at v6.17 57 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/maple_tree.h> 13#include <linux/rwsem.h> 14#include <linux/completion.h> 15#include <linux/cpumask.h> 16#include <linux/uprobes.h> 17#include <linux/rcupdate.h> 18#include <linux/page-flags-layout.h> 19#include <linux/workqueue.h> 20#include <linux/seqlock.h> 21#include <linux/percpu_counter.h> 22#include <linux/types.h> 23 24#include <asm/mmu.h> 25 26#ifndef AT_VECTOR_SIZE_ARCH 27#define AT_VECTOR_SIZE_ARCH 0 28#endif 29#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 30 31 32struct address_space; 33struct futex_private_hash; 34struct mem_cgroup; 35 36/* 37 * Each physical page in the system has a struct page associated with 38 * it to keep track of whatever it is we are using the page for at the 39 * moment. Note that we have no way to track which tasks are using 40 * a page, though if it is a pagecache page, rmap structures can tell us 41 * who is mapping it. 42 * 43 * If you allocate the page using alloc_pages(), you can use some of the 44 * space in struct page for your own purposes. The five words in the main 45 * union are available, except for bit 0 of the first word which must be 46 * kept clear. Many users use this word to store a pointer to an object 47 * which is guaranteed to be aligned. If you use the same storage as 48 * page->mapping, you must restore it to NULL before freeing the page. 49 * 50 * The mapcount field must not be used for own purposes. 51 * 52 * If you want to use the refcount field, it must be used in such a way 53 * that other CPUs temporarily incrementing and then decrementing the 54 * refcount does not cause problems. On receiving the page from 55 * alloc_pages(), the refcount will be positive. 56 * 57 * If you allocate pages of order > 0, you can use some of the fields 58 * in each subpage, but you may need to restore some of their values 59 * afterwards. 60 * 61 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 62 * That requires that freelist & counters in struct slab be adjacent and 63 * double-word aligned. Because struct slab currently just reinterprets the 64 * bits of struct page, we align all struct pages to double-word boundaries, 65 * and ensure that 'freelist' is aligned within struct slab. 66 */ 67#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 68#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 69#else 70#define _struct_page_alignment __aligned(sizeof(unsigned long)) 71#endif 72 73struct page { 74 unsigned long flags; /* Atomic flags, some possibly 75 * updated asynchronously */ 76 /* 77 * Five words (20/40 bytes) are available in this union. 78 * WARNING: bit 0 of the first word is used for PageTail(). That 79 * means the other users of this union MUST NOT use the bit to 80 * avoid collision and false-positive PageTail(). 81 */ 82 union { 83 struct { /* Page cache and anonymous pages */ 84 /** 85 * @lru: Pageout list, eg. active_list protected by 86 * lruvec->lru_lock. Sometimes used as a generic list 87 * by the page owner. 88 */ 89 union { 90 struct list_head lru; 91 92 /* Or, for the Unevictable "LRU list" slot */ 93 struct { 94 /* Always even, to negate PageTail */ 95 void *__filler; 96 /* Count page's or folio's mlocks */ 97 unsigned int mlock_count; 98 }; 99 100 /* Or, free page */ 101 struct list_head buddy_list; 102 struct list_head pcp_list; 103 struct { 104 struct llist_node pcp_llist; 105 unsigned int order; 106 }; 107 }; 108 struct address_space *mapping; 109 union { 110 pgoff_t __folio_index; /* Our offset within mapping. */ 111 unsigned long share; /* share count for fsdax */ 112 }; 113 /** 114 * @private: Mapping-private opaque data. 115 * Usually used for buffer_heads if PagePrivate. 116 * Used for swp_entry_t if swapcache flag set. 117 * Indicates order in the buddy system if PageBuddy. 118 */ 119 unsigned long private; 120 }; 121 struct { /* page_pool used by netstack */ 122 /** 123 * @pp_magic: magic value to avoid recycling non 124 * page_pool allocated pages. 125 */ 126 unsigned long pp_magic; 127 struct page_pool *pp; 128 unsigned long _pp_mapping_pad; 129 unsigned long dma_addr; 130 atomic_long_t pp_ref_count; 131 }; 132 struct { /* Tail pages of compound page */ 133 unsigned long compound_head; /* Bit zero is set */ 134 }; 135 struct { /* ZONE_DEVICE pages */ 136 /* 137 * The first word is used for compound_head or folio 138 * pgmap 139 */ 140 void *_unused_pgmap_compound_head; 141 void *zone_device_data; 142 /* 143 * ZONE_DEVICE private pages are counted as being 144 * mapped so the next 3 words hold the mapping, index, 145 * and private fields from the source anonymous or 146 * page cache page while the page is migrated to device 147 * private memory. 148 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 149 * use the mapping, index, and private fields when 150 * pmem backed DAX files are mapped. 151 */ 152 }; 153 154 /** @rcu_head: You can use this to free a page by RCU. */ 155 struct rcu_head rcu_head; 156 }; 157 158 union { /* This union is 4 bytes in size. */ 159 /* 160 * For head pages of typed folios, the value stored here 161 * allows for determining what this page is used for. The 162 * tail pages of typed folios will not store a type 163 * (page_type == _mapcount == -1). 164 * 165 * See page-flags.h for a list of page types which are currently 166 * stored here. 167 * 168 * Owners of typed folios may reuse the lower 16 bit of the 169 * head page page_type field after setting the page type, 170 * but must reset these 16 bit to -1 before clearing the 171 * page type. 172 */ 173 unsigned int page_type; 174 175 /* 176 * For pages that are part of non-typed folios for which mappings 177 * are tracked via the RMAP, encodes the number of times this page 178 * is directly referenced by a page table. 179 * 180 * Note that the mapcount is always initialized to -1, so that 181 * transitions both from it and to it can be tracked, using 182 * atomic_inc_and_test() and atomic_add_negative(-1). 183 */ 184 atomic_t _mapcount; 185 }; 186 187 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 188 atomic_t _refcount; 189 190#ifdef CONFIG_MEMCG 191 unsigned long memcg_data; 192#elif defined(CONFIG_SLAB_OBJ_EXT) 193 unsigned long _unused_slab_obj_exts; 194#endif 195 196 /* 197 * On machines where all RAM is mapped into kernel address space, 198 * we can simply calculate the virtual address. On machines with 199 * highmem some memory is mapped into kernel virtual memory 200 * dynamically, so we need a place to store that address. 201 * Note that this field could be 16 bits on x86 ... ;) 202 * 203 * Architectures with slow multiplication can define 204 * WANT_PAGE_VIRTUAL in asm/page.h 205 */ 206#if defined(WANT_PAGE_VIRTUAL) 207 void *virtual; /* Kernel virtual address (NULL if 208 not kmapped, ie. highmem) */ 209#endif /* WANT_PAGE_VIRTUAL */ 210 211#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 212 int _last_cpupid; 213#endif 214 215#ifdef CONFIG_KMSAN 216 /* 217 * KMSAN metadata for this page: 218 * - shadow page: every bit indicates whether the corresponding 219 * bit of the original page is initialized (0) or not (1); 220 * - origin page: every 4 bytes contain an id of the stack trace 221 * where the uninitialized value was created. 