_STAT(tx_aborted_errors); 211 NET_DEV_STAT(tx_carrier_errors); 212 NET_DEV_STAT(tx_fifo_errors); 213 NET_DEV_STAT(tx_heartbeat_errors); 214 NET_DEV_STAT(tx_window_errors); 215 NET_DEV_STAT(rx_compressed); 216 NET_DEV_STAT(tx_compressed); 217}; 218#undef NET_DEV_STAT 219 220/* per-cpu stats, allocated on demand. 221 * Try to fit them in a single cache line, for dev_get_stats() sake. 222 */ 223struct net_device_core_stats { 224 unsigned long rx_dropped; 225 unsigned long tx_dropped; 226 unsigned long rx_nohandler; 227 unsigned long rx_otherhost_dropped; 228} __aligned(4 * sizeof(unsigned long)); 229 230#include <linux/cache.h> 231#include <linux/skbuff.h> 232 233struct neighbour; 234struct neigh_parms; 235struct sk_buff; 236 237struct netdev_hw_addr { 238 struct list_head list; 239 struct rb_node node; 240 unsigned char addr[MAX_ADDR_LEN]; 241 unsigned char type; 242#define NETDEV_HW_ADDR_T_LAN 1 243#define NETDEV_HW_ADDR_T_SAN 2 244#define NETDEV_HW_ADDR_T_UNICAST 3 245#define NETDEV_HW_ADDR_T_MULTICAST 4 246 bool global_use; 247 int sync_cnt; 248 int refcount; 249 int synced; 250 struct rcu_head rcu_head; 251}; 252 253struct netdev_hw_addr_list { 254 struct list_head list; 255 int count; 256 257 /* Auxiliary tree for faster lookup on addition and deletion */ 258 struct rb_root tree; 259}; 260 261#define netdev_hw_addr_list_count(l) ((l)->count) 262#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 263#define netdev_hw_addr_list_for_each(ha, l) \ 264 list_for_each_entry(ha, &(l)->list, list) 265 266#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 267#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 268#define netdev_for_each_uc_addr(ha, dev) \ 269 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 270#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 271 netdev_for_each_uc_addr((_ha), (_dev)) \ 272 if ((_ha)->sync_cnt) 273 274#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 275#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 276#define netdev_for_each_mc_addr(ha, dev) \ 277 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 278#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 279 netdev_for_each_mc_addr((_ha), (_dev)) \ 280 if ((_ha)->sync_cnt) 281 282struct hh_cache { 283 unsigned int hh_len; 284 seqlock_t hh_lock; 285 286 /* cached hardware header; allow for machine alignment needs. */ 287#define HH_DATA_MOD 16 288#define HH_DATA_OFF(__len) \ 289 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 290#define HH_DATA_ALIGN(__len) \ 291 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 292 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 293}; 294 295/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 296 * Alternative is: 297 * dev->hard_header_len ? (dev->hard_header_len + 298 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 299 * 300 * We could use other alignment values, but we must maintain the 301 * relationship HH alignment <= LL alignment. 302 */ 303#define LL_RESERVED_SPACE(dev) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309 310struct header_ops { 311 int (*create) (struct sk_buff *skb, struct net_device *dev, 312 unsigned short type, const void *daddr, 313 const void *saddr, unsigned int len); 314 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 315 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 316 void (*cache_update)(struct hh_cache *hh, 317 const struct net_device *dev, 318 const unsigned char *haddr); 319 bool (*validate)(const char *ll_header, unsigned int len); 320 __be16 (*parse_protocol)(const struct sk_buff *skb); 321}; 322 323/* These flag bits are private to the generic network queueing 324 * layer; they may not be explicitly referenced by any other 325 * code. 326 */ 327 328enum netdev_state_t { 329 __LINK_STATE_START, 330 __LINK_STATE_PRESENT, 331 __LINK_STATE_NOCARRIER, 332 __LINK_STATE_LINKWATCH_PENDING, 333 __LINK_STATE_DORMANT, 334 __LINK_STATE_TESTING, 335}; 336 337struct gro_list { 338 struct list_head list; 339 int count; 340}; 341 342/* 343 * size of gro hash buckets, must be <= the number of bits in 344 * gro_node::bitmask 345 */ 346#define GRO_HASH_BUCKETS 8 347 348/** 349 * struct gro_node - structure to support Generic Receive Offload 350 * @bitmask: bitmask to indicate used buckets in @hash 351 * @hash: hashtable of pending aggregated skbs, separated by flows 352 * @rx_list: list of pending ``GRO_NORMAL`` skbs 353 * @rx_count: cached current length of @rx_list 354 * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone 355 */ 356struct gro_node { 357 unsigned long bitmask; 358 struct gro_list hash[GRO_HASH_BUCKETS]; 359 struct list_head rx_list; 360 u32 rx_count; 361 u32 cached_napi_id; 362}; 363 364/* 365 * Structure for per-NAPI config 366 */ 367struct napi_config { 368 u64 gro_flush_timeout; 369 u64 irq_suspend_timeout; 370 u32 defer_hard_irqs; 371 cpumask_t affinity_mask; 372 u8 threaded; 373 unsigned int napi_id; 374}; 375 376/* 377 * Structure for NAPI scheduling similar to tasklet but with weighting 378 */ 379struct napi_struct { 380 /* The poll_list must only be managed by the entity which 381 * changes the state of the NAPI_STATE_SCHED bit. This means 382 * whoever atomically sets that bit can add this napi_struct 383 * to the per-CPU poll_list, and whoever clears that bit 384 * can remove from the list right before clearing the bit. 385 */ 386 struct list_head poll_list; 387 388 unsigned long state; 389 int weight; 390 u32 defer_hard_irqs_count; 391 int (*poll)(struct napi_struct *, int); 392#ifdef CONFIG_NETPOLL 393 /* CPU actively polling if netpoll is configured */ 394 int poll_owner; 395#endif 396 /* CPU on which NAPI has been scheduled for processing */ 397 int list_owner; 398 struct net_device *dev; 399 struct sk_buff *skb; 400 struct gro_node gro; 401 struct hrtimer timer; 402 /* all fields past this point are write-protected by netdev_lock */ 403 struct task_struct *thread; 404 unsigned long gro_flush_timeout; 405 unsigned long irq_suspend_timeout; 406 u32 defer_hard_irqs; 407 /* control-path-only fields follow */ 408 u32 napi_id; 409 struct list_head dev_list; 410 struct hlist_node napi_hash_node; 411 int irq; 412 struct irq_affinity_notify notify; 413 int napi_rmap_idx; 414 int index; 415 struct napi_config *config; 416}; 417 418enum { 419 NAPI_STATE_SCHED, /* Poll is scheduled */ 420 NAPI_STATE_MISSED, /* reschedule a napi */ 421 NAPI_STATE_DISABLE, /* Disable pending */ 422 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 423 NAPI_STATE_LISTED, /* NAPI added to system lists */ 424 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 425 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 426 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 427 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 428 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 429 NAPI_STATE_HAS_NOTIFIER, /* Napi has an IRQ notifier */ 430}; 431 432enum { 433 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 434 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 435 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 436 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 437 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 438 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 439 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 440 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 441 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 442 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 443 NAPIF_STATE_HAS_NOTIFIER = BIT(NAPI_STATE_HAS_NOTIFIER), 444}; 445 446enum gro_result { 447 GRO_MERGED, 448 GRO_MERGED_FREE, 449 GRO_HELD, 450 GRO_NORMAL, 451 GRO_CONSUMED, 452}; 453typedef enum gro_result gro_result_t; 454 455/* 456 * enum rx_handler_result - Possible return values for rx_handlers. 457 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 458 * further. 459 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 460 * case skb->dev was changed by rx_handler. 461 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 462 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 463 * 464 * rx_handlers are functions called from inside __netif_receive_skb(), to do 465 * special processing of the skb, prior to delivery to protocol handlers. 466 * 467 * Currently, a net_device can only have a single rx_handler registered. Trying 468 * to register a second rx_handler will return -EBUSY. 469 * 470 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 471 * To unregister a rx_handler on a net_device, use 472 * netdev_rx_handler_unregister(). 473 * 474 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 475 * do with the skb. 476 * 477 * If the rx_handler consumed the skb in some way, it should return 478 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 479 * the skb to be delivered in some other way. 480 * 481 * If the rx_handler changed skb->dev, to divert the skb to another 482 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 483 * new device will be called if it exists. 484 * 485 * If the rx_handler decides the skb should be ignored, it should return 486 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 487 * are registered on exact device (ptype->dev == skb->dev). 488 * 489 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 490 * delivered, it should return RX_HANDLER_PASS. 491 * 492 * A device without a registered rx_handler will behave as if rx_handler 493 * returned RX_HANDLER_PASS. 494 */ 495 496enum rx_handler_result { 497 RX_HANDLER_CONSUMED, 498 RX_HANDLER_ANOTHER, 499 RX_HANDLER_EXACT, 500 RX_HANDLER_PASS, 501}; 502typedef enum rx_handler_result rx_handler_result_t; 503typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 504 505void __napi_schedule(struct napi_struct *n); 506void __napi_schedule_irqoff(struct napi_struct *n); 507 508static inline bool napi_disable_pending(struct napi_struct *n) 509{ 510 return test_bit(NAPI_STATE_DISABLE, &n->state); 511} 512 513static inline bool napi_prefer_busy_poll(struct napi_struct *n) 514{ 515 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 516} 517 518/** 519 * napi_is_scheduled - test if NAPI is scheduled 520 * @n: NAPI context 521 * 522 * This check is "best-effort". With no locking implemented, 523 * a NAPI can be scheduled or terminate right after this check 524 * and produce not precise results. 525 * 526 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 527 * should not be used normally and napi_schedule should be 528 * used instead. 529 * 530 * Use only if the driver really needs to check if a NAPI 531 * is scheduled for example in the context of delayed timer 532 * that can be skipped if a NAPI is already scheduled. 533 * 534 * Return: True if NAPI is scheduled, False otherwise. 535 */ 536static inline bool napi_is_scheduled(struct napi_struct *n) 537{ 538 return test_bit(NAPI_STATE_SCHED, &n->state); 539} 540 541bool napi_schedule_prep(struct napi_struct *n); 542 543/** 544 * napi_schedule - schedule NAPI poll 545 * @n: NAPI context 546 * 547 * Schedule NAPI poll routine to be called if it is not already 548 * running. 549 * Return: true if we schedule a NAPI or false if not. 550 * Refer to napi_schedule_prep() for additional reason on why 551 * a NAPI might not be scheduled. 552 */ 553static inline bool napi_schedule(struct napi_struct *n) 554{ 555 if (napi_schedule_prep(n)) { 556 __napi_schedule(n); 557 return true; 558 } 559 560 return false; 561} 562 563/** 564 * napi_schedule_irqoff - schedule NAPI poll 565 * @n: NAPI context 566 * 567 * Variant of napi_schedule(), assuming hard irqs are masked. 568 */ 569static inline void napi_schedule_irqoff(struct napi_struct *n) 570{ 571 if (napi_schedule_prep(n)) 572 __napi_schedule_irqoff(n); 573} 574 575/** 576 * napi_complete_done - NAPI processing complete 577 * @n: NAPI context 578 * @work_done: number of packets processed 579 * 580 * Mark NAPI processing as complete. Should only be called if poll budget 581 * has not been completely consumed. 582 * Prefer over napi_complete(). 583 * Return: false if device should avoid rearming interrupts. 584 */ 585bool napi_complete_done(struct napi_struct *n, int work_done); 586 587static inline bool napi_complete(struct napi_struct *n) 588{ 589 return napi_complete_done(n, 0); 590} 591 592void netif_threaded_enable(struct net_device *dev); 593int dev_set_threaded(struct net_device *dev, 594 enum netdev_napi_threaded threaded); 595 596void napi_disable(struct napi_struct *n); 597void napi_disable_locked(struct napi_struct *n); 598 599void napi_enable(struct napi_struct *n); 600void napi_enable_locked(struct napi_struct *n); 601 602/** 603 * napi_synchronize - wait until NAPI is not running 604 * @n: NAPI context 605 * 606 * Wait until NAPI is done being scheduled on this context. 607 * Waits till any outstanding processing completes but 608 * does not disable future activations. 609 */ 610static inline void napi_synchronize(const struct napi_struct *n) 611{ 612 if (IS_ENABLED(CONFIG_SMP)) 613 while (test_bit(NAPI_STATE_SCHED, &n->state)) 614 msleep(1); 615 else 616 barrier(); 617} 618 619/** 620 * napi_if_scheduled_mark_missed - if napi is running, set the 621 * NAPIF_STATE_MISSED 622 * @n: NAPI context 623 * 624 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 625 * NAPI is scheduled. 626 **/ 627static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 628{ 629 unsigned long val, new; 630 631 val = READ_ONCE(n->state); 632 do { 633 if (val & NAPIF_STATE_DISABLE) 634 return true; 635 636 if (!(val & NAPIF_STATE_SCHED)) 637 return false; 638 639 new = val | NAPIF_STATE_MISSED; 640 } while (!try_cmpxchg(&n->state, &val, new)); 641 642 return true; 643} 644 645enum netdev_queue_state_t { 646 __QUEUE_STATE_DRV_XOFF, 647 __QUEUE_STATE_STACK_XOFF, 648 __QUEUE_STATE_FROZEN, 649}; 650 651#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 652#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 653#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 654 655#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 656#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 657 QUEUE_STATE_FROZEN) 658#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 659 QUEUE_STATE_FROZEN) 660 661/* 662 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 663 * netif_tx_* functions below are used to manipulate this flag. The 664 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 665 * queue independently. The netif_xmit_*stopped functions below are called 666 * to check if the queue has been stopped by the driver or stack (either 667 * of the XOFF bits are set in the state). Drivers should not need to call 668 * netif_xmit*stopped functions, they should only be using netif_tx_*. 669 */ 670 671struct netdev_queue { 672/* 673 * read-mostly part 674 */ 675 struct net_device *dev; 676 netdevice_tracker dev_tracker; 677 678 struct Qdisc __rcu *qdisc; 679 struct Qdisc __rcu *qdisc_sleeping; 680#ifdef CONFIG_SYSFS 681 struct kobject kobj; 682 const struct attribute_group **groups; 683#endif 684 unsigned long tx_maxrate; 685 /* 686 * Number of TX timeouts for this queue 687 * (/sys/class/net/DEV/Q/trans_timeout) 688 */ 689 atomic_long_t trans_timeout; 690 691 /* Subordinate device that the queue has been assigned to */ 692 struct net_device *sb_dev; 693#ifdef CONFIG_XDP_SOCKETS 694 /* "ops protected", see comment about net_device::lock */ 695 struct xsk_buff_pool *pool; 696#endif 697 698/* 699 * write-mostly part 700 */ 701#ifdef CONFIG_BQL 702 struct dql dql; 703#endif 704 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 705 int xmit_lock_owner; 706 /* 707 * Time (in jiffies) of last Tx 708 */ 709 unsigned long trans_start; 710 711 unsigned long state; 712 713/* 714 * slow- / control-path part 715 */ 716 /* NAPI instance for the queue 717 * "ops protected", see comment about net_device::lock 718 */ 719 struct napi_struct *napi; 720 721#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 722 int numa_node; 723#endif 724} ____cacheline_aligned_in_smp; 725 726extern int sysctl_fb_tunnels_only_for_init_net; 727extern int sysctl_devconf_inherit_init_net; 728 729/* 730 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 731 * == 1 : For initns only 732 * == 2 : For none. 733 */ 734static inline bool net_has_fallback_tunnels(const struct net *net) 735{ 736#if IS_ENABLED(CONFIG_SYSCTL) 737 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 738 739 return !fb_tunnels_only_for_init_net || 740 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 741#else 742 return true; 743#endif 744} 745 746static inline int net_inherit_devconf(void) 747{ 748#if IS_ENABLED(CONFIG_SYSCTL) 749 return READ_ONCE(sysctl_devconf_inherit_init_net); 750#else 751 return 0; 752#endif 753} 754 755static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 756{ 757#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 758 return q->numa_node; 759#else 760 return NUMA_NO_NODE; 761#endif 762} 763 764static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 765{ 766#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 767 q->numa_node = node; 768#endif 769} 770 771#ifdef CONFIG_RFS_ACCEL 772bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 773 u16 filter_id); 774#endif 775 776/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 777enum xps_map_type { 778 XPS_CPUS = 0, 779 XPS_RXQS, 780 XPS_MAPS_MAX, 781}; 782 783#ifdef CONFIG_XPS 784/* 785 * This structure holds an XPS map which can be of variable length. The 786 * map is an array of queues. 787 */ 788struct xps_map { 789 unsigned int len; 790 unsigned int alloc_len; 791 struct rcu_head rcu; 792 u16 queues[]; 793}; 794#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 795#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 796 - sizeof(struct xps_map)) / sizeof(u16)) 797 798/* 799 * This structure holds all XPS maps for device. Maps are indexed by CPU. 800 * 801 * We keep track of the number of cpus/rxqs used when the struct is allocated, 802 * in nr_ids. This will help not accessing out-of-bound memory. 803 * 804 * We keep track of the number of traffic classes used when the struct is 805 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 806 * not crossing its upper bound, as the original dev->num_tc can be updated in 807 * the meantime. 808 */ 809struct xps_dev_maps { 810 struct rcu_head rcu; 811 unsigned int nr_ids; 812 s16 num_tc; 813 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 814}; 815 816#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 817 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 818 819#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 820 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 821 822#endif /* CONFIG_XPS */ 823 824#define TC_MAX_QUEUE 16 825#define TC_BITMASK 15 826/* HW offloaded queuing disciplines txq count and offset maps */ 827struct netdev_tc_txq { 828 u16 count; 829 u16 offset; 830}; 831 832#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 833/* 834 * This structure is to hold information about the device 835 * configured to run FCoE protocol stack. 836 */ 837struct netdev_fcoe_hbainfo { 838 char manufacturer[64]; 839 char serial_number[64]; 840 char hardware_version[64]; 841 char driver_version[64]; 842 char optionrom_version[64]; 843 char firmware_version[64]; 844 char model[256]; 845 char model_description[256]; 846}; 847#endif 848 849#define MAX_PHYS_ITEM_ID_LEN 32 850 851/* This structure holds a unique identifier to identify some 852 * physical item (port for example) used by a netdevice. 853 */ 854struct netdev_phys_item_id { 855 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 856 unsigned char id_len; 857}; 858 859static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 860 struct netdev_phys_item_id *b) 861{ 862 return a->id_len == b->id_len && 863 memcmp(a->id, b->id, a->id_len) == 0; 864} 865 866typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 867 struct sk_buff *skb, 868 struct net_device *sb_dev); 869 870enum net_device_path_type { 871 DEV_PATH_ETHERNET = 0, 872 DEV_PATH_VLAN, 873 DEV_PATH_BRIDGE, 874 DEV_PATH_PPPOE, 875 DEV_PATH_DSA, 876 DEV_PATH_MTK_WDMA, 877}; 878 879struct net_device_path { 880 enum net_device_path_type type; 881 const struct net_device *dev; 882 union { 883 struct { 884 u16 id; 885 __be16 proto; 886 u8 h_dest[ETH_ALEN]; 887 } encap; 888 struct { 889 enum { 890 DEV_PATH_BR_VLAN_KEEP, 891 DEV_PATH_BR_VLAN_TAG, 892 DEV_PATH_BR_VLAN_UNTAG, 893 DEV_PATH_BR_VLAN_UNTAG_HW, 894 } vlan_mode; 895 u16 vlan_id; 896 __be16 vlan_proto; 897 } bridge; 898 struct { 899 int port; 900 u16 proto; 901 } dsa; 902 struct { 903 u8 wdma_idx; 904 u8 queue; 905 u16 wcid; 906 u8 bss; 907 u8 amsdu; 908 } mtk_wdma; 909 }; 910}; 911 912#define NET_DEVICE_PATH_STACK_MAX 5 913#define NET_DEVICE_PATH_VLAN_MAX 2 914 915struct net_device_path_stack { 916 int num_paths; 917 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 918}; 919 920struct net_device_path_ctx { 921 const struct net_device *dev; 922 u8 daddr[ETH_ALEN]; 923 924 int num_vlans; 925 struct { 926 u16 id; 927 __be16 proto; 928 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 929}; 930 931enum tc_setup_type { 932 TC_QUERY_CAPS, 933 TC_SETUP_QDISC_MQPRIO, 934 TC_SETUP_CLSU32, 935 TC_SETUP_CLSFLOWER, 936 TC_SETUP_CLSMATCHALL, 937 TC_SETUP_CLSBPF, 938 TC_SETUP_BLOCK, 939 TC_SETUP_QDISC_CBS, 940 TC_SETUP_QDISC_RED, 941 TC_SETUP_QDISC_PRIO, 942 TC_SETUP_QDISC_MQ, 943 TC_SETUP_QDISC_ETF, 944 TC_SETUP_ROOT_QDISC, 945 TC_SETUP_QDISC_GRED, 946 TC_SETUP_QDISC_TAPRIO, 947 TC_SETUP_FT, 948 TC_SETUP_QDISC_ETS, 949 TC_SETUP_QDISC_TBF, 950 TC_SETUP_QDISC_FIFO, 951 TC_SETUP_QDISC_HTB, 952 TC_SETUP_ACT, 953}; 954 955/* These structures hold the attributes of bpf state that are being passed 956 * to the netdevice through the bpf op. 957 */ 958enum bpf_netdev_command { 959 /* Set or clear a bpf program used in the earliest stages of packet 960 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 961 * is responsible for calling bpf_prog_put on any old progs that are 962 * stored. In case of error, the callee need not release the new prog 963 * reference, but on success it takes ownership and must bpf_prog_put 964 * when it is no longer used. 965 */ 966 XDP_SETUP_PROG, 967 XDP_SETUP_PROG_HW, 968 /* BPF program for offload callbacks, invoked at program load time. */ 969 BPF_OFFLOAD_MAP_ALLOC, 970 BPF_OFFLOAD_MAP_FREE, 971 XDP_SETUP_XSK_POOL, 972}; 973 974struct bpf_prog_offload_ops; 975struct netlink_ext_ack; 976struct xdp_umem; 977struct xdp_dev_bulk_queue; 978struct bpf_xdp_link; 979 980enum bpf_xdp_mode { 981 XDP_MODE_SKB = 0, 982 XDP_MODE_DRV = 1, 983 XDP_MODE_HW = 2, 984 __MAX_XDP_MODE 985}; 986 987struct bpf_xdp_entity { 988 struct bpf_prog *prog; 989 struct bpf_xdp_link *link; 990}; 991 992struct netdev_bpf { 993 enum bpf_netdev_command command; 994 union { 995 /* XDP_SETUP_PROG */ 996 struct { 997 u32 flags; 998 struct bpf_prog *prog; 999 struct netlink_ext_ack *extack; 1000 }; 1001 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1002 struct { 1003 struct bpf_offloaded_map *offmap; 1004 }; 1005 /* XDP_SETUP_XSK_POOL */ 1006 struct { 1007 struct xsk_buff_pool *pool; 1008 u16 queue_id; 1009 } xsk; 1010 }; 1011}; 1012 1013/* Flags for ndo_xsk_wakeup. */ 1014#define XDP_WAKEUP_RX (1 << 0) 1015#define XDP_WAKEUP_TX (1 << 1) 1016 1017#ifdef CONFIG_XFRM_OFFLOAD 1018struct xfrmdev_ops { 1019 int (*xdo_dev_state_add)(struct net_device *dev, 1020 struct xfrm_state *x, 1021 struct netlink_ext_ack *extack); 1022 void (*xdo_dev_state_delete)(struct net_device *dev, 1023 struct xfrm_state *x); 1024 void (*xdo_dev_state_free)(struct net_device *dev, 1025 struct xfrm_state *x); 1026 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1027 struct xfrm_state *x); 1028 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1029 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 1030 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1031 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1032 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1033}; 1034#endif 1035 1036struct dev_ifalias { 1037 struct rcu_head rcuhead; 1038 char ifalias[]; 1039}; 1040 1041struct devlink; 1042struct tlsdev_ops; 1043 1044struct netdev_net_notifier { 1045 struct list_head list; 1046 struct notifier_block *nb; 1047}; 1048 1049/* 1050 * This structure defines the management hooks for network devices. 