at v6.17 129 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/pgalloc_tag.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/compiler.h> 16#include <linux/mm_types.h> 17#include <linux/mmap_lock.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page-flags.h> 27#include <linux/page_ref.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30#include <linux/sched.h> 31#include <linux/pgtable.h> 32#include <linux/kasan.h> 33#include <linux/memremap.h> 34#include <linux/slab.h> 35#include <linux/cacheinfo.h> 36#include <linux/rcuwait.h> 37 38struct mempolicy; 39struct anon_vma; 40struct anon_vma_chain; 41struct user_struct; 42struct pt_regs; 43struct folio_batch; 44 45void arch_mm_preinit(void); 46void mm_core_init(void); 47void init_mm_internals(void); 48 49extern atomic_long_t _totalram_pages; 50static inline unsigned long totalram_pages(void) 51{ 52 return (unsigned long)atomic_long_read(&_totalram_pages); 53} 54 55static inline void totalram_pages_inc(void) 56{ 57 atomic_long_inc(&_totalram_pages); 58} 59 60static inline void totalram_pages_dec(void) 61{ 62 atomic_long_dec(&_totalram_pages); 63} 64 65static inline void totalram_pages_add(long count) 66{ 67 atomic_long_add(count, &_totalram_pages); 68} 69 70extern void * high_memory; 71 72#ifdef CONFIG_SYSCTL 73extern int sysctl_legacy_va_layout; 74#else 75#define sysctl_legacy_va_layout 0 76#endif 77 78#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 79extern const int mmap_rnd_bits_min; 80extern int mmap_rnd_bits_max __ro_after_init; 81extern int mmap_rnd_bits __read_mostly; 82#endif 83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 84extern const int mmap_rnd_compat_bits_min; 85extern const int mmap_rnd_compat_bits_max; 86extern int mmap_rnd_compat_bits __read_mostly; 87#endif 88 89#ifndef DIRECT_MAP_PHYSMEM_END 90# ifdef MAX_PHYSMEM_BITS 91# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 92# else 93# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 94# endif 95#endif 96 97#include <asm/page.h> 98#include <asm/processor.h> 99 100#ifndef __pa_symbol 101#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 102#endif 103 104#ifndef page_to_virt 105#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 106#endif 107 108#ifndef lm_alias 109#define lm_alias(x) __va(__pa_symbol(x)) 110#endif 111 112/* 113 * To prevent common memory management code establishing 114 * a zero page mapping on a read fault. 115 * This macro should be defined within <asm/pgtable.h>. 116 * s390 does this to prevent multiplexing of hardware bits 117 * related to the physical page in case of virtualization. 118 */ 119#ifndef mm_forbids_zeropage 120#define mm_forbids_zeropage(X) (0) 121#endif 122 123/* 124 * On some architectures it is expensive to call memset() for small sizes. 125 * If an architecture decides to implement their own version of 126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 127 * define their own version of this macro in <asm/pgtable.h> 128 */ 129#if BITS_PER_LONG == 64 130/* This function must be updated when the size of struct page grows above 96 131 * or reduces below 56. The idea that compiler optimizes out switch() 132 * statement, and only leaves move/store instructions. Also the compiler can 133 * combine write statements if they are both assignments and can be reordered, 134 * this can result in several of the writes here being dropped. 135 */ 136#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 137static inline void __mm_zero_struct_page(struct page *page) 138{ 139 unsigned long *_pp = (void *)page; 140 141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 142 BUILD_BUG_ON(sizeof(struct page) & 7); 143 BUILD_BUG_ON(sizeof(struct page) < 56); 144 BUILD_BUG_ON(sizeof(struct page) > 96); 145 146 switch (sizeof(struct page)) { 147 case 96: 148 _pp[11] = 0; 149 fallthrough; 150 case 88: 151 _pp[10] = 0; 152 fallthrough; 153 case 80: 154 _pp[9] = 0; 155 fallthrough; 156 case 72: 157 _pp[8] = 0; 158 fallthrough; 159 case 64: 160 _pp[7] = 0; 161 fallthrough; 162 case 56: 163 _pp[6] = 0; 164 _pp[5] = 0; 165 _pp[4] = 0; 166 _pp[3] = 0; 167 _pp[2] = 0; 168 _pp[1] = 0; 169 _pp[0] = 0; 170 } 171} 172#else 173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 174#endif 175 176/* 177 * Default maximum number of active map areas, this limits the number of vmas 178 * per mm struct. Users can overwrite this number by sysctl but there is a 179 * problem. 180 * 181 * When a program's coredump is generated as ELF format, a section is created 182 * per a vma. In ELF, the number of sections is represented in unsigned short. 183 * This means the number of sections should be smaller than 65535 at coredump. 184 * Because the kernel adds some informative sections to a image of program at 185 * generating coredump, we need some margin. The number of extra sections is 186 * 1-3 now and depends on arch. We use "5" as safe margin, here. 187 * 188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 189 * not a hard limit any more. Although some userspace tools can be surprised by 190 * that. 191 */ 192#define MAPCOUNT_ELF_CORE_MARGIN (5) 193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 194 195extern int sysctl_max_map_count; 196 197extern unsigned long sysctl_user_reserve_kbytes; 198extern unsigned long sysctl_admin_reserve_kbytes; 199 200#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 201#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 202#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 203#else 204#define nth_page(page,n) ((page) + (n)) 205#define folio_page_idx(folio, p) ((p) - &(folio)->page) 206#endif 207 208/* to align the pointer to the (next) page boundary */ 209#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 210 211/* to align the pointer to the (prev) page boundary */ 212#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 213 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 216 217static inline struct folio *lru_to_folio(struct list_head *head) 218{ 219 return list_entry((head)->prev, struct folio, lru); 220} 221 222void setup_initial_init_mm(void *start_code, void *end_code, 223 void *end_data, void *brk); 224 225/* 226 * Linux kernel virtual memory manager primitives. 227 * The idea being to have a "virtual" mm in the same way 228 * we have a virtual fs - giving a cleaner interface to the 229 * mm details, and allowing different kinds of memory mappings 230 * (from shared memory to executable loading to arbitrary 231 * mmap() functions). 232 */ 233 234struct vm_area_struct *vm_area_alloc(struct mm_struct *); 235struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 236void vm_area_free(struct vm_area_struct *); 237 238#ifndef CONFIG_MMU 239extern struct rb_root nommu_region_tree; 240extern struct rw_semaphore nommu_region_sem; 241 242extern unsigned int kobjsize(const void *objp); 243#endif 244 245/* 246 * vm_flags in vm_area_struct, see mm_types.h. 247 * When changing, update also include/trace/events/mmflags.h 248 */ 249#define VM_NONE 0x00000000 250 251#define VM_READ 0x00000001 /* currently active flags */ 252#define VM_WRITE 0x00000002 253#define VM_EXEC 0x00000004 254#define VM_SHARED 0x00000008 255 256/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 257#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 258#define VM_MAYWRITE 0x00000020 259#define VM_MAYEXEC 0x00000040 260#define VM_MAYSHARE 0x00000080 261 262#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 263#ifdef CONFIG_MMU 264#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 265#else /* CONFIG_MMU */ 266#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 267#define VM_UFFD_MISSING 0 268#endif /* CONFIG_MMU */ 269#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 271 272#define VM_LOCKED 0x00002000 273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 274 275 /* Used by sys_madvise() */ 276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 278 279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 285#define VM_SYNC 0x00800000 /* Synchronous page faults */ 286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 289 290#ifdef CONFIG_MEM_SOFT_DIRTY 291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 292#else 293# define VM_SOFTDIRTY 0 294#endif 295 296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 300 301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 307#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 308#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 309#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 310#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 311#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 312#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 313#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 314#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 315#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 316#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 317 318#ifdef CONFIG_ARCH_HAS_PKEYS 319# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 320# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 321# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 322# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 323#if CONFIG_ARCH_PKEY_BITS > 3 324# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 325#else 326# define VM_PKEY_BIT3 0 327#endif 328#if CONFIG_ARCH_PKEY_BITS > 4 329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 330#else 331# define VM_PKEY_BIT4 0 332#endif 333#endif /* CONFIG_ARCH_HAS_PKEYS */ 334 335#ifdef CONFIG_X86_USER_SHADOW_STACK 336/* 337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 338 * support core mm. 339 * 340 * These VMAs will get a single end guard page. This helps userspace protect 341 * itself from attacks. A single page is enough for current shadow stack archs 342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 343 * for more details on the guard size. 344 */ 345# define VM_SHADOW_STACK VM_HIGH_ARCH_5 346#endif 347 348#if defined(CONFIG_ARM64_GCS) 349/* 350 * arm64's Guarded Control Stack implements similar functionality and 351 * has similar constraints to shadow stacks. 352 */ 353# define VM_SHADOW_STACK VM_HIGH_ARCH_6 354#endif 355 356#ifndef VM_SHADOW_STACK 357# define VM_SHADOW_STACK VM_NONE 358#endif 359 360#if defined(CONFIG_PPC64) 361# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 362#elif defined(CONFIG_PARISC) 363# define VM_GROWSUP VM_ARCH_1 364#elif defined(CONFIG_SPARC64) 365# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 366# define VM_ARCH_CLEAR VM_SPARC_ADI 367#elif defined(CONFIG_ARM64) 368# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 369# define VM_ARCH_CLEAR VM_ARM64_BTI 370#elif !defined(CONFIG_MMU) 371# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 372#endif 373 374#if defined(CONFIG_ARM64_MTE) 375# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 376# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 377#else 378# define VM_MTE VM_NONE 379# define VM_MTE_ALLOWED VM_NONE 380#endif 381 382#ifndef VM_GROWSUP 383# define VM_GROWSUP VM_NONE 384#endif 385 386#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 387# define VM_UFFD_MINOR_BIT 41 388# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 389#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 390# define VM_UFFD_MINOR VM_NONE 391#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 393/* 394 * This flag is used to connect VFIO to arch specific KVM code. It 395 * indicates that the memory under this VMA is safe for use with any 396 * non-cachable memory type inside KVM. Some VFIO devices, on some 397 * platforms, are thought to be unsafe and can cause machine crashes 398 * if KVM does not lock down the memory type. 399 */ 400#ifdef CONFIG_64BIT 401#define VM_ALLOW_ANY_UNCACHED_BIT 39 402#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 403#else 404#define VM_ALLOW_ANY_UNCACHED VM_NONE 405#endif 406 407#ifdef CONFIG_64BIT 408#define VM_DROPPABLE_BIT 40 409#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 410#elif defined(CONFIG_PPC32) 411#define VM_DROPPABLE VM_ARCH_1 412#else 413#define VM_DROPPABLE VM_NONE 414#endif 415 416#ifdef CONFIG_64BIT 417#define VM_SEALED_BIT 42 418#define VM_SEALED BIT(VM_SEALED_BIT) 419#else 420#define VM_SEALED VM_NONE 421#endif 422 423/* Bits set in the VMA until the stack is in its final location */ 424#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 425 426#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 427 428/* Common data flag combinations */ 429#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 430 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 431#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 432 VM_MAYWRITE | VM_MAYEXEC) 433#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 434 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 435 436#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 437#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 438#endif 439 440#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 441#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 442#endif 443 444#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 445 446#ifdef CONFIG_STACK_GROWSUP 447#define VM_STACK VM_GROWSUP 448#define VM_STACK_EARLY VM_GROWSDOWN 449#else 450#define VM_STACK VM_GROWSDOWN 451#define VM_STACK_EARLY 0 452#endif 453 454#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 455 456/* VMA basic access permission flags */ 457#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 458 459 460/* 461 * Special vmas that are non-mergable, non-mlock()able. 462 */ 463#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 464 465/* This mask prevents VMA from being scanned with khugepaged */ 466#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 467 468/* This mask defines which mm->def_flags a process can inherit its parent */ 469#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 470 471/* This mask represents all the VMA flag bits used by mlock */ 472#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 473 474/* Arch-specific flags to clear when updating VM flags on protection change */ 475#ifndef VM_ARCH_CLEAR 476# define VM_ARCH_CLEAR VM_NONE 477#endif 478#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 479 480/* 481 * mapping from the currently active vm_flags protection bits (the 482 * low four bits) to a page protection mask.. 483 */ 484 485/* 486 * The default fault flags that should be used by most of the 487 * arch-specific page fault handlers. 488 */ 489#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 490 FAULT_FLAG_KILLABLE | \ 491 FAULT_FLAG_INTERRUPTIBLE) 492 493/** 494 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 495 * @flags: Fault flags. 496 * 497 * This is mostly used for places where we want to try to avoid taking 498 * the mmap_lock for too long a time when waiting for another condition 499 * to change, in which case we can try to be polite to release the 500 * mmap_lock in the first round to avoid potential starvation of other 501 * processes that would also want the mmap_lock. 502 * 503 * Return: true if the page fault allows retry and this is the first 504 * attempt of the fault handling; false otherwise. 505 */ 506static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 507{ 508 return (flags & FAULT_FLAG_ALLOW_RETRY) && 509 (!(flags & FAULT_FLAG_TRIED)); 510} 511 512#define FAULT_FLAG_TRACE \ 513 { FAULT_FLAG_WRITE, "WRITE" }, \ 514 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 515 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 516 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 517 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 518 { FAULT_FLAG_TRIED, "TRIED" }, \ 519 { FAULT_FLAG_USER, "USER" }, \ 520 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 521 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 522 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 523 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 524 525/* 526 * vm_fault is filled by the pagefault handler and passed to the vma's 527 * ->fault function. The vma's ->fault is responsible for returning a bitmask 528 * of VM_FAULT_xxx flags that give details about how the fault was handled. 529 * 530 * MM layer fills up gfp_mask for page allocations but fault handler might 531 * alter it if its implementation requires a different allocation context. 532 * 533 * pgoff should be used in favour of virtual_address, if possible. 534 */ 535struct vm_fault { 536 const struct { 537 struct vm_area_struct *vma; /* Target VMA */ 538 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 539 pgoff_t pgoff; /* Logical page offset based on vma */ 540 unsigned long address; /* Faulting virtual address - masked */ 541 unsigned long real_address; /* Faulting virtual address - unmasked */ 542 }; 543 enum fault_flag flags; /* FAULT_FLAG_xxx flags 544 * XXX: should really be 'const' */ 545 pmd_t *pmd; /* Pointer to pmd entry matching 546 * the 'address' */ 547 pud_t *pud; /* Pointer to pud entry matching 548 * the 'address' 549 */ 550 union { 551 pte_t orig_pte; /* Value of PTE at the time of fault */ 552 pmd_t orig_pmd; /* Value of PMD at the time of fault, 553 * used by PMD fault only. 554 */ 555 }; 556 557 struct page *cow_page; /* Page handler may use for COW fault */ 558 struct page *page; /* ->fault handlers should return a 559 * page here, unless VM_FAULT_NOPAGE 560 * is set (which is also implied by 561 * VM_FAULT_ERROR). 