222 */ 223 struct page *kmsan_shadow; 224 struct page *kmsan_origin; 225#endif 226} _struct_page_alignment; 227 228/* 229 * struct encoded_page - a nonexistent type marking this pointer 230 * 231 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 232 * with the low bits of the pointer indicating extra context-dependent 233 * information. Only used in mmu_gather handling, and this acts as a type 234 * system check on that use. 235 * 236 * We only really have two guaranteed bits in general, although you could 237 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 238 * for more. 239 * 240 * Use the supplied helper functions to endcode/decode the pointer and bits. 241 */ 242struct encoded_page; 243 244#define ENCODED_PAGE_BITS 3ul 245 246/* Perform rmap removal after we have flushed the TLB. */ 247#define ENCODED_PAGE_BIT_DELAY_RMAP 1ul 248 249/* 250 * The next item in an encoded_page array is the "nr_pages" argument, specifying 251 * the number of consecutive pages starting from this page, that all belong to 252 * the same folio. For example, "nr_pages" corresponds to the number of folio 253 * references that must be dropped. If this bit is not set, "nr_pages" is 254 * implicitly 1. 255 */ 256#define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul 257 258static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 259{ 260 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS); 261 return (struct encoded_page *)(flags | (unsigned long)page); 262} 263 264static inline unsigned long encoded_page_flags(struct encoded_page *page) 265{ 266 return ENCODED_PAGE_BITS & (unsigned long)page; 267} 268 269static inline struct page *encoded_page_ptr(struct encoded_page *page) 270{ 271 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page); 272} 273 274static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr) 275{ 276 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr); 277 return (struct encoded_page *)(nr << 2); 278} 279 280static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page) 281{ 282 return ((unsigned long)page) >> 2; 283} 284 285/* 286 * A swap entry has to fit into a "unsigned long", as the entry is hidden 287 * in the "index" field of the swapper address space. 288 */ 289typedef struct { 290 unsigned long val; 291} swp_entry_t; 292 293#if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT) 294/* We have some extra room after the refcount in tail pages. */ 295#define NR_PAGES_IN_LARGE_FOLIO 296#endif 297 298/* 299 * On 32bit, we can cut the required metadata in half, because: 300 * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have, 301 * so we can limit MM IDs to 15 bit (32767). 302 * (b) We don't expect folios where even a single complete PTE mapping by 303 * one MM would exceed 15 bits (order-15). 304 */ 305#ifdef CONFIG_64BIT 306typedef int mm_id_mapcount_t; 307#define MM_ID_MAPCOUNT_MAX INT_MAX 308typedef unsigned int mm_id_t; 309#else /* !CONFIG_64BIT */ 310typedef short mm_id_mapcount_t; 311#define MM_ID_MAPCOUNT_MAX SHRT_MAX 312typedef unsigned short mm_id_t; 313#endif /* CONFIG_64BIT */ 314 315/* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */ 316#define MM_ID_DUMMY 0 317#define MM_ID_MIN (MM_ID_DUMMY + 1) 318 319/* 320 * We leave the highest bit of each MM id unused, so we can store a flag 321 * in the highest bit of each folio->_mm_id[]. 322 */ 323#define MM_ID_BITS ((sizeof(mm_id_t) * BITS_PER_BYTE) - 1) 324#define MM_ID_MASK ((1U << MM_ID_BITS) - 1) 325#define MM_ID_MAX MM_ID_MASK 326 327/* 328 * In order to use bit_spin_lock(), which requires an unsigned long, we 329 * operate on folio->_mm_ids when working on flags. 330 */ 331#define FOLIO_MM_IDS_LOCK_BITNUM MM_ID_BITS 332#define FOLIO_MM_IDS_LOCK_BIT BIT(FOLIO_MM_IDS_LOCK_BITNUM) 333#define FOLIO_MM_IDS_SHARED_BITNUM (2 * MM_ID_BITS + 1) 334#define FOLIO_MM_IDS_SHARED_BIT BIT(FOLIO_MM_IDS_SHARED_BITNUM) 335 336/** 337 * struct folio - Represents a contiguous set of bytes. 338 * @flags: Identical to the page flags. 339 * @lru: Least Recently Used list; tracks how recently this folio was used. 340 * @mlock_count: Number of times this folio has been pinned by mlock(). 341 * @mapping: The file this page belongs to, or refers to the anon_vma for 342 * anonymous memory. 343 * @index: Offset within the file, in units of pages. For anonymous memory, 344 * this is the index from the beginning of the mmap. 345 * @share: number of DAX mappings that reference this folio. See 346 * dax_associate_entry. 347 * @private: Filesystem per-folio data (see folio_attach_private()). 348 * @swap: Used for swp_entry_t if folio_test_swapcache(). 349 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 350 * find out how many times this folio is mapped by userspace. 351 * @_refcount: Do not access this member directly. Use folio_ref_count() 352 * to find how many references there are to this folio. 353 * @memcg_data: Memory Control Group data. 354 * @pgmap: Metadata for ZONE_DEVICE mappings 355 * @virtual: Virtual address in the kernel direct map. 356 * @_last_cpupid: IDs of last CPU and last process that accessed the folio. 357 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 358 * @_large_mapcount: Do not use directly, call folio_mapcount(). 359 * @_nr_pages_mapped: Do not use outside of rmap and debug code. 360 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 361 * @_nr_pages: Do not use directly, call folio_nr_pages(). 362 * @_mm_id: Do not use outside of rmap code. 363 * @_mm_ids: Do not use outside of rmap code. 364 * @_mm_id_mapcount: Do not use outside of rmap code. 365 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 366 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 367 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 368 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 369 * @_deferred_list: Folios to be split under memory pressure. 370 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab. 371 * 372 * A folio is a physically, virtually and logically contiguous set 373 * of bytes. It is a power-of-two in size, and it is aligned to that 374 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 375 * in the page cache, it is at a file offset which is a multiple of that 376 * power-of-two. It may be mapped into userspace at an address which is 377 * at an arbitrary page offset, but its kernel virtual address is aligned 378 * to its size. 379 */ 380struct folio { 381 /* private: don't document the anon union */ 382 union { 383 struct { 384 /* public: */ 385 unsigned long flags; 386 union { 387 struct list_head lru; 388 /* private: avoid cluttering the output */ 389 struct { 390 void *__filler; 391 /* public: */ 392 unsigned int mlock_count; 393 /* private: */ 394 }; 395 /* public: */ 396 struct dev_pagemap *pgmap; 397 }; 398 struct address_space *mapping; 399 union { 400 pgoff_t index; 401 unsigned long share; 402 }; 403 union { 404 void *private; 405 swp_entry_t swap; 406 }; 407 atomic_t _mapcount; 408 atomic_t _refcount; 409#ifdef CONFIG_MEMCG 410 unsigned long memcg_data; 411#elif defined(CONFIG_SLAB_OBJ_EXT) 412 unsigned long _unused_slab_obj_exts; 413#endif 414#if defined(WANT_PAGE_VIRTUAL) 415 void *virtual; 416#endif 417#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 418 int _last_cpupid; 419#endif 420 /* private: the union with struct page is transitional */ 421 }; 422 struct page page; 423 }; 424 union { 425 struct { 426 unsigned long _flags_1; 427 unsigned long _head_1; 428 union { 429 struct { 430 /* public: */ 431 atomic_t _large_mapcount; 432 atomic_t _nr_pages_mapped; 433#ifdef CONFIG_64BIT 434 atomic_t _entire_mapcount; 435 atomic_t _pincount; 436#endif /* CONFIG_64BIT */ 437 mm_id_mapcount_t _mm_id_mapcount[2]; 438 union { 439 mm_id_t _mm_id[2]; 440 unsigned long _mm_ids; 441 }; 442 /* private: the union with struct page is transitional */ 443 }; 444 unsigned long _usable_1[4]; 445 }; 446 atomic_t _mapcount_1; 447 atomic_t _refcount_1; 448 /* public: */ 449#ifdef NR_PAGES_IN_LARGE_FOLIO 450 unsigned int _nr_pages; 451#endif /* NR_PAGES_IN_LARGE_FOLIO */ 452 /* private: the union with struct page is transitional */ 453 }; 454 struct page __page_1; 455 }; 456 union { 457 struct { 458 unsigned long _flags_2; 459 unsigned long _head_2; 460 /* public: */ 461 struct list_head _deferred_list; 462#ifndef CONFIG_64BIT 463 atomic_t _entire_mapcount; 464 atomic_t _pincount; 465#endif /* !CONFIG_64BIT */ 466 /* private: the union with struct page is transitional */ 467 }; 468 struct page __page_2; 469 }; 470 union { 471 struct { 472 unsigned long _flags_3; 473 unsigned long _head_3; 474 /* public: */ 475 void *_hugetlb_subpool; 476 void *_hugetlb_cgroup; 477 void *_hugetlb_cgroup_rsvd; 478 void *_hugetlb_hwpoison; 479 /* private: the union with struct page is transitional */ 480 }; 481 struct page __page_3; 482 }; 483}; 484 485#define FOLIO_MATCH(pg, fl) \ 486 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 487FOLIO_MATCH(flags, flags); 488FOLIO_MATCH(lru, lru); 489FOLIO_MATCH(mapping, mapping); 490FOLIO_MATCH(compound_head, lru); 491FOLIO_MATCH(__folio_index, index); 492FOLIO_MATCH(private, private); 493FOLIO_MATCH(_mapcount, _mapcount); 494FOLIO_MATCH(_refcount, _refcount); 495#ifdef CONFIG_MEMCG 496FOLIO_MATCH(memcg_data, memcg_data); 497#endif 498#if defined(WANT_PAGE_VIRTUAL) 499FOLIO_MATCH(virtual, virtual); 500#endif 501#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 502FOLIO_MATCH(_last_cpupid, _last_cpupid); 503#endif 504#undef FOLIO_MATCH 505#define FOLIO_MATCH(pg, fl) \ 506 static_assert(offsetof(struct folio, fl) == \ 507 offsetof(struct page, pg) + sizeof(struct page)) 508FOLIO_MATCH(flags, _flags_1); 509FOLIO_MATCH(compound_head, _head_1); 510FOLIO_MATCH(_mapcount, _mapcount_1); 511FOLIO_MATCH(_refcount, _refcount_1); 512#undef FOLIO_MATCH 513#define FOLIO_MATCH(pg, fl) \ 514 static_assert(offsetof(struct folio, fl) == \ 515 offsetof(struct page, pg) + 2 * sizeof(struct page)) 516FOLIO_MATCH(flags, _flags_2); 517FOLIO_MATCH(compound_head, _head_2); 518#undef FOLIO_MATCH 519#define FOLIO_MATCH(pg, fl) \ 520 static_assert(offsetof(struct folio, fl) == \ 521 offsetof(struct page, pg) + 3 * sizeof(struct page)) 522FOLIO_MATCH(flags, _flags_3); 523FOLIO_MATCH(compound_head, _head_3); 524#undef FOLIO_MATCH 525 526/** 527 * struct ptdesc - Memory descriptor for page tables. 528 * @__page_flags: Same as page flags. Powerpc only. 529 * @pt_rcu_head: For freeing page table pages. 530 * @pt_list: List of used page tables. Used for s390 gmap shadow pages 531 * (which are not linked into the user page tables) and x86 532 * pgds. 533 * @_pt_pad_1: Padding that aliases with page's compound head. 534 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 535 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 536 * @pt_index: Used for s390 gmap. 537 * @pt_mm: Used for x86 pgds. 538 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only. 539 * @pt_share_count: Used for HugeTLB PMD page table share count. 540 * @_pt_pad_2: Padding to ensure proper alignment. 541 * @ptl: Lock for the page table. 542 * @__page_type: Same as page->page_type. Unused for page tables. 543 * @__page_refcount: Same as page refcount. 544 * @pt_memcg_data: Memcg data. Tracked for page tables here. 545 * 546 * This struct overlays struct page for now. Do not modify without a good 547 * understanding of the issues. 548 */ 549struct ptdesc { 550 unsigned long __page_flags; 551 552 union { 553 struct rcu_head pt_rcu_head; 554 struct list_head pt_list; 555 struct { 556 unsigned long _pt_pad_1; 557 pgtable_t pmd_huge_pte; 558 }; 559 }; 560 unsigned long __page_mapping; 561 562 union { 563 pgoff_t pt_index; 564 struct mm_struct *pt_mm; 565 atomic_t pt_frag_refcount; 566#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 567 atomic_t pt_share_count; 568#endif 569 }; 570 571 union { 572 unsigned long _pt_pad_2; 573#if ALLOC_SPLIT_PTLOCKS 574 spinlock_t *ptl; 575#else 576 spinlock_t ptl; 577#endif 578 }; 579 unsigned int __page_type; 580 atomic_t __page_refcount; 581#ifdef CONFIG_MEMCG 582 unsigned long pt_memcg_data; 583#endif 584}; 585 586#define TABLE_MATCH(pg, pt) \ 587 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 588TABLE_MATCH(flags, __page_flags); 589TABLE_MATCH(compound_head, pt_list); 590TABLE_MATCH(compound_head, _pt_pad_1); 591TABLE_MATCH(mapping, __page_mapping); 592TABLE_MATCH(__folio_index, pt_index); 593TABLE_MATCH(rcu_head, pt_rcu_head); 594TABLE_MATCH(page_type, __page_type); 595TABLE_MATCH(_refcount, __page_refcount); 596#ifdef CONFIG_MEMCG 597TABLE_MATCH(memcg_data, pt_memcg_data); 598#endif 599#undef TABLE_MATCH 600static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 601 602#define ptdesc_page(pt) (_Generic((pt), \ 603 const struct ptdesc *: (const struct page *)(pt), \ 604 struct ptdesc *: (struct page *)(pt))) 605 606#define ptdesc_folio(pt) (_Generic((pt), \ 607 const struct ptdesc *: (const struct folio *)(pt), \ 608 struct ptdesc *: (struct folio *)(pt))) 609 610#define page_ptdesc(p) (_Generic((p), \ 611 const struct page *: (const struct ptdesc *)(p), \ 612 struct page *: (struct ptdesc *)(p))) 613 614#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 615static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 616{ 617 atomic_set(&ptdesc->pt_share_count, 0); 618} 619 620static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc) 621{ 622 atomic_inc(&ptdesc->pt_share_count); 623} 624 625static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc) 626{ 627 atomic_dec(&ptdesc->pt_share_count); 628} 629 630static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc) 631{ 632 return atomic_read(&ptdesc->pt_share_count); 633} 634 635static inline bool ptdesc_pmd_is_shared(struct ptdesc *ptdesc) 636{ 637 return !!ptdesc_pmd_pts_count(ptdesc); 638} 639#else 640static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc) 641{ 642} 643#endif 644 645/* 646 * Used for sizing the vmemmap region on some architectures 647 */ 648#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 649 650/* 651 * page_private can be used on tail pages. However, PagePrivate is only 652 * checked by the VM on the head page. So page_private on the tail pages 653 * should be used for data that's ancillary to the head page (eg attaching 654 * buffer heads to tail pages after attaching buffer heads to the head page) 655 */ 656#define page_private(page) ((page)->private) 657 658static inline void set_page_private(struct page *page, unsigned long private) 659{ 660 page->private = private; 661} 662 663static inline void *folio_get_private(struct folio *folio) 664{ 665 return folio->private; 666} 667 668typedef unsigned long vm_flags_t; 669 670/* 671 * freeptr_t represents a SLUB freelist pointer, which might be encoded 672 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 673 */ 674typedef struct { unsigned long v; } freeptr_t; 675 676/* 677 * A region containing a mapping of a non-memory backed file under NOMMU 678 * conditions. These are held in a global tree and are pinned by the VMAs that 679 * map parts of them. 680 */ 681struct vm_region { 682 struct rb_node vm_rb; /* link in global region tree */ 683 vm_flags_t vm_flags; /* VMA vm_flags */ 684 unsigned long vm_start; /* start address of region */ 685 unsigned long vm_end; /* region initialised to