1051 * The following hooks can be defined; unless noted otherwise, they are 1052 * optional and can be filled with a null pointer. 1053 * 1054 * int (*ndo_init)(struct net_device *dev); 1055 * This function is called once when a network device is registered. 1056 * The network device can use this for any late stage initialization 1057 * or semantic validation. It can fail with an error code which will 1058 * be propagated back to register_netdev. 1059 * 1060 * void (*ndo_uninit)(struct net_device *dev); 1061 * This function is called when device is unregistered or when registration 1062 * fails. It is not called if init fails. 1063 * 1064 * int (*ndo_open)(struct net_device *dev); 1065 * This function is called when a network device transitions to the up 1066 * state. 1067 * 1068 * int (*ndo_stop)(struct net_device *dev); 1069 * This function is called when a network device transitions to the down 1070 * state. 1071 * 1072 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1073 * struct net_device *dev); 1074 * Called when a packet needs to be transmitted. 1075 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1076 * the queue before that can happen; it's for obsolete devices and weird 1077 * corner cases, but the stack really does a non-trivial amount 1078 * of useless work if you return NETDEV_TX_BUSY. 1079 * Required; cannot be NULL. 1080 * 1081 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1082 * struct net_device *dev 1083 * netdev_features_t features); 1084 * Called by core transmit path to determine if device is capable of 1085 * performing offload operations on a given packet. This is to give 1086 * the device an opportunity to implement any restrictions that cannot 1087 * be otherwise expressed by feature flags. The check is called with 1088 * the set of features that the stack has calculated and it returns 1089 * those the driver believes to be appropriate. 1090 * 1091 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1092 * struct net_device *sb_dev); 1093 * Called to decide which queue to use when device supports multiple 1094 * transmit queues. 1095 * 1096 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1097 * This function is called to allow device receiver to make 1098 * changes to configuration when multicast or promiscuous is enabled. 1099 * 1100 * void (*ndo_set_rx_mode)(struct net_device *dev); 1101 * This function is called device changes address list filtering. 1102 * If driver handles unicast address filtering, it should set 1103 * IFF_UNICAST_FLT in its priv_flags. 1104 * 1105 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1106 * This function is called when the Media Access Control address 1107 * needs to be changed. If this interface is not defined, the 1108 * MAC address can not be changed. 1109 * 1110 * int (*ndo_validate_addr)(struct net_device *dev); 1111 * Test if Media Access Control address is valid for the device. 1112 * 1113 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1114 * Old-style ioctl entry point. This is used internally by the 1115 * ieee802154 subsystem but is no longer called by the device 1116 * ioctl handler. 1117 * 1118 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1119 * Used by the bonding driver for its device specific ioctls: 1120 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1121 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1122 * 1123 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1124 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1125 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1126 * 1127 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1128 * Used to set network devices bus interface parameters. This interface 1129 * is retained for legacy reasons; new devices should use the bus 1130 * interface (PCI) for low level management. 1131 * 1132 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1133 * Called when a user wants to change the Maximum Transfer Unit 1134 * of a device. 1135 * 1136 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1137 * Callback used when the transmitter has not made any progress 1138 * for dev->watchdog ticks. 1139 * 1140 * void (*ndo_get_stats64)(struct net_device *dev, 1141 * struct rtnl_link_stats64 *storage); 1142 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1143 * Called when a user wants to get the network device usage 1144 * statistics. Drivers must do one of the following: 1145 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1146 * rtnl_link_stats64 structure passed by the caller. 1147 * 2. Define @ndo_get_stats to update a net_device_stats structure 1148 * (which should normally be dev->stats) and return a pointer to 1149 * it. The structure may be changed asynchronously only if each 1150 * field is written atomically. 1151 * 3. Update dev->stats asynchronously and atomically, and define 1152 * neither operation. 1153 * 1154 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1155 * Return true if this device supports offload stats of this attr_id. 1156 * 1157 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1158 * void *attr_data) 1159 * Get statistics for offload operations by attr_id. Write it into the 1160 * attr_data pointer. 1161 * 1162 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1163 * If device supports VLAN filtering this function is called when a 1164 * VLAN id is registered. 1165 * 1166 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1167 * If device supports VLAN filtering this function is called when a 1168 * VLAN id is unregistered. 1169 * 1170 * void (*ndo_poll_controller)(struct net_device *dev); 1171 * 1172 * SR-IOV management functions. 1173 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1174 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1175 * u8 qos, __be16 proto); 1176 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1177 * int max_tx_rate); 1178 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1179 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1180 * int (*ndo_get_vf_config)(struct net_device *dev, 1181 * int vf, struct ifla_vf_info *ivf); 1182 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1183 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1184 * struct nlattr *port[]); 1185 * 1186 * Enable or disable the VF ability to query its RSS Redirection Table and 1187 * Hash Key. This is needed since on some devices VF share this information 1188 * with PF and querying it may introduce a theoretical security risk. 1189 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1190 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1191 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1192 * void *type_data); 1193 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1194 * This is always called from the stack with the rtnl lock held and netif 1195 * tx queues stopped. This allows the netdevice to perform queue 1196 * management safely. 1197 * 1198 * Fiber Channel over Ethernet (FCoE) offload functions. 1199 * int (*ndo_fcoe_enable)(struct net_device *dev); 1200 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1201 * so the underlying device can perform whatever needed configuration or 1202 * initialization to support acceleration of FCoE traffic. 1203 * 1204 * int (*ndo_fcoe_disable)(struct net_device *dev); 1205 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1206 * so the underlying device can perform whatever needed clean-ups to 1207 * stop supporting acceleration of FCoE traffic. 1208 * 1209 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1210 * struct scatterlist *sgl, unsigned int sgc); 1211 * Called when the FCoE Initiator wants to initialize an I/O that 1212 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1213 * perform necessary setup and returns 1 to indicate the device is set up 1214 * successfully to perform DDP on this I/O, otherwise this returns 0. 1215 * 1216 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1217 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1218 * indicated by the FC exchange id 'xid', so the underlying device can 1219 * clean up and reuse resources for later DDP requests. 1220 * 1221 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1222 * struct scatterlist *sgl, unsigned int sgc); 1223 * Called when the FCoE Target wants to initialize an I/O that 1224 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1225 * perform necessary setup and returns 1 to indicate the device is set up 1226 * successfully to perform DDP on this I/O, otherwise this returns 0. 1227 * 1228 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1229 * struct netdev_fcoe_hbainfo *hbainfo); 1230 * Called when the FCoE Protocol stack wants information on the underlying 1231 * device. This information is utilized by the FCoE protocol stack to 1232 * register attributes with Fiber Channel management service as per the 1233 * FC-GS Fabric Device Management Information(FDMI) specification. 1234 * 1235 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1236 * Called when the underlying device wants to override default World Wide 1237 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1238 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1239 * protocol stack to use. 1240 * 1241 * RFS acceleration. 1242 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1243 * u16 rxq_index, u32 flow_id); 1244 * Set hardware filter for RFS. rxq_index is the target queue index; 1245 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1246 * Return the filter ID on success, or a negative error code. 1247 * 1248 * Slave management functions (for bridge, bonding, etc). 1249 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1250 * Called to make another netdev an underling. 1251 * 1252 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1253 * Called to release previously enslaved netdev. 1254 * 1255 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1256 * struct sk_buff *skb, 1257 * bool all_slaves); 1258 * Get the xmit slave of master device. If all_slaves is true, function 1259 * assume all the slaves can transmit. 1260 * 1261 * Feature/offload setting functions. 1262 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1263 * netdev_features_t features); 1264 * Adjusts the requested feature flags according to device-specific 1265 * constraints, and returns the resulting flags. Must not modify 1266 * the device state. 1267 * 1268 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1269 * Called to update device configuration to new features. Passed 1270 * feature set might be less than what was returned by ndo_fix_features()). 1271 * Must return >0 or -errno if it changed dev->features itself. 1272 * 1273 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1274 * struct net_device *dev, 1275 * const unsigned char *addr, u16 vid, u16 flags, 1276 * bool *notified, struct netlink_ext_ack *extack); 1277 * Adds an FDB entry to dev for addr. 1278 * Callee shall set *notified to true if it sent any appropriate 1279 * notification(s). Otherwise core will send a generic one. 1280 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1281 * struct net_device *dev, 1282 * const unsigned char *addr, u16 vid 1283 * bool *notified, struct netlink_ext_ack *extack); 1284 * Deletes the FDB entry from dev corresponding to addr. 1285 * Callee shall set *notified to true if it sent any appropriate 1286 * notification(s). Otherwise core will send a generic one. 1287 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1288 * struct netlink_ext_ack *extack); 1289 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1290 * struct net_device *dev, struct net_device *filter_dev, 1291 * int *idx) 1292 * Used to add FDB entries to dump requests. Implementers should add 1293 * entries to skb and update idx with the number of entries. 1294 * 1295 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1296 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1297 * Adds an MDB entry to dev. 1298 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1299 * struct netlink_ext_ack *extack); 1300 * Deletes the MDB entry from dev. 1301 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1302 * struct netlink_ext_ack *extack); 1303 * Bulk deletes MDB entries from dev. 1304 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1305 * struct netlink_callback *cb); 1306 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1307 * callback is used by core rtnetlink code. 1308 * 1309 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1310 * u16 flags, struct netlink_ext_ack *extack) 1311 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1312 * struct net_device *dev, u32 filter_mask, 1313 * int nlflags) 1314 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1315 * u16 flags); 1316 * 1317 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1318 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1319 * which do not represent real hardware may define this to allow their 1320 * userspace components to manage their virtual carrier state. Devices 1321 * that determine carrier state from physical hardware properties (eg 1322 * network cables) or protocol-dependent mechanisms (eg 1323 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1324 * 1325 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1326 * struct netdev_phys_item_id *ppid); 1327 * Called to get ID of physical port of this device. If driver does 1328 * not implement this, it is assumed that the hw is not able to have 1329 * multiple net devices on single physical port. 1330 * 1331 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1332 * struct netdev_phys_item_id *ppid) 1333 * Called to get the parent ID of the physical port of this device. 1334 * 1335 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1336 * struct net_device *dev) 1337 * Called by upper layer devices to accelerate switching or other 1338 * station functionality into hardware. 'pdev is the lowerdev 1339 * to use for the offload and 'dev' is the net device that will 1340 * back the offload. Returns a pointer to the private structure 1341 * the upper layer will maintain. 1342 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1343 * Called by upper layer device to delete the station created 1344 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1345 * the station and priv is the structure returned by the add 1346 * operation. 1347 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1348 * int queue_index, u32 maxrate); 1349 * Called when a user wants to set a max-rate limitation of specific 1350 * TX queue. 1351 * int (*ndo_get_iflink)(const struct net_device *dev); 1352 * Called to get the iflink value of this device. 1353 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1354 * This function is used to get egress tunnel information for given skb. 1355 * This is useful for retrieving outer tunnel header parameters while 1356 * sampling packet. 1357 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1358 * This function is used to specify the headroom that the skb must 1359 * consider when allocation skb during packet reception. Setting 1360 * appropriate rx headroom value allows avoiding skb head copy on 1361 * forward. Setting a negative value resets the rx headroom to the 1362 * default value. 1363 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1364 * This function is used to set or query state related to XDP on the 1365 * netdevice and manage BPF offload. See definition of 1366 * enum bpf_netdev_command for details. 1367 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1368 * u32 flags); 1369 * This function is used to submit @n XDP packets for transmit on a 1370 * netdevice. Returns number of frames successfully transmitted, frames 1371 * that got dropped are freed/returned via xdp_return_frame(). 1372 * Returns negative number, means general error invoking ndo, meaning 1373 * no frames were xmit'ed and core-caller will free all frames. 1374 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1375 * struct xdp_buff *xdp); 1376 * Get the xmit slave of master device based on the xdp_buff. 1377 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1378 * This function is used to wake up the softirq, ksoftirqd or kthread 1379 * responsible for sending and/or receiving packets on a specific 1380 * queue id bound to an AF_XDP socket. The flags field specifies if 1381 * only RX, only Tx, or both should be woken up using the flags 1382 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1383 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1384 * int cmd); 1385 * Add, change, delete or get information on an IPv4 tunnel. 1386 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1387 * If a device is paired with a peer device, return the peer instance. 1388 * The caller must be under RCU read context. 1389 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1390 * Get the forwarding path to reach the real device from the HW destination address 1391 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1392 * const struct skb_shared_hwtstamps *hwtstamps, 1393 * bool cycles); 1394 * Get hardware timestamp based on normal/adjustable time or free running 1395 * cycle counter. This function is required if physical clock supports a 1396 * free running cycle counter. 1397 * 1398 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1399 * struct kernel_hwtstamp_config *kernel_config); 1400 * Get the currently configured hardware timestamping parameters for the 1401 * NIC device. 1402 * 1403 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1404 * struct kernel_hwtstamp_config *kernel_config, 1405 * struct netlink_ext_ack *extack); 1406 * Change the hardware timestamping parameters for NIC device. 