562 */ 563 /* These three entries are valid only while holding ptl lock */ 564 pte_t *pte; /* Pointer to pte entry matching 565 * the 'address'. NULL if the page 566 * table hasn't been allocated. 567 */ 568 spinlock_t *ptl; /* Page table lock. 569 * Protects pte page table if 'pte' 570 * is not NULL, otherwise pmd. 571 */ 572 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 573 * vm_ops->map_pages() sets up a page 574 * table from atomic context. 575 * do_fault_around() pre-allocates 576 * page table to avoid allocation from 577 * atomic context. 578 */ 579}; 580 581/* 582 * These are the virtual MM functions - opening of an area, closing and 583 * unmapping it (needed to keep files on disk up-to-date etc), pointer 584 * to the functions called when a no-page or a wp-page exception occurs. 585 */ 586struct vm_operations_struct { 587 void (*open)(struct vm_area_struct * area); 588 /** 589 * @close: Called when the VMA is being removed from the MM. 590 * Context: User context. May sleep. Caller holds mmap_lock. 591 */ 592 void (*close)(struct vm_area_struct * area); 593 /* Called any time before splitting to check if it's allowed */ 594 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 595 int (*mremap)(struct vm_area_struct *area); 596 /* 597 * Called by mprotect() to make driver-specific permission 598 * checks before mprotect() is finalised. The VMA must not 599 * be modified. Returns 0 if mprotect() can proceed. 600 */ 601 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 602 unsigned long end, unsigned long newflags); 603 vm_fault_t (*fault)(struct vm_fault *vmf); 604 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 605 vm_fault_t (*map_pages)(struct vm_fault *vmf, 606 pgoff_t start_pgoff, pgoff_t end_pgoff); 607 unsigned long (*pagesize)(struct vm_area_struct * area); 608 609 /* notification that a previously read-only page is about to become 610 * writable, if an error is returned it will cause a SIGBUS */ 611 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 612 613 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 614 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 615 616 /* called by access_process_vm when get_user_pages() fails, typically 617 * for use by special VMAs. See also generic_access_phys() for a generic 618 * implementation useful for any iomem mapping. 619 */ 620 int (*access)(struct vm_area_struct *vma, unsigned long addr, 621 void *buf, int len, int write); 622 623 /* Called by the /proc/PID/maps code to ask the vma whether it 624 * has a special name. Returning non-NULL will also cause this 625 * vma to be dumped unconditionally. */ 626 const char *(*name)(struct vm_area_struct *vma); 627 628#ifdef CONFIG_NUMA 629 /* 630 * set_policy() op must add a reference to any non-NULL @new mempolicy 631 * to hold the policy upon return. Caller should pass NULL @new to 632 * remove a policy and fall back to surrounding context--i.e. do not 633 * install a MPOL_DEFAULT policy, nor the task or system default 634 * mempolicy. 635 */ 636 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 637 638 /* 639 * get_policy() op must add reference [mpol_get()] to any policy at 640 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 641 * in mm/mempolicy.c will do this automatically. 642 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 643 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 644 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 645 * must return NULL--i.e., do not "fallback" to task or system default 646 * policy. 647 */ 648 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 649 unsigned long addr, pgoff_t *ilx); 650#endif 651 /* 652 * Called by vm_normal_page() for special PTEs to find the 653 * page for @addr. This is useful if the default behavior 654 * (using pte_page()) would not find the correct page. 655 */ 656 struct page *(*find_special_page)(struct vm_area_struct *vma, 657 unsigned long addr); 658}; 659 660#ifdef CONFIG_NUMA_BALANCING 661static inline void vma_numab_state_init(struct vm_area_struct *vma) 662{ 663 vma->numab_state = NULL; 664} 665static inline void vma_numab_state_free(struct vm_area_struct *vma) 666{ 667 kfree(vma->numab_state); 668} 669#else 670static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 671static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 672#endif /* CONFIG_NUMA_BALANCING */ 673 674/* 675 * These must be here rather than mmap_lock.h as dependent on vm_fault type, 676 * declared in this header. 677 */ 678#ifdef CONFIG_PER_VMA_LOCK 679static inline void release_fault_lock(struct vm_fault *vmf) 680{ 681 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 682 vma_end_read(vmf->vma); 683 else 684 mmap_read_unlock(vmf->vma->vm_mm); 685} 686 687static inline void assert_fault_locked(struct vm_fault *vmf) 688{ 689 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 690 vma_assert_locked(vmf->vma); 691 else 692 mmap_assert_locked(vmf->vma->vm_mm); 693} 694#else 695static inline void release_fault_lock(struct vm_fault *vmf) 696{ 697 mmap_read_unlock(vmf->vma->vm_mm); 698} 699 700static inline void assert_fault_locked(struct vm_fault *vmf) 701{ 702 mmap_assert_locked(vmf->vma->vm_mm); 703} 704#endif /* CONFIG_PER_VMA_LOCK */ 705 706extern const struct vm_operations_struct vma_dummy_vm_ops; 707 708static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 709{ 710 memset(vma, 0, sizeof(*vma)); 711 vma->vm_mm = mm; 712 vma->vm_ops = &vma_dummy_vm_ops; 713 INIT_LIST_HEAD(&vma->anon_vma_chain); 714 vma_lock_init(vma, false); 715} 716 717/* Use when VMA is not part of the VMA tree and needs no locking */ 718static inline void vm_flags_init(struct vm_area_struct *vma, 719 vm_flags_t flags) 720{ 721 ACCESS_PRIVATE(vma, __vm_flags) = flags; 722} 723 724/* 725 * Use when VMA is part of the VMA tree and modifications need coordination 726 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 727 * it should be locked explicitly beforehand. 728 */ 729static inline void vm_flags_reset(struct vm_area_struct *vma, 730 vm_flags_t flags) 731{ 732 vma_assert_write_locked(vma); 733 vm_flags_init(vma, flags); 734} 735 736static inline void vm_flags_reset_once(struct vm_area_struct *vma, 737 vm_flags_t flags) 738{ 739 vma_assert_write_locked(vma); 740 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 741} 742 743static inline void vm_flags_set(struct vm_area_struct *vma, 744 vm_flags_t flags) 745{ 746 vma_start_write(vma); 747 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 748} 749 750static inline void vm_flags_clear(struct vm_area_struct *vma, 751 vm_flags_t flags) 752{ 753 vma_start_write(vma); 754 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 755} 756 757/* 758 * Use only if VMA is not part of the VMA tree or has no other users and 759 * therefore needs no locking. 760 */ 761static inline void __vm_flags_mod(struct vm_area_struct *vma, 762 vm_flags_t set, vm_flags_t clear) 763{ 764 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 765} 766 767/* 768 * Use only when the order of set/clear operations is unimportant, otherwise 769 * use vm_flags_{set|clear} explicitly. 770 */ 771static inline void vm_flags_mod(struct vm_area_struct *vma, 772 vm_flags_t set, vm_flags_t clear) 773{ 774 vma_start_write(vma); 775 __vm_flags_mod(vma, set, clear); 776} 777 778static inline void vma_set_anonymous(struct vm_area_struct *vma) 779{ 780 vma->vm_ops = NULL; 781} 782 783static inline bool vma_is_anonymous(struct vm_area_struct *vma) 784{ 785 return !vma->vm_ops; 786} 787 788/* 789 * Indicate if the VMA is a heap for the given task; for 790 * /proc/PID/maps that is the heap of the main task. 791 */ 792static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 793{ 794 return vma->vm_start < vma->vm_mm->brk && 795 vma->vm_end > vma->vm_mm->start_brk; 796} 797 798/* 799 * Indicate if the VMA is a stack for the given task; for 800 * /proc/PID/maps that is the stack of the main task. 801 */ 802static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 803{ 804 /* 805 * We make no effort to guess what a given thread considers to be 806 * its "stack". It's not even well-defined for programs written 807 * languages like Go. 808 */ 809 return vma->vm_start <= vma->vm_mm->start_stack && 810 vma->vm_end >= vma->vm_mm->start_stack; 811} 812 813static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 814{ 815 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 816 817 if (!maybe_stack) 818 return false; 819 820 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 821 VM_STACK_INCOMPLETE_SETUP) 822 return true; 823 824 return false; 825} 826 827static inline bool vma_is_foreign(struct vm_area_struct *vma) 828{ 829 if (!current->mm) 830 return true; 831 832 if (current->mm != vma->vm_mm) 833 return true; 834 835 return false; 836} 837 838static inline bool vma_is_accessible(struct vm_area_struct *vma) 839{ 840 return vma->vm_flags & VM_ACCESS_FLAGS; 841} 842 843static inline bool is_shared_maywrite(vm_flags_t vm_flags) 844{ 845 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 846 (VM_SHARED | VM_MAYWRITE); 847} 848 849static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 850{ 851 return is_shared_maywrite(vma->vm_flags); 852} 853 854static inline 855struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 856{ 857 return mas_find(&vmi->mas, max - 1); 858} 859 860static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 861{ 862 /* 863 * Uses mas_find() to get the first VMA when the iterator starts. 864 * Calling mas_next() could skip the first entry. 865 */ 866 return mas_find(&vmi->mas, ULONG_MAX); 867} 868 869static inline 870struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 871{ 872 return mas_next_range(&vmi->mas, ULONG_MAX); 873} 874 875 876static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 877{ 878 return mas_prev(&vmi->mas, 0); 879} 880 881static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 882 unsigned long start, unsigned long end, gfp_t gfp) 883{ 884 __mas_set_range(&vmi->mas, start, end - 1); 885 mas_store_gfp(&vmi->mas, NULL, gfp); 886 if (unlikely(mas_is_err(&vmi->mas))) 887 return -ENOMEM; 888 889 return 0; 890} 891 892/* Free any unused preallocations */ 893static inline void vma_iter_free(struct vma_iterator *vmi) 894{ 895 mas_destroy(&vmi->mas); 896} 897 898static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 899 struct vm_area_struct *vma) 900{ 901 vmi->mas.index = vma->vm_start; 902 vmi->mas.last = vma->vm_end - 1; 903 mas_store(&vmi->mas, vma); 904 if (unlikely(mas_is_err(&vmi->mas))) 905 return -ENOMEM; 906 907 vma_mark_attached(vma); 908 return 0; 909} 910 911static inline void vma_iter_invalidate(struct vma_iterator *vmi) 912{ 913 mas_pause(&vmi->mas); 914} 915 916static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 917{ 918 mas_set(&vmi->mas, addr); 919} 920 921#define for_each_vma(__vmi, __vma) \ 922 while (((__vma) = vma_next(&(__vmi))) != NULL) 923 924/* The MM code likes to work with exclusive end addresses */ 925#define for_each_vma_range(__vmi, __vma, __end) \ 926 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 927 928#ifdef CONFIG_SHMEM 929/* 930 * The vma_is_shmem is not inline because it is used only by slow 931 * paths in userfault. 932 */ 933bool vma_is_shmem(struct vm_area_struct *vma); 934bool vma_is_anon_shmem(struct vm_area_struct *vma); 935#else 936static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 937static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 938#endif 939 940int vma_is_stack_for_current(struct vm_area_struct *vma); 941 942/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 943#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 944 945struct mmu_gather; 946struct inode; 947 948extern void prep_compound_page(struct page *page, unsigned int order); 949 950static inline unsigned int folio_large_order(const struct folio *folio) 951{ 952 return folio->_flags_1 & 0xff; 953} 954 955#ifdef NR_PAGES_IN_LARGE_FOLIO 956static inline long folio_large_nr_pages(const struct folio *folio) 957{ 958 return folio->_nr_pages; 959} 960#else 961static inline long folio_large_nr_pages(const struct folio *folio) 962{ 963 return 1L << folio_large_order(folio); 964} 965#endif 966 967/* 968 * compound_order() can be called without holding a reference, which means 969 * that niceties like page_folio() don't work. These callers should be 970 * prepared to handle wild return values. For example, PG_head may be 971 * set before the order is initialised, or this may be a tail page. 972 * See compaction.c for some good examples. 973 */ 974static inline unsigned int compound_order(struct page *page) 975{ 976 struct folio *folio = (struct folio *)page; 977 978 if (!test_bit(PG_head, &folio->flags)) 979 return 0; 980 return folio_large_order(folio); 981} 982 983/** 984 * folio_order - The allocation order of a folio. 985 * @folio: The folio. 986 * 987 * A folio is composed of 2^order pages. See get_order() for the definition 988 * of order. 989 * 990 * Return: The order of the folio. 991 */ 992static inline unsigned int folio_order(const struct folio *folio) 993{ 994 if (!folio_test_large(folio)) 995 return 0; 996 return folio_large_order(folio); 997} 998 999/** 1000 * folio_reset_order - Reset the folio order and derived _nr_pages 1001 * @folio: The folio. 1002 * 1003 * Reset the order and derived _nr_pages to 0. Must only be used in the 1004 * process of splitting large folios. 1005 */ 1006static inline void folio_reset_order(struct folio *folio) 1007{ 1008 if (WARN_ON_ONCE(!folio_test_large(folio))) 1009 return; 1010 folio->_flags_1 &= ~0xffUL; 1011#ifdef NR_PAGES_IN_LARGE_FOLIO 1012 folio->_nr_pages = 0; 1013#endif 1014} 1015 1016#include <linux/huge_mm.h> 1017 1018/* 1019 * Methods to modify the page usage count. 1020 * 1021 * What counts for a page usage: 1022 * - cache mapping (page->mapping) 1023 * - private data (page->private) 1024 * - page mapped in a task's page tables, each mapping 1025 * is counted separately 1026 * 1027 * Also, many kernel routines increase the page count before a critical 1028 * routine so they can be sure the page doesn't go away from under them. 1029 */ 1030 1031/* 1032 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1033 */ 1034static inline int put_page_testzero(struct page *page) 1035{ 1036 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1037 return page_ref_dec_and_test(page); 1038} 1039 1040static inline int folio_put_testzero(struct folio *folio) 1041{ 1042 return put_page_testzero(&folio->page); 1043} 1044 1045/* 1046 * Try to grab a ref unless the page has a refcount of zero, return false if 1047 * that is the case. 1048 * This can be called when MMU is off so it must not access 1049 * any of the virtual mappings. 1050 */ 1051static inline bool get_page_unless_zero(struct page *page) 1052{ 1053 return page_ref_add_unless(page, 1, 0); 1054} 1055 1056static inline struct folio *folio_get_nontail_page(struct page *page) 1057{ 1058 if (unlikely(!get_page_unless_zero(page))) 1059 return NULL; 1060 return (struct folio *)page; 1061} 1062 1063extern int page_is_ram(unsigned long pfn); 1064 1065enum { 1066 REGION_INTERSECTS, 1067 REGION_DISJOINT, 1068 REGION_MIXED, 1069}; 1070 1071int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1072 unsigned long desc); 1073 1074/* Support for virtually mapped pages */ 1075struct page *vmalloc_to_page(const void *addr); 1076unsigned long vmalloc_to_pfn(const void *addr); 1077 1078/* 1079 * Determine if an address is within the vmalloc range 1080 * 1081 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1082 * is no special casing required. 1083 */ 1084#ifdef CONFIG_MMU 1085extern bool is_vmalloc_addr(const void *x); 1086extern int is_vmalloc_or_module_addr(const void *x); 1087#else 1088static inline bool is_vmalloc_addr(const void *x) 1089{ 1090 return false; 1091} 1092static inline int is_vmalloc_or_module_addr(const void *x) 1093{ 1094 return 0; 1095} 1096#endif 1097 1098/* 1099 * How many times the entire folio is mapped as a single unit (eg by a 1100 * PMD or PUD entry). This is probably not what you want, except for 1101 * debugging purposes or implementation of other core folio_*() primitives. 1102 */ 1103static inline int folio_entire_mapcount(const struct folio *folio) 1104{ 1105 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1106 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1107 return 0; 1108 return atomic_read(&folio->_entire_mapcount) + 1; 1109} 1110 1111static inline int folio_large_mapcount(const struct folio *folio) 1112{ 1113 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1114 return atomic_read(&folio->_large_mapcount) + 1; 1115} 1116 1117/** 1118 * folio_mapcount() - Number of mappings of this folio. 