here */ 686 unsigned long vm_top; /* region allocated to here */ 687 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 688 struct file *vm_file; /* the backing file or NULL */ 689 690 int vm_usage; /* region usage count (access under nommu_region_sem) */ 691 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 692 * this region */ 693}; 694 695#ifdef CONFIG_USERFAULTFD 696#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 697struct vm_userfaultfd_ctx { 698 struct userfaultfd_ctx *ctx; 699}; 700#else /* CONFIG_USERFAULTFD */ 701#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 702struct vm_userfaultfd_ctx {}; 703#endif /* CONFIG_USERFAULTFD */ 704 705struct anon_vma_name { 706 struct kref kref; 707 /* The name needs to be at the end because it is dynamically sized. */ 708 char name[]; 709}; 710 711#ifdef CONFIG_ANON_VMA_NAME 712/* 713 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 714 * either keep holding the lock while using the returned pointer or it should 715 * raise anon_vma_name refcount before releasing the lock. 716 */ 717struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 718struct anon_vma_name *anon_vma_name_alloc(const char *name); 719void anon_vma_name_free(struct kref *kref); 720#else /* CONFIG_ANON_VMA_NAME */ 721static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 722{ 723 return NULL; 724} 725 726static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 727{ 728 return NULL; 729} 730#endif 731 732#define VMA_LOCK_OFFSET 0x40000000 733#define VMA_REF_LIMIT (VMA_LOCK_OFFSET - 1) 734 735struct vma_numab_state { 736 /* 737 * Initialised as time in 'jiffies' after which VMA 738 * should be scanned. Delays first scan of new VMA by at 739 * least sysctl_numa_balancing_scan_delay: 740 */ 741 unsigned long next_scan; 742 743 /* 744 * Time in jiffies when pids_active[] is reset to 745 * detect phase change behaviour: 746 */ 747 unsigned long pids_active_reset; 748 749 /* 750 * Approximate tracking of PIDs that trapped a NUMA hinting 751 * fault. May produce false positives due to hash collisions. 752 * 753 * [0] Previous PID tracking 754 * [1] Current PID tracking 755 * 756 * Window moves after next_pid_reset has expired approximately 757 * every VMA_PID_RESET_PERIOD jiffies: 758 */ 759 unsigned long pids_active[2]; 760 761 /* MM scan sequence ID when scan first started after VMA creation */ 762 int start_scan_seq; 763 764 /* 765 * MM scan sequence ID when the VMA was last completely scanned. 766 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 767 */ 768 int prev_scan_seq; 769}; 770 771#ifdef __HAVE_PFNMAP_TRACKING 772struct pfnmap_track_ctx { 773 struct kref kref; 774 unsigned long pfn; 775 unsigned long size; /* in bytes */ 776}; 777#endif 778 779/* 780 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to 781 * manipulate mutable fields which will cause those fields to be updated in the 782 * resultant VMA. 783 * 784 * Helper functions are not required for manipulating any field. 785 */ 786struct vm_area_desc { 787 /* Immutable state. */ 788 struct mm_struct *mm; 789 unsigned long start; 790 unsigned long end; 791 792 /* Mutable fields. Populated with initial state. */ 793 pgoff_t pgoff; 794 struct file *file; 795 vm_flags_t vm_flags; 796 pgprot_t page_prot; 797 798 /* Write-only fields. */ 799 const struct vm_operations_struct *vm_ops; 800 void *private_data; 801}; 802 803/* 804 * This struct describes a virtual memory area. There is one of these 805 * per VM-area/task. A VM area is any part of the process virtual memory 806 * space that has a special rule for the page-fault handlers (ie a shared 807 * library, the executable area etc). 808 * 809 * Only explicitly marked struct members may be accessed by RCU readers before 810 * getting a stable reference. 811 * 812 * WARNING: when adding new members, please update vm_area_init_from() to copy 813 * them during vm_area_struct content duplication. 814 */ 815struct vm_area_struct { 816 /* The first cache line has the info for VMA tree walking. */ 817 818 union { 819 struct { 820 /* VMA covers [vm_start; vm_end) addresses within mm */ 821 unsigned long vm_start; 822 unsigned long vm_end; 823 }; 824 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */ 825 }; 826 827 /* 828 * The address space we belong to. 829 * Unstable RCU readers are allowed to read this. 830 */ 831 struct mm_struct *vm_mm; 832 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 833 834 /* 835 * Flags, see mm.h. 836 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 837 */ 838 union { 839 const vm_flags_t vm_flags; 840 vm_flags_t __private __vm_flags; 841 }; 842 843#ifdef CONFIG_PER_VMA_LOCK 844 /* 845 * Can only be written (using WRITE_ONCE()) while holding both: 846 * - mmap_lock (in write mode) 847 * - vm_refcnt bit at VMA_LOCK_OFFSET is set 848 * Can be read reliably while holding one of: 849 * - mmap_lock (in read or write mode) 850 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1 851 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 852 * while holding nothing (except RCU to keep the VMA struct allocated). 853 * 854 * This sequence counter is explicitly allowed to overflow; sequence 855 * counter reuse can only lead to occasional unnecessary use of the 856 * slowpath. 857 */ 858 unsigned int vm_lock_seq; 859#endif 860 /* 861 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 862 * list, after a COW of one of the file pages. A MAP_SHARED vma 863 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 864 * or brk vma (with NULL file) can only be in an anon_vma list. 865 */ 866 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 867 * page_table_lock */ 868 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 869 870 /* Function pointers to deal with this struct. */ 871 const struct vm_operations_struct *vm_ops; 872 873 /* Information about our backing store: */ 874 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 875 units */ 876 struct file * vm_file; /* File we map to (can be NULL). */ 877 void * vm_private_data; /* was vm_pte (shared mem) */ 878 879#ifdef CONFIG_SWAP 880 atomic_long_t swap_readahead_info; 881#endif 882#ifndef CONFIG_MMU 883 struct vm_region *vm_region; /* NOMMU mapping region */ 884#endif 885#ifdef CONFIG_NUMA 886 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 887#endif 888#ifdef CONFIG_NUMA_BALANCING 889 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 890#endif 891#ifdef CONFIG_PER_VMA_LOCK 892 /* Unstable RCU readers are allowed to read this. */ 893 refcount_t vm_refcnt ____cacheline_aligned_in_smp; 894#ifdef CONFIG_DEBUG_LOCK_ALLOC 895 struct lockdep_map vmlock_dep_map; 896#endif 897#endif 898 /* 899 * For areas with an address space and backing store, 900 * linkage into the address_space->i_mmap interval tree. 901 * 902 */ 903 struct { 904 struct rb_node rb; 905 unsigned long rb_subtree_last; 906 } shared; 907#ifdef CONFIG_ANON_VMA_NAME 908 /* 909 * For private and shared anonymous mappings, a pointer to a null 910 * terminated string containing the name given to the vma, or NULL if 911 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 912 */ 913 struct anon_vma_name *anon_name; 914#endif 915 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 916#ifdef __HAVE_PFNMAP_TRACKING 917 struct pfnmap_track_ctx *pfnmap_track_ctx; 918#endif 919} __randomize_layout; 920 921#ifdef CONFIG_NUMA 922#define vma_policy(vma) ((vma)->vm_policy) 923#else 924#define vma_policy(vma) NULL 925#endif 926 927#ifdef CONFIG_SCHED_MM_CID 928struct mm_cid { 929 u64 time; 930 int cid; 931 int recent_cid; 932}; 933#endif 934 935struct kioctx_table; 936struct iommu_mm_data; 937struct mm_struct { 938 struct { 939 /* 940 * Fields which are often written to are placed in a separate 941 * cache line. 942 */ 943 struct { 944 /** 945 * @mm_count: The number of references to &struct 946 * mm_struct (@mm_users count as 1). 