1407 */ 1408struct net_device_ops { 1409 int (*ndo_init)(struct net_device *dev); 1410 void (*ndo_uninit)(struct net_device *dev); 1411 int (*ndo_open)(struct net_device *dev); 1412 int (*ndo_stop)(struct net_device *dev); 1413 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1414 struct net_device *dev); 1415 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1416 struct net_device *dev, 1417 netdev_features_t features); 1418 u16 (*ndo_select_queue)(struct net_device *dev, 1419 struct sk_buff *skb, 1420 struct net_device *sb_dev); 1421 void (*ndo_change_rx_flags)(struct net_device *dev, 1422 int flags); 1423 void (*ndo_set_rx_mode)(struct net_device *dev); 1424 int (*ndo_set_mac_address)(struct net_device *dev, 1425 void *addr); 1426 int (*ndo_validate_addr)(struct net_device *dev); 1427 int (*ndo_do_ioctl)(struct net_device *dev, 1428 struct ifreq *ifr, int cmd); 1429 int (*ndo_eth_ioctl)(struct net_device *dev, 1430 struct ifreq *ifr, int cmd); 1431 int (*ndo_siocbond)(struct net_device *dev, 1432 struct ifreq *ifr, int cmd); 1433 int (*ndo_siocwandev)(struct net_device *dev, 1434 struct if_settings *ifs); 1435 int (*ndo_siocdevprivate)(struct net_device *dev, 1436 struct ifreq *ifr, 1437 void __user *data, int cmd); 1438 int (*ndo_set_config)(struct net_device *dev, 1439 struct ifmap *map); 1440 int (*ndo_change_mtu)(struct net_device *dev, 1441 int new_mtu); 1442 int (*ndo_neigh_setup)(struct net_device *dev, 1443 struct neigh_parms *); 1444 void (*ndo_tx_timeout) (struct net_device *dev, 1445 unsigned int txqueue); 1446 1447 void (*ndo_get_stats64)(struct net_device *dev, 1448 struct rtnl_link_stats64 *storage); 1449 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1450 int (*ndo_get_offload_stats)(int attr_id, 1451 const struct net_device *dev, 1452 void *attr_data); 1453 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1454 1455 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1456 __be16 proto, u16 vid); 1457 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1458 __be16 proto, u16 vid); 1459#ifdef CONFIG_NET_POLL_CONTROLLER 1460 void (*ndo_poll_controller)(struct net_device *dev); 1461 int (*ndo_netpoll_setup)(struct net_device *dev); 1462 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1463#endif 1464 int (*ndo_set_vf_mac)(struct net_device *dev, 1465 int queue, u8 *mac); 1466 int (*ndo_set_vf_vlan)(struct net_device *dev, 1467 int queue, u16 vlan, 1468 u8 qos, __be16 proto); 1469 int (*ndo_set_vf_rate)(struct net_device *dev, 1470 int vf, int min_tx_rate, 1471 int max_tx_rate); 1472 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1473 int vf, bool setting); 1474 int (*ndo_set_vf_trust)(struct net_device *dev, 1475 int vf, bool setting); 1476 int (*ndo_get_vf_config)(struct net_device *dev, 1477 int vf, 1478 struct ifla_vf_info *ivf); 1479 int (*ndo_set_vf_link_state)(struct net_device *dev, 1480 int vf, int link_state); 1481 int (*ndo_get_vf_stats)(struct net_device *dev, 1482 int vf, 1483 struct ifla_vf_stats 1484 *vf_stats); 1485 int (*ndo_set_vf_port)(struct net_device *dev, 1486 int vf, 1487 struct nlattr *port[]); 1488 int (*ndo_get_vf_port)(struct net_device *dev, 1489 int vf, struct sk_buff *skb); 1490 int (*ndo_get_vf_guid)(struct net_device *dev, 1491 int vf, 1492 struct ifla_vf_guid *node_guid, 1493 struct ifla_vf_guid *port_guid); 1494 int (*ndo_set_vf_guid)(struct net_device *dev, 1495 int vf, u64 guid, 1496 int guid_type); 1497 int (*ndo_set_vf_rss_query_en)( 1498 struct net_device *dev, 1499 int vf, bool setting); 1500 int (*ndo_setup_tc)(struct net_device *dev, 1501 enum tc_setup_type type, 1502 void *type_data); 1503#if IS_ENABLED(CONFIG_FCOE) 1504 int (*ndo_fcoe_enable)(struct net_device *dev); 1505 int (*ndo_fcoe_disable)(struct net_device *dev); 1506 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1507 u16 xid, 1508 struct scatterlist *sgl, 1509 unsigned int sgc); 1510 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1511 u16 xid); 1512 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1513 u16 xid, 1514 struct scatterlist *sgl, 1515 unsigned int sgc); 1516 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1517 struct netdev_fcoe_hbainfo *hbainfo); 1518#endif 1519 1520#if IS_ENABLED(CONFIG_LIBFCOE) 1521#define NETDEV_FCOE_WWNN 0 1522#define NETDEV_FCOE_WWPN 1 1523 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1524 u64 *wwn, int type); 1525#endif 1526 1527#ifdef CONFIG_RFS_ACCEL 1528 int (*ndo_rx_flow_steer)(struct net_device *dev, 1529 const struct sk_buff *skb, 1530 u16 rxq_index, 1531 u32 flow_id); 1532#endif 1533 int (*ndo_add_slave)(struct net_device *dev, 1534 struct net_device *slave_dev, 1535 struct netlink_ext_ack *extack); 1536 int (*ndo_del_slave)(struct net_device *dev, 1537 struct net_device *slave_dev); 1538 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1539 struct sk_buff *skb, 1540 bool all_slaves); 1541 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1542 struct sock *sk); 1543 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1544 netdev_features_t features); 1545 int (*ndo_set_features)(struct net_device *dev, 1546 netdev_features_t features); 1547 int (*ndo_neigh_construct)(struct net_device *dev, 1548 struct neighbour *n); 1549 void (*ndo_neigh_destroy)(struct net_device *dev, 1550 struct neighbour *n); 1551 1552 int (*ndo_fdb_add)(struct ndmsg *ndm, 1553 struct nlattr *tb[], 1554 struct net_device *dev, 1555 const unsigned char *addr, 1556 u16 vid, 1557 u16 flags, 1558 bool *notified, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_fdb_del)(struct ndmsg *ndm, 1561 struct nlattr *tb[], 1562 struct net_device *dev, 1563 const unsigned char *addr, 1564 u16 vid, 1565 bool *notified, 1566 struct netlink_ext_ack *extack); 1567 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1568 struct net_device *dev, 1569 struct netlink_ext_ack *extack); 1570 int (*ndo_fdb_dump)(struct sk_buff *skb, 1571 struct netlink_callback *cb, 1572 struct net_device *dev, 1573 struct net_device *filter_dev, 1574 int *idx); 1575 int (*ndo_fdb_get)(struct sk_buff *skb, 1576 struct nlattr *tb[], 1577 struct net_device *dev, 1578 const unsigned char *addr, 1579 u16 vid, u32 portid, u32 seq, 1580 struct netlink_ext_ack *extack); 1581 int (*ndo_mdb_add)(struct net_device *dev, 1582 struct nlattr *tb[], 1583 u16 nlmsg_flags, 1584 struct netlink_ext_ack *extack); 1585 int (*ndo_mdb_del)(struct net_device *dev, 1586 struct nlattr *tb[], 1587 struct netlink_ext_ack *extack); 1588 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1589 struct nlattr *tb[], 1590 struct netlink_ext_ack *extack); 1591 int (*ndo_mdb_dump)(struct net_device *dev, 1592 struct sk_buff *skb, 1593 struct netlink_callback *cb); 1594 int (*ndo_mdb_get)(struct net_device *dev, 1595 struct nlattr *tb[], u32 portid, 1596 u32 seq, 1597 struct netlink_ext_ack *extack); 1598 int (*ndo_bridge_setlink)(struct net_device *dev, 1599 struct nlmsghdr *nlh, 1600 u16 flags, 1601 struct netlink_ext_ack *extack); 1602 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1603 u32 pid, u32 seq, 1604 struct net_device *dev, 1605 u32 filter_mask, 1606 int nlflags); 1607 int (*ndo_bridge_dellink)(struct net_device *dev, 1608 struct nlmsghdr *nlh, 1609 u16 flags); 1610 int (*ndo_change_carrier)(struct net_device *dev, 1611 bool new_carrier); 1612 int (*ndo_get_phys_port_id)(struct net_device *dev, 1613 struct netdev_phys_item_id *ppid); 1614 int (*ndo_get_port_parent_id)(struct net_device *dev, 1615 struct netdev_phys_item_id *ppid); 1616 int (*ndo_get_phys_port_name)(struct net_device *dev, 1617 char *name, size_t len); 1618 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1619 struct net_device *dev); 1620 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1621 void *priv); 1622 1623 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1624 int queue_index, 1625 u32 maxrate); 1626 int (*ndo_get_iflink)(const struct net_device *dev); 1627 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1628 struct sk_buff *skb); 1629 void (*ndo_set_rx_headroom)(struct net_device *dev, 1630 int needed_headroom); 1631 int (*ndo_bpf)(struct net_device *dev, 1632 struct netdev_bpf *bpf); 1633 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1634 struct xdp_frame **xdp, 1635 u32 flags); 1636 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1637 struct xdp_buff *xdp); 1638 int (*ndo_xsk_wakeup)(struct net_device *dev, 1639 u32 queue_id, u32 flags); 1640 int (*ndo_tunnel_ctl)(struct net_device *dev, 1641 struct ip_tunnel_parm_kern *p, 1642 int cmd); 1643 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1644 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1645 struct net_device_path *path); 1646 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1647 const struct skb_shared_hwtstamps *hwtstamps, 1648 bool cycles); 1649 int (*ndo_hwtstamp_get)(struct net_device *dev, 1650 struct kernel_hwtstamp_config *kernel_config); 1651 int (*ndo_hwtstamp_set)(struct net_device *dev, 1652 struct kernel_hwtstamp_config *kernel_config, 1653 struct netlink_ext_ack *extack); 1654 1655#if IS_ENABLED(CONFIG_NET_SHAPER) 1656 /** 1657 * @net_shaper_ops: Device shaping offload operations 1658 * see include/net/net_shapers.h 1659 */ 1660 const struct net_shaper_ops *net_shaper_ops; 1661#endif 1662}; 1663 1664/** 1665 * enum netdev_priv_flags - &struct net_device priv_flags 1666 * 1667 * These are the &struct net_device, they are only set internally 1668 * by drivers and used in the kernel. These flags are invisible to 1669 * userspace; this means that the order of these flags can change 1670 * during any kernel release. 1671 * 1672 * You should add bitfield booleans after either net_device::priv_flags 1673 * (hotpath) or ::threaded (slowpath) instead of extending these flags. 1674 * 1675 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1676 * @IFF_EBRIDGE: Ethernet bridging device 1677 * @IFF_BONDING: bonding master or slave 1678 * @IFF_ISATAP: ISATAP interface (RFC4214) 1679 * @IFF_WAN_HDLC: WAN HDLC device 1680 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1681 * release skb->dst 1682 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1683 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1684 * @IFF_MACVLAN_PORT: device used as macvlan port 1685 * @IFF_BRIDGE_PORT: device used as bridge port 1686 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1687 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1688 * @IFF_UNICAST_FLT: Supports unicast filtering 1689 * @IFF_TEAM_PORT: device used as team port 1690 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1691 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1692 * change when it's running 1693 * @IFF_MACVLAN: Macvlan device 1694 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1695 * underlying stacked devices 1696 * @IFF_L3MDEV_MASTER: device is an L3 master device 1697 * @IFF_NO_QUEUE: device can run without qdisc attached 1698 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1699 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1700 * @IFF_TEAM: device is a team device 1701 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1702 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1703 * entity (i.e. the master device for bridged veth) 1704 * @IFF_MACSEC: device is a MACsec device 1705 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1706 * @IFF_FAILOVER: device is a failover master device 1707 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1708 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1709 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1710 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1711 * skb_headlen(skb) == 0 (data starts from frag0) 1712 */ 1713enum netdev_priv_flags { 1714 IFF_802_1Q_VLAN = 1<<0, 1715 IFF_EBRIDGE = 1<<1, 1716 IFF_BONDING = 1<<2, 1717 IFF_ISATAP = 1<<3, 1718 IFF_WAN_HDLC = 1<<4, 1719 IFF_XMIT_DST_RELEASE = 1<<5, 1720 IFF_DONT_BRIDGE = 1<<6, 1721 IFF_DISABLE_NETPOLL = 1<<7, 1722 IFF_MACVLAN_PORT = 1<<8, 1723 IFF_BRIDGE_PORT = 1<<9, 1724 IFF_OVS_DATAPATH = 1<<10, 1725 IFF_TX_SKB_SHARING = 1<<11, 1726 IFF_UNICAST_FLT = 1<<12, 1727 IFF_TEAM_PORT = 1<<13, 1728 IFF_SUPP_NOFCS = 1<<14, 1729 IFF_LIVE_ADDR_CHANGE = 1<<15, 1730 IFF_MACVLAN = 1<<16, 1731 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1732 IFF_L3MDEV_MASTER = 1<<18, 1733 IFF_NO_QUEUE = 1<<19, 1734 IFF_OPENVSWITCH = 1<<20, 1735 IFF_L3MDEV_SLAVE = 1<<21, 1736 IFF_TEAM = 1<<22, 1737 IFF_RXFH_CONFIGURED = 1<<23, 1738 IFF_PHONY_HEADROOM = 1<<24, 1739 IFF_MACSEC = 1<<25, 1740 IFF_NO_RX_HANDLER = 1<<26, 1741 IFF_FAILOVER = 1<<27, 1742 IFF_FAILOVER_SLAVE = 1<<28, 1743 IFF_L3MDEV_RX_HANDLER = 1<<29, 1744 IFF_NO_ADDRCONF = BIT_ULL(30), 1745 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1746}; 1747 1748/* Specifies the type of the struct net_device::ml_priv pointer */ 1749enum netdev_ml_priv_type { 1750 ML_PRIV_NONE, 1751 ML_PRIV_CAN, 1752}; 1753 1754enum netdev_stat_type { 1755 NETDEV_PCPU_STAT_NONE, 1756 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1757 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1758 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1759}; 1760 1761enum netdev_reg_state { 1762 NETREG_UNINITIALIZED = 0, 1763 NETREG_REGISTERED, /* completed register_netdevice */ 1764 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1765 NETREG_UNREGISTERED, /* completed unregister todo */ 1766 NETREG_RELEASED, /* called free_netdev */ 1767 NETREG_DUMMY, /* dummy device for NAPI poll */ 1768}; 1769 1770/** 1771 * struct net_device - The DEVICE structure. 1772 * 1773 * Actually, this whole structure is a big mistake. It mixes I/O 1774 * data with strictly "high-level" data, and it has to know about 1775 * almost every data structure used in the INET module. 1776 * 1777 * @priv_flags: flags invisible to userspace defined as bits, see 1778 * enum netdev_priv_flags for the definitions 1779 * @lltx: device supports lockless Tx. Deprecated for real HW 1780 * drivers. Mainly used by logical interfaces, such as 1781 * bonding and tunnels 1782 * @netmem_tx: device support netmem_tx. 1783 * 1784 * @name: This is the first field of the "visible" part of this structure 1785 * (i.e. as seen by users in the "Space.c" file). It is the name 1786 * of the interface. 1787 * 1788 * @name_node: Name hashlist node 1789 * @ifalias: SNMP alias 1790 * @mem_end: Shared memory end 1791 * @mem_start: Shared memory start 1792 * @base_addr: Device I/O address 1793 * @irq: Device IRQ number 1794 * 1795 * @state: Generic network queuing layer state, see netdev_state_t 1796 * @dev_list: The global list of network devices 1797 * @napi_list: List entry used for polling NAPI devices 1798 * @unreg_list: List entry when we are unregistering the 1799 * device; see the function unregister_netdev 1800 * @close_list: List entry used when we are closing the device 1801 * @ptype_all: Device-specific packet handlers for all protocols 1802 * @ptype_specific: Device-specific, protocol-specific packet handlers 1803 * 1804 * @adj_list: Directly linked devices, like slaves for bonding 1805 * @features: Currently active device features 1806 * @hw_features: User-changeable features 1807 * 1808 * @wanted_features: User-requested features 1809 * @vlan_features: Mask of features inheritable by VLAN devices 1810 * 1811 * @hw_enc_features: Mask of features inherited by encapsulating devices 1812 * This field indicates what encapsulation 1813 * offloads the hardware is capable of doing, 1814 * and drivers will need to set them appropriately. 1815 * 1816 * @mpls_features: Mask of features inheritable by MPLS 1817 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1818 * 1819 * @ifindex: interface index 1820 * @group: The group the device belongs to 1821 * 1822 * @stats: Statistics struct, which was left as a legacy, use 1823 * rtnl_link_stats64 instead 1824 * 1825 * @core_stats: core networking counters, 1826 * do not use this in drivers 1827 * @carrier_up_count: Number of times the carrier has been up 1828 * @carrier_down_count: Number of times the carrier has been down 1829 * 1830 * @wireless_handlers: List of functions to handle Wireless Extensions, 1831 * instead of ioctl, 1832 * see <net/iw_handler.h> for details. 1833 * 1834 * @netdev_ops: Includes several pointers to callbacks, 1835 * if one wants to override the ndo_*() functions 1836 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1837 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1838 * @ethtool_ops: Management operations 1839 * @l3mdev_ops: Layer 3 master device operations 1840 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1841 * discovery handling. Necessary for e.g. 6LoWPAN. 1842 * @xfrmdev_ops: Transformation offload operations 1843 * @tlsdev_ops: Transport Layer Security offload operations 1844 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1845 * of Layer 2 headers. 1846 * 1847 * @flags: Interface flags (a la BSD) 1848 * @xdp_features: XDP capability supported by the device 1849 * @gflags: Global flags ( kept as legacy ) 1850 * @priv_len: Size of the ->priv flexible array 1851 * @priv: Flexible array containing private data 1852 * @operstate: RFC2863 operstate 1853 * @link_mode: Mapping policy to operstate 1854 * @if_port: Selectable AUI, TP, ... 1855 * @dma: DMA channel 1856 * @mtu: Interface MTU value 1857 * @min_mtu: Interface Minimum MTU value 1858 * @max_mtu: Interface Maximum MTU value 1859 * @type: Interface hardware type 1860 * @hard_header_len: Maximum hardware header length. 1861 * @min_header_len: Minimum hardware header length 1862 * 1863 * @needed_headroom: Extra headroom the hardware may need, but not in all 1864 * cases can this be guaranteed 1865 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1866 * cases can this be guaranteed. Some cases also use 1867 * LL_MAX_HEADER instead to allocate the skb 1868 * 1869 * interface address info: 1870 * 1871 * @perm_addr: Permanent hw address 1872 * @addr_assign_type: Hw address assignment type 1873 * @addr_len: Hardware address length 1874 * @upper_level: Maximum depth level of upper devices. 1875 * @lower_level: Maximum depth level of lower devices. 1876 * @threaded: napi threaded state. 1877 * @neigh_priv_len: Used in neigh_alloc() 1878 * @dev_id: Used to differentiate devices that share 1879 * the same link layer address 1880 * @dev_port: Used to differentiate devices that share 1881 * the same function 1882 * @addr_list_lock: XXX: need comments on this one 1883 * @name_assign_type: network interface name assignment type 1884 * @uc_promisc: Counter that indicates promiscuous mode 1885 * has been enabled due to the need to listen to 1886 * additional unicast addresses in a device that 1887 * does not implement ndo_set_rx_mode() 1888 * @uc: unicast mac addresses 1889 * @mc: multicast mac addresses 1890 * @dev_addrs: list of device hw addresses 1891 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1892 * @promiscuity: Number of times the NIC is told to work in 1893 * promiscuous mode; if it becomes 0 the NIC will 1894 * exit promiscuous mode 1895 * @allmulti: Counter, enables or disables allmulticast mode 1896 * 1897 * @vlan_info: VLAN info 1898 * @dsa_ptr: dsa specific data 1899 * @tipc_ptr: TIPC specific data 1900 * @atalk_ptr: AppleTalk link 1901 * @ip_ptr: IPv4 specific data 1902 * @ip6_ptr: IPv6 specific data 1903 * @ax25_ptr: AX.25 specific data 1904 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1905 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1906 * device struct 1907 * @mpls_ptr: mpls_dev struct pointer 1908 * @mctp_ptr: MCTP specific data 1909 * 1910 * @dev_addr: Hw address (before bcast, 1911 * because most packets are unicast) 1912 * 1913 * @_rx: Array of RX queues 1914 * @num_rx_queues: Number of RX queues 1915 * allocated at register_netdev() time 1916 * @real_num_rx_queues: Number of RX queues currently active in device 1917 * @xdp_prog: XDP sockets filter program pointer 1918 * 1919 * @rx_handler: handler for received packets 1920 * @rx_handler_data: XXX: need comments on this one 1921 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1922 * @ingress_queue: XXX: need comments on this one 1923 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1924 * @broadcast: hw bcast address 1925 * 1926 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1927 * indexed by RX queue number. Assigned by driver. 1928 * This must only be set if the ndo_rx_flow_steer 1929 * operation is defined 1930 * @index_hlist: Device index hash chain 1931 * 1932 * @_tx: Array of TX queues 1933 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1934 * @real_num_tx_queues: Number of TX queues currently active in device 1935 * @qdisc: Root qdisc from userspace point of view 1936 * @tx_queue_len: Max frames per queue allowed 1937 * @tx_global_lock: XXX: need comments on this one 1938 * @xdp_bulkq: XDP device bulk queue 1939 * @xps_maps: all CPUs/RXQs maps for XPS device 1940 * 1941 * @xps_maps: XXX: need comments on this one 1942 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1943 * @nf_hooks_egress: netfilter hooks executed for egress packets 1944 * @qdisc_hash: qdisc hash table 1945 * @watchdog_timeo: Represents the timeout that is used by 1946 * the watchdog (see dev_watchdog()) 1947 * @watchdog_timer: List of timers 1948 * 1949 * @proto_down_reason: reason a netdev interface is held down 1950 * @pcpu_refcnt: Number of references to this device 1951 * @dev_refcnt: Number of references to this device 1952 * @refcnt_tracker: Tracker directory for tracked references to this device 1953 * @todo_list: Delayed register/unregister 1954 * @link_watch_list: XXX: need comments on this one 1955 * 1956 * @reg_state: Register/unregister state machine 1957 * @dismantle: Device is going to be freed 1958 * @needs_free_netdev: Should unregister perform free_netdev? 1959 * @priv_destructor: Called from unregister 1960 * @npinfo: XXX: need comments on this one 1961 * @nd_net: Network namespace this network device is inside 1962 * protected by @lock 1963 * 1964 * @ml_priv: Mid-layer private 1965 * @ml_priv_type: Mid-layer private type 1966 * 1967 * @pcpu_stat_type: Type of device statistics which the core should 1968 * allocate/free: none, lstats, tstats, dstats. none 1969 * means the driver is handling statistics allocation/ 1970 * freeing internally. 1971 * @lstats: Loopback statistics: packets, bytes 1972 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1973 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1974 * 1975 * @garp_port: GARP 1976 * @mrp_port: MRP 1977 * 1978 * @dm_private: Drop monitor private 1979 * 1980 * @dev: Class/net/name entry 1981 * @sysfs_groups: Space for optional device, statistics and wireless 1982 * sysfs groups 1983 * 1984 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1985 * @rtnl_link_ops: Rtnl_link_ops 1986 * @stat_ops: Optional ops for queue-aware statistics 1987 * @queue_mgmt_ops: Optional ops for queue management 1988 * 1989 * @gso_max_size: Maximum size of generic segmentation offload 1990 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1991 * @gso_max_segs: Maximum number of segments that can be passed to the 1992 * NIC for GSO 1993 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1994 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1995 * for IPv4. 1996 * 1997 * @dcbnl_ops: Data Center Bridging netlink ops 1998 * @num_tc: Number of traffic classes in the net device 1999 * @tc_to_txq: XXX: need comments on this one 2000 * @prio_tc_map: XXX: need comments on this one 2001 * 2002 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2003 * 2004 * @priomap: XXX: need comments on this one 2005 * @link_topo: Physical link topology tracking attached PHYs 2006 * @phydev: Physical device may attach itself 2007 * for hardware timestamping 2008 * @sfp_bus: attached &struct sfp_bus structure. 2009 * 2010 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2011 * 2012 * @proto_down: protocol port state information can be sent to the 2013 * switch driver and used to set the phys state of the 2014 * switch port. 2015 * 2016 * @irq_affinity_auto: driver wants the core to store and re-assign the IRQ 2017 * affinity. Set by netif_enable_irq_affinity(), then 2018 * the driver must create a persistent napi by 2019 * netif_napi_add_config() and finally bind the napi to 2020 * IRQ (via netif_napi_set_irq()). 2021 * 2022 * @rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap. 2023 * Set by calling netif_enable_cpu_rmap(). 2024 * 2025 * @see_all_hwtstamp_requests: device wants to see calls to 2026 * ndo_hwtstamp_set() for all timestamp requests 2027 * regardless of source, even if those aren't 2028 * HWTSTAMP_SOURCE_NETDEV 2029 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN 2030 * @netns_immutable: interface can't change network namespaces 2031 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes 2032 * 2033 * @net_notifier_list: List of per-net netdev notifier block 2034 * that follow this device when it is moved 2035 * to another network namespace. 2036 * 2037 * @macsec_ops: MACsec offloading ops 2038 * 2039 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2040 * offload capabilities of the device 2041 * @udp_tunnel_nic: UDP tunnel offload state 2042 * @ethtool: ethtool related state 2043 * @xdp_state: stores info on attached XDP BPF programs 2044 * 2045 * @nested_level: Used as a parameter of spin_lock_nested() of 2046 * dev->addr_list_lock. 2047 * @unlink_list: As netif_addr_lock() can be called recursively, 2048 * keep a list of interfaces to be deleted. 