1119 * @folio: The folio. 1120 * 1121 * The folio mapcount corresponds to the number of present user page table 1122 * entries that reference any part of a folio. Each such present user page 1123 * table entry must be paired with exactly on folio reference. 1124 * 1125 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1126 * exactly once. 1127 * 1128 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1129 * references the entire folio counts exactly once, even when such special 1130 * page table entries are comprised of multiple ordinary page table entries. 1131 * 1132 * Will report 0 for pages which cannot be mapped into userspace, such as 1133 * slab, page tables and similar. 1134 * 1135 * Return: The number of times this folio is mapped. 1136 */ 1137static inline int folio_mapcount(const struct folio *folio) 1138{ 1139 int mapcount; 1140 1141 if (likely(!folio_test_large(folio))) { 1142 mapcount = atomic_read(&folio->_mapcount) + 1; 1143 if (page_mapcount_is_type(mapcount)) 1144 mapcount = 0; 1145 return mapcount; 1146 } 1147 return folio_large_mapcount(folio); 1148} 1149 1150/** 1151 * folio_mapped - Is this folio mapped into userspace? 1152 * @folio: The folio. 1153 * 1154 * Return: True if any page in this folio is referenced by user page tables. 1155 */ 1156static inline bool folio_mapped(const struct folio *folio) 1157{ 1158 return folio_mapcount(folio) >= 1; 1159} 1160 1161/* 1162 * Return true if this page is mapped into pagetables. 1163 * For compound page it returns true if any sub-page of compound page is mapped, 1164 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1165 */ 1166static inline bool page_mapped(const struct page *page) 1167{ 1168 return folio_mapped(page_folio(page)); 1169} 1170 1171static inline struct page *virt_to_head_page(const void *x) 1172{ 1173 struct page *page = virt_to_page(x); 1174 1175 return compound_head(page); 1176} 1177 1178static inline struct folio *virt_to_folio(const void *x) 1179{ 1180 struct page *page = virt_to_page(x); 1181 1182 return page_folio(page); 1183} 1184 1185void __folio_put(struct folio *folio); 1186 1187void split_page(struct page *page, unsigned int order); 1188void folio_copy(struct folio *dst, struct folio *src); 1189int folio_mc_copy(struct folio *dst, struct folio *src); 1190 1191unsigned long nr_free_buffer_pages(void); 1192 1193/* Returns the number of bytes in this potentially compound page. */ 1194static inline unsigned long page_size(struct page *page) 1195{ 1196 return PAGE_SIZE << compound_order(page); 1197} 1198 1199/* Returns the number of bits needed for the number of bytes in a page */ 1200static inline unsigned int page_shift(struct page *page) 1201{ 1202 return PAGE_SHIFT + compound_order(page); 1203} 1204 1205/** 1206 * thp_order - Order of a transparent huge page. 1207 * @page: Head page of a transparent huge page. 1208 */ 1209static inline unsigned int thp_order(struct page *page) 1210{ 1211 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1212 return compound_order(page); 1213} 1214 1215/** 1216 * thp_size - Size of a transparent huge page. 1217 * @page: Head page of a transparent huge page. 1218 * 1219 * Return: Number of bytes in this page. 1220 */ 1221static inline unsigned long thp_size(struct page *page) 1222{ 1223 return PAGE_SIZE << thp_order(page); 1224} 1225 1226#ifdef CONFIG_MMU 1227/* 1228 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1229 * servicing faults for write access. In the normal case, do always want 1230 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1231 * that do not have writing enabled, when used by access_process_vm. 1232 */ 1233static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1234{ 1235 if (likely(vma->vm_flags & VM_WRITE)) 1236 pte = pte_mkwrite(pte, vma); 1237 return pte; 1238} 1239 1240vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); 1241void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1242 struct page *page, unsigned int nr, unsigned long addr); 1243 1244vm_fault_t finish_fault(struct vm_fault *vmf); 1245#endif 1246 1247/* 1248 * Multiple processes may "see" the same page. E.g. for untouched 1249 * mappings of /dev/null, all processes see the same page full of 1250 * zeroes, and text pages of executables and shared libraries have 1251 * only one copy in memory, at most, normally. 1252 * 1253 * For the non-reserved pages, page_count(page) denotes a reference count. 1254 * page_count() == 0 means the page is free. page->lru is then used for 1255 * freelist management in the buddy allocator. 1256 * page_count() > 0 means the page has been allocated. 1257 * 1258 * Pages are allocated by the slab allocator in order to provide memory 1259 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1260 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1261 * unless a particular usage is carefully commented. (the responsibility of 1262 * freeing the kmalloc memory is the caller's, of course). 1263 * 1264 * A page may be used by anyone else who does a __get_free_page(). 1265 * In this case, page_count still tracks the references, and should only 1266 * be used through the normal accessor functions. The top bits of page->flags 1267 * and page->virtual store page management information, but all other fields 1268 * are unused and could be used privately, carefully. The management of this 1269 * page is the responsibility of the one who allocated it, and those who have 1270 * subsequently been given references to it. 1271 * 1272 * The other pages (we may call them "pagecache pages") are completely 1273 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1274 * The following discussion applies only to them. 1275 * 1276 * A pagecache page contains an opaque `private' member, which belongs to the 1277 * page's address_space. Usually, this is the address of a circular list of 1278 * the page's disk buffers. PG_private must be set to tell the VM to call 1279 * into the filesystem to release these pages. 1280 * 1281 * A folio may belong to an inode's memory mapping. In this case, 1282 * folio->mapping points to the inode, and folio->index is the file 1283 * offset of the folio, in units of PAGE_SIZE. 1284 * 1285 * If pagecache pages are not associated with an inode, they are said to be 1286 * anonymous pages. These may become associated with the swapcache, and in that 1287 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1288 * 1289 * In either case (swapcache or inode backed), the pagecache itself holds one 1290 * reference to the page. Setting PG_private should also increment the 1291 * refcount. The each user mapping also has a reference to the page. 1292 * 1293 * The pagecache pages are stored in a per-mapping radix tree, which is 1294 * rooted at mapping->i_pages, and indexed by offset. 1295 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1296 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1297 * 1298 * All pagecache pages may be subject to I/O: 1299 * - inode pages may need to be read from disk, 1300 * - inode pages which have been modified and are MAP_SHARED may need 1301 * to be written back to the inode on disk, 1302 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1303 * modified may need to be swapped out to swap space and (later) to be read 1304 * back into memory. 1305 */ 1306 1307/* 127: arbitrary random number, small enough to assemble well */ 1308#define folio_ref_zero_or_close_to_overflow(folio) \ 1309 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1310 1311/** 1312 * folio_get - Increment the reference count on a folio. 1313 * @folio: The folio. 1314 * 1315 * Context: May be called in any context, as long as you know that 1316 * you have a refcount on the folio. If you do not already have one, 1317 * folio_try_get() may be the right interface for you to use. 1318 */ 1319static inline void folio_get(struct folio *folio) 1320{ 1321 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1322 folio_ref_inc(folio); 1323} 1324 1325static inline void get_page(struct page *page) 1326{ 1327 struct folio *folio = page_folio(page); 1328 if (WARN_ON_ONCE(folio_test_slab(folio))) 1329 return; 1330 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio))) 1331 return; 1332 folio_get(folio); 1333} 1334 1335static inline __must_check bool try_get_page(struct page *page) 1336{ 1337 page = compound_head(page); 1338 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1339 return false; 1340 page_ref_inc(page); 1341 return true; 1342} 1343 1344/** 1345 * folio_put - Decrement the reference count on a folio. 1346 * @folio: The folio. 1347 * 1348 * If the folio's reference count reaches zero, the memory will be 1349 * released back to the page allocator and may be used by another 1350 * allocation immediately. Do not access the memory or the struct folio 1351 * after calling folio_put() unless you can be sure that it wasn't the 1352 * last reference. 1353 * 1354 * Context: May be called in process or interrupt context, but not in NMI 1355 * context. May be called while holding a spinlock. 1356 */ 1357static inline void folio_put(struct folio *folio) 1358{ 1359 if (folio_put_testzero(folio)) 1360 __folio_put(folio); 1361} 1362 1363/** 1364 * folio_put_refs - Reduce the reference count on a folio. 1365 * @folio: The folio. 1366 * @refs: The amount to subtract from the folio's reference count. 1367 * 1368 * If the folio's reference count reaches zero, the memory will be 1369 * released back to the page allocator and may be used by another 1370 * allocation immediately. Do not access the memory or the struct folio 1371 * after calling folio_put_refs() unless you can be sure that these weren't 1372 * the last references. 1373 * 1374 * Context: May be called in process or interrupt context, but not in NMI 1375 * context. May be called while holding a spinlock. 1376 */ 1377static inline void folio_put_refs(struct folio *folio, int refs) 1378{ 1379 if (folio_ref_sub_and_test(folio, refs)) 1380 __folio_put(folio); 1381} 1382 1383void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1384 1385/* 1386 * union release_pages_arg - an array of pages or folios 1387 * 1388 * release_pages() releases a simple array of multiple pages, and 1389 * accepts various different forms of said page array: either 1390 * a regular old boring array of pages, an array of folios, or 1391 * an array of encoded page pointers. 1392 * 1393 * The transparent union syntax for this kind of "any of these 1394 * argument types" is all kinds of ugly, so look away. 1395 */ 1396typedef union { 1397 struct page **pages; 1398 struct folio **folios; 1399 struct encoded_page **encoded_pages; 1400} release_pages_arg __attribute__ ((__transparent_union__)); 1401 1402void release_pages(release_pages_arg, int nr); 1403 1404/** 1405 * folios_put - Decrement the reference count on an array of folios. 1406 * @folios: The folios. 1407 * 1408 * Like folio_put(), but for a batch of folios. This is more efficient 1409 * than writing the loop yourself as it will optimise the locks which need 1410 * to be taken if the folios are freed. The folios batch is returned 1411 * empty and ready to be reused for another batch; there is no need to 1412 * reinitialise it. 1413 * 1414 * Context: May be called in process or interrupt context, but not in NMI 1415 * context. May be called while holding a spinlock. 1416 */ 1417static inline void folios_put(struct folio_batch *folios) 1418{ 1419 folios_put_refs(folios, NULL); 1420} 1421 1422static inline void put_page(struct page *page) 1423{ 1424 struct folio *folio = page_folio(page); 1425 1426 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio)) 1427 return; 1428 1429 folio_put(folio); 1430} 1431 1432/* 1433 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1434 * the page's refcount so that two separate items are tracked: the original page 1435 * reference count, and also a new count of how many pin_user_pages() calls were 1436 * made against the page. ("gup-pinned" is another term for the latter). 1437 * 1438 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1439 * distinct from normal pages. As such, the unpin_user_page() call (and its 1440 * variants) must be used in order to release gup-pinned pages. 1441 * 1442 * Choice of value: 1443 * 1444 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1445 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1446 * simpler, due to the fact that adding an even power of two to the page 1447 * refcount has the effect of using only the upper N bits, for the code that 1448 * counts up using the bias value. This means that the lower bits are left for 1449 * the exclusive use of the original code that increments and decrements by one 1450 * (or at least, by much smaller values than the bias value). 1451 * 1452 * Of course, once the lower bits overflow into the upper bits (and this is 1453 * OK, because subtraction recovers the original values), then visual inspection 1454 * no longer suffices to directly view the separate counts. However, for normal 1455 * applications that don't have huge page reference counts, this won't be an 1456 * issue. 1457 * 1458 * Locking: the lockless algorithm described in folio_try_get_rcu() 1459 * provides safe operation for get_user_pages(), folio_mkclean() and 1460 * other calls that race to set up page table entries. 1461 */ 1462#define GUP_PIN_COUNTING_BIAS (1U << 10) 1463 1464void unpin_user_page(struct page *page); 1465void unpin_folio(struct folio *folio); 1466void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1467 bool make_dirty); 1468void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1469 bool make_dirty); 1470void unpin_user_pages(struct page **pages, unsigned long npages); 1471void unpin_user_folio(struct folio *folio, unsigned long npages); 1472void unpin_folios(struct folio **folios, unsigned long nfolios); 1473 1474static inline bool is_cow_mapping(vm_flags_t flags) 1475{ 1476 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1477} 1478 1479#ifndef CONFIG_MMU 1480static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1481{ 1482 /* 1483 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1484 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1485 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1486 * underlying memory if ptrace is active, so this is only possible if 1487 * ptrace does not apply. Note that there is no mprotect() to upgrade 1488 * write permissions later. 1489 */ 1490 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1491} 1492#endif 1493 1494#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1495#define SECTION_IN_PAGE_FLAGS 1496#endif 1497 1498/* 1499 * The identification function is mainly used by the buddy allocator for 1500 * determining if two pages could be buddies. We are not really identifying 1501 * the zone since we could be using the section number id if we do not have 1502 * node id available in page flags. 