947 * 948 * Use mmgrab()/mmdrop() to modify. When this drops to 949 * 0, the &struct mm_struct is freed. 950 */ 951 atomic_t mm_count; 952 } ____cacheline_aligned_in_smp; 953 954 struct maple_tree mm_mt; 955 956 unsigned long mmap_base; /* base of mmap area */ 957 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 958#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 959 /* Base addresses for compatible mmap() */ 960 unsigned long mmap_compat_base; 961 unsigned long mmap_compat_legacy_base; 962#endif 963 unsigned long task_size; /* size of task vm space */ 964 pgd_t * pgd; 965 966#ifdef CONFIG_MEMBARRIER 967 /** 968 * @membarrier_state: Flags controlling membarrier behavior. 969 * 970 * This field is close to @pgd to hopefully fit in the same 971 * cache-line, which needs to be touched by switch_mm(). 972 */ 973 atomic_t membarrier_state; 974#endif 975 976 /** 977 * @mm_users: The number of users including userspace. 978 * 979 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 980 * drops to 0 (i.e. when the task exits and there are no other 981 * temporary reference holders), we also release a reference on 982 * @mm_count (which may then free the &struct mm_struct if 983 * @mm_count also drops to 0). 984 */ 985 atomic_t mm_users; 986 987#ifdef CONFIG_SCHED_MM_CID 988 /** 989 * @pcpu_cid: Per-cpu current cid. 990 * 991 * Keep track of the currently allocated mm_cid for each cpu. 992 * The per-cpu mm_cid values are serialized by their respective 993 * runqueue locks. 994 */ 995 struct mm_cid __percpu *pcpu_cid; 996 /* 997 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 998 * 999 * When the next mm_cid scan is due (in jiffies). 1000 */ 1001 unsigned long mm_cid_next_scan; 1002 /** 1003 * @nr_cpus_allowed: Number of CPUs allowed for mm. 1004 * 1005 * Number of CPUs allowed in the union of all mm's 1006 * threads allowed CPUs. 1007 */ 1008 unsigned int nr_cpus_allowed; 1009 /** 1010 * @max_nr_cid: Maximum number of allowed concurrency 1011 * IDs allocated. 1012 * 1013 * Track the highest number of allowed concurrency IDs 1014 * allocated for the mm. 1015 */ 1016 atomic_t max_nr_cid; 1017 /** 1018 * @cpus_allowed_lock: Lock protecting mm cpus_allowed. 1019 * 1020 * Provide mutual exclusion for mm cpus_allowed and 1021 * mm nr_cpus_allowed updates. 1022 */ 1023 raw_spinlock_t cpus_allowed_lock; 1024#endif 1025#ifdef CONFIG_MMU 1026 atomic_long_t pgtables_bytes; /* size of all page tables */ 1027#endif 1028 int map_count; /* number of VMAs */ 1029 1030 spinlock_t page_table_lock; /* Protects page tables and some 1031 * counters 1032 */ 1033 /* 1034 * With some kernel config, the current mmap_lock's offset 1035 * inside 'mm_struct' is at 0x120, which is very optimal, as 1036 * its two hot fields 'count' and 'owner' sit in 2 different 1037 * cachelines, and when mmap_lock is highly contended, both 1038 * of the 2 fields will be accessed frequently, current layout 1039 * will help to reduce cache bouncing. 1040 * 1041 * So please be careful with adding new fields before 1042 * mmap_lock, which can easily push the 2 fields into one 1043 * cacheline. 1044 */ 1045 struct rw_semaphore mmap_lock; 1046 1047 struct list_head mmlist; /* List of maybe swapped mm's. These 1048 * are globally strung together off 1049 * init_mm.mmlist, and are protected 1050 * by mmlist_lock 1051 */ 1052#ifdef CONFIG_PER_VMA_LOCK 1053 struct rcuwait vma_writer_wait; 1054 /* 1055 * This field has lock-like semantics, meaning it is sometimes 1056 * accessed with ACQUIRE/RELEASE semantics. 1057 * Roughly speaking, incrementing the sequence number is 1058 * equivalent to releasing locks on VMAs; reading the sequence 1059 * number can be part of taking a read lock on a VMA. 1060 * Incremented every time mmap_lock is write-locked/unlocked. 1061 * Initialized to 0, therefore odd values indicate mmap_lock 1062 * is write-locked and even values that it's released. 1063 * 1064 * Can be modified under write mmap_lock using RELEASE 1065 * semantics. 1066 * Can be read with no other protection when holding write 1067 * mmap_lock. 1068 * Can be read with ACQUIRE semantics if not holding write 1069 * mmap_lock. 1070 */ 1071 seqcount_t mm_lock_seq; 1072#endif 1073#ifdef CONFIG_FUTEX_PRIVATE_HASH 1074 struct mutex futex_hash_lock; 1075 struct futex_private_hash __rcu *futex_phash; 1076 struct futex_private_hash *futex_phash_new; 1077 /* futex-ref */ 1078 unsigned long futex_batches; 1079 struct rcu_head futex_rcu; 1080 atomic_long_t futex_atomic; 1081 unsigned int __percpu *futex_ref; 1082#endif 1083 1084 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 1085 unsigned long hiwater_vm; /* High-water virtual memory usage */ 1086 1087 unsigned long total_vm; /* Total pages mapped */ 1088 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 1089 atomic64_t pinned_vm; /* Refcount permanently increased */ 1090 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 1091 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 1092 unsigned long stack_vm; /* VM_STACK */ 1093 vm_flags_t def_flags; 1094 1095 /** 1096 * @write_protect_seq: Locked when any thread is write 1097 * protecting pages mapped by this mm to enforce a later COW, 1098 * for instance during page table copying for fork(). 1099 */ 1100 seqcount_t write_protect_seq; 1101 1102 spinlock_t arg_lock; /* protect the below fields */ 1103 1104 unsigned long start_code, end_code, start_data, end_data; 1105 unsigned long start_brk, brk, start_stack; 1106 unsigned long arg_start, arg_end, env_start, env_end; 1107 1108 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 1109 1110 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 1111 1112 struct linux_binfmt *binfmt; 1113 1114 /* Architecture-specific MM context */ 1115 mm_context_t context; 1116 1117 unsigned long flags; /* Must use atomic bitops to access */ 1118 1119#ifdef CONFIG_AIO 1120 spinlock_t ioctx_lock; 1121 struct kioctx_table __rcu *ioctx_table; 1122#endif 1123#ifdef CONFIG_MEMCG 1124 /* 1125 * "owner" points to a task that is regarded as the canonical 1126 * user/owner of this mm. All of the following must be true in 1127 * order for it to be changed: 1128 * 1129 * current == mm->owner 1130 * current->mm != mm 1131 * new_owner->mm == mm 1132 * new_owner->alloc_lock is held 1133 */ 1134 struct task_struct __rcu *owner; 1135#endif 1136 struct user_namespace *user_ns; 1137 1138 /* store ref to file /proc/<pid>/exe symlink points to */ 1139 struct file __rcu *exe_file; 1140#ifdef CONFIG_MMU_NOTIFIER 1141 struct mmu_notifier_subscriptions *notifier_subscriptions; 1142#endif 1143#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1144 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 1145#endif 1146#ifdef CONFIG_NUMA_BALANCING 1147 /* 1148 * numa_next_scan is the next time that PTEs will be remapped 1149 * PROT_NONE to trigger NUMA hinting faults; such faults gather 1150 * statistics and migrate pages to new nodes if necessary. 