2049 * @gro_max_size: Maximum size of aggregated packet in generic 2050 * receive offload (GRO) 2051 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2052 * receive offload (GRO), for IPv4. 2053 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2054 * zero copy driver 2055 * 2056 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2057 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2058 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2059 * @dev_registered_tracker: tracker for reference held while 2060 * registered 2061 * @offload_xstats_l3: L3 HW stats for this netdevice. 2062 * 2063 * @devlink_port: Pointer to related devlink port structure. 2064 * Assigned by a driver before netdev registration using 2065 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2066 * during the time netdevice is registered. 2067 * 2068 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2069 * where the clock is recovered. 2070 * 2071 * @max_pacing_offload_horizon: max EDT offload horizon in nsec. 2072 * @napi_config: An array of napi_config structures containing per-NAPI 2073 * settings. 2074 * @num_napi_configs: number of allocated NAPI config structs, 2075 * always >= max(num_rx_queues, num_tx_queues). 2076 * @gro_flush_timeout: timeout for GRO layer in NAPI 2077 * @napi_defer_hard_irqs: If not zero, provides a counter that would 2078 * allow to avoid NIC hard IRQ, on busy queues. 2079 * 2080 * @neighbours: List heads pointing to this device's neighbours' 2081 * dev_list, one per address-family. 2082 * @hwprov: Tracks which PTP performs hardware packet time stamping. 2083 * 2084 * FIXME: cleanup struct net_device such that network protocol info 2085 * moves out. 2086 */ 2087 2088struct net_device { 2089 /* Cacheline organization can be found documented in 2090 * Documentation/networking/net_cachelines/net_device.rst. 2091 * Please update the document when adding new fields. 2092 */ 2093 2094 /* TX read-mostly hotpath */ 2095 __cacheline_group_begin(net_device_read_tx); 2096 struct_group(priv_flags_fast, 2097 unsigned long priv_flags:32; 2098 unsigned long lltx:1; 2099 unsigned long netmem_tx:1; 2100 ); 2101 const struct net_device_ops *netdev_ops; 2102 const struct header_ops *header_ops; 2103 struct netdev_queue *_tx; 2104 netdev_features_t gso_partial_features; 2105 unsigned int real_num_tx_queues; 2106 unsigned int gso_max_size; 2107 unsigned int gso_ipv4_max_size; 2108 u16 gso_max_segs; 2109 s16 num_tc; 2110 /* Note : dev->mtu is often read without holding a lock. 2111 * Writers usually hold RTNL. 2112 * It is recommended to use READ_ONCE() to annotate the reads, 2113 * and to use WRITE_ONCE() to annotate the writes. 2114 */ 2115 unsigned int mtu; 2116 unsigned short needed_headroom; 2117 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2118#ifdef CONFIG_XPS 2119 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2120#endif 2121#ifdef CONFIG_NETFILTER_EGRESS 2122 struct nf_hook_entries __rcu *nf_hooks_egress; 2123#endif 2124#ifdef CONFIG_NET_XGRESS 2125 struct bpf_mprog_entry __rcu *tcx_egress; 2126#endif 2127 __cacheline_group_end(net_device_read_tx); 2128 2129 /* TXRX read-mostly hotpath */ 2130 __cacheline_group_begin(net_device_read_txrx); 2131 union { 2132 struct pcpu_lstats __percpu *lstats; 2133 struct pcpu_sw_netstats __percpu *tstats; 2134 struct pcpu_dstats __percpu *dstats; 2135 }; 2136 unsigned long state; 2137 unsigned int flags; 2138 unsigned short hard_header_len; 2139 netdev_features_t features; 2140 struct inet6_dev __rcu *ip6_ptr; 2141 __cacheline_group_end(net_device_read_txrx); 2142 2143 /* RX read-mostly hotpath */ 2144 __cacheline_group_begin(net_device_read_rx); 2145 struct bpf_prog __rcu *xdp_prog; 2146 struct list_head ptype_specific; 2147 int ifindex; 2148 unsigned int real_num_rx_queues; 2149 struct netdev_rx_queue *_rx; 2150 unsigned int gro_max_size; 2151 unsigned int gro_ipv4_max_size; 2152 rx_handler_func_t __rcu *rx_handler; 2153 void __rcu *rx_handler_data; 2154 possible_net_t nd_net; 2155#ifdef CONFIG_NETPOLL 2156 struct netpoll_info __rcu *npinfo; 2157#endif 2158#ifdef CONFIG_NET_XGRESS 2159 struct bpf_mprog_entry __rcu *tcx_ingress; 2160#endif 2161 __cacheline_group_end(net_device_read_rx); 2162 2163 char name[IFNAMSIZ]; 2164 struct netdev_name_node *name_node; 2165 struct dev_ifalias __rcu *ifalias; 2166 /* 2167 * I/O specific fields 2168 * FIXME: Merge these and struct ifmap into one 2169 */ 2170 unsigned long mem_end; 2171 unsigned long mem_start; 2172 unsigned long base_addr; 2173 2174 /* 2175 * Some hardware also needs these fields (state,dev_list, 2176 * napi_list,unreg_list,close_list) but they are not 2177 * part of the usual set specified in Space.c. 2178 */ 2179 2180 2181 struct list_head dev_list; 2182 struct list_head napi_list; 2183 struct list_head unreg_list; 2184 struct list_head close_list; 2185 struct list_head ptype_all; 2186 2187 struct { 2188 struct list_head upper; 2189 struct list_head lower; 2190 } adj_list; 2191 2192 /* Read-mostly cache-line for fast-path access */ 2193 xdp_features_t xdp_features; 2194 const struct xdp_metadata_ops *xdp_metadata_ops; 2195 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2196 unsigned short gflags; 2197 2198 unsigned short needed_tailroom; 2199 2200 netdev_features_t hw_features; 2201 netdev_features_t wanted_features; 2202 netdev_features_t vlan_features; 2203 netdev_features_t hw_enc_features; 2204 netdev_features_t mpls_features; 2205 2206 unsigned int min_mtu; 2207 unsigned int max_mtu; 2208 unsigned short type; 2209 unsigned char min_header_len; 2210 unsigned char name_assign_type; 2211 2212 int group; 2213 2214 struct net_device_stats stats; /* not used by modern drivers */ 2215 2216 struct net_device_core_stats __percpu *core_stats; 2217 2218 /* Stats to monitor link on/off, flapping */ 2219 atomic_t carrier_up_count; 2220 atomic_t carrier_down_count; 2221 2222#ifdef CONFIG_WIRELESS_EXT 2223 const struct iw_handler_def *wireless_handlers; 2224#endif 2225 const struct ethtool_ops *ethtool_ops; 2226#ifdef CONFIG_NET_L3_MASTER_DEV 2227 const struct l3mdev_ops *l3mdev_ops; 2228#endif 2229#if IS_ENABLED(CONFIG_IPV6) 2230 const struct ndisc_ops *ndisc_ops; 2231#endif 2232 2233#ifdef CONFIG_XFRM_OFFLOAD 2234 const struct xfrmdev_ops *xfrmdev_ops; 2235#endif 2236 2237#if IS_ENABLED(CONFIG_TLS_DEVICE) 2238 const struct tlsdev_ops *tlsdev_ops; 2239#endif 2240 2241 unsigned int operstate; 2242 unsigned char link_mode; 2243 2244 unsigned char if_port; 2245 unsigned char dma; 2246 2247 /* Interface address info. */ 2248 unsigned char perm_addr[MAX_ADDR_LEN]; 2249 unsigned char addr_assign_type; 2250 unsigned char addr_len; 2251 unsigned char upper_level; 2252 unsigned char lower_level; 2253 u8 threaded; 2254 2255 unsigned short neigh_priv_len; 2256 unsigned short dev_id; 2257 unsigned short dev_port; 2258 int irq; 2259 u32 priv_len; 2260 2261 spinlock_t addr_list_lock; 2262 2263 struct netdev_hw_addr_list uc; 2264 struct netdev_hw_addr_list mc; 2265 struct netdev_hw_addr_list dev_addrs; 2266 2267#ifdef CONFIG_SYSFS 2268 struct kset *queues_kset; 2269#endif 2270#ifdef CONFIG_LOCKDEP 2271 struct list_head unlink_list; 2272#endif 2273 unsigned int promiscuity; 2274 unsigned int allmulti; 2275 bool uc_promisc; 2276#ifdef CONFIG_LOCKDEP 2277 unsigned char nested_level; 2278#endif 2279 2280 2281 /* Protocol-specific pointers */ 2282 struct in_device __rcu *ip_ptr; 2283 /** @fib_nh_head: nexthops associated with this netdev */ 2284 struct hlist_head fib_nh_head; 2285 2286#if IS_ENABLED(CONFIG_VLAN_8021Q) 2287 struct vlan_info __rcu *vlan_info; 2288#endif 2289#if IS_ENABLED(CONFIG_NET_DSA) 2290 struct dsa_port *dsa_ptr; 2291#endif 2292#if IS_ENABLED(CONFIG_TIPC) 2293 struct tipc_bearer __rcu *tipc_ptr; 2294#endif 2295#if IS_ENABLED(CONFIG_ATALK) 2296 void *atalk_ptr; 2297#endif 2298#if IS_ENABLED(CONFIG_AX25) 2299 struct ax25_dev __rcu *ax25_ptr; 2300#endif 2301#if IS_ENABLED(CONFIG_CFG80211) 2302 struct wireless_dev *ieee80211_ptr; 2303#endif 2304#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2305 struct wpan_dev *ieee802154_ptr; 2306#endif 2307#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2308 struct mpls_dev __rcu *mpls_ptr; 2309#endif 2310#if IS_ENABLED(CONFIG_MCTP) 2311 struct mctp_dev __rcu *mctp_ptr; 2312#endif 2313 2314/* 2315 * Cache lines mostly used on receive path (including eth_type_trans()) 2316 */ 2317 /* Interface address info used in eth_type_trans() */ 2318 const unsigned char *dev_addr; 2319 2320 unsigned int num_rx_queues; 2321#define GRO_LEGACY_MAX_SIZE 65536u 2322/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2323 * and shinfo->gso_segs is a 16bit field. 2324 */ 2325#define GRO_MAX_SIZE (8 * 65535u) 2326 unsigned int xdp_zc_max_segs; 2327 struct netdev_queue __rcu *ingress_queue; 2328#ifdef CONFIG_NETFILTER_INGRESS 2329 struct nf_hook_entries __rcu *nf_hooks_ingress; 2330#endif 2331 2332 unsigned char broadcast[MAX_ADDR_LEN]; 2333#ifdef CONFIG_RFS_ACCEL 2334 struct cpu_rmap *rx_cpu_rmap; 2335#endif 2336 struct hlist_node index_hlist; 2337 2338/* 2339 * Cache lines mostly used on transmit path 2340 */ 2341 unsigned int num_tx_queues; 2342 struct Qdisc __rcu *qdisc; 2343 unsigned int tx_queue_len; 2344 spinlock_t tx_global_lock; 2345 2346 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2347 2348#ifdef CONFIG_NET_SCHED 2349 DECLARE_HASHTABLE (qdisc_hash, 4); 2350#endif 2351 /* These may be needed for future network-power-down code. */ 2352 struct timer_list watchdog_timer; 2353 int watchdog_timeo; 2354 2355 u32 proto_down_reason; 2356 2357 struct list_head todo_list; 2358 2359#ifdef CONFIG_PCPU_DEV_REFCNT 2360 int __percpu *pcpu_refcnt; 2361#else 2362 refcount_t dev_refcnt; 2363#endif 2364 struct ref_tracker_dir refcnt_tracker; 2365 2366 struct list_head link_watch_list; 2367 2368 u8 reg_state; 2369 2370 bool dismantle; 2371 2372 /** @moving_ns: device is changing netns, protected by @lock */ 2373 bool moving_ns; 2374 /** @rtnl_link_initializing: Device being created, suppress events */ 2375 bool rtnl_link_initializing; 2376 2377 bool needs_free_netdev; 2378 void (*priv_destructor)(struct net_device *dev); 2379 2380 /* mid-layer private */ 2381 void *ml_priv; 2382 enum netdev_ml_priv_type ml_priv_type; 2383 2384 enum netdev_stat_type pcpu_stat_type:8; 2385 2386#if IS_ENABLED(CONFIG_GARP) 2387 struct garp_port __rcu *garp_port; 2388#endif 2389#if IS_ENABLED(CONFIG_MRP) 2390 struct mrp_port __rcu *mrp_port; 2391#endif 2392#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2393 struct dm_hw_stat_delta __rcu *dm_private; 2394#endif 2395 struct device dev; 2396 const struct attribute_group *sysfs_groups[5]; 2397 const struct attribute_group *sysfs_rx_queue_group; 2398 2399 const struct rtnl_link_ops *rtnl_link_ops; 2400 2401 const struct netdev_stat_ops *stat_ops; 2402 2403 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2404 2405 /* for setting kernel sock attribute on TCP connection setup */ 2406#define GSO_MAX_SEGS 65535u 2407#define GSO_LEGACY_MAX_SIZE 65536u 2408/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2409 * and shinfo->gso_segs is a 16bit field. 2410 */ 2411#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2412 2413#define TSO_LEGACY_MAX_SIZE 65536 2414#define TSO_MAX_SIZE UINT_MAX 2415 unsigned int tso_max_size; 2416#define TSO_MAX_SEGS U16_MAX 2417 u16 tso_max_segs; 2418 2419#ifdef CONFIG_DCB 2420 const struct dcbnl_rtnl_ops *dcbnl_ops; 2421#endif 2422 u8 prio_tc_map[TC_BITMASK + 1]; 2423 2424#if IS_ENABLED(CONFIG_FCOE) 2425 unsigned int fcoe_ddp_xid; 2426#endif 2427#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2428 struct netprio_map __rcu *priomap; 2429#endif 2430 struct phy_link_topology *link_topo; 2431 struct phy_device *phydev; 2432 struct sfp_bus *sfp_bus; 2433 struct lock_class_key *qdisc_tx_busylock; 2434 bool proto_down; 2435 bool irq_affinity_auto; 2436 bool rx_cpu_rmap_auto; 2437 2438 /* priv_flags_slow, ungrouped to save space */ 2439 unsigned long see_all_hwtstamp_requests:1; 2440 unsigned long change_proto_down:1; 2441 unsigned long netns_immutable:1; 2442 unsigned long fcoe_mtu:1; 2443 2444 struct list_head net_notifier_list; 2445 2446#if IS_ENABLED(CONFIG_MACSEC) 2447 /* MACsec management functions */ 2448 const struct macsec_ops *macsec_ops; 2449#endif 2450 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2451 struct udp_tunnel_nic *udp_tunnel_nic; 2452 2453 /** @cfg: net_device queue-related configuration */ 2454 struct netdev_config *cfg; 2455 /** 2456 * @cfg_pending: same as @cfg but when device is being actively 2457 * reconfigured includes any changes to the configuration 2458 * requested by the user, but which may or may not be rejected. 2459 */ 2460 struct netdev_config *cfg_pending; 2461 struct ethtool_netdev_state *ethtool; 2462 2463 /* protected by rtnl_lock */ 2464 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2465 2466 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2467 netdevice_tracker linkwatch_dev_tracker; 2468 netdevice_tracker watchdog_dev_tracker; 2469 netdevice_tracker dev_registered_tracker; 2470 struct rtnl_hw_stats64 *offload_xstats_l3; 2471 2472 struct devlink_port *devlink_port; 2473 2474#if IS_ENABLED(CONFIG_DPLL) 2475 struct dpll_pin __rcu *dpll_pin; 2476#endif 2477#if IS_ENABLED(CONFIG_PAGE_POOL) 2478 /** @page_pools: page pools created for this netdevice */ 2479 struct hlist_head page_pools; 2480#endif 2481 2482 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2483 struct dim_irq_moder *irq_moder; 2484 2485 u64 max_pacing_offload_horizon; 2486 struct napi_config *napi_config; 2487 u32 num_napi_configs; 2488 u32 napi_defer_hard_irqs; 2489 unsigned long gro_flush_timeout; 2490 2491 /** 2492 * @up: copy of @state's IFF_UP, but safe to read with just @lock. 2493 * May report false negatives while the device is being opened 2494 * or closed (@lock does not protect .ndo_open, or .ndo_close). 2495 */ 2496 bool up; 2497 2498 /** 2499 * @request_ops_lock: request the core to run all @netdev_ops and 2500 * @ethtool_ops under the @lock. 2501 */ 2502 bool request_ops_lock; 2503 2504 /** 2505 * @lock: netdev-scope lock, protects a small selection of fields. 2506 * Should always be taken using netdev_lock() / netdev_unlock() helpers. 2507 * Drivers are free to use it for other protection. 2508 * 2509 * For the drivers that implement shaper or queue API, the scope 2510 * of this lock is expanded to cover most ndo/queue/ethtool/sysfs 2511 * operations. Drivers may opt-in to this behavior by setting 2512 * @request_ops_lock. 2513 * 2514 * @lock protection mixes with rtnl_lock in multiple ways, fields are 2515 * either: 2516 * 2517 * - simply protected by the instance @lock; 2518 * 2519 * - double protected - writers hold both locks, readers hold either; 2520 * 2521 * - ops protected - protected by the lock held around the NDOs 2522 * and other callbacks, that is the instance lock on devices for 2523 * which netdev_need_ops_lock() returns true, otherwise by rtnl_lock; 2524 * 2525 * - double ops protected - always protected by rtnl_lock but for 2526 * devices for which netdev_need_ops_lock() returns true - also 2527 * the instance lock. 2528 * 2529 * Simply protects: 2530 * @gro_flush_timeout, @napi_defer_hard_irqs, @napi_list, 2531 * @net_shaper_hierarchy, @reg_state, @threaded 2532 * 2533 * Double protects: 2534 * @up, @moving_ns, @nd_net, @xdp_features 2535 * 2536 * Double ops protects: 2537 * @real_num_rx_queues, @real_num_tx_queues 2538 * 2539 * Also protects some fields in: 2540 * struct napi_struct, struct netdev_queue, struct netdev_rx_queue 2541 * 2542 * Ordering: take after rtnl_lock. 2543 */ 2544 struct mutex lock; 2545 2546#if IS_ENABLED(CONFIG_NET_SHAPER) 2547 /** 2548 * @net_shaper_hierarchy: data tracking the current shaper status 2549 * see include/net/net_shapers.h 2550 */ 2551 struct net_shaper_hierarchy *net_shaper_hierarchy; 2552#endif 2553 2554 struct hlist_head neighbours[NEIGH_NR_TABLES]; 2555 2556 struct hwtstamp_provider __rcu *hwprov; 2557 2558 u8 priv[] ____cacheline_aligned 2559 __counted_by(priv_len); 2560} ____cacheline_aligned; 2561#define to_net_dev(d) container_of(d, struct net_device, dev) 2562 2563/* 2564 * Driver should use this to assign devlink port instance to a netdevice 2565 * before it registers the netdevice. Therefore devlink_port is static 2566 * during the netdev lifetime after it is registered. 2567 */ 2568#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2569({ \ 2570 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2571 ((dev)->devlink_port = (port)); \ 2572}) 2573 2574static inline bool netif_elide_gro(const struct net_device *dev) 2575{ 2576 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2577 return true; 2578 return false; 2579} 2580 2581#define NETDEV_ALIGN 32 2582 2583static inline 2584int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2585{ 2586 return dev->prio_tc_map[prio & TC_BITMASK]; 2587} 2588 2589static inline 2590int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2591{ 2592 if (tc >= dev->num_tc) 2593 return -EINVAL; 2594 2595 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2596 return 0; 2597} 2598 2599int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2600void netdev_reset_tc(struct net_device *dev); 2601int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2602int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2603 2604static inline 2605int netdev_get_num_tc(struct net_device *dev) 2606{ 2607 return dev->num_tc; 2608} 2609 2610static inline void net_prefetch(void *p) 2611{ 2612 prefetch(p); 2613#if L1_CACHE_BYTES < 128 2614 prefetch((u8 *)p + L1_CACHE_BYTES); 2615#endif 2616} 2617 2618static inline void net_prefetchw(void *p) 2619{ 2620 prefetchw(p); 2621#if L1_CACHE_BYTES < 128 2622 prefetchw((u8 *)p + L1_CACHE_BYTES); 2623#endif 2624} 2625 2626void netdev_unbind_sb_channel(struct net_device *dev, 2627 struct net_device *sb_dev); 2628int netdev_bind_sb_channel_queue(struct net_device *dev, 2629 struct net_device *sb_dev, 2630 u8 tc, u16 count, u16 offset); 2631int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2632static inline int netdev_get_sb_channel(struct net_device *dev) 2633{ 2634 return max_t(int, -dev->num_tc, 0); 2635} 2636 2637static inline 2638struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2639 unsigned int index) 2640{ 2641 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2642 return &dev->_tx[index]; 2643} 2644 2645static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2646 const struct sk_buff *skb) 2647{ 2648 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2649} 2650 2651static inline void netdev_for_each_tx_queue(struct net_device *dev, 2652 void (*f)(struct net_device *, 2653 struct netdev_queue *, 2654 void *), 2655 void *arg) 2656{ 2657 unsigned int i; 2658 2659 for (i = 0; i < dev->num_tx_queues; i++) 2660 f(dev, &dev->_tx[i], arg); 2661} 2662 2663u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2664 struct net_device *sb_dev); 2665struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2666 struct sk_buff *skb, 2667 struct net_device *sb_dev); 2668 2669/* returns the headroom that the master device needs to take in account 2670 * when forwarding to this dev 2671 */ 2672static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2673{ 2674 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2675} 2676 2677static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2678{ 2679 if (dev->netdev_ops->ndo_set_rx_headroom) 2680 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2681} 2682 2683/* set the device rx headroom to the dev's default */ 2684static inline void netdev_reset_rx_headroom(struct net_device *dev) 2685{ 2686 netdev_set_rx_headroom(dev, -1); 2687} 2688 2689static inline void *netdev_get_ml_priv(struct net_device *dev, 2690 enum netdev_ml_priv_type type) 2691{ 2692 if (dev->ml_priv_type != type) 2693 return NULL; 2694 2695 return dev->ml_priv; 2696} 2697 2698static inline void netdev_set_ml_priv(struct net_device *dev, 2699 void *ml_priv, 2700 enum netdev_ml_priv_type type) 2701{ 2702 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2703 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2704 dev->ml_priv_type, type); 2705 WARN(!dev->ml_priv_type && dev->ml_priv, 2706 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2707 2708 dev->ml_priv = ml_priv; 2709 dev->ml_priv_type = type; 2710} 2711 2712/* 2713 * Net namespace inlines 2714 */ 2715static inline 2716struct net *dev_net(const struct net_device *dev) 2717{ 2718 return read_pnet(&dev->nd_net); 2719} 2720 2721static inline 2722struct net *dev_net_rcu(const struct net_device *dev) 2723{ 2724 return read_pnet_rcu(&dev->nd_net); 2725} 2726 2727static inline 2728void dev_net_set(struct net_device *dev, struct net *net) 2729{ 2730 write_pnet(&dev->nd_net, net); 2731} 2732 2733/** 2734 * netdev_priv - access network device private data 2735 * @dev: network device 2736 * 2737 * Get network device private data 2738 */ 2739static inline void *netdev_priv(const struct net_device *dev) 2740{ 2741 return (void *)dev->priv; 2742} 2743 2744/* Set the sysfs physical device reference for the network logical device 2745 * if set prior to registration will cause a symlink during initialization. 2746 */ 2747#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2748 2749/* Set the sysfs device type for the network logical device to allow 2750 * fine-grained identification of different network device types. For 2751 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2752 */ 2753#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2754 2755void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2756 enum netdev_queue_type type, 2757 struct napi_struct *napi); 2758 2759static inline void netdev_lock(struct net_device *dev) 2760{ 2761 mutex_lock(&dev->lock); 2762} 2763 2764static inline void netdev_unlock(struct net_device *dev) 2765{ 2766 mutex_unlock(&dev->lock); 2767} 2768/* Additional netdev_lock()-related helpers are in net/netdev_lock.h */ 2769 2770void netif_napi_set_irq_locked(struct napi_struct *napi, int irq); 2771 2772static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2773{ 2774 netdev_lock(napi->dev); 2775 netif_napi_set_irq_locked(napi, irq); 2776 netdev_unlock(napi->dev); 2777} 2778 2779/* Default NAPI poll() weight 2780 * Device drivers are strongly advised to not use bigger value 2781 */ 2782#define NAPI_POLL_WEIGHT 64 2783 2784void netif_napi_add_weight_locked(struct net_device *dev, 2785 struct napi_struct *napi, 2786 int (*poll)(struct napi_struct *, int), 2787 int weight); 2788 2789static inline void 2790netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2791 int (*poll)(struct napi_struct *, int), int weight) 2792{ 2793 netdev_lock(dev); 2794 netif_napi_add_weight_locked(dev, napi, poll, weight); 2795 netdev_unlock(dev); 2796} 2797 2798/** 2799 * netif_napi_add() - initialize a NAPI context 2800 * @dev: network device 2801 * @napi: NAPI context 2802 * @poll: polling function 2803 * 2804 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2805 * *any* of the other NAPI-related functions. 