1503 * We only guarantee that it will return the same value for two combinable 1504 * pages in a zone. 1505 */ 1506static inline int page_zone_id(struct page *page) 1507{ 1508 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1509} 1510 1511#ifdef NODE_NOT_IN_PAGE_FLAGS 1512int page_to_nid(const struct page *page); 1513#else 1514static inline int page_to_nid(const struct page *page) 1515{ 1516 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1517} 1518#endif 1519 1520static inline int folio_nid(const struct folio *folio) 1521{ 1522 return page_to_nid(&folio->page); 1523} 1524 1525#ifdef CONFIG_NUMA_BALANCING 1526/* page access time bits needs to hold at least 4 seconds */ 1527#define PAGE_ACCESS_TIME_MIN_BITS 12 1528#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1529#define PAGE_ACCESS_TIME_BUCKETS \ 1530 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1531#else 1532#define PAGE_ACCESS_TIME_BUCKETS 0 1533#endif 1534 1535#define PAGE_ACCESS_TIME_MASK \ 1536 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1537 1538static inline int cpu_pid_to_cpupid(int cpu, int pid) 1539{ 1540 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1541} 1542 1543static inline int cpupid_to_pid(int cpupid) 1544{ 1545 return cpupid & LAST__PID_MASK; 1546} 1547 1548static inline int cpupid_to_cpu(int cpupid) 1549{ 1550 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1551} 1552 1553static inline int cpupid_to_nid(int cpupid) 1554{ 1555 return cpu_to_node(cpupid_to_cpu(cpupid)); 1556} 1557 1558static inline bool cpupid_pid_unset(int cpupid) 1559{ 1560 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1561} 1562 1563static inline bool cpupid_cpu_unset(int cpupid) 1564{ 1565 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1566} 1567 1568static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1569{ 1570 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1571} 1572 1573#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1574#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1575static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1576{ 1577 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1578} 1579 1580static inline int folio_last_cpupid(struct folio *folio) 1581{ 1582 return folio->_last_cpupid; 1583} 1584static inline void page_cpupid_reset_last(struct page *page) 1585{ 1586 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1587} 1588#else 1589static inline int folio_last_cpupid(struct folio *folio) 1590{ 1591 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1592} 1593 1594int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1595 1596static inline void page_cpupid_reset_last(struct page *page) 1597{ 1598 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1599} 1600#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1601 1602static inline int folio_xchg_access_time(struct folio *folio, int time) 1603{ 1604 int last_time; 1605 1606 last_time = folio_xchg_last_cpupid(folio, 1607 time >> PAGE_ACCESS_TIME_BUCKETS); 1608 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1609} 1610 1611static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1612{ 1613 unsigned int pid_bit; 1614 1615 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1616 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1617 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1618 } 1619} 1620 1621bool folio_use_access_time(struct folio *folio); 1622#else /* !CONFIG_NUMA_BALANCING */ 1623static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1624{ 1625 return folio_nid(folio); /* XXX */ 1626} 1627 1628static inline int folio_xchg_access_time(struct folio *folio, int time) 1629{ 1630 return 0; 1631} 1632 1633static inline int folio_last_cpupid(struct folio *folio) 1634{ 1635 return folio_nid(folio); /* XXX */ 1636} 1637 1638static inline int cpupid_to_nid(int cpupid) 1639{ 1640 return -1; 1641} 1642 1643static inline int cpupid_to_pid(int cpupid) 1644{ 1645 return -1; 1646} 1647 1648static inline int cpupid_to_cpu(int cpupid) 1649{ 1650 return -1; 1651} 1652 1653static inline int cpu_pid_to_cpupid(int nid, int pid) 1654{ 1655 return -1; 1656} 1657 1658static inline bool cpupid_pid_unset(int cpupid) 1659{ 1660 return true; 1661} 1662 1663static inline void page_cpupid_reset_last(struct page *page) 1664{ 1665} 1666 1667static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1668{ 1669 return false; 1670} 1671 1672static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1673{ 1674} 1675static inline bool folio_use_access_time(struct folio *folio) 1676{ 1677 return false; 1678} 1679#endif /* CONFIG_NUMA_BALANCING */ 1680 1681#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1682 1683/* 1684 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1685 * setting tags for all pages to native kernel tag value 0xff, as the default 1686 * value 0x00 maps to 0xff. 1687 */ 1688 1689static inline u8 page_kasan_tag(const struct page *page) 1690{ 1691 u8 tag = KASAN_TAG_KERNEL; 1692 1693 if (kasan_enabled()) { 1694 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1695 tag ^= 0xff; 1696 } 1697 1698 return tag; 1699} 1700 1701static inline void page_kasan_tag_set(struct page *page, u8 tag) 1702{ 1703 unsigned long old_flags, flags; 1704 1705 if (!kasan_enabled()) 1706 return; 1707 1708 tag ^= 0xff; 1709 old_flags = READ_ONCE(page->flags); 1710 do { 1711 flags = old_flags; 1712 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1713 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1714 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1715} 1716 1717static inline void page_kasan_tag_reset(struct page *page) 1718{ 1719 if (kasan_enabled()) 1720 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1721} 1722 1723#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1724 1725static inline u8 page_kasan_tag(const struct page *page) 1726{ 1727 return 0xff; 1728} 1729 1730static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1731static inline void page_kasan_tag_reset(struct page *page) { } 1732 1733#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1734 1735static inline struct zone *page_zone(const struct page *page) 1736{ 1737 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1738} 1739 1740static inline pg_data_t *page_pgdat(const struct page *page) 1741{ 1742 return NODE_DATA(page_to_nid(page)); 1743} 1744 1745static inline struct zone *folio_zone(const struct folio *folio) 1746{ 1747 return page_zone(&folio->page); 1748} 1749 1750static inline pg_data_t *folio_pgdat(const struct folio *folio) 1751{ 1752 return page_pgdat(&folio->page); 1753} 1754 1755#ifdef SECTION_IN_PAGE_FLAGS 1756static inline void set_page_section(struct page *page, unsigned long section) 1757{ 1758 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1759 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1760} 1761 1762static inline unsigned long page_to_section(const struct page *page) 1763{ 1764 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1765} 1766#endif 1767 1768/** 1769 * folio_pfn - Return the Page Frame Number of a folio. 1770 * @folio: The folio. 1771 * 1772 * A folio may contain multiple pages. The pages have consecutive 1773 * Page Frame Numbers. 1774 * 1775 * Return: The Page Frame Number of the first page in the folio. 1776 */ 1777static inline unsigned long folio_pfn(const struct folio *folio) 1778{ 1779 return page_to_pfn(&folio->page); 1780} 1781 1782static inline struct folio *pfn_folio(unsigned long pfn) 1783{ 1784 return page_folio(pfn_to_page(pfn)); 1785} 1786 1787#ifdef CONFIG_MMU 1788static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1789{ 1790 return pfn_pte(page_to_pfn(page), pgprot); 1791} 1792 1793/** 1794 * folio_mk_pte - Create a PTE for this folio 1795 * @folio: The folio to create a PTE for 1796 * @pgprot: The page protection bits to use 1797 * 1798 * Create a page table entry for the first page of this folio. 1799 * This is suitable for passing to set_ptes(). 1800 * 1801 * Return: A page table entry suitable for mapping this folio. 1802 */ 1803static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot) 1804{ 1805 return pfn_pte(folio_pfn(folio), pgprot); 1806} 1807 1808#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1809/** 1810 * folio_mk_pmd - Create a PMD for this folio 1811 * @folio: The folio to create a PMD for 1812 * @pgprot: The page protection bits to use 1813 * 1814 * Create a page table entry for the first page of this folio. 1815 * This is suitable for passing to set_pmd_at(). 1816 * 1817 * Return: A page table entry suitable for mapping this folio. 1818 */ 1819static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot) 1820{ 1821 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot)); 1822} 1823 1824#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1825/** 1826 * folio_mk_pud - Create a PUD for this folio 1827 * @folio: The folio to create a PUD for 1828 * @pgprot: The page protection bits to use 1829 * 1830 * Create a page table entry for the first page of this folio. 1831 * This is suitable for passing to set_pud_at(). 1832 * 1833 * Return: A page table entry suitable for mapping this folio. 1834 */ 1835static inline pud_t folio_mk_pud(struct folio *folio, pgprot_t pgprot) 1836{ 1837 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot)); 1838} 1839#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1840#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1841#endif /* CONFIG_MMU */ 1842 1843static inline bool folio_has_pincount(const struct folio *folio) 1844{ 1845 if (IS_ENABLED(CONFIG_64BIT)) 1846 return folio_test_large(folio); 1847 return folio_order(folio) > 1; 1848} 1849 1850/** 1851 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1852 * @folio: The folio. 1853 * 1854 * This function checks if a folio has been pinned via a call to 1855 * a function in the pin_user_pages() family. 1856 * 1857 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1858 * because it means "definitely not pinned for DMA", but true means "probably 1859 * pinned for DMA, but possibly a false positive due to having at least 1860 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1861 * 1862 * False positives are OK, because: a) it's unlikely for a folio to 1863 * get that many refcounts, and b) all the callers of this routine are 1864 * expected to be able to deal gracefully with a false positive. 1865 * 1866 * For most large folios, the result will be exactly correct. That's because 1867 * we have more tracking data available: the _pincount field is used 1868 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1869 * 1870 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1871 * 1872 * Return: True, if it is likely that the folio has been "dma-pinned". 1873 * False, if the folio is definitely not dma-pinned. 1874 */ 1875static inline bool folio_maybe_dma_pinned(struct folio *folio) 1876{ 1877 if (folio_has_pincount(folio)) 1878 return atomic_read(&folio->_pincount) > 0; 1879 1880 /* 1881 * folio_ref_count() is signed. If that refcount overflows, then 1882 * folio_ref_count() returns a negative value, and callers will avoid 1883 * further incrementing the refcount. 1884 * 1885 * Here, for that overflow case, use the sign bit to count a little 1886 * bit higher via unsigned math, and thus still get an accurate result. 1887 */ 1888 return ((unsigned int)folio_ref_count(folio)) >= 1889 GUP_PIN_COUNTING_BIAS; 1890} 1891 1892/* 1893 * This should most likely only be called during fork() to see whether we 1894 * should break the cow immediately for an anon page on the src mm. 1895 * 1896 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1897 */ 1898static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1899 struct folio *folio) 1900{ 1901 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1902 1903 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1904 return false; 1905 1906 return folio_maybe_dma_pinned(folio); 1907} 1908 1909/** 1910 * is_zero_page - Query if a page is a zero page 1911 * @page: The page to query 1912 * 1913 * This returns true if @page is one of the permanent zero pages. 1914 */ 1915static inline bool is_zero_page(const struct page *page) 1916{ 1917 return is_zero_pfn(page_to_pfn(page)); 1918} 1919 1920/** 1921 * is_zero_folio - Query if a folio is a zero page 1922 * @folio: The folio to query 1923 * 1924 * This returns true if @folio is one of the permanent zero pages. 1925 */ 1926static inline bool is_zero_folio(const struct folio *folio) 1927{ 1928 return is_zero_page(&folio->page); 1929} 1930 1931/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1932#ifdef CONFIG_MIGRATION 1933static inline bool folio_is_longterm_pinnable(struct folio *folio) 1934{ 1935#ifdef CONFIG_CMA 1936 int mt = folio_migratetype(folio); 1937 1938 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1939 return false; 1940#endif 1941 /* The zero page can be "pinned" but gets special handling. */ 1942 if (is_zero_folio(folio)) 1943 return true; 1944 1945 /* Coherent device memory must always allow eviction. */ 1946 if (folio_is_device_coherent(folio)) 1947 return false; 1948 1949 /* 1950 * Filesystems can only tolerate transient delays to truncate and 1951 * hole-punch operations 1952 */ 1953 if (folio_is_fsdax(folio)) 1954 return false; 1955 1956 /* Otherwise, non-movable zone folios can be pinned. */ 1957 return !folio_is_zone_movable(folio); 1958 1959} 1960#else 1961static inline bool folio_is_longterm_pinnable(struct folio *folio) 1962{ 1963 return true; 1964} 1965#endif 1966 1967static inline void set_page_zone(struct page *page, enum zone_type zone) 1968{ 1969 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1970 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1971} 1972 1973static inline void set_page_node(struct page *page, unsigned long node) 1974{ 1975 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1976 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1977} 1978 1979static inline void set_page_links(struct page *page, enum zone_type zone, 1980 unsigned long node, unsigned long pfn) 1981{ 1982 set_page_zone(page, zone); 1983 set_page_node(page, node); 1984#ifdef SECTION_IN_PAGE_FLAGS 1985 set_page_section(page, pfn_to_section_nr(pfn)); 1986#endif 1987} 1988 1989/** 1990 * folio_nr_pages - The number of pages in the folio. 1991 * @folio: The folio. 1992 * 1993 * Return: A positive power of two. 1994 */ 1995static inline long folio_nr_pages(const struct folio *folio) 1996{ 1997 if (!folio_test_large(folio)) 1998 return 1; 1999 return folio_large_nr_pages(folio); 2000} 2001 2002/* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2003#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2004#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2005#else 2006#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2007#endif 2008 2009/* 2010 * compound_nr() returns the number of pages in this potentially compound 2011 * page. compound_nr() can be called on a tail page, and is defined to 2012 * return 1 in that case. 2013 */ 2014static inline long compound_nr(struct page *page) 2015{ 2016 struct folio *folio = (struct folio *)page; 2017 2018 if (!test_bit(PG_head, &folio->flags)) 2019 return 1; 2020 return folio_large_nr_pages(folio); 2021} 2022 2023/** 2024 * folio_next - Move to the next physical folio. 2025 * @folio: The folio we're currently operating on. 2026 * 2027 * If you have physically contiguous memory which may span more than 2028 * one folio (eg a &struct bio_vec), use this function to move from one 2029 * folio to the next. Do not use it if the memory is only virtually 2030 * contiguous as the folios are almost certainly not adjacent to each 2031 * other. This is the folio equivalent to writing ``page++``. 2032 * 2033 * Context: We assume that the folios are refcounted and/or locked at a 2034 * higher level and do not adjust the reference counts. 2035 * Return: The next struct folio. 2036 */ 2037static inline struct folio *folio_next(struct folio *folio) 2038{ 2039 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2040} 2041 2042/** 2043 * folio_shift - The size of the memory described by this folio. 2044 * @folio: The folio. 2045 * 2046 * A folio represents a number of bytes which is a power-of-two in size. 2047 * This function tells you which power-of-two the folio is. See also 2048 * folio_size() and folio_order(). 2049 * 2050 * Context: The caller should have a reference on the folio to prevent 2051 * it from being split. It is not necessary for the folio to be locked. 2052 * Return: The base-2 logarithm of the size of this folio. 2053 */ 2054static inline unsigned int folio_shift(const struct folio *folio) 2055{ 2056 return PAGE_SHIFT + folio_order(folio); 2057} 2058 2059/** 2060 * folio_size - The number of bytes in a folio. 2061 * @folio: The folio. 2062 * 2063 * Context: The caller should have a reference on the folio to prevent 2064 * it from being split. It is not necessary for the folio to be locked. 2065 * Return: The number of bytes in this folio. 2066 */ 2067static inline size_t folio_size(const struct folio *folio) 2068{ 2069 return PAGE_SIZE << folio_order(folio); 2070} 2071 2072/** 2073 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2074 * tables of more than one MM 2075 * @folio: The folio. 2076 * 2077 * This function checks if the folio maybe currently mapped into more than one 2078 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2079 * MM ("mapped exclusively"). 2080 * 2081 * For KSM folios, this function also returns "mapped shared" when a folio is 2082 * mapped multiple times into the same MM, because the individual page mappings 2083 * are independent. 2084 * 2085 * For small anonymous folios and anonymous hugetlb folios, the return 2086 * value will be exactly correct: non-KSM folios can only be mapped at most once 2087 * into an MM, and they cannot be partially mapped. KSM folios are 2088 * considered shared even if mapped multiple times into the same MM. 2089 * 2090 * For other folios, the result can be fuzzy: 2091 * #. For partially-mappable large folios (THP), the return value can wrongly 2092 * indicate "mapped shared" (false positive) if a folio was mapped by 2093 * more than two MMs at one point in time. 2094 * #. For pagecache folios (including hugetlb), the return value can wrongly 2095 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2096 * cover the same file range. 2097 * 2098 * Further, this function only considers current page table mappings that 2099 * are tracked using the folio mapcount(s). 2100 * 2101 * This function does not consider: 2102 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2103 * pagecache, temporary unmapping for migration). 2104 * #. If the folio is mapped differently (VM_PFNMAP). 2105 * #. If hugetlb page table sharing applies. Callers might want to check 2106 * hugetlb_pmd_shared(). 