1151 */ 1152 unsigned long numa_next_scan; 1153 1154 /* Restart point for scanning and remapping PTEs. */ 1155 unsigned long numa_scan_offset; 1156 1157 /* numa_scan_seq prevents two threads remapping PTEs. */ 1158 int numa_scan_seq; 1159#endif 1160 /* 1161 * An operation with batched TLB flushing is going on. Anything 1162 * that can move process memory needs to flush the TLB when 1163 * moving a PROT_NONE mapped page. 1164 */ 1165 atomic_t tlb_flush_pending; 1166#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1167 /* See flush_tlb_batched_pending() */ 1168 atomic_t tlb_flush_batched; 1169#endif 1170 struct uprobes_state uprobes_state; 1171#ifdef CONFIG_PREEMPT_RT 1172 struct rcu_head delayed_drop; 1173#endif 1174#ifdef CONFIG_HUGETLB_PAGE 1175 atomic_long_t hugetlb_usage; 1176#endif 1177 struct work_struct async_put_work; 1178 1179#ifdef CONFIG_IOMMU_MM_DATA 1180 struct iommu_mm_data *iommu_mm; 1181#endif 1182#ifdef CONFIG_KSM 1183 /* 1184 * Represent how many pages of this process are involved in KSM 1185 * merging (not including ksm_zero_pages). 1186 */ 1187 unsigned long ksm_merging_pages; 1188 /* 1189 * Represent how many pages are checked for ksm merging 1190 * including merged and not merged. 1191 */ 1192 unsigned long ksm_rmap_items; 1193 /* 1194 * Represent how many empty pages are merged with kernel zero 1195 * pages when enabling KSM use_zero_pages. 1196 */ 1197 atomic_long_t ksm_zero_pages; 1198#endif /* CONFIG_KSM */ 1199#ifdef CONFIG_LRU_GEN_WALKS_MMU 1200 struct { 1201 /* this mm_struct is on lru_gen_mm_list */ 1202 struct list_head list; 1203 /* 1204 * Set when switching to this mm_struct, as a hint of 1205 * whether it has been used since the last time per-node 1206 * page table walkers cleared the corresponding bits. 1207 */ 1208 unsigned long bitmap; 1209#ifdef CONFIG_MEMCG 1210 /* points to the memcg of "owner" above */ 1211 struct mem_cgroup *memcg; 1212#endif 1213 } lru_gen; 1214#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1215#ifdef CONFIG_MM_ID 1216 mm_id_t mm_id; 1217#endif /* CONFIG_MM_ID */ 1218 } __randomize_layout; 1219 1220 /* 1221 * The mm_cpumask needs to be at the end of mm_struct, because it 1222 * is dynamically sized based on nr_cpu_ids. 1223 */ 1224 unsigned long cpu_bitmap[]; 1225}; 1226 1227#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 1228 MT_FLAGS_USE_RCU) 1229extern struct mm_struct init_mm; 1230 1231/* Pointer magic because the dynamic array size confuses some compilers. */ 1232static inline void mm_init_cpumask(struct mm_struct *mm) 1233{ 1234 unsigned long cpu_bitmap = (unsigned long)mm; 1235 1236 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1237 cpumask_clear((struct cpumask *)cpu_bitmap); 1238} 1239 1240/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 1241static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 1242{ 1243 return (struct cpumask *)&mm->cpu_bitmap; 1244} 1245 1246#ifdef CONFIG_LRU_GEN 1247 1248struct lru_gen_mm_list { 1249 /* mm_struct list for page table walkers */ 1250 struct list_head fifo; 1251 /* protects the list above */ 1252 spinlock_t lock; 1253}; 1254 1255#endif /* CONFIG_LRU_GEN */ 1256 1257#ifdef CONFIG_LRU_GEN_WALKS_MMU 1258 1259void lru_gen_add_mm(struct mm_struct *mm); 1260void lru_gen_del_mm(struct mm_struct *mm); 1261void lru_gen_migrate_mm(struct mm_struct *mm); 1262 1263static inline void lru_gen_init_mm(struct mm_struct *mm) 1264{ 1265 INIT_LIST_HEAD(&mm->lru_gen.list); 1266 mm->lru_gen.bitmap = 0; 1267#ifdef CONFIG_MEMCG 1268 mm->lru_gen.memcg = NULL; 1269#endif 1270} 1271 1272static inline void lru_gen_use_mm(struct mm_struct *mm) 1273{ 1274 /* 1275 * When the bitmap is set, page reclaim knows this mm_struct has been 1276 * used since the last time it cleared the bitmap. So it might be worth 1277 * walking the page tables of this mm_struct to clear the accessed bit. 1278 */ 1279 WRITE_ONCE(mm->lru_gen.bitmap, -1); 1280} 1281 1282#else /* !CONFIG_LRU_GEN_WALKS_MMU */ 1283 1284static inline void lru_gen_add_mm(struct mm_struct *mm) 1285{ 1286} 1287 1288static inline void lru_gen_del_mm(struct mm_struct *mm) 1289{ 1290} 1291 1292static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1293{ 1294} 1295 1296static inline void lru_gen_init_mm(struct mm_struct *mm) 1297{ 1298} 1299 1300static inline void lru_gen_use_mm(struct mm_struct *mm) 1301{ 1302} 1303 1304#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1305 1306struct vma_iterator { 1307 struct ma_state mas; 1308}; 1309 1310#define VMA_ITERATOR(name, __mm, __addr) \ 1311 struct vma_iterator name = { \ 1312 .mas = { \ 1313 .tree = &(__mm)->mm_mt, \ 1314 .index = __addr, \ 1315 .node = NULL, \ 1316 .status = ma_start, \ 1317 }, \ 1318 } 1319 1320static inline void vma_iter_init(struct vma_iterator *vmi, 1321 struct mm_struct *mm, unsigned long addr) 1322{ 1323 mas_init(&vmi->mas, &mm->mm_mt, addr); 1324} 1325 1326#ifdef CONFIG_SCHED_MM_CID 1327 1328enum mm_cid_state { 1329 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 1330 MM_CID_LAZY_PUT = (1U << 31), 1331}; 1332 1333static inline bool mm_cid_is_unset(int cid) 1334{ 1335 return cid == MM_CID_UNSET; 1336} 1337 1338static inline bool mm_cid_is_lazy_put(int cid) 1339{ 1340 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 1341} 1342 1343static inline bool mm_cid_is_valid(int cid) 1344{ 1345 return !(cid & MM_CID_LAZY_PUT); 1346} 1347 1348static inline int mm_cid_set_lazy_put(int cid) 1349{ 1350 return cid | MM_CID_LAZY_PUT; 1351} 1352 1353static inline int mm_cid_clear_lazy_put(int cid) 1354{ 1355 return cid & ~MM_CID_LAZY_PUT; 1356} 1357 1358/* 1359 * mm_cpus_allowed: Union of all mm's threads allowed CPUs. 1360 */ 1361static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm) 1362{ 1363 unsigned long bitmap = (unsigned long)mm; 1364 1365 bitmap += offsetof(struct mm_struct, cpu_bitmap); 1366 /* Skip cpu_bitmap */ 1367 bitmap += cpumask_size(); 1368 return (struct cpumask *)bitmap; 1369} 1370 1371/* Accessor for struct mm_struct's cidmask. */ 1372static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 1373{ 1374 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm); 1375 1376 /* Skip mm_cpus_allowed */ 1377 cid_bitmap += cpumask_size(); 1378 return (struct cpumask *)cid_bitmap; 1379} 1380 1381static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) 1382{ 1383 int i; 1384 1385 for_each_possible_cpu(i) { 1386 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1387 1388 pcpu_cid->cid = MM_CID_UNSET; 1389 pcpu_cid->recent_cid = MM_CID_UNSET; 1390 pcpu_cid->time = 0; 1391 } 1392 mm->nr_cpus_allowed = p->nr_cpus_allowed; 1393 atomic_set(&mm->max_nr_cid, 0); 1394 raw_spin_lock_init(&mm->cpus_allowed_lock); 1395 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); 1396 cpumask_clear(mm_cidmask(mm)); 1397} 1398 1399static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p) 1400{ 1401 mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid); 1402 if (!mm->pcpu_cid) 1403 return -ENOMEM; 1404 mm_init_cid(mm, p); 1405 return 0; 1406} 1407#define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__)) 1408 1409static inline void mm_destroy_cid(struct mm_struct *mm) 1410{ 1411 free_percpu(mm->pcpu_cid); 1412 mm->pcpu_cid = NULL; 1413} 1414 1415static inline unsigned int mm_cid_size(void) 1416{ 1417 return 2 * cpumask_size(); /* mm_cpus_allowed(), mm_cidmask(). */ 1418} 1419 1420static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) 1421{ 1422 struct cpumask *mm_allowed = mm_cpus_allowed(mm); 1423 1424 if (!mm) 1425 return; 1426 /* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */ 1427 raw_spin_lock(&mm->cpus_allowed_lock); 1428 cpumask_or(mm_allowed, mm_allowed, cpumask); 1429 WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed)); 1430 raw_spin_unlock(&mm->cpus_allowed_lock); 1431} 1432#else /* CONFIG_SCHED_MM_CID */ 1433static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { } 1434static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; } 1435static inline void mm_destroy_cid(struct mm_struct *mm) { } 1436 1437static inline unsigned int mm_cid_size(void) 1438{ 1439 return 0; 1440} 1441static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { } 1442#endif /* CONFIG_SCHED_MM_CID */ 1443 1444struct mmu_gather; 1445extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1446extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1447extern void tlb_finish_mmu(struct mmu_gather *tlb); 1448 1449struct vm_fault; 1450 1451/** 1452 * typedef vm_fault_t - Return type for page fault handlers. 