2806 */ 2807static inline void 2808netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2809 int (*poll)(struct napi_struct *, int)) 2810{ 2811 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2812} 2813 2814static inline void 2815netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi, 2816 int (*poll)(struct napi_struct *, int)) 2817{ 2818 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT); 2819} 2820 2821static inline void 2822netif_napi_add_tx_weight(struct net_device *dev, 2823 struct napi_struct *napi, 2824 int (*poll)(struct napi_struct *, int), 2825 int weight) 2826{ 2827 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2828 netif_napi_add_weight(dev, napi, poll, weight); 2829} 2830 2831static inline void 2832netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi, 2833 int (*poll)(struct napi_struct *, int), int index) 2834{ 2835 napi->index = index; 2836 napi->config = &dev->napi_config[index]; 2837 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT); 2838} 2839 2840/** 2841 * netif_napi_add_config - initialize a NAPI context with persistent config 2842 * @dev: network device 2843 * @napi: NAPI context 2844 * @poll: polling function 2845 * @index: the NAPI index 2846 */ 2847static inline void 2848netif_napi_add_config(struct net_device *dev, struct napi_struct *napi, 2849 int (*poll)(struct napi_struct *, int), int index) 2850{ 2851 netdev_lock(dev); 2852 netif_napi_add_config_locked(dev, napi, poll, index); 2853 netdev_unlock(dev); 2854} 2855 2856/** 2857 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2858 * @dev: network device 2859 * @napi: NAPI context 2860 * @poll: polling function 2861 * 2862 * This variant of netif_napi_add() should be used from drivers using NAPI 2863 * to exclusively poll a TX queue. 2864 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2865 */ 2866static inline void netif_napi_add_tx(struct net_device *dev, 2867 struct napi_struct *napi, 2868 int (*poll)(struct napi_struct *, int)) 2869{ 2870 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2871} 2872 2873void __netif_napi_del_locked(struct napi_struct *napi); 2874 2875/** 2876 * __netif_napi_del - remove a NAPI context 2877 * @napi: NAPI context 2878 * 2879 * Warning: caller must observe RCU grace period before freeing memory 2880 * containing @napi. Drivers might want to call this helper to combine 2881 * all the needed RCU grace periods into a single one. 2882 */ 2883static inline void __netif_napi_del(struct napi_struct *napi) 2884{ 2885 netdev_lock(napi->dev); 2886 __netif_napi_del_locked(napi); 2887 netdev_unlock(napi->dev); 2888} 2889 2890static inline void netif_napi_del_locked(struct napi_struct *napi) 2891{ 2892 __netif_napi_del_locked(napi); 2893 synchronize_net(); 2894} 2895 2896/** 2897 * netif_napi_del - remove a NAPI context 2898 * @napi: NAPI context 2899 * 2900 * netif_napi_del() removes a NAPI context from the network device NAPI list 2901 */ 2902static inline void netif_napi_del(struct napi_struct *napi) 2903{ 2904 __netif_napi_del(napi); 2905 synchronize_net(); 2906} 2907 2908int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs); 2909void netif_set_affinity_auto(struct net_device *dev); 2910 2911struct packet_type { 2912 __be16 type; /* This is really htons(ether_type). */ 2913 bool ignore_outgoing; 2914 struct net_device *dev; /* NULL is wildcarded here */ 2915 netdevice_tracker dev_tracker; 2916 int (*func) (struct sk_buff *, 2917 struct net_device *, 2918 struct packet_type *, 2919 struct net_device *); 2920 void (*list_func) (struct list_head *, 2921 struct packet_type *, 2922 struct net_device *); 2923 bool (*id_match)(struct packet_type *ptype, 2924 struct sock *sk); 2925 struct net *af_packet_net; 2926 void *af_packet_priv; 2927 struct list_head list; 2928}; 2929 2930struct offload_callbacks { 2931 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2932 netdev_features_t features); 2933 struct sk_buff *(*gro_receive)(struct list_head *head, 2934 struct sk_buff *skb); 2935 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2936}; 2937 2938struct packet_offload { 2939 __be16 type; /* This is really htons(ether_type). */ 2940 u16 priority; 2941 struct offload_callbacks callbacks; 2942 struct list_head list; 2943}; 2944 2945/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2946struct pcpu_sw_netstats { 2947 u64_stats_t rx_packets; 2948 u64_stats_t rx_bytes; 2949 u64_stats_t tx_packets; 2950 u64_stats_t tx_bytes; 2951 struct u64_stats_sync syncp; 2952} __aligned(4 * sizeof(u64)); 2953 2954struct pcpu_dstats { 2955 u64_stats_t rx_packets; 2956 u64_stats_t rx_bytes; 2957 u64_stats_t tx_packets; 2958 u64_stats_t tx_bytes; 2959 u64_stats_t rx_drops; 2960 u64_stats_t tx_drops; 2961 struct u64_stats_sync syncp; 2962} __aligned(8 * sizeof(u64)); 2963 2964struct pcpu_lstats { 2965 u64_stats_t packets; 2966 u64_stats_t bytes; 2967 struct u64_stats_sync syncp; 2968} __aligned(2 * sizeof(u64)); 2969 2970void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2971 2972static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2973{ 2974 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2975 2976 u64_stats_update_begin(&tstats->syncp); 2977 u64_stats_add(&tstats->rx_bytes, len); 2978 u64_stats_inc(&tstats->rx_packets); 2979 u64_stats_update_end(&tstats->syncp); 2980} 2981 2982static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2983 unsigned int packets, 2984 unsigned int len) 2985{ 2986 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2987 2988 u64_stats_update_begin(&tstats->syncp); 2989 u64_stats_add(&tstats->tx_bytes, len); 2990 u64_stats_add(&tstats->tx_packets, packets); 2991 u64_stats_update_end(&tstats->syncp); 2992} 2993 2994static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2995{ 2996 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2997 2998 u64_stats_update_begin(&lstats->syncp); 2999 u64_stats_add(&lstats->bytes, len); 3000 u64_stats_inc(&lstats->packets); 3001 u64_stats_update_end(&lstats->syncp); 3002} 3003 3004static inline void dev_dstats_rx_add(struct net_device *dev, 3005 unsigned int len) 3006{ 3007 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3008 3009 u64_stats_update_begin(&dstats->syncp); 3010 u64_stats_inc(&dstats->rx_packets); 3011 u64_stats_add(&dstats->rx_bytes, len); 3012 u64_stats_update_end(&dstats->syncp); 3013} 3014 3015static inline void dev_dstats_rx_dropped(struct net_device *dev) 3016{ 3017 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3018 3019 u64_stats_update_begin(&dstats->syncp); 3020 u64_stats_inc(&dstats->rx_drops); 3021 u64_stats_update_end(&dstats->syncp); 3022} 3023 3024static inline void dev_dstats_rx_dropped_add(struct net_device *dev, 3025 unsigned int packets) 3026{ 3027 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3028 3029 u64_stats_update_begin(&dstats->syncp); 3030 u64_stats_add(&dstats->rx_drops, packets); 3031 u64_stats_update_end(&dstats->syncp); 3032} 3033 3034static inline void dev_dstats_tx_add(struct net_device *dev, 3035 unsigned int len) 3036{ 3037 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3038 3039 u64_stats_update_begin(&dstats->syncp); 3040 u64_stats_inc(&dstats->tx_packets); 3041 u64_stats_add(&dstats->tx_bytes, len); 3042 u64_stats_update_end(&dstats->syncp); 3043} 3044 3045static inline void dev_dstats_tx_dropped(struct net_device *dev) 3046{ 3047 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 3048 3049 u64_stats_update_begin(&dstats->syncp); 3050 u64_stats_inc(&dstats->tx_drops); 3051 u64_stats_update_end(&dstats->syncp); 3052} 3053 3054#define __netdev_alloc_pcpu_stats(type, gfp) \ 3055({ \ 3056 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 3057 if (pcpu_stats) { \ 3058 int __cpu; \ 3059 for_each_possible_cpu(__cpu) { \ 3060 typeof(type) *stat; \ 3061 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 3062 u64_stats_init(&stat->syncp); \ 3063 } \ 3064 } \ 3065 pcpu_stats; \ 3066}) 3067 3068#define netdev_alloc_pcpu_stats(type) \ 3069 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 3070 3071#define devm_netdev_alloc_pcpu_stats(dev, type) \ 3072({ \ 3073 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 3074 if (pcpu_stats) { \ 3075 int __cpu; \ 3076 for_each_possible_cpu(__cpu) { \ 3077 typeof(type) *stat; \ 3078 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 3079 u64_stats_init(&stat->syncp); \ 3080 } \ 3081 } \ 3082 pcpu_stats; \ 3083}) 3084 3085enum netdev_lag_tx_type { 3086 NETDEV_LAG_TX_TYPE_UNKNOWN, 3087 NETDEV_LAG_TX_TYPE_RANDOM, 3088 NETDEV_LAG_TX_TYPE_BROADCAST, 3089 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 3090 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 3091 NETDEV_LAG_TX_TYPE_HASH, 3092}; 3093 3094enum netdev_lag_hash { 3095 NETDEV_LAG_HASH_NONE, 3096 NETDEV_LAG_HASH_L2, 3097 NETDEV_LAG_HASH_L34, 3098 NETDEV_LAG_HASH_L23, 3099 NETDEV_LAG_HASH_E23, 3100 NETDEV_LAG_HASH_E34, 3101 NETDEV_LAG_HASH_VLAN_SRCMAC, 3102 NETDEV_LAG_HASH_UNKNOWN, 3103}; 3104 3105struct netdev_lag_upper_info { 3106 enum netdev_lag_tx_type tx_type; 3107 enum netdev_lag_hash hash_type; 3108}; 3109 3110struct netdev_lag_lower_state_info { 3111 u8 link_up : 1, 3112 tx_enabled : 1; 3113}; 3114 3115#include <linux/notifier.h> 3116 3117/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 3118 * and the rtnetlink notification exclusion list in rtnetlink_event() when 3119 * adding new types. 3120 */ 3121enum netdev_cmd { 3122 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 3123 NETDEV_DOWN, 3124 NETDEV_REBOOT, /* Tell a protocol stack a network interface 3125 detected a hardware crash and restarted 3126 - we can use this eg to kick tcp sessions 3127 once done */ 3128 NETDEV_CHANGE, /* Notify device state change */ 3129 NETDEV_REGISTER, 3130 NETDEV_UNREGISTER, 3131 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 3132 NETDEV_CHANGEADDR, /* notify after the address change */ 3133 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 3134 NETDEV_GOING_DOWN, 3135 NETDEV_CHANGENAME, 3136 NETDEV_FEAT_CHANGE, 3137 NETDEV_BONDING_FAILOVER, 3138 NETDEV_PRE_UP, 3139 NETDEV_PRE_TYPE_CHANGE, 3140 NETDEV_POST_TYPE_CHANGE, 3141 NETDEV_POST_INIT, 3142 NETDEV_PRE_UNINIT, 3143 NETDEV_RELEASE, 3144 NETDEV_NOTIFY_PEERS, 3145 NETDEV_JOIN, 3146 NETDEV_CHANGEUPPER, 3147 NETDEV_RESEND_IGMP, 3148 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 3149 NETDEV_CHANGEINFODATA, 3150 NETDEV_BONDING_INFO, 3151 NETDEV_PRECHANGEUPPER, 3152 NETDEV_CHANGELOWERSTATE, 3153 NETDEV_UDP_TUNNEL_PUSH_INFO, 3154 NETDEV_UDP_TUNNEL_DROP_INFO, 3155 NETDEV_CHANGE_TX_QUEUE_LEN, 3156 NETDEV_CVLAN_FILTER_PUSH_INFO, 3157 NETDEV_CVLAN_FILTER_DROP_INFO, 3158 NETDEV_SVLAN_FILTER_PUSH_INFO, 3159 NETDEV_SVLAN_FILTER_DROP_INFO, 3160 NETDEV_OFFLOAD_XSTATS_ENABLE, 3161 NETDEV_OFFLOAD_XSTATS_DISABLE, 3162 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 3163 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 3164 NETDEV_XDP_FEAT_CHANGE, 3165}; 3166const char *netdev_cmd_to_name(enum netdev_cmd cmd); 3167 3168int register_netdevice_notifier(struct notifier_block *nb); 3169int unregister_netdevice_notifier(struct notifier_block *nb); 3170int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 3171int unregister_netdevice_notifier_net(struct net *net, 3172 struct notifier_block *nb); 3173int register_netdevice_notifier_dev_net(struct net_device *dev, 3174 struct notifier_block *nb, 3175 struct netdev_net_notifier *nn); 3176int unregister_netdevice_notifier_dev_net(struct net_device *dev, 3177 struct notifier_block *nb, 3178 struct netdev_net_notifier *nn); 3179 3180struct netdev_notifier_info { 3181 struct net_device *dev; 3182 struct netlink_ext_ack *extack; 3183}; 3184 3185struct netdev_notifier_info_ext { 3186 struct netdev_notifier_info info; /* must be first */ 3187 union { 3188 u32 mtu; 3189 } ext; 3190}; 3191 3192struct netdev_notifier_change_info { 3193 struct netdev_notifier_info info; /* must be first */ 3194 unsigned int flags_changed; 3195}; 3196 3197struct netdev_notifier_changeupper_info { 3198 struct netdev_notifier_info info; /* must be first */ 3199 struct net_device *upper_dev; /* new upper dev */ 3200 bool master; /* is upper dev master */ 3201 bool linking; /* is the notification for link or unlink */ 3202 void *upper_info; /* upper dev info */ 3203}; 3204 3205struct netdev_notifier_changelowerstate_info { 3206 struct netdev_notifier_info info; /* must be first */ 3207 void *lower_state_info; /* is lower dev state */ 3208}; 3209 3210struct netdev_notifier_pre_changeaddr_info { 3211 struct netdev_notifier_info info; /* must be first */ 3212 const unsigned char *dev_addr; 3213}; 3214 3215enum netdev_offload_xstats_type { 3216 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 3217}; 3218 3219struct netdev_notifier_offload_xstats_info { 3220 struct netdev_notifier_info info; /* must be first */ 3221 enum netdev_offload_xstats_type type; 3222 3223 union { 3224 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 3225 struct netdev_notifier_offload_xstats_rd *report_delta; 3226 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 3227 struct netdev_notifier_offload_xstats_ru *report_used; 3228 }; 3229}; 3230 3231int netdev_offload_xstats_enable(struct net_device *dev, 3232 enum netdev_offload_xstats_type type, 3233 struct netlink_ext_ack *extack); 3234int netdev_offload_xstats_disable(struct net_device *dev, 3235 enum netdev_offload_xstats_type type); 3236bool netdev_offload_xstats_enabled(const struct net_device *dev, 3237 enum netdev_offload_xstats_type type); 3238int netdev_offload_xstats_get(struct net_device *dev, 3239 enum netdev_offload_xstats_type type, 3240 struct rtnl_hw_stats64 *stats, bool *used, 3241 struct netlink_ext_ack *extack); 3242void 3243netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3244 const struct rtnl_hw_stats64 *stats); 3245void 3246netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3247void netdev_offload_xstats_push_delta(struct net_device *dev, 3248 enum netdev_offload_xstats_type type, 3249 const struct rtnl_hw_stats64 *stats); 3250 3251static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3252 struct net_device *dev) 3253{ 3254 info->dev = dev; 3255 info->extack = NULL; 3256} 3257 3258static inline struct net_device * 3259netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3260{ 3261 return info->dev; 3262} 3263 3264static inline struct netlink_ext_ack * 3265netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3266{ 3267 return info->extack; 3268} 3269 3270int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3271int call_netdevice_notifiers_info(unsigned long val, 3272 struct netdev_notifier_info *info); 3273 3274#define for_each_netdev(net, d) \ 3275 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3276#define for_each_netdev_reverse(net, d) \ 3277 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3278#define for_each_netdev_rcu(net, d) \ 3279 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3280#define for_each_netdev_safe(net, d, n) \ 3281 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3282#define for_each_netdev_continue(net, d) \ 3283 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3284#define for_each_netdev_continue_reverse(net, d) \ 3285 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3286 dev_list) 3287#define for_each_netdev_continue_rcu(net, d) \ 3288 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3289#define for_each_netdev_in_bond_rcu(bond, slave) \ 3290 for_each_netdev_rcu(dev_net_rcu(bond), slave) \ 3291 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3292#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3293 3294#define for_each_netdev_dump(net, d, ifindex) \ 3295 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3296 ULONG_MAX, XA_PRESENT)); ifindex++) 3297 3298static inline struct net_device *next_net_device(struct net_device *dev) 3299{ 3300 struct list_head *lh; 3301 struct net *net; 3302 3303 net = dev_net(dev); 3304 lh = dev->dev_list.next; 3305 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3306} 3307 3308static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3309{ 3310 struct list_head *lh; 3311 struct net *net; 3312 3313 net = dev_net(dev); 3314 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3315 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3316} 3317 3318static inline struct net_device *first_net_device(struct net *net) 3319{ 3320 return list_empty(&net->dev_base_head) ? NULL : 3321 net_device_entry(net->dev_base_head.next); 3322} 3323 3324int netdev_boot_setup_check(struct net_device *dev); 3325struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 3326 const char *hwaddr); 3327struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3328 const char *hwaddr); 3329struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3330void dev_add_pack(struct packet_type *pt); 3331void dev_remove_pack(struct packet_type *pt); 3332void __dev_remove_pack(struct packet_type *pt); 3333void dev_add_offload(struct packet_offload *po); 3334void dev_remove_offload(struct packet_offload *po); 3335 3336int dev_get_iflink(const struct net_device *dev); 3337int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3338int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3339 struct net_device_path_stack *stack); 3340struct net_device *dev_get_by_name(struct net *net, const char *name); 3341struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3342struct net_device *__dev_get_by_name(struct net *net, const char *name); 3343bool netdev_name_in_use(struct net *net, const char *name); 3344int dev_alloc_name(struct net_device *dev, const char *name); 3345int netif_open(struct net_device *dev, struct netlink_ext_ack *extack); 3346int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3347void netif_close(struct net_device *dev); 3348void dev_close(struct net_device *dev); 3349void netif_close_many(struct list_head *head, bool unlink); 3350void netif_disable_lro(struct net_device *dev); 3351void dev_disable_lro(struct net_device *dev); 3352int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3353u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3354 struct net_device *sb_dev); 3355 3356int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3357int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3358 3359static inline int dev_queue_xmit(struct sk_buff *skb) 3360{ 3361 return __dev_queue_xmit(skb, NULL); 3362} 3363 3364static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3365 struct net_device *sb_dev) 3366{ 3367 return __dev_queue_xmit(skb, sb_dev); 3368} 3369 3370static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3371{ 3372 int ret; 3373 3374 ret = __dev_direct_xmit(skb, queue_id); 3375 if (!dev_xmit_complete(ret)) 3376 kfree_skb(skb); 3377 return ret; 3378} 3379 3380int register_netdevice(struct net_device *dev); 3381void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3382void unregister_netdevice_many(struct list_head *head); 3383static inline void unregister_netdevice(struct net_device *dev) 3384{ 3385 unregister_netdevice_queue(dev, NULL); 3386} 3387 3388int netdev_refcnt_read(const struct net_device *dev); 3389void free_netdev(struct net_device *dev); 3390 3391struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3392 struct sk_buff *skb, 3393 bool all_slaves); 3394struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3395 struct sock *sk); 3396struct net_device *dev_get_by_index(struct net *net, int ifindex); 3397struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3398struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3399 netdevice_tracker *tracker, gfp_t gfp); 3400struct net_device *netdev_get_by_name(struct net *net, const char *name, 3401 netdevice_tracker *tracker, gfp_t gfp); 3402struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 3403 unsigned short flags, unsigned short mask); 3404struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3405void netdev_copy_name(struct net_device *dev, char *name); 3406 3407static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3408 unsigned short type, 3409 const void *daddr, const void *saddr, 3410 unsigned int len) 3411{ 3412 if (!dev->header_ops || !dev->header_ops->create) 3413 return 0; 3414 3415 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3416} 3417 3418static inline int dev_parse_header(const struct sk_buff *skb, 3419 unsigned char *haddr) 3420{ 3421 const struct net_device *dev = skb->dev; 3422 3423 if (!dev->header_ops || !dev->header_ops->parse) 3424 return 0; 3425 return dev->header_ops->parse(skb, haddr); 3426} 3427 3428static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3429{ 3430 const struct net_device *dev = skb->dev; 3431 3432 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3433 return 0; 3434 return dev->header_ops->parse_protocol(skb); 3435} 3436 3437/* ll_header must have at least hard_header_len allocated */ 3438static inline bool dev_validate_header(const struct net_device *dev, 3439 char *ll_header, int len) 3440{ 3441 if (likely(len >= dev->hard_header_len)) 3442 return true; 3443 if (len < dev->min_header_len) 3444 return false; 3445 3446 if (capable(CAP_SYS_RAWIO)) { 3447 memset(ll_header + len, 0, dev->hard_header_len - len); 3448 return true; 3449 } 3450 3451 if (dev->header_ops && dev->header_ops->validate) 3452 return dev->header_ops->validate(ll_header, len); 3453 3454 return false; 3455} 3456 3457static inline bool dev_has_header(const struct net_device *dev) 3458{ 3459 return dev->header_ops && dev->header_ops->create; 3460} 3461 3462/* 3463 * Incoming packets are placed on per-CPU queues 3464 */ 3465struct softnet_data { 3466 struct list_head poll_list; 3467 struct sk_buff_head process_queue; 3468 local_lock_t process_queue_bh_lock; 3469 3470 /* stats */ 3471 unsigned int processed; 3472 unsigned int time_squeeze; 3473#ifdef CONFIG_RPS 3474 struct softnet_data *rps_ipi_list; 3475#endif 3476 3477 unsigned int received_rps; 3478 bool in_net_rx_action; 3479 bool in_napi_threaded_poll; 3480 3481#ifdef CONFIG_NET_FLOW_LIMIT 3482 struct sd_flow_limit __rcu *flow_limit; 3483#endif 3484 struct Qdisc *output_queue; 3485 struct Qdisc **output_queue_tailp; 3486 struct sk_buff *completion_queue; 3487#ifdef CONFIG_XFRM_OFFLOAD 3488 struct sk_buff_head xfrm_backlog; 3489#endif 3490 /* written and read only by owning cpu: */ 3491 struct netdev_xmit xmit; 3492#ifdef CONFIG_RPS 3493 /* input_queue_head should be written by cpu owning this struct, 3494 * and only read by other cpus. Worth using a cache line. 3495 */ 3496 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3497 3498 /* Elements below can be accessed between CPUs for RPS/RFS */ 3499 call_single_data_t csd ____cacheline_aligned_in_smp; 3500 struct softnet_data *rps_ipi_next; 3501 unsigned int cpu; 3502 unsigned int input_queue_tail; 3503#endif 3504 struct sk_buff_head input_pkt_queue; 3505 struct napi_struct backlog; 3506 3507 atomic_t dropped ____cacheline_aligned_in_smp; 3508 3509 /* Another possibly contended cache line */ 3510 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3511 int defer_count; 3512 int defer_ipi_scheduled; 3513 struct sk_buff *defer_list; 3514 call_single_data_t defer_csd; 3515}; 3516 3517DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3518 3519struct page_pool_bh { 3520 struct page_pool *pool; 3521 local_lock_t bh_lock; 3522}; 3523DECLARE_PER_CPU(struct page_pool_bh, system_page_pool); 3524 3525#ifndef CONFIG_PREEMPT_RT 3526static inline int dev_recursion_level(void) 3527{ 3528 return this_cpu_read(softnet_data.xmit.recursion); 3529} 3530#else 3531static inline int dev_recursion_level(void) 3532{ 3533 return current->net_xmit.recursion; 3534} 3535 3536#endif 3537 3538void __netif_schedule(struct Qdisc *q); 3539void netif_schedule_queue(struct netdev_queue *txq); 3540 3541static inline void netif_tx_schedule_all(struct net_device *dev) 3542{ 3543 unsigned int i; 3544 3545 for (i = 0; i < dev->num_tx_queues; i++) 3546 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3547} 3548 3549static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3550{ 3551 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3552} 3553 3554/** 3555 * netif_start_queue - allow transmit 3556 * @dev: network device 3557 * 3558 * Allow upper layers to call the device hard_start_xmit routine. 