2107 * 2108 * Return: Whether the folio is estimated to be mapped into more than one MM. 2109 */ 2110static inline bool folio_maybe_mapped_shared(struct folio *folio) 2111{ 2112 int mapcount = folio_mapcount(folio); 2113 2114 /* Only partially-mappable folios require more care. */ 2115 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2116 return mapcount > 1; 2117 2118 /* 2119 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2120 * simply assume "mapped shared", nobody should really care 2121 * about this for arbitrary kernel allocations. 2122 */ 2123 if (!IS_ENABLED(CONFIG_MM_ID)) 2124 return true; 2125 2126 /* 2127 * A single mapping implies "mapped exclusively", even if the 2128 * folio flag says something different: it's easier to handle this 2129 * case here instead of on the RMAP hot path. 2130 */ 2131 if (mapcount <= 1) 2132 return false; 2133 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 2134} 2135 2136/** 2137 * folio_expected_ref_count - calculate the expected folio refcount 2138 * @folio: the folio 2139 * 2140 * Calculate the expected folio refcount, taking references from the pagecache, 2141 * swapcache, PG_private and page table mappings into account. Useful in 2142 * combination with folio_ref_count() to detect unexpected references (e.g., 2143 * GUP or other temporary references). 2144 * 2145 * Does currently not consider references from the LRU cache. If the folio 2146 * was isolated from the LRU (which is the case during migration or split), 2147 * the LRU cache does not apply. 2148 * 2149 * Calling this function on an unmapped folio -- !folio_mapped() -- that is 2150 * locked will return a stable result. 2151 * 2152 * Calling this function on a mapped folio will not result in a stable result, 2153 * because nothing stops additional page table mappings from coming (e.g., 2154 * fork()) or going (e.g., munmap()). 2155 * 2156 * Calling this function without the folio lock will also not result in a 2157 * stable result: for example, the folio might get dropped from the swapcache 2158 * concurrently. 2159 * 2160 * However, even when called without the folio lock or on a mapped folio, 2161 * this function can be used to detect unexpected references early (for example, 2162 * if it makes sense to even lock the folio and unmap it). 2163 * 2164 * The caller must add any reference (e.g., from folio_try_get()) it might be 2165 * holding itself to the result. 2166 * 2167 * Returns the expected folio refcount. 2168 */ 2169static inline int folio_expected_ref_count(const struct folio *folio) 2170{ 2171 const int order = folio_order(folio); 2172 int ref_count = 0; 2173 2174 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio))) 2175 return 0; 2176 2177 if (folio_test_anon(folio)) { 2178 /* One reference per page from the swapcache. */ 2179 ref_count += folio_test_swapcache(folio) << order; 2180 } else { 2181 /* One reference per page from the pagecache. */ 2182 ref_count += !!folio->mapping << order; 2183 /* One reference from PG_private. */ 2184 ref_count += folio_test_private(folio); 2185 } 2186 2187 /* One reference per page table mapping. */ 2188 return ref_count + folio_mapcount(folio); 2189} 2190 2191#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2192static inline int arch_make_folio_accessible(struct folio *folio) 2193{ 2194 return 0; 2195} 2196#endif 2197 2198/* 2199 * Some inline functions in vmstat.h depend on page_zone() 2200 */ 2201#include <linux/vmstat.h> 2202 2203#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2204#define HASHED_PAGE_VIRTUAL 2205#endif 2206 2207#if defined(WANT_PAGE_VIRTUAL) 2208static inline void *page_address(const struct page *page) 2209{ 2210 return page->virtual; 2211} 2212static inline void set_page_address(struct page *page, void *address) 2213{ 2214 page->virtual = address; 2215} 2216#define page_address_init() do { } while(0) 2217#endif 2218 2219#if defined(HASHED_PAGE_VIRTUAL) 2220void *page_address(const struct page *page); 2221void set_page_address(struct page *page, void *virtual); 2222void page_address_init(void); 2223#endif 2224 2225static __always_inline void *lowmem_page_address(const struct page *page) 2226{ 2227 return page_to_virt(page); 2228} 2229 2230#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2231#define page_address(page) lowmem_page_address(page) 2232#define set_page_address(page, address) do { } while(0) 2233#define page_address_init() do { } while(0) 2234#endif 2235 2236static inline void *folio_address(const struct folio *folio) 2237{ 2238 return page_address(&folio->page); 2239} 2240 2241/* 2242 * Return true only if the page has been allocated with 2243 * ALLOC_NO_WATERMARKS and the low watermark was not 2244 * met implying that the system is under some pressure. 2245 */ 2246static inline bool page_is_pfmemalloc(const struct page *page) 2247{ 2248 /* 2249 * lru.next has bit 1 set if the page is allocated from the 2250 * pfmemalloc reserves. Callers may simply overwrite it if 2251 * they do not need to preserve that information. 2252 */ 2253 return (uintptr_t)page->lru.next & BIT(1); 2254} 2255 2256/* 2257 * Return true only if the folio has been allocated with 2258 * ALLOC_NO_WATERMARKS and the low watermark was not 2259 * met implying that the system is under some pressure. 2260 */ 2261static inline bool folio_is_pfmemalloc(const struct folio *folio) 2262{ 2263 /* 2264 * lru.next has bit 1 set if the page is allocated from the 2265 * pfmemalloc reserves. Callers may simply overwrite it if 2266 * they do not need to preserve that information. 2267 */ 2268 return (uintptr_t)folio->lru.next & BIT(1); 2269} 2270 2271/* 2272 * Only to be called by the page allocator on a freshly allocated 2273 * page. 2274 */ 2275static inline void set_page_pfmemalloc(struct page *page) 2276{ 2277 page->lru.next = (void *)BIT(1); 2278} 2279 2280static inline void clear_page_pfmemalloc(struct page *page) 2281{ 2282 page->lru.next = NULL; 2283} 2284 2285/* 2286 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2287 */ 2288extern void pagefault_out_of_memory(void); 2289 2290#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2291#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2292 2293/* 2294 * Parameter block passed down to zap_pte_range in exceptional cases. 2295 */ 2296struct zap_details { 2297 struct folio *single_folio; /* Locked folio to be unmapped */ 2298 bool even_cows; /* Zap COWed private pages too? */ 2299 bool reclaim_pt; /* Need reclaim page tables? */ 2300 zap_flags_t zap_flags; /* Extra flags for zapping */ 2301}; 2302 2303/* 2304 * Whether to drop the pte markers, for example, the uffd-wp information for 2305 * file-backed memory. This should only be specified when we will completely 2306 * drop the page in the mm, either by truncation or unmapping of the vma. By 2307 * default, the flag is not set. 2308 */ 2309#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2310/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2311#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2312 2313#ifdef CONFIG_SCHED_MM_CID 2314void sched_mm_cid_before_execve(struct task_struct *t); 2315void sched_mm_cid_after_execve(struct task_struct *t); 2316void sched_mm_cid_fork(struct task_struct *t); 2317void sched_mm_cid_exit_signals(struct task_struct *t); 2318static inline int task_mm_cid(struct task_struct *t) 2319{ 2320 return t->mm_cid; 2321} 2322#else 2323static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2324static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2325static inline void sched_mm_cid_fork(struct task_struct *t) { } 2326static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2327static inline int task_mm_cid(struct task_struct *t) 2328{ 2329 /* 2330 * Use the processor id as a fall-back when the mm cid feature is 2331 * disabled. This provides functional per-cpu data structure accesses 2332 * in user-space, althrough it won't provide the memory usage benefits. 2333 */ 2334 return raw_smp_processor_id(); 2335} 2336#endif 2337 2338#ifdef CONFIG_MMU 2339extern bool can_do_mlock(void); 2340#else 2341static inline bool can_do_mlock(void) { return false; } 2342#endif 2343extern int user_shm_lock(size_t, struct ucounts *); 2344extern void user_shm_unlock(size_t, struct ucounts *); 2345 2346struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2347 pte_t pte); 2348struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2349 pte_t pte); 2350struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2351 unsigned long addr, pmd_t pmd); 2352struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2353 pmd_t pmd); 2354 2355void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2356 unsigned long size); 2357void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2358 unsigned long size, struct zap_details *details); 2359static inline void zap_vma_pages(struct vm_area_struct *vma) 2360{ 2361 zap_page_range_single(vma, vma->vm_start, 2362 vma->vm_end - vma->vm_start, NULL); 2363} 2364void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2365 struct vm_area_struct *start_vma, unsigned long start, 2366 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2367 2368struct mmu_notifier_range; 2369 2370void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2371 unsigned long end, unsigned long floor, unsigned long ceiling); 2372int 2373copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2374int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2375 void *buf, int len, int write); 2376 2377struct follow_pfnmap_args { 2378 /** 2379 * Inputs: 2380 * @vma: Pointer to @vm_area_struct struct 2381 * @address: the virtual address to walk 2382 */ 2383 struct vm_area_struct *vma; 2384 unsigned long address; 2385 /** 2386 * Internals: 2387 * 2388 * The caller shouldn't touch any of these. 2389 */ 2390 spinlock_t *lock; 2391 pte_t *ptep; 2392 /** 2393 * Outputs: 2394 * 2395 * @pfn: the PFN of the address 2396 * @addr_mask: address mask covering pfn 2397 * @pgprot: the pgprot_t of the mapping 2398 * @writable: whether the mapping is writable 2399 * @special: whether the mapping is a special mapping (real PFN maps) 2400 */ 2401 unsigned long pfn; 2402 unsigned long addr_mask; 2403 pgprot_t pgprot; 2404 bool writable; 2405 bool special; 2406}; 2407int follow_pfnmap_start(struct follow_pfnmap_args *args); 2408void follow_pfnmap_end(struct follow_pfnmap_args *args); 2409 2410extern void truncate_pagecache(struct inode *inode, loff_t new); 2411extern void truncate_setsize(struct inode *inode, loff_t newsize); 2412void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2413void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2414int generic_error_remove_folio(struct address_space *mapping, 2415 struct folio *folio); 2416 2417struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2418 unsigned long address, struct pt_regs *regs); 2419 2420#ifdef CONFIG_MMU 2421extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2422 unsigned long address, unsigned int flags, 2423 struct pt_regs *regs); 2424extern int fixup_user_fault(struct mm_struct *mm, 2425 unsigned long address, unsigned int fault_flags, 2426 bool *unlocked); 2427void unmap_mapping_pages(struct address_space *mapping, 2428 pgoff_t start, pgoff_t nr, bool even_cows); 2429void unmap_mapping_range(struct address_space *mapping, 2430 loff_t const holebegin, loff_t const holelen, int even_cows); 2431#else 2432static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2433 unsigned long address, unsigned int flags, 2434 struct pt_regs *regs) 2435{ 2436 /* should never happen if there's no MMU */ 2437 BUG(); 2438 return VM_FAULT_SIGBUS; 2439} 2440static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2441 unsigned int fault_flags, bool *unlocked) 2442{ 2443 /* should never happen if there's no MMU */ 2444 BUG(); 2445 return -EFAULT; 2446} 2447static inline void unmap_mapping_pages(struct address_space *mapping, 2448 pgoff_t start, pgoff_t nr, bool even_cows) { } 2449static inline void unmap_mapping_range(struct address_space *mapping, 2450 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2451#endif 2452 2453static inline void unmap_shared_mapping_range(struct address_space *mapping, 2454 loff_t const holebegin, loff_t const holelen) 2455{ 2456 unmap_mapping_range(mapping, holebegin, holelen, 0); 2457} 2458 2459static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2460 unsigned long addr); 2461 2462extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2463 void *buf, int len, unsigned int gup_flags); 2464extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2465 void *buf, int len, unsigned int gup_flags); 2466 2467#ifdef CONFIG_BPF_SYSCALL 2468extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2469 void *buf, int len, unsigned int gup_flags); 2470#endif 2471 2472long get_user_pages_remote(struct mm_struct *mm, 2473 unsigned long start, unsigned long nr_pages, 2474 unsigned int gup_flags, struct page **pages, 2475 int *locked); 2476long pin_user_pages_remote(struct mm_struct *mm, 2477 unsigned long start, unsigned long nr_pages, 2478 unsigned int gup_flags, struct page **pages, 2479 int *locked); 2480 2481/* 2482 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2483 */ 2484static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2485 unsigned long addr, 2486 int gup_flags, 2487 struct vm_area_struct **vmap) 2488{ 2489 struct page *page; 2490 struct vm_area_struct *vma; 2491 int got; 2492 2493 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2494 return ERR_PTR(-EINVAL); 2495 2496 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2497 2498 if (got < 0) 2499 return ERR_PTR(got); 2500 2501 vma = vma_lookup(mm, addr); 2502 if (WARN_ON_ONCE(!vma)) { 2503 put_page(page); 2504 return ERR_PTR(-EINVAL); 2505 } 2506 2507 *vmap = vma; 2508 return page; 2509} 2510 2511long get_user_pages(unsigned long start, unsigned long nr_pages, 2512 unsigned int gup_flags, struct page **pages); 2513long pin_user_pages(unsigned long start, unsigned long nr_pages, 2514 unsigned int gup_flags, struct page **pages); 2515long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2516 struct page **pages, unsigned int gup_flags); 2517long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2518 struct page **pages, unsigned int gup_flags); 2519long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2520 struct folio **folios, unsigned int max_folios, 2521 pgoff_t *offset); 2522int folio_add_pins(struct folio *folio, unsigned int pins); 2523 2524int get_user_pages_fast(unsigned long start, int nr_pages, 2525 unsigned int gup_flags, struct page **pages); 2526int pin_user_pages_fast(unsigned long start, int nr_pages, 2527 unsigned int gup_flags, struct page **pages); 2528void folio_add_pin(struct folio *folio); 2529 2530int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2531int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2532 struct task_struct *task, bool bypass_rlim); 2533 2534struct kvec; 2535struct page *get_dump_page(unsigned long addr, int *locked); 2536 2537bool folio_mark_dirty(struct folio *folio); 2538bool folio_mark_dirty_lock(struct folio *folio); 2539bool set_page_dirty(struct page *page); 2540int set_page_dirty_lock(struct page *page); 2541 2542int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2543 2544/* 2545 * Flags used by change_protection(). For now we make it a bitmap so 2546 * that we can pass in multiple flags just like parameters. However 2547 * for now all the callers are only use one of the flags at the same 2548 * time. 2549 */ 2550/* 2551 * Whether we should manually check if we can map individual PTEs writable, 2552 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2553 * PTEs automatically in a writable mapping. 2554 */ 2555#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2556/* Whether this protection change is for NUMA hints */ 2557#define MM_CP_PROT_NUMA (1UL << 1) 2558/* Whether this change is for write protecting */ 2559#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2560#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2561#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2562 MM_CP_UFFD_WP_RESOLVE) 2563 2564bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2565 pte_t pte); 2566extern long change_protection(struct mmu_gather *tlb, 2567 struct vm_area_struct *vma, unsigned long start, 2568 unsigned long end, unsigned long cp_flags); 2569extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2570 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2571 unsigned long start, unsigned long end, vm_flags_t newflags); 2572 2573/* 2574 * doesn't attempt to fault and will return short. 2575 */ 2576int get_user_pages_fast_only(unsigned long start, int nr_pages, 2577 unsigned int gup_flags, struct page **pages); 2578 2579static inline bool get_user_page_fast_only(unsigned long addr, 2580 unsigned int gup_flags, struct page **pagep) 2581{ 2582 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2583} 2584/* 2585 * per-process(per-mm_struct) statistics. 