1453 * 1454 * Page fault handlers return a bitmask of %VM_FAULT values. 1455 */ 1456typedef __bitwise unsigned int vm_fault_t; 1457 1458/** 1459 * enum vm_fault_reason - Page fault handlers return a bitmask of 1460 * these values to tell the core VM what happened when handling the 1461 * fault. Used to decide whether a process gets delivered SIGBUS or 1462 * just gets major/minor fault counters bumped up. 1463 * 1464 * @VM_FAULT_OOM: Out Of Memory 1465 * @VM_FAULT_SIGBUS: Bad access 1466 * @VM_FAULT_MAJOR: Page read from storage 1467 * @VM_FAULT_HWPOISON: Hit poisoned small page 1468 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1469 * in upper bits 1470 * @VM_FAULT_SIGSEGV: segmentation fault 1471 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1472 * @VM_FAULT_LOCKED: ->fault locked the returned page 1473 * @VM_FAULT_RETRY: ->fault blocked, must retry 1474 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1475 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1476 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1477 * fsync() to complete (for synchronous page faults 1478 * in DAX) 1479 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1480 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1481 * 1482 */ 1483enum vm_fault_reason { 1484 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1485 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1486 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1487 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1488 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1489 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1490 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1491 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1492 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1493 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1494 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1495 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1496 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1497 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1498}; 1499 1500/* Encode hstate index for a hwpoisoned large page */ 1501#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1502#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1503 1504#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1505 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1506 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1507 1508#define VM_FAULT_RESULT_TRACE \ 1509 { VM_FAULT_OOM, "OOM" }, \ 1510 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1511 { VM_FAULT_MAJOR, "MAJOR" }, \ 1512 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1513 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1514 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1515 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1516 { VM_FAULT_LOCKED, "LOCKED" }, \ 1517 { VM_FAULT_RETRY, "RETRY" }, \ 1518 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1519 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1520 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1521 { VM_FAULT_COMPLETED, "COMPLETED" } 1522 1523struct vm_special_mapping { 1524 const char *name; /* The name, e.g. "[vdso]". */ 1525 1526 /* 1527 * If .fault is not provided, this points to a 1528 * NULL-terminated array of pages that back the special mapping. 1529 * 1530 * This must not be NULL unless .fault is provided. 1531 */ 1532 struct page **pages; 1533 1534 /* 1535 * If non-NULL, then this is called to resolve page faults 1536 * on the special mapping. If used, .pages is not checked. 1537 */ 1538 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1539 struct vm_area_struct *vma, 1540 struct vm_fault *vmf); 1541 1542 int (*mremap)(const struct vm_special_mapping *sm, 1543 struct vm_area_struct *new_vma); 1544 1545 void (*close)(const struct vm_special_mapping *sm, 1546 struct vm_area_struct *vma); 1547}; 1548 1549enum tlb_flush_reason { 1550 TLB_FLUSH_ON_TASK_SWITCH, 1551 TLB_REMOTE_SHOOTDOWN, 1552 TLB_LOCAL_SHOOTDOWN, 1553 TLB_LOCAL_MM_SHOOTDOWN, 1554 TLB_REMOTE_SEND_IPI, 1555 TLB_REMOTE_WRONG_CPU, 1556 NR_TLB_FLUSH_REASONS, 1557}; 1558 1559/** 1560 * enum fault_flag - Fault flag definitions. 1561 * @FAULT_FLAG_WRITE: Fault was a write fault. 1562 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1563 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1564 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1565 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1566 * @FAULT_FLAG_TRIED: The fault has been tried once. 1567 * @FAULT_FLAG_USER: The fault originated in userspace. 1568 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1569 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1570 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1571 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1572 * COW mapping, making sure that an exclusive anon page is 1573 * mapped after the fault. 1574 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1575 * We should only access orig_pte if this flag set. 1576 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1577 * 1578 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1579 * whether we would allow page faults to retry by specifying these two 1580 * fault flags correctly. Currently there can be three legal combinations: 1581 * 1582 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1583 * this is the first try 1584 * 1585 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1586 * we've already tried at least once 1587 * 1588 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1589 * 1590 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1591 * be used. Note that page faults can be allowed to retry for multiple times, 1592 * in which case we'll have an initial fault with flags (a) then later on 1593 * continuous faults with flags (b). We should always try to detect pending 1594 * signals before a retry to make sure the continuous page faults can still be 1595 * interrupted if necessary. 1596 * 1597 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1598 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1599 * applied to mappings that are not COW mappings. 