3559 */ 3560static inline void netif_start_queue(struct net_device *dev) 3561{ 3562 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3563} 3564 3565static inline void netif_tx_start_all_queues(struct net_device *dev) 3566{ 3567 unsigned int i; 3568 3569 for (i = 0; i < dev->num_tx_queues; i++) { 3570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3571 netif_tx_start_queue(txq); 3572 } 3573} 3574 3575void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3576 3577/** 3578 * netif_wake_queue - restart transmit 3579 * @dev: network device 3580 * 3581 * Allow upper layers to call the device hard_start_xmit routine. 3582 * Used for flow control when transmit resources are available. 3583 */ 3584static inline void netif_wake_queue(struct net_device *dev) 3585{ 3586 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3587} 3588 3589static inline void netif_tx_wake_all_queues(struct net_device *dev) 3590{ 3591 unsigned int i; 3592 3593 for (i = 0; i < dev->num_tx_queues; i++) { 3594 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3595 netif_tx_wake_queue(txq); 3596 } 3597} 3598 3599static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3600{ 3601 /* Paired with READ_ONCE() from dev_watchdog() */ 3602 WRITE_ONCE(dev_queue->trans_start, jiffies); 3603 3604 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3605 smp_mb__before_atomic(); 3606 3607 /* Must be an atomic op see netif_txq_try_stop() */ 3608 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3609} 3610 3611/** 3612 * netif_stop_queue - stop transmitted packets 3613 * @dev: network device 3614 * 3615 * Stop upper layers calling the device hard_start_xmit routine. 3616 * Used for flow control when transmit resources are unavailable. 3617 */ 3618static inline void netif_stop_queue(struct net_device *dev) 3619{ 3620 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3621} 3622 3623void netif_tx_stop_all_queues(struct net_device *dev); 3624 3625static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3626{ 3627 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3628} 3629 3630/** 3631 * netif_queue_stopped - test if transmit queue is flowblocked 3632 * @dev: network device 3633 * 3634 * Test if transmit queue on device is currently unable to send. 3635 */ 3636static inline bool netif_queue_stopped(const struct net_device *dev) 3637{ 3638 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3639} 3640 3641static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3642{ 3643 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3644} 3645 3646static inline bool 3647netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3648{ 3649 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3650} 3651 3652static inline bool 3653netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3654{ 3655 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3656} 3657 3658/** 3659 * netdev_queue_set_dql_min_limit - set dql minimum limit 3660 * @dev_queue: pointer to transmit queue 3661 * @min_limit: dql minimum limit 3662 * 3663 * Forces xmit_more() to return true until the minimum threshold 3664 * defined by @min_limit is reached (or until the tx queue is 3665 * empty). Warning: to be use with care, misuse will impact the 3666 * latency. 3667 */ 3668static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3669 unsigned int min_limit) 3670{ 3671#ifdef CONFIG_BQL 3672 dev_queue->dql.min_limit = min_limit; 3673#endif 3674} 3675 3676static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3677{ 3678#ifdef CONFIG_BQL 3679 /* Non-BQL migrated drivers will return 0, too. */ 3680 return dql_avail(&txq->dql); 3681#else 3682 return 0; 3683#endif 3684} 3685 3686/** 3687 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3688 * @dev_queue: pointer to transmit queue 3689 * 3690 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3691 * to give appropriate hint to the CPU. 3692 */ 3693static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3694{ 3695#ifdef CONFIG_BQL 3696 prefetchw(&dev_queue->dql.num_queued); 3697#endif 3698} 3699 3700/** 3701 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3702 * @dev_queue: pointer to transmit queue 3703 * 3704 * BQL enabled drivers might use this helper in their TX completion path, 3705 * to give appropriate hint to the CPU. 3706 */ 3707static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3708{ 3709#ifdef CONFIG_BQL 3710 prefetchw(&dev_queue->dql.limit); 3711#endif 3712} 3713 3714/** 3715 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3716 * @dev_queue: network device queue 3717 * @bytes: number of bytes queued to the device queue 3718 * 3719 * Report the number of bytes queued for sending/completion to the network 3720 * device hardware queue. @bytes should be a good approximation and should 3721 * exactly match netdev_completed_queue() @bytes. 3722 * This is typically called once per packet, from ndo_start_xmit(). 3723 */ 3724static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3725 unsigned int bytes) 3726{ 3727#ifdef CONFIG_BQL 3728 dql_queued(&dev_queue->dql, bytes); 3729 3730 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3731 return; 3732 3733 /* Paired with READ_ONCE() from dev_watchdog() */ 3734 WRITE_ONCE(dev_queue->trans_start, jiffies); 3735 3736 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3737 smp_mb__before_atomic(); 3738 3739 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3740 3741 /* 3742 * The XOFF flag must be set before checking the dql_avail below, 3743 * because in netdev_tx_completed_queue we update the dql_completed 3744 * before checking the XOFF flag. 3745 */ 3746 smp_mb__after_atomic(); 3747 3748 /* check again in case another CPU has just made room avail */ 3749 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3750 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3751#endif 3752} 3753 3754/* Variant of netdev_tx_sent_queue() for drivers that are aware 3755 * that they should not test BQL status themselves. 3756 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3757 * skb of a batch. 3758 * Returns true if the doorbell must be used to kick the NIC. 3759 */ 3760static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3761 unsigned int bytes, 3762 bool xmit_more) 3763{ 3764 if (xmit_more) { 3765#ifdef CONFIG_BQL 3766 dql_queued(&dev_queue->dql, bytes); 3767#endif 3768 return netif_tx_queue_stopped(dev_queue); 3769 } 3770 netdev_tx_sent_queue(dev_queue, bytes); 3771 return true; 3772} 3773 3774/** 3775 * netdev_sent_queue - report the number of bytes queued to hardware 3776 * @dev: network device 3777 * @bytes: number of bytes queued to the hardware device queue 3778 * 3779 * Report the number of bytes queued for sending/completion to the network 3780 * device hardware queue#0. @bytes should be a good approximation and should 3781 * exactly match netdev_completed_queue() @bytes. 3782 * This is typically called once per packet, from ndo_start_xmit(). 3783 */ 3784static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3785{ 3786 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3787} 3788 3789static inline bool __netdev_sent_queue(struct net_device *dev, 3790 unsigned int bytes, 3791 bool xmit_more) 3792{ 3793 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3794 xmit_more); 3795} 3796 3797/** 3798 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3799 * @dev_queue: network device queue 3800 * @pkts: number of packets (currently ignored) 3801 * @bytes: number of bytes dequeued from the device queue 3802 * 3803 * Must be called at most once per TX completion round (and not per 3804 * individual packet), so that BQL can adjust its limits appropriately. 3805 */ 3806static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3807 unsigned int pkts, unsigned int bytes) 3808{ 3809#ifdef CONFIG_BQL 3810 if (unlikely(!bytes)) 3811 return; 3812 3813 dql_completed(&dev_queue->dql, bytes); 3814 3815 /* 3816 * Without the memory barrier there is a small possibility that 3817 * netdev_tx_sent_queue will miss the update and cause the queue to 3818 * be stopped forever 3819 */ 3820 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3821 3822 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3823 return; 3824 3825 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3826 netif_schedule_queue(dev_queue); 3827#endif 3828} 3829 3830/** 3831 * netdev_completed_queue - report bytes and packets completed by device 3832 * @dev: network device 3833 * @pkts: actual number of packets sent over the medium 3834 * @bytes: actual number of bytes sent over the medium 3835 * 3836 * Report the number of bytes and packets transmitted by the network device 3837 * hardware queue over the physical medium, @bytes must exactly match the 3838 * @bytes amount passed to netdev_sent_queue() 3839 */ 3840static inline void netdev_completed_queue(struct net_device *dev, 3841 unsigned int pkts, unsigned int bytes) 3842{ 3843 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3844} 3845 3846static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3847{ 3848#ifdef CONFIG_BQL 3849 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3850 dql_reset(&q->dql); 3851#endif 3852} 3853 3854/** 3855 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue 3856 * @dev: network device 3857 * @qid: stack index of the queue to reset 3858 */ 3859static inline void netdev_tx_reset_subqueue(const struct net_device *dev, 3860 u32 qid) 3861{ 3862 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid)); 3863} 3864 3865/** 3866 * netdev_reset_queue - reset the packets and bytes count of a network device 3867 * @dev_queue: network device 3868 * 3869 * Reset the bytes and packet count of a network device and clear the 3870 * software flow control OFF bit for this network device 3871 */ 3872static inline void netdev_reset_queue(struct net_device *dev_queue) 3873{ 3874 netdev_tx_reset_subqueue(dev_queue, 0); 3875} 3876 3877/** 3878 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3879 * @dev: network device 3880 * @queue_index: given tx queue index 3881 * 3882 * Returns 0 if given tx queue index >= number of device tx queues, 3883 * otherwise returns the originally passed tx queue index. 3884 */ 3885static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3886{ 3887 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3888 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3889 dev->name, queue_index, 3890 dev->real_num_tx_queues); 3891 return 0; 3892 } 3893 3894 return queue_index; 3895} 3896 3897/** 3898 * netif_running - test if up 3899 * @dev: network device 3900 * 3901 * Test if the device has been brought up. 3902 */ 3903static inline bool netif_running(const struct net_device *dev) 3904{ 3905 return test_bit(__LINK_STATE_START, &dev->state); 3906} 3907 3908/* 3909 * Routines to manage the subqueues on a device. We only need start, 3910 * stop, and a check if it's stopped. All other device management is 3911 * done at the overall netdevice level. 3912 * Also test the device if we're multiqueue. 3913 */ 3914 3915/** 3916 * netif_start_subqueue - allow sending packets on subqueue 3917 * @dev: network device 3918 * @queue_index: sub queue index 3919 * 3920 * Start individual transmit queue of a device with multiple transmit queues. 3921 */ 3922static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3923{ 3924 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3925 3926 netif_tx_start_queue(txq); 3927} 3928 3929/** 3930 * netif_stop_subqueue - stop sending packets on subqueue 3931 * @dev: network device 3932 * @queue_index: sub queue index 3933 * 3934 * Stop individual transmit queue of a device with multiple transmit queues. 3935 */ 3936static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3937{ 3938 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3939 netif_tx_stop_queue(txq); 3940} 3941 3942/** 3943 * __netif_subqueue_stopped - test status of subqueue 3944 * @dev: network device 3945 * @queue_index: sub queue index 3946 * 3947 * Check individual transmit queue of a device with multiple transmit queues. 3948 */ 3949static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3950 u16 queue_index) 3951{ 3952 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3953 3954 return netif_tx_queue_stopped(txq); 3955} 3956 3957/** 3958 * netif_subqueue_stopped - test status of subqueue 3959 * @dev: network device 3960 * @skb: sub queue buffer pointer 3961 * 3962 * Check individual transmit queue of a device with multiple transmit queues. 3963 */ 3964static inline bool netif_subqueue_stopped(const struct net_device *dev, 3965 struct sk_buff *skb) 3966{ 3967 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3968} 3969 3970/** 3971 * netif_wake_subqueue - allow sending packets on subqueue 3972 * @dev: network device 3973 * @queue_index: sub queue index 3974 * 3975 * Resume individual transmit queue of a device with multiple transmit queues. 3976 */ 3977static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3978{ 3979 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3980 3981 netif_tx_wake_queue(txq); 3982} 3983 3984#ifdef CONFIG_XPS 3985int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3986 u16 index); 3987int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3988 u16 index, enum xps_map_type type); 3989 3990/** 3991 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3992 * @j: CPU/Rx queue index 3993 * @mask: bitmask of all cpus/rx queues 3994 * @nr_bits: number of bits in the bitmask 3995 * 3996 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3997 */ 3998static inline bool netif_attr_test_mask(unsigned long j, 3999 const unsigned long *mask, 4000 unsigned int nr_bits) 4001{ 4002 cpu_max_bits_warn(j, nr_bits); 4003 return test_bit(j, mask); 4004} 4005 4006/** 4007 * netif_attr_test_online - Test for online CPU/Rx queue 4008 * @j: CPU/Rx queue index 4009 * @online_mask: bitmask for CPUs/Rx queues that are online 4010 * @nr_bits: number of bits in the bitmask 4011 * 4012 * Returns: true if a CPU/Rx queue is online. 4013 */ 4014static inline bool netif_attr_test_online(unsigned long j, 4015 const unsigned long *online_mask, 4016 unsigned int nr_bits) 4017{ 4018 cpu_max_bits_warn(j, nr_bits); 4019 4020 if (online_mask) 4021 return test_bit(j, online_mask); 4022 4023 return (j < nr_bits); 4024} 4025 4026/** 4027 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 4028 * @n: CPU/Rx queue index 4029 * @srcp: the cpumask/Rx queue mask pointer 4030 * @nr_bits: number of bits in the bitmask 4031 * 4032 * Returns: next (after n) CPU/Rx queue index in the mask; 4033 * >= nr_bits if no further CPUs/Rx queues set. 4034 */ 4035static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 4036 unsigned int nr_bits) 4037{ 4038 /* -1 is a legal arg here. */ 4039 if (n != -1) 4040 cpu_max_bits_warn(n, nr_bits); 4041 4042 if (srcp) 4043 return find_next_bit(srcp, nr_bits, n + 1); 4044 4045 return n + 1; 4046} 4047 4048/** 4049 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 4050 * @n: CPU/Rx queue index 4051 * @src1p: the first CPUs/Rx queues mask pointer 4052 * @src2p: the second CPUs/Rx queues mask pointer 4053 * @nr_bits: number of bits in the bitmask 4054 * 4055 * Returns: next (after n) CPU/Rx queue index set in both masks; 4056 * >= nr_bits if no further CPUs/Rx queues set in both. 4057 */ 4058static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 4059 const unsigned long *src2p, 4060 unsigned int nr_bits) 4061{ 4062 /* -1 is a legal arg here. */ 4063 if (n != -1) 4064 cpu_max_bits_warn(n, nr_bits); 4065 4066 if (src1p && src2p) 4067 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 4068 else if (src1p) 4069 return find_next_bit(src1p, nr_bits, n + 1); 4070 else if (src2p) 4071 return find_next_bit(src2p, nr_bits, n + 1); 4072 4073 return n + 1; 4074} 4075#else 4076static inline int netif_set_xps_queue(struct net_device *dev, 4077 const struct cpumask *mask, 4078 u16 index) 4079{ 4080 return 0; 4081} 4082 4083static inline int __netif_set_xps_queue(struct net_device *dev, 4084 const unsigned long *mask, 4085 u16 index, enum xps_map_type type) 4086{ 4087 return 0; 4088} 4089#endif 4090 4091/** 4092 * netif_is_multiqueue - test if device has multiple transmit queues 4093 * @dev: network device 4094 * 4095 * Check if device has multiple transmit queues 4096 */ 4097static inline bool netif_is_multiqueue(const struct net_device *dev) 4098{ 4099 return dev->num_tx_queues > 1; 4100} 4101 4102int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 4103int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 4104int netif_set_real_num_queues(struct net_device *dev, 4105 unsigned int txq, unsigned int rxq); 4106 4107int netif_get_num_default_rss_queues(void); 4108 4109void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 4110void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 4111 4112/* 4113 * It is not allowed to call kfree_skb() or consume_skb() from hardware 4114 * interrupt context or with hardware interrupts being disabled. 4115 * (in_hardirq() || irqs_disabled()) 4116 * 4117 * We provide four helpers that can be used in following contexts : 4118 * 4119 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 4120 * replacing kfree_skb(skb) 4121 * 4122 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 4123 * Typically used in place of consume_skb(skb) in TX completion path 4124 * 4125 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 4126 * replacing kfree_skb(skb) 4127 * 4128 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 4129 * and consumed a packet. Used in place of consume_skb(skb) 4130 */ 4131static inline void dev_kfree_skb_irq(struct sk_buff *skb) 4132{ 4133 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 4134} 4135 4136static inline void dev_consume_skb_irq(struct sk_buff *skb) 4137{ 4138 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 4139} 4140 4141static inline void dev_kfree_skb_any(struct sk_buff *skb) 4142{ 4143 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 4144} 4145 4146static inline void dev_consume_skb_any(struct sk_buff *skb) 4147{ 4148 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 4149} 4150 4151u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4152 const struct bpf_prog *xdp_prog); 4153void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog); 4154int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb); 4155int netif_rx(struct sk_buff *skb); 4156int __netif_rx(struct sk_buff *skb); 4157 4158int netif_receive_skb(struct sk_buff *skb); 4159int netif_receive_skb_core(struct sk_buff *skb); 4160void netif_receive_skb_list_internal(struct list_head *head); 4161void netif_receive_skb_list(struct list_head *head); 4162gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb); 4163 4164static inline gro_result_t napi_gro_receive(struct napi_struct *napi, 4165 struct sk_buff *skb) 4166{ 4167 return gro_receive_skb(&napi->gro, skb); 4168} 4169 4170struct sk_buff *napi_get_frags(struct napi_struct *napi); 4171gro_result_t napi_gro_frags(struct napi_struct *napi); 4172 4173static inline void napi_free_frags(struct napi_struct *napi) 4174{ 4175 kfree_skb(napi->skb); 4176 napi->skb = NULL; 4177} 4178 4179bool netdev_is_rx_handler_busy(struct net_device *dev); 4180int netdev_rx_handler_register(struct net_device *dev, 4181 rx_handler_func_t *rx_handler, 4182 void *rx_handler_data); 4183void netdev_rx_handler_unregister(struct net_device *dev); 4184 4185bool dev_valid_name(const char *name); 4186static inline bool is_socket_ioctl_cmd(unsigned int cmd) 4187{ 4188 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 4189} 4190int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4191int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4192int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4193 void __user *data, bool *need_copyout); 4194int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4195int dev_eth_ioctl(struct net_device *dev, 4196 struct ifreq *ifr, unsigned int cmd); 4197int generic_hwtstamp_get_lower(struct net_device *dev, 4198 struct kernel_hwtstamp_config *kernel_cfg); 4199int generic_hwtstamp_set_lower(struct net_device *dev, 4200 struct kernel_hwtstamp_config *kernel_cfg, 4201 struct netlink_ext_ack *extack); 4202int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4203unsigned int netif_get_flags(const struct net_device *dev); 4204int __dev_change_flags(struct net_device *dev, unsigned int flags, 4205 struct netlink_ext_ack *extack); 4206int netif_change_flags(struct net_device *dev, unsigned int flags, 4207 struct netlink_ext_ack *extack); 4208int dev_change_flags(struct net_device *dev, unsigned int flags, 4209 struct netlink_ext_ack *extack); 4210int netif_set_alias(struct net_device *dev, const char *alias, size_t len); 4211int dev_set_alias(struct net_device *, const char *, size_t); 4212int dev_get_alias(const struct net_device *, char *, size_t); 4213int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4214 const char *pat, int new_ifindex, 4215 struct netlink_ext_ack *extack); 4216int dev_change_net_namespace(struct net_device *dev, struct net *net, 4217 const char *pat); 4218int __netif_set_mtu(struct net_device *dev, int new_mtu); 4219int netif_set_mtu(struct net_device *dev, int new_mtu); 4220int dev_set_mtu(struct net_device *, int); 4221int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4222 struct netlink_ext_ack *extack); 4223int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 4224 struct netlink_ext_ack *extack); 4225int dev_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 4226 struct netlink_ext_ack *extack); 4227int dev_set_mac_address_user(struct net_device *dev, struct sockaddr_storage *ss, 4228 struct netlink_ext_ack *extack); 4229int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4230int netif_get_port_parent_id(struct net_device *dev, 4231 struct netdev_phys_item_id *ppid, bool recurse); 4232bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4233 4234struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4235struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4236 struct netdev_queue *txq, int *ret); 4237 4238int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4239u8 dev_xdp_prog_count(struct net_device *dev); 4240int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 4241int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf); 4242u8 dev_xdp_sb_prog_count(struct net_device *dev); 4243u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4244 4245u32 dev_get_min_mp_channel_count(const struct net_device *dev); 4246 4247int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4248int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4249int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4250bool is_skb_forwardable(const struct net_device *dev, 4251 const struct sk_buff *skb); 4252 4253static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4254 const struct sk_buff *skb, 4255 const bool check_mtu) 4256{ 4257 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4258 unsigned int len; 4259 4260 if (!