2586 */ 2587static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2588{ 2589 return percpu_counter_read_positive(&mm->rss_stat[member]); 2590} 2591 2592static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) 2593{ 2594 return percpu_counter_sum_positive(&mm->rss_stat[member]); 2595} 2596 2597void mm_trace_rss_stat(struct mm_struct *mm, int member); 2598 2599static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2600{ 2601 percpu_counter_add(&mm->rss_stat[member], value); 2602 2603 mm_trace_rss_stat(mm, member); 2604} 2605 2606static inline void inc_mm_counter(struct mm_struct *mm, int member) 2607{ 2608 percpu_counter_inc(&mm->rss_stat[member]); 2609 2610 mm_trace_rss_stat(mm, member); 2611} 2612 2613static inline void dec_mm_counter(struct mm_struct *mm, int member) 2614{ 2615 percpu_counter_dec(&mm->rss_stat[member]); 2616 2617 mm_trace_rss_stat(mm, member); 2618} 2619 2620/* Optimized variant when folio is already known not to be anon */ 2621static inline int mm_counter_file(struct folio *folio) 2622{ 2623 if (folio_test_swapbacked(folio)) 2624 return MM_SHMEMPAGES; 2625 return MM_FILEPAGES; 2626} 2627 2628static inline int mm_counter(struct folio *folio) 2629{ 2630 if (folio_test_anon(folio)) 2631 return MM_ANONPAGES; 2632 return mm_counter_file(folio); 2633} 2634 2635static inline unsigned long get_mm_rss(struct mm_struct *mm) 2636{ 2637 return get_mm_counter(mm, MM_FILEPAGES) + 2638 get_mm_counter(mm, MM_ANONPAGES) + 2639 get_mm_counter(mm, MM_SHMEMPAGES); 2640} 2641 2642static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2643{ 2644 return max(mm->hiwater_rss, get_mm_rss(mm)); 2645} 2646 2647static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2648{ 2649 return max(mm->hiwater_vm, mm->total_vm); 2650} 2651 2652static inline void update_hiwater_rss(struct mm_struct *mm) 2653{ 2654 unsigned long _rss = get_mm_rss(mm); 2655 2656 if (data_race(mm->hiwater_rss) < _rss) 2657 (mm)->hiwater_rss = _rss; 2658} 2659 2660static inline void update_hiwater_vm(struct mm_struct *mm) 2661{ 2662 if (mm->hiwater_vm < mm->total_vm) 2663 mm->hiwater_vm = mm->total_vm; 2664} 2665 2666static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2667{ 2668 mm->hiwater_rss = get_mm_rss(mm); 2669} 2670 2671static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2672 struct mm_struct *mm) 2673{ 2674 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2675 2676 if (*maxrss < hiwater_rss) 2677 *maxrss = hiwater_rss; 2678} 2679 2680#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2681static inline int pte_special(pte_t pte) 2682{ 2683 return 0; 2684} 2685 2686static inline pte_t pte_mkspecial(pte_t pte) 2687{ 2688 return pte; 2689} 2690#endif 2691 2692#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2693static inline bool pmd_special(pmd_t pmd) 2694{ 2695 return false; 2696} 2697 2698static inline pmd_t pmd_mkspecial(pmd_t pmd) 2699{ 2700 return pmd; 2701} 2702#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2703 2704#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2705static inline bool pud_special(pud_t pud) 2706{ 2707 return false; 2708} 2709 2710static inline pud_t pud_mkspecial(pud_t pud) 2711{ 2712 return pud; 2713} 2714#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2715 2716extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2717 spinlock_t **ptl); 2718static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2719 spinlock_t **ptl) 2720{ 2721 pte_t *ptep; 2722 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2723 return ptep; 2724} 2725 2726#ifdef __PAGETABLE_P4D_FOLDED 2727static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2728 unsigned long address) 2729{ 2730 return 0; 2731} 2732#else 2733int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2734#endif 2735 2736#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2737static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2738 unsigned long address) 2739{ 2740 return 0; 2741} 2742static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2743static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2744 2745#else 2746int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2747 2748static inline void mm_inc_nr_puds(struct mm_struct *mm) 2749{ 2750 if (mm_pud_folded(mm)) 2751 return; 2752 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2753} 2754 2755static inline void mm_dec_nr_puds(struct mm_struct *mm) 2756{ 2757 if (mm_pud_folded(mm)) 2758 return; 2759 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2760} 2761#endif 2762 2763#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2764static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2765 unsigned long address) 2766{ 2767 return 0; 2768} 2769 2770static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2771static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2772 2773#else 2774int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2775 2776static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2777{ 2778 if (mm_pmd_folded(mm)) 2779 return; 2780 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2781} 2782 2783static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2784{ 2785 if (mm_pmd_folded(mm)) 2786 return; 2787 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2788} 2789#endif 2790 2791#ifdef CONFIG_MMU 2792static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2793{ 2794 atomic_long_set(&mm->pgtables_bytes, 0); 2795} 2796 2797static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2798{ 2799 return atomic_long_read(&mm->pgtables_bytes); 2800} 2801 2802static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2803{ 2804 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2805} 2806 2807static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2808{ 2809 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2810} 2811#else 2812 2813static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2814static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2815{ 2816 return 0; 2817} 2818 2819static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2820static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2821#endif 2822 2823int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2824int __pte_alloc_kernel(pmd_t *pmd); 2825 2826#if defined(CONFIG_MMU) 2827 2828static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2829 unsigned long address) 2830{ 2831 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2832 NULL : p4d_offset(pgd, address); 2833} 2834 2835static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2836 unsigned long address) 2837{ 2838 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2839 NULL : pud_offset(p4d, address); 2840} 2841 2842static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2843{ 2844 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2845 NULL: pmd_offset(pud, address); 2846} 2847#endif /* CONFIG_MMU */ 2848 2849static inline struct ptdesc *virt_to_ptdesc(const void *x) 2850{ 2851 return page_ptdesc(virt_to_page(x)); 2852} 2853 2854static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2855{ 2856 return page_to_virt(ptdesc_page(pt)); 2857} 2858 2859static inline void *ptdesc_address(const struct ptdesc *pt) 2860{ 2861 return folio_address(ptdesc_folio(pt)); 2862} 2863 2864static inline bool pagetable_is_reserved(struct ptdesc *pt) 2865{ 2866 return folio_test_reserved(ptdesc_folio(pt)); 2867} 2868 2869/** 2870 * pagetable_alloc - Allocate pagetables 2871 * @gfp: GFP flags 2872 * @order: desired pagetable order 2873 * 2874 * pagetable_alloc allocates memory for page tables as well as a page table 2875 * descriptor to describe that memory. 2876 * 2877 * Return: The ptdesc describing the allocated page tables. 2878 */ 2879static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2880{ 2881 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2882 2883 return page_ptdesc(page); 2884} 2885#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2886 2887/** 2888 * pagetable_free - Free pagetables 2889 * @pt: The page table descriptor 2890 * 2891 * pagetable_free frees the memory of all page tables described by a page 2892 * table descriptor and the memory for the descriptor itself. 2893 */ 2894static inline void pagetable_free(struct ptdesc *pt) 2895{ 2896 struct page *page = ptdesc_page(pt); 2897 2898 __free_pages(page, compound_order(page)); 2899} 2900 2901#if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2902#if ALLOC_SPLIT_PTLOCKS 2903void __init ptlock_cache_init(void); 2904bool ptlock_alloc(struct ptdesc *ptdesc); 2905void ptlock_free(struct ptdesc *ptdesc); 2906 2907static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2908{ 2909 return ptdesc->ptl; 2910} 2911#else /* ALLOC_SPLIT_PTLOCKS */ 2912static inline void ptlock_cache_init(void) 2913{ 2914} 2915 2916static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2917{ 2918 return true; 2919} 2920 2921static inline void ptlock_free(struct ptdesc *ptdesc) 2922{ 2923} 2924 2925static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2926{ 2927 return &ptdesc->ptl; 2928} 2929#endif /* ALLOC_SPLIT_PTLOCKS */ 2930 2931static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2932{ 2933 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2934} 2935 2936static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2937{ 2938 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2939 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2940 return ptlock_ptr(virt_to_ptdesc(pte)); 2941} 2942 2943static inline bool ptlock_init(struct ptdesc *ptdesc) 2944{ 2945 /* 2946 * prep_new_page() initialize page->private (and therefore page->ptl) 2947 * with 0. Make sure nobody took it in use in between. 2948 * 2949 * It can happen if arch try to use slab for page table allocation: 2950 * slab code uses page->slab_cache, which share storage with page->ptl. 2951 */ 2952 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2953 if (!ptlock_alloc(ptdesc)) 2954 return false; 2955 spin_lock_init(ptlock_ptr(ptdesc)); 2956 return true; 2957} 2958 2959#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2960/* 2961 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2962 */ 2963static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2964{ 2965 return &mm->page_table_lock; 2966} 2967static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2968{ 2969 return &mm->page_table_lock; 2970} 2971static inline void ptlock_cache_init(void) {} 2972static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2973static inline void ptlock_free(struct ptdesc *ptdesc) {} 2974#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2975 2976static inline void __pagetable_ctor(struct ptdesc *ptdesc) 2977{ 2978 struct folio *folio = ptdesc_folio(ptdesc); 2979 2980 __folio_set_pgtable(folio); 2981 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2982} 2983 2984static inline void pagetable_dtor(struct ptdesc *ptdesc) 2985{ 2986 struct folio *folio = ptdesc_folio(ptdesc); 2987 2988 ptlock_free(ptdesc); 2989 __folio_clear_pgtable(folio); 2990 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2991} 2992 2993static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 2994{ 2995 pagetable_dtor(ptdesc); 2996 pagetable_free(ptdesc); 2997} 2998 2999static inline bool pagetable_pte_ctor(struct mm_struct *mm, 3000 struct ptdesc *ptdesc) 3001{ 3002 if (mm != &init_mm && !ptlock_init(ptdesc)) 3003 return false; 3004 __pagetable_ctor(ptdesc); 3005 return true; 3006} 3007 3008pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3009static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3010 pmd_t *pmdvalp) 3011{ 3012 pte_t *pte; 3013 3014 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3015 return pte; 3016} 3017static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3018{ 3019 return __pte_offset_map(pmd, addr, NULL); 3020} 3021 3022pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3023 unsigned long addr, spinlock_t **ptlp); 3024static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3025 unsigned long addr, spinlock_t **ptlp) 3026{ 3027 pte_t *pte; 3028 3029 __cond_lock(RCU, __cond_lock(*ptlp, 3030 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3031 return pte; 3032} 3033 3034pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3035 unsigned long addr, spinlock_t **ptlp); 3036pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3037 unsigned long addr, pmd_t *pmdvalp, 3038 spinlock_t **ptlp); 3039 3040#define pte_unmap_unlock(pte, ptl) do { \ 3041 spin_unlock(ptl); \ 3042 pte_unmap(pte); \ 3043} while (0) 3044 3045#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3046 3047#define pte_alloc_map(mm, pmd, address) \ 3048 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3049 3050#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3051 (pte_alloc(mm, pmd) ? \ 3052 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3053 3054#define pte_alloc_kernel(pmd, address) \ 3055 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3056 NULL: pte_offset_kernel(pmd, address)) 3057 3058#if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3059 3060static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3061{ 3062 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3063 return virt_to_page((void *)((unsigned long) pmd & mask)); 3064} 3065 3066static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3067{ 3068 return page_ptdesc(pmd_pgtable_page(pmd)); 3069} 3070 3071static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3072{ 3073 return ptlock_ptr(pmd_ptdesc(pmd)); 3074} 3075 3076static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3077{ 3078#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3079 ptdesc->pmd_huge_pte = NULL; 3080#endif 3081 return ptlock_init(ptdesc); 3082} 3083 3084#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3085 3086#else 3087 3088static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3089{ 3090 return &mm->page_table_lock; 3091} 3092 3093static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3094 3095#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3096 3097#endif 3098 3099static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3100{ 3101 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3102 spin_lock(ptl); 3103 return ptl; 3104} 3105 3106static inline bool pagetable_pmd_ctor(struct mm_struct *mm, 3107 struct ptdesc *ptdesc) 3108{ 3109 if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) 3110 return false; 3111 ptdesc_pmd_pts_init(ptdesc); 3112 __pagetable_ctor(ptdesc); 3113 return true; 3114} 3115 3116/* 3117 * No scalability reason to split PUD locks yet, but follow the same pattern 3118 * as the PMD locks to make it easier if we decide to. The VM should not be 3119 * considered ready to switch to split PUD locks yet; there may be places 3120 * which need to be converted from page_table_lock. 3121 */ 3122static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3123{ 3124 return &mm->page_table_lock; 3125} 3126 3127static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3128{ 3129 spinlock_t *ptl = pud_lockptr(mm, pud); 3130 3131 spin_lock(ptl); 3132 return ptl; 3133} 3134 3135static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3136{ 3137 __pagetable_ctor(ptdesc); 3138} 3139 3140static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3141{ 3142 __pagetable_ctor(ptdesc); 3143} 3144 3145static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3146{ 3147 __pagetable_ctor(ptdesc); 3148} 3149 3150extern void __init pagecache_init(void); 3151extern void free_initmem(void); 3152 3153/* 3154 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3155 * into the buddy system. The freed pages will be poisoned with pattern 3156 * "poison" if it's within range [0, UCHAR_MAX]. 3157 * Return pages freed into the buddy system. 3158 */ 3159extern unsigned long free_reserved_area(void *start, void *end, 3160 int poison, const char *s); 3161 3162extern void adjust_managed_page_count(struct page *page, long count); 3163 3164extern void reserve_bootmem_region(phys_addr_t start, 3165 phys_addr_t end, int nid); 3166 3167/* Free the reserved page into the buddy system, so it gets managed. */ 3168void free_reserved_page(struct page *page); 3169 3170static inline void mark_page_reserved(struct page *page) 3171{ 3172 SetPageReserved(page); 3173 adjust_managed_page_count(page, -1); 3174} 3175 3176static inline void free_reserved_ptdesc(struct ptdesc *pt) 3177{ 3178 free_reserved_page(ptdesc_page(pt)); 3179} 3180 3181/* 3182 * Default method to free all the __init memory into the buddy system. 3183 * The freed pages will be poisoned with pattern "poison" if it's within 3184 * range [0, UCHAR_MAX]. 3185 * Return pages freed into the buddy system. 3186 */ 3187static inline unsigned long free_initmem_default(int poison) 3188{ 3189 extern char __init_begin[], __init_end[]; 3190 3191 return free_reserved_area(&__init_begin, &__init_end, 3192 poison, "unused kernel image (initmem)"); 3193} 3194 3195static inline unsigned long get_num_physpages(void) 3196{ 3197 int nid; 3198 unsigned long phys_pages = 0; 3199 3200 for_each_online_node(nid) 3201 phys_pages += node_present_pages(nid); 3202 3203 return phys_pages; 3204} 3205 3206/* 3207 * Using memblock node mappings, an architecture may initialise its 3208 * zones, allocate the backing mem_map and account for memory holes in an 3209 * architecture independent manner. 