1600 */ 1601enum fault_flag { 1602 FAULT_FLAG_WRITE = 1 << 0, 1603 FAULT_FLAG_MKWRITE = 1 << 1, 1604 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1605 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1606 FAULT_FLAG_KILLABLE = 1 << 4, 1607 FAULT_FLAG_TRIED = 1 << 5, 1608 FAULT_FLAG_USER = 1 << 6, 1609 FAULT_FLAG_REMOTE = 1 << 7, 1610 FAULT_FLAG_INSTRUCTION = 1 << 8, 1611 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1612 FAULT_FLAG_UNSHARE = 1 << 10, 1613 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1614 FAULT_FLAG_VMA_LOCK = 1 << 12, 1615}; 1616 1617typedef unsigned int __bitwise zap_flags_t; 1618 1619/* Flags for clear_young_dirty_ptes(). */ 1620typedef int __bitwise cydp_t; 1621 1622/* Clear the access bit */ 1623#define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0)) 1624 1625/* Clear the dirty bit */ 1626#define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1)) 1627 1628/* 1629 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1630 * other. Here is what they mean, and how to use them: 1631 * 1632 * 1633 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1634 * lifetime enforced by the filesystem and we need guarantees that longterm 1635 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1636 * the filesystem. Ideas for this coordination include revoking the longterm 1637 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1638 * added after the problem with filesystems was found FS DAX VMAs are 1639 * specifically failed. Filesystem pages are still subject to bugs and use of 1640 * FOLL_LONGTERM should be avoided on those pages. 1641 * 1642 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1643 * that region. And so, CMA attempts to migrate the page before pinning, when 1644 * FOLL_LONGTERM is specified. 1645 * 1646 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1647 * but an additional pin counting system) will be invoked. This is intended for 1648 * anything that gets a page reference and then touches page data (for example, 1649 * Direct IO). This lets the filesystem know that some non-file-system entity is 1650 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1651 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1652 * a call to unpin_user_page(). 1653 * 1654 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1655 * and separate refcounting mechanisms, however, and that means that each has 1656 * its own acquire and release mechanisms: 1657 * 1658 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1659 * 1660 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1661 * 1662 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1663 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1664 * calls applied to them, and that's perfectly OK. This is a constraint on the 1665 * callers, not on the pages.) 1666 * 1667 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1668 * directly by the caller. That's in order to help avoid mismatches when 1669 * releasing pages: get_user_pages*() pages must be released via put_page(), 1670 * while pin_user_pages*() pages must be released via unpin_user_page(). 1671 * 1672 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1673 */ 1674 1675enum { 1676 /* check pte is writable */ 1677 FOLL_WRITE = 1 << 0, 1678 /* do get_page on page */ 1679 FOLL_GET = 1 << 1, 1680 /* give error on hole if it would be zero */ 1681 FOLL_DUMP = 1 << 2, 1682 /* get_user_pages read/write w/o permission */ 1683 FOLL_FORCE = 1 << 3, 1684 /* 1685 * if a disk transfer is needed, start the IO and return without waiting 1686 * upon it 1687 */ 1688 FOLL_NOWAIT = 1 << 4, 1689 /* do not fault in pages */ 1690 FOLL_NOFAULT = 1 << 5, 1691 /* check page is hwpoisoned */ 1692 FOLL_HWPOISON = 1 << 6, 1693 /* don't do file mappings */ 1694 FOLL_ANON = 1 << 7, 1695 /* 1696 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1697 * time period _often_ under userspace control. This is in contrast to 1698 * iov_iter_get_pages(), whose usages are transient. 1699 */ 1700 FOLL_LONGTERM = 1 << 8, 1701 /* split huge pmd before returning */ 1702 FOLL_SPLIT_PMD = 1 << 9, 1703 /* allow returning PCI P2PDMA pages */ 1704 FOLL_PCI_P2PDMA = 1 << 10, 1705 /* allow interrupts from generic signals */ 1706 FOLL_INTERRUPTIBLE = 1 << 11, 1707 /* 1708 * Always honor (trigger) NUMA hinting faults. 1709 * 1710 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1711 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1712 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1713 * hinting faults. 1714 */ 1715 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1716 1717 /* See also internal only FOLL flags in mm/internal.h */ 1718}; 1719 1720/* mm flags */ 1721 1722/* 1723 * The first two bits represent core dump modes for set-user-ID, 1724 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h 1725 */ 1726#define MMF_DUMPABLE_BITS 2 1727#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 1728/* coredump filter bits */ 1729#define MMF_DUMP_ANON_PRIVATE 2 1730#define MMF_DUMP_ANON_SHARED 3 1731#define MMF_DUMP_MAPPED_PRIVATE 4 1732#define MMF_DUMP_MAPPED_SHARED 5 1733#define MMF_DUMP_ELF_HEADERS 6 1734#define MMF_DUMP_HUGETLB_PRIVATE 7 1735#define MMF_DUMP_HUGETLB_SHARED 8 1736#define MMF_DUMP_DAX_PRIVATE 9 1737#define MMF_DUMP_DAX_SHARED 10 1738 1739#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 1740#define MMF_DUMP_FILTER_BITS 9 1741#define MMF_DUMP_FILTER_MASK \ 1742 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 1743#define MMF_DUMP_FILTER_DEFAULT \ 1744 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 1745 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 1746 1747#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 1748# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 1749#else 1750# define MMF_DUMP_MASK_DEFAULT_ELF 0 1751#endif 1752 /* leave room for more dump flags */ 1753#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 1754#define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */ 1755 1756/* 1757 * This one-shot flag is dropped due to necessity of changing exe once again 1758 * on NFS restore 1759 */ 1760//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 1761 1762#define MMF_HAS_UPROBES 19 /* has uprobes */ 1763#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 1764#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 1765#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 1766#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ 1767#define MMF_DISABLE_THP 24 /* disable THP for all VMAs */ 1768#define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP) 1769#define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */ 1770#define MMF_MULTIPROCESS 26 /* mm is shared between processes */ 1771/* 1772 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either 1773 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into 1774 * a counter on its own. We're aggresive on this bit for now: even if the 1775 * pinned pages were unpinned later on, we'll still keep this bit set for the 1776 * lifecycle of this mm, just for simplicity. 1777 */ 1778#define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */ 1779 1780#define MMF_HAS_MDWE 28 1781#define MMF_HAS_MDWE_MASK (1 << MMF_HAS_MDWE) 1782 1783 1784#define MMF_HAS_MDWE_NO_INHERIT 29 1785 1786#define MMF_VM_MERGE_ANY 30 1787#define MMF_VM_MERGE_ANY_MASK (1 << MMF_VM_MERGE_ANY) 1788 1789#define MMF_TOPDOWN 31 /* mm searches top down by default */ 1790#define MMF_TOPDOWN_MASK (1 << MMF_TOPDOWN) 1791 1792#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ 1793 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\ 1794 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK) 1795 1796static inline unsigned long mmf_init_flags(unsigned long flags) 1797{ 1798 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT)) 1799 flags &= ~((1UL << MMF_HAS_MDWE) | 1800 (1UL << MMF_HAS_MDWE_NO_INHERIT)); 1801 return flags & MMF_INIT_MASK; 1802} 1803 1804#endif /* _LINUX_MM_TYPES_H */