(dev->flags & IFF_UP)) 4261 return false; 4262 4263 if (!check_mtu) 4264 return true; 4265 4266 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4267 if (skb->len <= len) 4268 return true; 4269 4270 /* if TSO is enabled, we don't care about the length as the packet 4271 * could be forwarded without being segmented before 4272 */ 4273 if (skb_is_gso(skb)) 4274 return true; 4275 4276 return false; 4277} 4278 4279void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4280 4281#define DEV_CORE_STATS_INC(FIELD) \ 4282static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4283{ \ 4284 netdev_core_stats_inc(dev, \ 4285 offsetof(struct net_device_core_stats, FIELD)); \ 4286} 4287DEV_CORE_STATS_INC(rx_dropped) 4288DEV_CORE_STATS_INC(tx_dropped) 4289DEV_CORE_STATS_INC(rx_nohandler) 4290DEV_CORE_STATS_INC(rx_otherhost_dropped) 4291#undef DEV_CORE_STATS_INC 4292 4293static __always_inline int ____dev_forward_skb(struct net_device *dev, 4294 struct sk_buff *skb, 4295 const bool check_mtu) 4296{ 4297 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4298 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4299 dev_core_stats_rx_dropped_inc(dev); 4300 kfree_skb(skb); 4301 return NET_RX_DROP; 4302 } 4303 4304 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4305 skb->priority = 0; 4306 return 0; 4307} 4308 4309bool dev_nit_active_rcu(const struct net_device *dev); 4310static inline bool dev_nit_active(const struct net_device *dev) 4311{ 4312 bool ret; 4313 4314 rcu_read_lock(); 4315 ret = dev_nit_active_rcu(dev); 4316 rcu_read_unlock(); 4317 return ret; 4318} 4319 4320void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4321 4322static inline void __dev_put(struct net_device *dev) 4323{ 4324 if (dev) { 4325#ifdef CONFIG_PCPU_DEV_REFCNT 4326 this_cpu_dec(*dev->pcpu_refcnt); 4327#else 4328 refcount_dec(&dev->dev_refcnt); 4329#endif 4330 } 4331} 4332 4333static inline void __dev_hold(struct net_device *dev) 4334{ 4335 if (dev) { 4336#ifdef CONFIG_PCPU_DEV_REFCNT 4337 this_cpu_inc(*dev->pcpu_refcnt); 4338#else 4339 refcount_inc(&dev->dev_refcnt); 4340#endif 4341 } 4342} 4343 4344static inline void __netdev_tracker_alloc(struct net_device *dev, 4345 netdevice_tracker *tracker, 4346 gfp_t gfp) 4347{ 4348#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4349 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4350#endif 4351} 4352 4353/* netdev_tracker_alloc() can upgrade a prior untracked reference 4354 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4355 */ 4356static inline void netdev_tracker_alloc(struct net_device *dev, 4357 netdevice_tracker *tracker, gfp_t gfp) 4358{ 4359#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4360 refcount_dec(&dev->refcnt_tracker.no_tracker); 4361 __netdev_tracker_alloc(dev, tracker, gfp); 4362#endif 4363} 4364 4365static inline void netdev_tracker_free(struct net_device *dev, 4366 netdevice_tracker *tracker) 4367{ 4368#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4369 ref_tracker_free(&dev->refcnt_tracker, tracker); 4370#endif 4371} 4372 4373static inline void netdev_hold(struct net_device *dev, 4374 netdevice_tracker *tracker, gfp_t gfp) 4375{ 4376 if (dev) { 4377 __dev_hold(dev); 4378 __netdev_tracker_alloc(dev, tracker, gfp); 4379 } 4380} 4381 4382static inline void netdev_put(struct net_device *dev, 4383 netdevice_tracker *tracker) 4384{ 4385 if (dev) { 4386 netdev_tracker_free(dev, tracker); 4387 __dev_put(dev); 4388 } 4389} 4390 4391/** 4392 * dev_hold - get reference to device 4393 * @dev: network device 4394 * 4395 * Hold reference to device to keep it from being freed. 4396 * Try using netdev_hold() instead. 4397 */ 4398static inline void dev_hold(struct net_device *dev) 4399{ 4400 netdev_hold(dev, NULL, GFP_ATOMIC); 4401} 4402 4403/** 4404 * dev_put - release reference to device 4405 * @dev: network device 4406 * 4407 * Release reference to device to allow it to be freed. 4408 * Try using netdev_put() instead. 4409 */ 4410static inline void dev_put(struct net_device *dev) 4411{ 4412 netdev_put(dev, NULL); 4413} 4414 4415DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4416 4417static inline void netdev_ref_replace(struct net_device *odev, 4418 struct net_device *ndev, 4419 netdevice_tracker *tracker, 4420 gfp_t gfp) 4421{ 4422 if (odev) 4423 netdev_tracker_free(odev, tracker); 4424 4425 __dev_hold(ndev); 4426 __dev_put(odev); 4427 4428 if (ndev) 4429 __netdev_tracker_alloc(ndev, tracker, gfp); 4430} 4431 4432/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4433 * and _off may be called from IRQ context, but it is caller 4434 * who is responsible for serialization of these calls. 4435 * 4436 * The name carrier is inappropriate, these functions should really be 4437 * called netif_lowerlayer_*() because they represent the state of any 4438 * kind of lower layer not just hardware media. 4439 */ 4440void linkwatch_fire_event(struct net_device *dev); 4441 4442/** 4443 * linkwatch_sync_dev - sync linkwatch for the given device 4444 * @dev: network device to sync linkwatch for 4445 * 4446 * Sync linkwatch for the given device, removing it from the 4447 * pending work list (if queued). 4448 */ 4449void linkwatch_sync_dev(struct net_device *dev); 4450void __linkwatch_sync_dev(struct net_device *dev); 4451 4452/** 4453 * netif_carrier_ok - test if carrier present 4454 * @dev: network device 4455 * 4456 * Check if carrier is present on device 4457 */ 4458static inline bool netif_carrier_ok(const struct net_device *dev) 4459{ 4460 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4461} 4462 4463unsigned long dev_trans_start(struct net_device *dev); 4464 4465void netdev_watchdog_up(struct net_device *dev); 4466 4467void netif_carrier_on(struct net_device *dev); 4468void netif_carrier_off(struct net_device *dev); 4469void netif_carrier_event(struct net_device *dev); 4470 4471/** 4472 * netif_dormant_on - mark device as dormant. 4473 * @dev: network device 4474 * 4475 * Mark device as dormant (as per RFC2863). 4476 * 4477 * The dormant state indicates that the relevant interface is not 4478 * actually in a condition to pass packets (i.e., it is not 'up') but is 4479 * in a "pending" state, waiting for some external event. For "on- 4480 * demand" interfaces, this new state identifies the situation where the 4481 * interface is waiting for events to place it in the up state. 4482 */ 4483static inline void netif_dormant_on(struct net_device *dev) 4484{ 4485 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4486 linkwatch_fire_event(dev); 4487} 4488 4489/** 4490 * netif_dormant_off - set device as not dormant. 4491 * @dev: network device 4492 * 4493 * Device is not in dormant state. 4494 */ 4495static inline void netif_dormant_off(struct net_device *dev) 4496{ 4497 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4498 linkwatch_fire_event(dev); 4499} 4500 4501/** 4502 * netif_dormant - test if device is dormant 4503 * @dev: network device 4504 * 4505 * Check if device is dormant. 4506 */ 4507static inline bool netif_dormant(const struct net_device *dev) 4508{ 4509 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4510} 4511 4512 4513/** 4514 * netif_testing_on - mark device as under test. 4515 * @dev: network device 4516 * 4517 * Mark device as under test (as per RFC2863). 4518 * 4519 * The testing state indicates that some test(s) must be performed on 4520 * the interface. After completion, of the test, the interface state 4521 * will change to up, dormant, or down, as appropriate. 4522 */ 4523static inline void netif_testing_on(struct net_device *dev) 4524{ 4525 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4526 linkwatch_fire_event(dev); 4527} 4528 4529/** 4530 * netif_testing_off - set device as not under test. 4531 * @dev: network device 4532 * 4533 * Device is not in testing state. 4534 */ 4535static inline void netif_testing_off(struct net_device *dev) 4536{ 4537 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4538 linkwatch_fire_event(dev); 4539} 4540 4541/** 4542 * netif_testing - test if device is under test 4543 * @dev: network device 4544 * 4545 * Check if device is under test 4546 */ 4547static inline bool netif_testing(const struct net_device *dev) 4548{ 4549 return test_bit(__LINK_STATE_TESTING, &dev->state); 4550} 4551 4552 4553/** 4554 * netif_oper_up - test if device is operational 4555 * @dev: network device 4556 * 4557 * Check if carrier is operational 4558 */ 4559static inline bool netif_oper_up(const struct net_device *dev) 4560{ 4561 unsigned int operstate = READ_ONCE(dev->operstate); 4562 4563 return operstate == IF_OPER_UP || 4564 operstate == IF_OPER_UNKNOWN /* backward compat */; 4565} 4566 4567/** 4568 * netif_device_present - is device available or removed 4569 * @dev: network device 4570 * 4571 * Check if device has not been removed from system. 4572 */ 4573static inline bool netif_device_present(const struct net_device *dev) 4574{ 4575 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4576} 4577 4578void netif_device_detach(struct net_device *dev); 4579 4580void netif_device_attach(struct net_device *dev); 4581 4582/* 4583 * Network interface message level settings 4584 */ 4585 4586enum { 4587 NETIF_MSG_DRV_BIT, 4588 NETIF_MSG_PROBE_BIT, 4589 NETIF_MSG_LINK_BIT, 4590 NETIF_MSG_TIMER_BIT, 4591 NETIF_MSG_IFDOWN_BIT, 4592 NETIF_MSG_IFUP_BIT, 4593 NETIF_MSG_RX_ERR_BIT, 4594 NETIF_MSG_TX_ERR_BIT, 4595 NETIF_MSG_TX_QUEUED_BIT, 4596 NETIF_MSG_INTR_BIT, 4597 NETIF_MSG_TX_DONE_BIT, 4598 NETIF_MSG_RX_STATUS_BIT, 4599 NETIF_MSG_PKTDATA_BIT, 4600 NETIF_MSG_HW_BIT, 4601 NETIF_MSG_WOL_BIT, 4602 4603 /* When you add a new bit above, update netif_msg_class_names array 4604 * in net/ethtool/common.c 4605 */ 4606 NETIF_MSG_CLASS_COUNT, 4607}; 4608/* Both ethtool_ops interface and internal driver implementation use u32 */ 4609static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4610 4611#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4612#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4613 4614#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4615#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4616#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4617#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4618#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4619#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4620#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4621#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4622#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4623#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4624#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4625#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4626#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4627#define NETIF_MSG_HW __NETIF_MSG(HW) 4628#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4629 4630#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4631#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4632#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4633#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4634#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4635#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4636#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4637#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4638#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4639#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4640#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4641#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4642#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4643#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4644#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4645 4646static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4647{ 4648 /* use default */ 4649 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4650 return default_msg_enable_bits; 4651 if (debug_value == 0) /* no output */ 4652 return 0; 4653 /* set low N bits */ 4654 return (1U << debug_value) - 1; 4655} 4656 4657static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4658{ 4659 spin_lock(&txq->_xmit_lock); 4660 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4661 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4662} 4663 4664static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4665{ 4666 __acquire(&txq->_xmit_lock); 4667 return true; 4668} 4669 4670static inline void __netif_tx_release(struct netdev_queue *txq) 4671{ 4672 __release(&txq->_xmit_lock); 4673} 4674 4675static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4676{ 4677 spin_lock_bh(&txq->_xmit_lock); 4678 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4679 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4680} 4681 4682static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4683{ 4684 bool ok = spin_trylock(&txq->_xmit_lock); 4685 4686 if (likely(ok)) { 4687 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4688 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4689 } 4690 return ok; 4691} 4692 4693static inline void __netif_tx_unlock(struct netdev_queue *txq) 4694{ 4695 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4696 WRITE_ONCE(txq->xmit_lock_owner, -1); 4697 spin_unlock(&txq->_xmit_lock); 4698} 4699 4700static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4701{ 4702 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4703 WRITE_ONCE(txq->xmit_lock_owner, -1); 4704 spin_unlock_bh(&txq->_xmit_lock); 4705} 4706 4707/* 4708 * txq->trans_start can be read locklessly from dev_watchdog() 4709 */ 4710static inline void txq_trans_update(const struct net_device *dev, 4711 struct netdev_queue *txq) 4712{ 4713 if (!dev->lltx) 4714 WRITE_ONCE(txq->trans_start, jiffies); 4715} 4716 4717static inline void txq_trans_cond_update(struct netdev_queue *txq) 4718{ 4719 unsigned long now = jiffies; 4720 4721 if (READ_ONCE(txq->trans_start) != now) 4722 WRITE_ONCE(txq->trans_start, now); 4723} 4724 4725/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4726static inline void netif_trans_update(struct net_device *dev) 4727{ 4728 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4729 4730 txq_trans_cond_update(txq); 4731} 4732 4733/** 4734 * netif_tx_lock - grab network device transmit lock 4735 * @dev: network device 4736 * 4737 * Get network device transmit lock 4738 */ 4739void netif_tx_lock(struct net_device *dev); 4740 4741static inline void netif_tx_lock_bh(struct net_device *dev) 4742{ 4743 local_bh_disable(); 4744 netif_tx_lock(dev); 4745} 4746 4747void netif_tx_unlock(struct net_device *dev); 4748 4749static inline void netif_tx_unlock_bh(struct net_device *dev) 4750{ 4751 netif_tx_unlock(dev); 4752 local_bh_enable(); 4753} 4754 4755#define HARD_TX_LOCK(dev, txq, cpu) { \ 4756 if (!(dev)->lltx) { \ 4757 __netif_tx_lock(txq, cpu); \ 4758 } else { \ 4759 __netif_tx_acquire(txq); \ 4760 } \ 4761} 4762 4763#define HARD_TX_TRYLOCK(dev, txq) \ 4764 (!(dev)->lltx ? \ 4765 __netif_tx_trylock(txq) : \ 4766 __netif_tx_acquire(txq)) 4767 4768#define HARD_TX_UNLOCK(dev, txq) { \ 4769 if (!(dev)->lltx) { \ 4770 __netif_tx_unlock(txq); \ 4771 } else { \ 4772 __netif_tx_release(txq); \ 4773 } \ 4774} 4775 4776static inline void netif_tx_disable(struct net_device *dev) 4777{ 4778 unsigned int i; 4779 int cpu; 4780 4781 local_bh_disable(); 4782 cpu = smp_processor_id(); 4783 spin_lock(&dev->tx_global_lock); 4784 for (i = 0; i < dev->num_tx_queues; i++) { 4785 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4786 4787 __netif_tx_lock(txq, cpu); 4788 netif_tx_stop_queue(txq); 4789 __netif_tx_unlock(txq); 4790 } 4791 spin_unlock(&dev->tx_global_lock); 4792 local_bh_enable(); 4793} 4794 4795static inline void netif_addr_lock(struct net_device *dev) 4796{ 4797 unsigned char nest_level = 0; 4798 4799#ifdef CONFIG_LOCKDEP 4800 nest_level = dev->nested_level; 4801#endif 4802 spin_lock_nested(&dev->addr_list_lock, nest_level); 4803} 4804 4805static inline void netif_addr_lock_bh(struct net_device *dev) 4806{ 4807 unsigned char nest_level = 0; 4808 4809#ifdef CONFIG_LOCKDEP 4810 nest_level = dev->nested_level; 4811#endif 4812 local_bh_disable(); 4813 spin_lock_nested(&dev->addr_list_lock, nest_level); 4814} 4815 4816static inline void netif_addr_unlock(struct net_device *dev) 4817{ 4818 spin_unlock(&dev->addr_list_lock); 4819} 4820 4821static inline void netif_addr_unlock_bh(struct net_device *dev) 4822{ 4823 spin_unlock_bh(&dev->addr_list_lock); 4824} 4825 4826/* 4827 * dev_addrs walker. Should be used only for read access. Call with 4828 * rcu_read_lock held. 4829 */ 4830#define for_each_dev_addr(dev, ha) \ 4831 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4832 4833/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4834 4835void ether_setup(struct net_device *dev); 4836 4837/* Allocate dummy net_device */ 4838struct net_device *alloc_netdev_dummy(int sizeof_priv); 4839 4840/* Support for loadable net-drivers */ 4841struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4842 unsigned char name_assign_type, 4843 void (*setup)(struct net_device *), 4844 unsigned int txqs, unsigned int rxqs); 4845#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4846 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4847 4848#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4849 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4850 count) 4851 4852int register_netdev(struct net_device *dev); 4853void unregister_netdev(struct net_device *dev); 4854 4855int devm_register_netdev(struct device *dev, struct net_device *ndev); 4856 4857/* General hardware address lists handling functions */ 4858int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4859 struct netdev_hw_addr_list *from_list, int addr_len); 4860int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list, 4861 struct netdev_hw_addr_list *from_list, 4862 int addr_len); 4863void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4864 struct netdev_hw_addr_list *from_list, int addr_len); 4865int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4866 struct net_device *dev, 4867 int (*sync)(struct net_device *, const unsigned char *), 4868 int (*unsync)(struct net_device *, 4869 const unsigned char *)); 4870int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4871 struct net_device *dev, 4872 int (*sync)(struct net_device *, 4873 const unsigned char *, int), 4874 int (*unsync)(struct net_device *, 4875 const unsigned char *, int)); 4876void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4877 struct net_device *dev, 4878 int (*unsync)(struct net_device *, 4879 const unsigned char *, int)); 4880void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4881 struct net_device *dev, 4882 int (*unsync)(struct net_device *, 4883 const unsigned char *)); 4884void __hw_addr_init(struct netdev_hw_addr_list *list); 4885 4886/* Functions used for device addresses handling */ 4887void dev_addr_mod(struct net_device *dev, unsigned int offset, 4888 const void *addr, size_t len); 4889 4890static inline void 4891__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4892{ 4893 dev_addr_mod(dev, 0, addr, len); 4894} 4895 4896static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4897{ 4898 __dev_addr_set(dev, addr, dev->addr_len); 4899} 4900 4901int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4902 unsigned char addr_type); 4903int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4904 unsigned char addr_type); 4905 4906/* Functions used for unicast addresses handling */ 4907int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4908int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4909int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4910int dev_uc_sync(struct net_device *to, struct net_device *from); 4911int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4912void dev_uc_unsync(struct net_device *to, struct net_device *from); 4913void dev_uc_flush(struct net_device *dev); 4914void dev_uc_init(struct net_device *dev); 4915 4916/** 4917 * __dev_uc_sync - Synchronize device's unicast list 4918 * @dev: device to sync 4919 * @sync: function to call if address should be added 4920 * @unsync: function to call if address should be removed 4921 * 4922 * Add newly added addresses to the interface, and release 4923 * addresses that have been deleted. 