3210 * 3211 * An architecture is expected to register range of page frames backed by 3212 * physical memory with memblock_add[_node]() before calling 3213 * free_area_init() passing in the PFN each zone ends at. At a basic 3214 * usage, an architecture is expected to do something like 3215 * 3216 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3217 * max_highmem_pfn}; 3218 * for_each_valid_physical_page_range() 3219 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3220 * free_area_init(max_zone_pfns); 3221 */ 3222void free_area_init(unsigned long *max_zone_pfn); 3223unsigned long node_map_pfn_alignment(void); 3224extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3225 unsigned long end_pfn); 3226extern void get_pfn_range_for_nid(unsigned int nid, 3227 unsigned long *start_pfn, unsigned long *end_pfn); 3228 3229#ifndef CONFIG_NUMA 3230static inline int early_pfn_to_nid(unsigned long pfn) 3231{ 3232 return 0; 3233} 3234#else 3235/* please see mm/page_alloc.c */ 3236extern int __meminit early_pfn_to_nid(unsigned long pfn); 3237#endif 3238 3239extern void mem_init(void); 3240extern void __init mmap_init(void); 3241 3242extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3243static inline void show_mem(void) 3244{ 3245 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3246} 3247extern long si_mem_available(void); 3248extern void si_meminfo(struct sysinfo * val); 3249extern void si_meminfo_node(struct sysinfo *val, int nid); 3250 3251extern __printf(3, 4) 3252void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3253 3254extern void setup_per_cpu_pageset(void); 3255 3256/* nommu.c */ 3257extern atomic_long_t mmap_pages_allocated; 3258extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3259 3260/* interval_tree.c */ 3261void vma_interval_tree_insert(struct vm_area_struct *node, 3262 struct rb_root_cached *root); 3263void vma_interval_tree_insert_after(struct vm_area_struct *node, 3264 struct vm_area_struct *prev, 3265 struct rb_root_cached *root); 3266void vma_interval_tree_remove(struct vm_area_struct *node, 3267 struct rb_root_cached *root); 3268struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3269 unsigned long start, unsigned long last); 3270struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3271 unsigned long start, unsigned long last); 3272 3273#define vma_interval_tree_foreach(vma, root, start, last) \ 3274 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3275 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3276 3277void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3278 struct rb_root_cached *root); 3279void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3280 struct rb_root_cached *root); 3281struct anon_vma_chain * 3282anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3283 unsigned long start, unsigned long last); 3284struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3285 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3286#ifdef CONFIG_DEBUG_VM_RB 3287void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3288#endif 3289 3290#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3291 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3292 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3293 3294/* mmap.c */ 3295extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3296extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3297extern void exit_mmap(struct mm_struct *); 3298bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3299 unsigned long addr, bool write); 3300 3301static inline int check_data_rlimit(unsigned long rlim, 3302 unsigned long new, 3303 unsigned long start, 3304 unsigned long end_data, 3305 unsigned long start_data) 3306{ 3307 if (rlim < RLIM_INFINITY) { 3308 if (((new - start) + (end_data - start_data)) > rlim) 3309 return -ENOSPC; 3310 } 3311 3312 return 0; 3313} 3314 3315extern int mm_take_all_locks(struct mm_struct *mm); 3316extern void mm_drop_all_locks(struct mm_struct *mm); 3317 3318extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3319extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3320extern struct file *get_mm_exe_file(struct mm_struct *mm); 3321extern struct file *get_task_exe_file(struct task_struct *task); 3322 3323extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3324extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3325 3326extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3327 const struct vm_special_mapping *sm); 3328struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3329 unsigned long addr, unsigned long len, 3330 vm_flags_t vm_flags, 3331 const struct vm_special_mapping *spec); 3332 3333unsigned long randomize_stack_top(unsigned long stack_top); 3334unsigned long randomize_page(unsigned long start, unsigned long range); 3335 3336unsigned long 3337__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3338 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3339 3340static inline unsigned long 3341get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3342 unsigned long pgoff, unsigned long flags) 3343{ 3344 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3345} 3346 3347extern unsigned long do_mmap(struct file *file, unsigned long addr, 3348 unsigned long len, unsigned long prot, unsigned long flags, 3349 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3350 struct list_head *uf); 3351extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3352 unsigned long start, size_t len, struct list_head *uf, 3353 bool unlock); 3354int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3355 struct mm_struct *mm, unsigned long start, 3356 unsigned long end, struct list_head *uf, bool unlock); 3357extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3358 struct list_head *uf); 3359extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3360 3361#ifdef CONFIG_MMU 3362extern int __mm_populate(unsigned long addr, unsigned long len, 3363 int ignore_errors); 3364static inline void mm_populate(unsigned long addr, unsigned long len) 3365{ 3366 /* Ignore errors */ 3367 (void) __mm_populate(addr, len, 1); 3368} 3369#else 3370static inline void mm_populate(unsigned long addr, unsigned long len) {} 3371#endif 3372 3373/* This takes the mm semaphore itself */ 3374extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3375extern int vm_munmap(unsigned long, size_t); 3376extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3377 unsigned long, unsigned long, 3378 unsigned long, unsigned long); 3379 3380struct vm_unmapped_area_info { 3381#define VM_UNMAPPED_AREA_TOPDOWN 1 3382 unsigned long flags; 3383 unsigned long length; 3384 unsigned long low_limit; 3385 unsigned long high_limit; 3386 unsigned long align_mask; 3387 unsigned long align_offset; 3388 unsigned long start_gap; 3389}; 3390 3391extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3392 3393/* truncate.c */ 3394extern void truncate_inode_pages(struct address_space *, loff_t); 3395extern void truncate_inode_pages_range(struct address_space *, 3396 loff_t lstart, loff_t lend); 3397extern void truncate_inode_pages_final(struct address_space *); 3398 3399/* generic vm_area_ops exported for stackable file systems */ 3400extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3401extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3402 pgoff_t start_pgoff, pgoff_t end_pgoff); 3403extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3404 3405extern unsigned long stack_guard_gap; 3406/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3407int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3408struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3409 3410/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3411extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3412extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3413 struct vm_area_struct **pprev); 3414 3415/* 3416 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3417 * NULL if none. Assume start_addr < end_addr. 3418 */ 3419struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3420 unsigned long start_addr, unsigned long end_addr); 3421 3422/** 3423 * vma_lookup() - Find a VMA at a specific address 3424 * @mm: The process address space. 3425 * @addr: The user address. 3426 * 3427 * Return: The vm_area_struct at the given address, %NULL otherwise. 3428 */ 3429static inline 3430struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3431{ 3432 return mtree_load(&mm->mm_mt, addr); 3433} 3434 3435static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3436{ 3437 if (vma->vm_flags & VM_GROWSDOWN) 3438 return stack_guard_gap; 3439 3440 /* See reasoning around the VM_SHADOW_STACK definition */ 3441 if (vma->vm_flags & VM_SHADOW_STACK) 3442 return PAGE_SIZE; 3443 3444 return 0; 3445} 3446 3447static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3448{ 3449 unsigned long gap = stack_guard_start_gap(vma); 3450 unsigned long vm_start = vma->vm_start; 3451 3452 vm_start -= gap; 3453 if (vm_start > vma->vm_start) 3454 vm_start = 0; 3455 return vm_start; 3456} 3457 3458static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3459{ 3460 unsigned long vm_end = vma->vm_end; 3461 3462 if (vma->vm_flags & VM_GROWSUP) { 3463 vm_end += stack_guard_gap; 3464 if (vm_end < vma->vm_end) 3465 vm_end = -PAGE_SIZE; 3466 } 3467 return vm_end; 3468} 3469 3470static inline unsigned long vma_pages(struct vm_area_struct *vma) 3471{ 3472 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3473} 3474 3475/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3476static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3477 unsigned long vm_start, unsigned long vm_end) 3478{ 3479 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3480 3481 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3482 vma = NULL; 3483 3484 return vma; 3485} 3486 3487static inline bool range_in_vma(struct vm_area_struct *vma, 3488 unsigned long start, unsigned long end) 3489{ 3490 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3491} 3492 3493#ifdef CONFIG_MMU 3494pgprot_t vm_get_page_prot(vm_flags_t vm_flags); 3495void vma_set_page_prot(struct vm_area_struct *vma); 3496#else 3497static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 3498{ 3499 return __pgprot(0); 3500} 3501static inline void vma_set_page_prot(struct vm_area_struct *vma) 3502{ 3503 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3504} 3505#endif 3506 3507void vma_set_file(struct vm_area_struct *vma, struct file *file); 3508 3509#ifdef CONFIG_NUMA_BALANCING 3510unsigned long change_prot_numa(struct vm_area_struct *vma, 3511 unsigned long start, unsigned long end); 3512#endif 3513 3514struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3515 unsigned long addr); 3516int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3517 unsigned long pfn, unsigned long size, pgprot_t); 3518int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3519 unsigned long pfn, unsigned long size, pgprot_t prot); 3520int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3521int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3522 struct page **pages, unsigned long *num); 3523int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3524 unsigned long num); 3525int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3526 unsigned long num); 3527vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3528 bool write); 3529vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3530 unsigned long pfn); 3531vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3532 unsigned long pfn, pgprot_t pgprot); 3533vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3534 unsigned long pfn); 3535vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3536 unsigned long addr, unsigned long pfn); 3537int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3538 3539static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3540 unsigned long addr, struct page *page) 3541{ 3542 int err = vm_insert_page(vma, addr, page); 3543 3544 if (err == -ENOMEM) 3545 return VM_FAULT_OOM; 3546 if (err < 0 && err != -EBUSY) 3547 return VM_FAULT_SIGBUS; 3548 3549 return VM_FAULT_NOPAGE; 3550} 3551 3552#ifndef io_remap_pfn_range 3553static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3554 unsigned long addr, unsigned long pfn, 3555 unsigned long size, pgprot_t prot) 3556{ 3557 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3558} 3559#endif 3560 3561static inline vm_fault_t vmf_error(int err) 3562{ 3563 if (err == -ENOMEM) 3564 return VM_FAULT_OOM; 3565 else if (err == -EHWPOISON) 3566 return VM_FAULT_HWPOISON; 3567 return VM_FAULT_SIGBUS; 3568} 3569 3570/* 3571 * Convert errno to return value for ->page_mkwrite() calls. 3572 * 3573 * This should eventually be merged with vmf_error() above, but will need a 3574 * careful audit of all vmf_error() callers. 3575 */ 3576static inline vm_fault_t vmf_fs_error(int err) 3577{ 3578 if (err == 0) 3579 return VM_FAULT_LOCKED; 3580 if (err == -EFAULT || err == -EAGAIN) 3581 return VM_FAULT_NOPAGE; 3582 if (err == -ENOMEM) 3583 return VM_FAULT_OOM; 3584 /* -ENOSPC, -EDQUOT, -EIO ... */ 3585 return VM_FAULT_SIGBUS; 3586} 3587 3588static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3589{ 3590 if (vm_fault & VM_FAULT_OOM) 3591 return -ENOMEM; 3592 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3593 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3594 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3595 return -EFAULT; 3596 return 0; 3597} 3598 3599/* 3600 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3601 * a (NUMA hinting) fault is required. 3602 */ 3603static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3604 unsigned int flags) 3605{ 3606 /* 3607 * If callers don't want to honor NUMA hinting faults, no need to 3608 * determine if we would actually have to trigger a NUMA hinting fault. 3609 */ 3610 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3611 return true; 3612 3613 /* 3614 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3615 * 3616 * Requiring a fault here even for inaccessible VMAs would mean that 3617 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3618 * refuses to process NUMA hinting faults in inaccessible VMAs. 3619 */ 3620 return !vma_is_accessible(vma); 3621} 3622 3623typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3624extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3625 unsigned long size, pte_fn_t fn, void *data); 3626extern int apply_to_existing_page_range(struct mm_struct *mm, 3627 unsigned long address, unsigned long size, 3628 pte_fn_t fn, void *data); 3629 3630#ifdef CONFIG_PAGE_POISONING 3631extern void __kernel_poison_pages(struct page *page, int numpages); 3632extern void __kernel_unpoison_pages(struct page *page, int numpages); 3633extern bool _page_poisoning_enabled_early; 3634DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3635static inline bool page_poisoning_enabled(void) 3636{ 3637 return _page_poisoning_enabled_early; 3638} 3639/* 3640 * For use in fast paths after init_mem_debugging() has run, or when a 3641 * false negative result is not harmful when called too early. 3642 */ 3643static inline bool page_poisoning_enabled_static(void) 3644{ 3645 return static_branch_unlikely(&_page_poisoning_enabled); 3646} 3647static inline void kernel_poison_pages(struct page *page, int numpages) 3648{ 3649 if (page_poisoning_enabled_static()) 3650 __kernel_poison_pages(page, numpages); 3651} 3652static inline void kernel_unpoison_pages(struct page *page, int numpages) 3653{ 3654 if (page_poisoning_enabled_static()) 3655 __kernel_unpoison_pages(page, numpages); 3656} 3657#else 3658static inline bool page_poisoning_enabled(void) { return false; } 3659static inline bool page_poisoning_enabled_static(void) { return false; } 3660static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3661static inline void kernel_poison_pages(struct page *page, int numpages) { } 3662static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3663#endif 3664 3665DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3666static inline bool want_init_on_alloc(gfp_t flags) 3667{ 3668 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3669 &init_on_alloc)) 3670 return true; 3671 return flags & __GFP_ZERO; 3672} 3673 3674DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3675static inline bool want_init_on_free(void) 3676{ 3677 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3678 &init_on_free); 3679} 3680 3681extern bool _debug_pagealloc_enabled_early; 3682DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3683 3684static inline bool debug_pagealloc_enabled(void) 3685{ 3686 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3687 _debug_pagealloc_enabled_early; 3688} 3689 3690/* 3691 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3692 * or when a false negative result is not harmful when called too early. 