4924 */ 4925static inline int __dev_uc_sync(struct net_device *dev, 4926 int (*sync)(struct net_device *, 4927 const unsigned char *), 4928 int (*unsync)(struct net_device *, 4929 const unsigned char *)) 4930{ 4931 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4932} 4933 4934/** 4935 * __dev_uc_unsync - Remove synchronized addresses from device 4936 * @dev: device to sync 4937 * @unsync: function to call if address should be removed 4938 * 4939 * Remove all addresses that were added to the device by dev_uc_sync(). 4940 */ 4941static inline void __dev_uc_unsync(struct net_device *dev, 4942 int (*unsync)(struct net_device *, 4943 const unsigned char *)) 4944{ 4945 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4946} 4947 4948/* Functions used for multicast addresses handling */ 4949int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4950int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4951int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4952int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4953int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4954int dev_mc_sync(struct net_device *to, struct net_device *from); 4955int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4956void dev_mc_unsync(struct net_device *to, struct net_device *from); 4957void dev_mc_flush(struct net_device *dev); 4958void dev_mc_init(struct net_device *dev); 4959 4960/** 4961 * __dev_mc_sync - Synchronize device's multicast list 4962 * @dev: device to sync 4963 * @sync: function to call if address should be added 4964 * @unsync: function to call if address should be removed 4965 * 4966 * Add newly added addresses to the interface, and release 4967 * addresses that have been deleted. 4968 */ 4969static inline int __dev_mc_sync(struct net_device *dev, 4970 int (*sync)(struct net_device *, 4971 const unsigned char *), 4972 int (*unsync)(struct net_device *, 4973 const unsigned char *)) 4974{ 4975 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4976} 4977 4978/** 4979 * __dev_mc_unsync - Remove synchronized addresses from device 4980 * @dev: device to sync 4981 * @unsync: function to call if address should be removed 4982 * 4983 * Remove all addresses that were added to the device by dev_mc_sync(). 4984 */ 4985static inline void __dev_mc_unsync(struct net_device *dev, 4986 int (*unsync)(struct net_device *, 4987 const unsigned char *)) 4988{ 4989 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4990} 4991 4992/* Functions used for secondary unicast and multicast support */ 4993void dev_set_rx_mode(struct net_device *dev); 4994int netif_set_promiscuity(struct net_device *dev, int inc); 4995int dev_set_promiscuity(struct net_device *dev, int inc); 4996int netif_set_allmulti(struct net_device *dev, int inc, bool notify); 4997int dev_set_allmulti(struct net_device *dev, int inc); 4998void netif_state_change(struct net_device *dev); 4999void netdev_state_change(struct net_device *dev); 5000void __netdev_notify_peers(struct net_device *dev); 5001void netdev_notify_peers(struct net_device *dev); 5002void netdev_features_change(struct net_device *dev); 5003/* Load a device via the kmod */ 5004void dev_load(struct net *net, const char *name); 5005struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5006 struct rtnl_link_stats64 *storage); 5007void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5008 const struct net_device_stats *netdev_stats); 5009void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 5010 const struct pcpu_sw_netstats __percpu *netstats); 5011void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 5012 5013enum { 5014 NESTED_SYNC_IMM_BIT, 5015 NESTED_SYNC_TODO_BIT, 5016}; 5017 5018#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 5019#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 5020 5021#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 5022#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 5023 5024struct netdev_nested_priv { 5025 unsigned char flags; 5026 void *data; 5027}; 5028 5029bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 5030struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5031 struct list_head **iter); 5032 5033/* iterate through upper list, must be called under RCU read lock */ 5034#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 5035 for (iter = &(dev)->adj_list.upper, \ 5036 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 5037 updev; \ 5038 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 5039 5040int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5041 int (*fn)(struct net_device *upper_dev, 5042 struct netdev_nested_priv *priv), 5043 struct netdev_nested_priv *priv); 5044 5045bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5046 struct net_device *upper_dev); 5047 5048bool netdev_has_any_upper_dev(struct net_device *dev); 5049 5050void *netdev_lower_get_next_private(struct net_device *dev, 5051 struct list_head **iter); 5052void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5053 struct list_head **iter); 5054 5055#define netdev_for_each_lower_private(dev, priv, iter) \ 5056 for (iter = (dev)->adj_list.lower.next, \ 5057 priv = netdev_lower_get_next_private(dev, &(iter)); \ 5058 priv; \ 5059 priv = netdev_lower_get_next_private(dev, &(iter))) 5060 5061#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 5062 for (iter = &(dev)->adj_list.lower, \ 5063 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 5064 priv; \ 5065 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 5066 5067void *netdev_lower_get_next(struct net_device *dev, 5068 struct list_head **iter); 5069 5070#define netdev_for_each_lower_dev(dev, ldev, iter) \ 5071 for (iter = (dev)->adj_list.lower.next, \ 5072 ldev = netdev_lower_get_next(dev, &(iter)); \ 5073 ldev; \ 5074 ldev = netdev_lower_get_next(dev, &(iter))) 5075 5076struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5077 struct list_head **iter); 5078int netdev_walk_all_lower_dev(struct net_device *dev, 5079 int (*fn)(struct net_device *lower_dev, 5080 struct netdev_nested_priv *priv), 5081 struct netdev_nested_priv *priv); 5082int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5083 int (*fn)(struct net_device *lower_dev, 5084 struct netdev_nested_priv *priv), 5085 struct netdev_nested_priv *priv); 5086 5087void *netdev_adjacent_get_private(struct list_head *adj_list); 5088void *netdev_lower_get_first_private_rcu(struct net_device *dev); 5089struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 5090struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 5091int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 5092 struct netlink_ext_ack *extack); 5093int netdev_master_upper_dev_link(struct net_device *dev, 5094 struct net_device *upper_dev, 5095 void *upper_priv, void *upper_info, 5096 struct netlink_ext_ack *extack); 5097void netdev_upper_dev_unlink(struct net_device *dev, 5098 struct net_device *upper_dev); 5099int netdev_adjacent_change_prepare(struct net_device *old_dev, 5100 struct net_device *new_dev, 5101 struct net_device *dev, 5102 struct netlink_ext_ack *extack); 5103void netdev_adjacent_change_commit(struct net_device *old_dev, 5104 struct net_device *new_dev, 5105 struct net_device *dev); 5106void netdev_adjacent_change_abort(struct net_device *old_dev, 5107 struct net_device *new_dev, 5108 struct net_device *dev); 5109void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 5110void *netdev_lower_dev_get_private(struct net_device *dev, 5111 struct net_device *lower_dev); 5112void netdev_lower_state_changed(struct net_device *lower_dev, 5113 void *lower_state_info); 5114 5115/* RSS keys are 40 or 52 bytes long */ 5116#define NETDEV_RSS_KEY_LEN 52 5117extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 5118void netdev_rss_key_fill(void *buffer, size_t len); 5119 5120int skb_checksum_help(struct sk_buff *skb); 5121int skb_crc32c_csum_help(struct sk_buff *skb); 5122int skb_csum_hwoffload_help(struct sk_buff *skb, 5123 const netdev_features_t features); 5124 5125struct netdev_bonding_info { 5126 ifslave slave; 5127 ifbond master; 5128}; 5129 5130struct netdev_notifier_bonding_info { 5131 struct netdev_notifier_info info; /* must be first */ 5132 struct netdev_bonding_info bonding_info; 5133}; 5134 5135void netdev_bonding_info_change(struct net_device *dev, 5136 struct netdev_bonding_info *bonding_info); 5137 5138#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 5139void ethtool_notify(struct net_device *dev, unsigned int cmd); 5140#else 5141static inline void ethtool_notify(struct net_device *dev, unsigned int cmd) 5142{ 5143} 5144#endif 5145 5146__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 5147 5148static inline bool can_checksum_protocol(netdev_features_t features, 5149 __be16 protocol) 5150{ 5151 if (protocol == htons(ETH_P_FCOE)) 5152 return !!(features & NETIF_F_FCOE_CRC); 5153 5154 /* Assume this is an IP checksum (not SCTP CRC) */ 5155 5156 if (features & NETIF_F_HW_CSUM) { 5157 /* Can checksum everything */ 5158 return true; 5159 } 5160 5161 switch (protocol) { 5162 case htons(ETH_P_IP): 5163 return !!(features & NETIF_F_IP_CSUM); 5164 case htons(ETH_P_IPV6): 5165 return !!(features & NETIF_F_IPV6_CSUM); 5166 default: 5167 return false; 5168 } 5169} 5170 5171#ifdef CONFIG_BUG 5172void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 5173#else 5174static inline void netdev_rx_csum_fault(struct net_device *dev, 5175 struct sk_buff *skb) 5176{ 5177} 5178#endif 5179/* rx skb timestamps */ 5180void net_enable_timestamp(void); 5181void net_disable_timestamp(void); 5182 5183static inline ktime_t netdev_get_tstamp(struct net_device *dev, 5184 const struct skb_shared_hwtstamps *hwtstamps, 5185 bool cycles) 5186{ 5187 const struct net_device_ops *ops = dev->netdev_ops; 5188 5189 if (ops->ndo_get_tstamp) 5190 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 5191 5192 return hwtstamps->hwtstamp; 5193} 5194 5195#ifndef CONFIG_PREEMPT_RT 5196static inline void netdev_xmit_set_more(bool more) 5197{ 5198 __this_cpu_write(softnet_data.xmit.more, more); 5199} 5200 5201static inline bool netdev_xmit_more(void) 5202{ 5203 return __this_cpu_read(softnet_data.xmit.more); 5204} 5205#else 5206static inline void netdev_xmit_set_more(bool more) 5207{ 5208 current->net_xmit.more = more; 5209} 5210 5211static inline bool netdev_xmit_more(void) 5212{ 5213 return current->net_xmit.more; 5214} 5215#endif 5216 5217static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 5218 struct sk_buff *skb, struct net_device *dev, 5219 bool more) 5220{ 5221 netdev_xmit_set_more(more); 5222 return ops->ndo_start_xmit(skb, dev); 5223} 5224 5225static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 5226 struct netdev_queue *txq, bool more) 5227{ 5228 const struct net_device_ops *ops = dev->netdev_ops; 5229 netdev_tx_t rc; 5230 5231 rc = __netdev_start_xmit(ops, skb, dev, more); 5232 if (rc == NETDEV_TX_OK) 5233 txq_trans_update(dev, txq); 5234 5235 return rc; 5236} 5237 5238int netdev_class_create_file_ns(const struct class_attribute *class_attr, 5239 const void *ns); 5240void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 5241 const void *ns); 5242 5243extern const struct kobj_ns_type_operations net_ns_type_operations; 5244 5245const char *netdev_drivername(const struct net_device *dev); 5246 5247static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 5248 netdev_features_t f2) 5249{ 5250 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 5251 if (f1 & NETIF_F_HW_CSUM) 5252 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5253 else 5254 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5255 } 5256 5257 return f1 & f2; 5258} 5259 5260static inline netdev_features_t netdev_get_wanted_features( 5261 struct net_device *dev) 5262{ 5263 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5264} 5265netdev_features_t netdev_increment_features(netdev_features_t all, 5266 netdev_features_t one, netdev_features_t mask); 5267 5268/* Allow TSO being used on stacked device : 5269 * Performing the GSO segmentation before last device 5270 * is a performance improvement. 5271 */ 5272static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5273 netdev_features_t mask) 5274{ 5275 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5276} 5277 5278int __netdev_update_features(struct net_device *dev); 5279void netdev_update_features(struct net_device *dev); 5280void netdev_change_features(struct net_device *dev); 5281 5282void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5283 struct net_device *dev); 5284 5285netdev_features_t passthru_features_check(struct sk_buff *skb, 5286 struct net_device *dev, 5287 netdev_features_t features); 5288netdev_features_t netif_skb_features(struct sk_buff *skb); 5289void skb_warn_bad_offload(const struct sk_buff *skb); 5290 5291static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5292{ 5293 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5294 5295 /* check flags correspondence */ 5296 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5297 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5298 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5299 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5300 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5301 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5302 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5303 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5304 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5305 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5306 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5307 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5308 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5309 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5310 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5311 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5312 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5313 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5314 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5315 BUILD_BUG_ON(SKB_GSO_TCP_ACCECN != 5316 (NETIF_F_GSO_ACCECN >> NETIF_F_GSO_SHIFT)); 5317 5318 return (features & feature) == feature; 5319} 5320 5321static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5322{ 5323 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5324 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5325} 5326 5327static inline bool netif_needs_gso(struct sk_buff *skb, 5328 netdev_features_t features) 5329{ 5330 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5331 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5332 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5333} 5334 5335void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5336void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5337void netif_inherit_tso_max(struct net_device *to, 5338 const struct net_device *from); 5339 5340static inline unsigned int 5341netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5342{ 5343 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5344 return skb->protocol == htons(ETH_P_IPV6) ? 5345 READ_ONCE(dev->gro_max_size) : 5346 READ_ONCE(dev->gro_ipv4_max_size); 5347} 5348 5349static inline unsigned int 5350netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5351{ 5352 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5353 return skb->protocol == htons(ETH_P_IPV6) ? 5354 READ_ONCE(dev->gso_max_size) : 5355 READ_ONCE(dev->gso_ipv4_max_size); 5356} 5357 5358static inline bool netif_is_macsec(const struct net_device *dev) 5359{ 5360 return dev->priv_flags & IFF_MACSEC; 5361} 5362 5363static inline bool netif_is_macvlan(const struct net_device *dev) 5364{ 5365 return dev->priv_flags & IFF_MACVLAN; 5366} 5367 5368static inline bool netif_is_macvlan_port(const struct net_device *dev) 5369{ 5370 return dev->priv_flags & IFF_MACVLAN_PORT; 5371} 5372 5373static inline bool netif_is_bond_master(const struct net_device *dev) 5374{ 5375 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5376} 5377 5378static inline bool netif_is_bond_slave(const struct net_device *dev) 5379{ 5380 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5381} 5382 5383static inline bool netif_supports_nofcs(struct net_device *dev) 5384{ 5385 return dev->priv_flags & IFF_SUPP_NOFCS; 5386} 5387 5388static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5389{ 5390 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5391} 5392 5393static inline bool netif_is_l3_master(const struct net_device *dev) 5394{ 5395 return dev->priv_flags & IFF_L3MDEV_MASTER; 5396} 5397 5398static inline bool netif_is_l3_slave(const struct net_device *dev) 5399{ 5400 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5401} 5402 5403static inline int dev_sdif(const struct net_device *dev) 5404{ 5405#ifdef CONFIG_NET_L3_MASTER_DEV 5406 if (netif_is_l3_slave(dev)) 5407 return dev->ifindex; 5408#endif 5409 return 0; 5410} 5411 5412static inline bool netif_is_bridge_master(const struct net_device *dev) 5413{ 5414 return dev->priv_flags & IFF_EBRIDGE; 5415} 5416 5417static inline bool netif_is_bridge_port(const struct net_device *dev) 5418{ 5419 return dev->priv_flags & IFF_BRIDGE_PORT; 5420} 5421 5422static inline bool netif_is_ovs_master(const struct net_device *dev) 5423{ 5424 return dev->priv_flags & IFF_OPENVSWITCH; 5425} 5426 5427static inline bool netif_is_ovs_port(const struct net_device *dev) 5428{ 5429 return dev->priv_flags & IFF_OVS_DATAPATH; 5430} 5431 5432static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5433{ 5434 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5435} 5436 5437static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5438{ 5439 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5440} 5441 5442static inline bool netif_is_team_master(const struct net_device *dev) 5443{ 5444 return dev->priv_flags & IFF_TEAM; 5445} 5446 5447static inline bool netif_is_team_port(const struct net_device *dev) 5448{ 5449 return dev->priv_flags & IFF_TEAM_PORT; 5450} 5451 5452static inline bool netif_is_lag_master(const struct net_device *dev) 5453{ 5454 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5455} 5456 5457static inline bool netif_is_lag_port(const struct net_device *dev) 5458{ 5459 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5460} 5461 5462static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5463{ 5464 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5465} 5466 5467static inline bool netif_is_failover(const struct net_device *dev) 5468{ 5469 return dev->priv_flags & IFF_FAILOVER; 5470} 5471 5472static inline bool netif_is_failover_slave(const struct net_device *dev) 5473{ 5474 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5475} 5476 5477/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5478static inline void netif_keep_dst(struct net_device *dev) 5479{ 5480 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5481} 5482 5483/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5484static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5485{ 5486 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5487 return netif_is_macsec(dev); 5488} 5489 5490extern struct pernet_operations __net_initdata loopback_net_ops; 5491 5492/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5493 5494/* netdev_printk helpers, similar to dev_printk */ 5495 5496static inline const char *netdev_name(const struct net_device *dev) 5497{ 5498 if (!dev->name[0] || strchr(dev->name, '%')) 5499 return "(unnamed net_device)"; 5500 return dev->name; 5501} 5502 5503static inline const char *netdev_reg_state(const struct net_device *dev) 5504{ 5505 u8 reg_state = READ_ONCE(dev->reg_state); 5506 5507 switch (reg_state) { 5508 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5509 case NETREG_REGISTERED: return ""; 5510 case NETREG_UNREGISTERING: return " (unregistering)"; 5511 case NETREG_UNREGISTERED: return " (unregistered)"; 5512 case NETREG_RELEASED: return " (released)"; 5513 case NETREG_DUMMY: return " (dummy)"; 5514 } 5515 5516 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5517 return " (unknown)"; 5518} 5519 5520#define MODULE_ALIAS_NETDEV(device) \ 5521 MODULE_ALIAS("netdev-" device) 5522 5523/* 5524 * netdev_WARN() acts like dev_printk(), but with the key difference 5525 * of using a WARN/WARN_ON to get the message out, including the 5526 * file/line information and a backtrace. 5527 */ 5528#define netdev_WARN(dev, format, args...) \ 5529 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5530 netdev_reg_state(dev), ##args) 5531 5532#define netdev_WARN_ONCE(dev, format, args...) \ 5533 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5534 netdev_reg_state(dev), ##args) 5535 5536/* 5537 * The list of packet types we will receive (as opposed to discard) 5538 * and the routines to invoke. 5539 * 5540 * Why 16. Because with 16 the only overlap we get on a hash of the 5541 * low nibble of the protocol value is RARP/SNAP/X.25. 5542 * 5543 * 0800 IP 5544 * 0001 802.3 5545 * 0002 AX.25 5546 * 0004 802.2 5547 * 8035 RARP 5548 * 0005 SNAP 5549 * 0805 X.25 5550 * 0806 ARP 5551 * 8137 IPX 5552 * 0009 Localtalk 5553 * 86DD IPv6 5554 */ 5555#define PTYPE_HASH_SIZE (16) 5556#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5557 5558extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5559 5560extern struct net_device *blackhole_netdev; 5561 5562/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5563#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5564#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5565 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5566#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5567 5568#endif /* _LINUX_NETDEVICE_H */