3693 */ 3694static inline bool debug_pagealloc_enabled_static(void) 3695{ 3696 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3697 return false; 3698 3699 return static_branch_unlikely(&_debug_pagealloc_enabled); 3700} 3701 3702/* 3703 * To support DEBUG_PAGEALLOC architecture must ensure that 3704 * __kernel_map_pages() never fails 3705 */ 3706extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3707#ifdef CONFIG_DEBUG_PAGEALLOC 3708static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3709{ 3710 if (debug_pagealloc_enabled_static()) 3711 __kernel_map_pages(page, numpages, 1); 3712} 3713 3714static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3715{ 3716 if (debug_pagealloc_enabled_static()) 3717 __kernel_map_pages(page, numpages, 0); 3718} 3719 3720extern unsigned int _debug_guardpage_minorder; 3721DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3722 3723static inline unsigned int debug_guardpage_minorder(void) 3724{ 3725 return _debug_guardpage_minorder; 3726} 3727 3728static inline bool debug_guardpage_enabled(void) 3729{ 3730 return static_branch_unlikely(&_debug_guardpage_enabled); 3731} 3732 3733static inline bool page_is_guard(struct page *page) 3734{ 3735 if (!debug_guardpage_enabled()) 3736 return false; 3737 3738 return PageGuard(page); 3739} 3740 3741bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3742static inline bool set_page_guard(struct zone *zone, struct page *page, 3743 unsigned int order) 3744{ 3745 if (!debug_guardpage_enabled()) 3746 return false; 3747 return __set_page_guard(zone, page, order); 3748} 3749 3750void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3751static inline void clear_page_guard(struct zone *zone, struct page *page, 3752 unsigned int order) 3753{ 3754 if (!debug_guardpage_enabled()) 3755 return; 3756 __clear_page_guard(zone, page, order); 3757} 3758 3759#else /* CONFIG_DEBUG_PAGEALLOC */ 3760static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3761static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3762static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3763static inline bool debug_guardpage_enabled(void) { return false; } 3764static inline bool page_is_guard(struct page *page) { return false; } 3765static inline bool set_page_guard(struct zone *zone, struct page *page, 3766 unsigned int order) { return false; } 3767static inline void clear_page_guard(struct zone *zone, struct page *page, 3768 unsigned int order) {} 3769#endif /* CONFIG_DEBUG_PAGEALLOC */ 3770 3771#ifdef __HAVE_ARCH_GATE_AREA 3772extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3773extern int in_gate_area_no_mm(unsigned long addr); 3774extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3775#else 3776static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3777{ 3778 return NULL; 3779} 3780static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3781static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3782{ 3783 return 0; 3784} 3785#endif /* __HAVE_ARCH_GATE_AREA */ 3786 3787extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3788 3789void drop_slab(void); 3790 3791#ifndef CONFIG_MMU 3792#define randomize_va_space 0 3793#else 3794extern int randomize_va_space; 3795#endif 3796 3797const char * arch_vma_name(struct vm_area_struct *vma); 3798#ifdef CONFIG_MMU 3799void print_vma_addr(char *prefix, unsigned long rip); 3800#else 3801static inline void print_vma_addr(char *prefix, unsigned long rip) 3802{ 3803} 3804#endif 3805 3806void *sparse_buffer_alloc(unsigned long size); 3807unsigned long section_map_size(void); 3808struct page * __populate_section_memmap(unsigned long pfn, 3809 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3810 struct dev_pagemap *pgmap); 3811pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3812p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3813pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3814pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3815pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3816 struct vmem_altmap *altmap, unsigned long ptpfn, 3817 unsigned long flags); 3818void *vmemmap_alloc_block(unsigned long size, int node); 3819struct vmem_altmap; 3820void *vmemmap_alloc_block_buf(unsigned long size, int node, 3821 struct vmem_altmap *altmap); 3822void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3823void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3824 unsigned long addr, unsigned long next); 3825int vmemmap_check_pmd(pmd_t *pmd, int node, 3826 unsigned long addr, unsigned long next); 3827int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3828 int node, struct vmem_altmap *altmap); 3829int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3830 int node, struct vmem_altmap *altmap); 3831int vmemmap_populate(unsigned long start, unsigned long end, int node, 3832 struct vmem_altmap *altmap); 3833int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3834 unsigned long headsize); 3835int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3836 unsigned long headsize); 3837void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3838 unsigned long headsize); 3839void vmemmap_populate_print_last(void); 3840#ifdef CONFIG_MEMORY_HOTPLUG 3841void vmemmap_free(unsigned long start, unsigned long end, 3842 struct vmem_altmap *altmap); 3843#endif 3844 3845#ifdef CONFIG_SPARSEMEM_VMEMMAP 3846static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3847{ 3848 /* number of pfns from base where pfn_to_page() is valid */ 3849 if (altmap) 3850 return altmap->reserve + altmap->free; 3851 return 0; 3852} 3853 3854static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3855 unsigned long nr_pfns) 3856{ 3857 altmap->alloc -= nr_pfns; 3858} 3859#else 3860static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3861{ 3862 return 0; 3863} 3864 3865static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3866 unsigned long nr_pfns) 3867{ 3868} 3869#endif 3870 3871#define VMEMMAP_RESERVE_NR 2 3872#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3873static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3874 struct dev_pagemap *pgmap) 3875{ 3876 unsigned long nr_pages; 3877 unsigned long nr_vmemmap_pages; 3878 3879 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3880 return false; 3881 3882 nr_pages = pgmap_vmemmap_nr(pgmap); 3883 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3884 /* 3885 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3886 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3887 */ 3888 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3889} 3890/* 3891 * If we don't have an architecture override, use the generic rule 3892 */ 3893#ifndef vmemmap_can_optimize 3894#define vmemmap_can_optimize __vmemmap_can_optimize 3895#endif 3896 3897#else 3898static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3899 struct dev_pagemap *pgmap) 3900{ 3901 return false; 3902} 3903#endif 3904 3905enum mf_flags { 3906 MF_COUNT_INCREASED = 1 << 0, 3907 MF_ACTION_REQUIRED = 1 << 1, 3908 MF_MUST_KILL = 1 << 2, 3909 MF_SOFT_OFFLINE = 1 << 3, 3910 MF_UNPOISON = 1 << 4, 3911 MF_SW_SIMULATED = 1 << 5, 3912 MF_NO_RETRY = 1 << 6, 3913 MF_MEM_PRE_REMOVE = 1 << 7, 3914}; 3915int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3916 unsigned long count, int mf_flags); 3917extern int memory_failure(unsigned long pfn, int flags); 3918extern int unpoison_memory(unsigned long pfn); 3919extern atomic_long_t num_poisoned_pages __read_mostly; 3920extern int soft_offline_page(unsigned long pfn, int flags); 3921#ifdef CONFIG_MEMORY_FAILURE 3922/* 3923 * Sysfs entries for memory failure handling statistics. 3924 */ 3925extern const struct attribute_group memory_failure_attr_group; 3926extern void memory_failure_queue(unsigned long pfn, int flags); 3927extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3928 bool *migratable_cleared); 3929void num_poisoned_pages_inc(unsigned long pfn); 3930void num_poisoned_pages_sub(unsigned long pfn, long i); 3931#else 3932static inline void memory_failure_queue(unsigned long pfn, int flags) 3933{ 3934} 3935 3936static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3937 bool *migratable_cleared) 3938{ 3939 return 0; 3940} 3941 3942static inline void num_poisoned_pages_inc(unsigned long pfn) 3943{ 3944} 3945 3946static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3947{ 3948} 3949#endif 3950 3951#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3952extern void memblk_nr_poison_inc(unsigned long pfn); 3953extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3954#else 3955static inline void memblk_nr_poison_inc(unsigned long pfn) 3956{ 3957} 3958 3959static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3960{ 3961} 3962#endif 3963 3964#ifndef arch_memory_failure 3965static inline int arch_memory_failure(unsigned long pfn, int flags) 3966{ 3967 return -ENXIO; 3968} 3969#endif 3970 3971#ifndef arch_is_platform_page 3972static inline bool arch_is_platform_page(u64 paddr) 3973{ 3974 return false; 3975} 3976#endif 3977 3978/* 3979 * Error handlers for various types of pages. 3980 */ 3981enum mf_result { 3982 MF_IGNORED, /* Error: cannot be handled */ 3983 MF_FAILED, /* Error: handling failed */ 3984 MF_DELAYED, /* Will be handled later */ 3985 MF_RECOVERED, /* Successfully recovered */ 3986}; 3987 3988enum mf_action_page_type { 3989 MF_MSG_KERNEL, 3990 MF_MSG_KERNEL_HIGH_ORDER, 3991 MF_MSG_DIFFERENT_COMPOUND, 3992 MF_MSG_HUGE, 3993 MF_MSG_FREE_HUGE, 3994 MF_MSG_GET_HWPOISON, 3995 MF_MSG_UNMAP_FAILED, 3996 MF_MSG_DIRTY_SWAPCACHE, 3997 MF_MSG_CLEAN_SWAPCACHE, 3998 MF_MSG_DIRTY_MLOCKED_LRU, 3999 MF_MSG_CLEAN_MLOCKED_LRU, 4000 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4001 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4002 MF_MSG_DIRTY_LRU, 4003 MF_MSG_CLEAN_LRU, 4004 MF_MSG_TRUNCATED_LRU, 4005 MF_MSG_BUDDY, 4006 MF_MSG_DAX, 4007 MF_MSG_UNSPLIT_THP, 4008 MF_MSG_ALREADY_POISONED, 4009 MF_MSG_UNKNOWN, 4010}; 4011 4012#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4013void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4014int copy_user_large_folio(struct folio *dst, struct folio *src, 4015 unsigned long addr_hint, 4016 struct vm_area_struct *vma); 4017long copy_folio_from_user(struct folio *dst_folio, 4018 const void __user *usr_src, 4019 bool allow_pagefault); 4020 4021/** 4022 * vma_is_special_huge - Are transhuge page-table entries considered special? 4023 * @vma: Pointer to the struct vm_area_struct to consider 4024 * 4025 * Whether transhuge page-table entries are considered "special" following 4026 * the definition in vm_normal_page(). 4027 * 4028 * Return: true if transhuge page-table entries should be considered special, 4029 * false otherwise. 4030 */ 4031static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4032{ 4033 return vma_is_dax(vma) || (vma->vm_file && 4034 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4035} 4036 4037#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4038 4039#if MAX_NUMNODES > 1 4040void __init setup_nr_node_ids(void); 4041#else 4042static inline void setup_nr_node_ids(void) {} 4043#endif 4044 4045extern int memcmp_pages(struct page *page1, struct page *page2); 4046 4047static inline int pages_identical(struct page *page1, struct page *page2) 4048{ 4049 return !memcmp_pages(page1, page2); 4050} 4051 4052#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4053unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4054 pgoff_t first_index, pgoff_t nr, 4055 pgoff_t bitmap_pgoff, 4056 unsigned long *bitmap, 4057 pgoff_t *start, 4058 pgoff_t *end); 4059 4060unsigned long wp_shared_mapping_range(struct address_space *mapping, 4061 pgoff_t first_index, pgoff_t nr); 4062#endif 4063 4064#ifdef CONFIG_ANON_VMA_NAME 4065int set_anon_vma_name(unsigned long addr, unsigned long size, 4066 const char __user *uname); 4067#else 4068static inline 4069int set_anon_vma_name(unsigned long addr, unsigned long size, 4070 const char __user *uname) 4071{ 4072 return -EINVAL; 4073} 4074#endif 4075 4076#ifdef CONFIG_UNACCEPTED_MEMORY 4077 4078bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4079void accept_memory(phys_addr_t start, unsigned long size); 4080 4081#else 4082 4083static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4084 unsigned long size) 4085{ 4086 return false; 4087} 4088 4089static inline void accept_memory(phys_addr_t start, unsigned long size) 4090{ 4091} 4092 4093#endif 4094 4095static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4096{ 4097 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4098} 4099 4100void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4101void vma_pgtable_walk_end(struct vm_area_struct *vma); 4102 4103int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4104int reserve_mem_release_by_name(const char *name); 4105 4106#ifdef CONFIG_64BIT 4107int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4108#else 4109static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4110{ 4111 /* noop on 32 bit */ 4112 return 0; 4113} 4114#endif 4115 4116/* 4117 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4118 * be zeroed or not. 4119 */ 4120static inline bool user_alloc_needs_zeroing(void) 4121{ 4122 /* 4123 * for user folios, arch with cache aliasing requires cache flush and 4124 * arc changes folio->flags to make icache coherent with dcache, so 4125 * always return false to make caller use 4126 * clear_user_page()/clear_user_highpage(). 4127 */ 4128 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4129 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4130 &init_on_alloc); 4131} 4132 4133int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4134int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4135int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4136 4137 4138/* 4139 * mseal of userspace process's system mappings. 4140 */ 4141#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 4142#define VM_SEALED_SYSMAP VM_SEALED 4143#else 4144#define VM_SEALED_SYSMAP VM_NONE 4145#endif 4146 4147/* 4148 * DMA mapping IDs for page_pool 4149 * 4150 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and 4151 * stashes it in the upper bits of page->pp_magic. We always want to be able to 4152 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP 4153 * pages can have arbitrary kernel pointers stored in the same field as pp_magic 4154 * (since it overlaps with page->lru.next), so we must ensure that we cannot 4155 * mistake a valid kernel pointer with any of the values we write into this 4156 * field. 4157 * 4158 * On architectures that set POISON_POINTER_DELTA, this is already ensured, 4159 * since this value becomes part of PP_SIGNATURE; meaning we can just use the 4160 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the 4161 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is 4162 * 0, we make sure that we leave the two topmost bits empty, as that guarantees 4163 * we won't mistake a valid kernel pointer for a value we set, regardless of the 4164 * VMSPLIT setting. 4165 * 4166 * Altogether, this means that the number of bits available is constrained by 4167 * the size of an unsigned long (at the upper end, subtracting two bits per the 4168 * above), and the definition of PP_SIGNATURE (with or without 4169 * POISON_POINTER_DELTA). 4170 */ 4171#define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) 4172#if POISON_POINTER_DELTA > 0 4173/* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA 4174 * index to not overlap with that if set 4175 */ 4176#define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) 4177#else 4178/* Always leave out the topmost two; see above. */ 4179#define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2) 4180#endif 4181 4182#define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ 4183 PP_DMA_INDEX_SHIFT) 4184 4185/* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is 4186 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for 4187 * the head page of compound page and bit 1 for pfmemalloc page, as well as the 4188 * bits used for the DMA index. page_is_pfmemalloc() is checked in 4189 * __page_pool_put_page() to avoid recycling the pfmemalloc page. 4190 */ 4191#define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) 4192 4193#ifdef CONFIG_PAGE_POOL 4194static inline bool page_pool_page_is_pp(const struct page *page) 4195{ 4196 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; 4197} 4198#else 4199static inline bool page_pool_page_is_pp(const struct page *page) 4200{ 4201 return false; 4202} 4203#endif 4204 4205#define PAGE_SNAPSHOT_FAITHFUL (1 << 0) 4206#define PAGE_SNAPSHOT_PG_BUDDY (1 << 1) 4207#define PAGE_SNAPSHOT_PG_IDLE (1 << 2) 4208 4209struct page_snapshot { 4210 struct folio folio_snapshot; 4211 struct page page_snapshot; 4212 unsigned long pfn; 4213 unsigned long idx; 4214 unsigned long flags; 4215}; 4216 4217static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps) 4218{ 4219 return ps->flags & PAGE_SNAPSHOT_FAITHFUL; 4220} 4221 4222void snapshot_page(struct page_snapshot *ps, const struct page *page); 4223 4224#endif /* _LINUX_MM_H */