Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/pgalloc_tag.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/compiler.h>
16#include <linux/mm_types.h>
17#include <linux/mmap_lock.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page-flags.h>
27#include <linux/page_ref.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30#include <linux/sched.h>
31#include <linux/pgtable.h>
32#include <linux/kasan.h>
33#include <linux/memremap.h>
34#include <linux/slab.h>
35#include <linux/cacheinfo.h>
36#include <linux/rcuwait.h>
37
38struct mempolicy;
39struct anon_vma;
40struct anon_vma_chain;
41struct user_struct;
42struct pt_regs;
43struct folio_batch;
44
45void arch_mm_preinit(void);
46void mm_core_init(void);
47void init_mm_internals(void);
48
49extern atomic_long_t _totalram_pages;
50static inline unsigned long totalram_pages(void)
51{
52 return (unsigned long)atomic_long_read(&_totalram_pages);
53}
54
55static inline void totalram_pages_inc(void)
56{
57 atomic_long_inc(&_totalram_pages);
58}
59
60static inline void totalram_pages_dec(void)
61{
62 atomic_long_dec(&_totalram_pages);
63}
64
65static inline void totalram_pages_add(long count)
66{
67 atomic_long_add(count, &_totalram_pages);
68}
69
70extern void * high_memory;
71
72#ifdef CONFIG_SYSCTL
73extern int sysctl_legacy_va_layout;
74#else
75#define sysctl_legacy_va_layout 0
76#endif
77
78#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79extern const int mmap_rnd_bits_min;
80extern int mmap_rnd_bits_max __ro_after_init;
81extern int mmap_rnd_bits __read_mostly;
82#endif
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84extern const int mmap_rnd_compat_bits_min;
85extern const int mmap_rnd_compat_bits_max;
86extern int mmap_rnd_compat_bits __read_mostly;
87#endif
88
89#ifndef DIRECT_MAP_PHYSMEM_END
90# ifdef MAX_PHYSMEM_BITS
91# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
92# else
93# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
94# endif
95#endif
96
97#include <asm/page.h>
98#include <asm/processor.h>
99
100#ifndef __pa_symbol
101#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
102#endif
103
104#ifndef page_to_virt
105#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
106#endif
107
108#ifndef lm_alias
109#define lm_alias(x) __va(__pa_symbol(x))
110#endif
111
112/*
113 * To prevent common memory management code establishing
114 * a zero page mapping on a read fault.
115 * This macro should be defined within <asm/pgtable.h>.
116 * s390 does this to prevent multiplexing of hardware bits
117 * related to the physical page in case of virtualization.
118 */
119#ifndef mm_forbids_zeropage
120#define mm_forbids_zeropage(X) (0)
121#endif
122
123/*
124 * On some architectures it is expensive to call memset() for small sizes.
125 * If an architecture decides to implement their own version of
126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127 * define their own version of this macro in <asm/pgtable.h>
128 */
129#if BITS_PER_LONG == 64
130/* This function must be updated when the size of struct page grows above 96
131 * or reduces below 56. The idea that compiler optimizes out switch()
132 * statement, and only leaves move/store instructions. Also the compiler can
133 * combine write statements if they are both assignments and can be reordered,
134 * this can result in several of the writes here being dropped.
135 */
136#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
137static inline void __mm_zero_struct_page(struct page *page)
138{
139 unsigned long *_pp = (void *)page;
140
141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 BUILD_BUG_ON(sizeof(struct page) & 7);
143 BUILD_BUG_ON(sizeof(struct page) < 56);
144 BUILD_BUG_ON(sizeof(struct page) > 96);
145
146 switch (sizeof(struct page)) {
147 case 96:
148 _pp[11] = 0;
149 fallthrough;
150 case 88:
151 _pp[10] = 0;
152 fallthrough;
153 case 80:
154 _pp[9] = 0;
155 fallthrough;
156 case 72:
157 _pp[8] = 0;
158 fallthrough;
159 case 64:
160 _pp[7] = 0;
161 fallthrough;
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171}
172#else
173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174#endif
175
176/*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192#define MAPCOUNT_ELF_CORE_MARGIN (5)
193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195extern int sysctl_max_map_count;
196
197extern unsigned long sysctl_user_reserve_kbytes;
198extern unsigned long sysctl_admin_reserve_kbytes;
199
200#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
203#else
204#define nth_page(page,n) ((page) + (n))
205#define folio_page_idx(folio, p) ((p) - &(folio)->page)
206#endif
207
208/* to align the pointer to the (next) page boundary */
209#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
210
211/* to align the pointer to the (prev) page boundary */
212#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
213
214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216
217static inline struct folio *lru_to_folio(struct list_head *head)
218{
219 return list_entry((head)->prev, struct folio, lru);
220}
221
222void setup_initial_init_mm(void *start_code, void *end_code,
223 void *end_data, void *brk);
224
225/*
226 * Linux kernel virtual memory manager primitives.
227 * The idea being to have a "virtual" mm in the same way
228 * we have a virtual fs - giving a cleaner interface to the
229 * mm details, and allowing different kinds of memory mappings
230 * (from shared memory to executable loading to arbitrary
231 * mmap() functions).
232 */
233
234struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236void vm_area_free(struct vm_area_struct *);
237
238#ifndef CONFIG_MMU
239extern struct rb_root nommu_region_tree;
240extern struct rw_semaphore nommu_region_sem;
241
242extern unsigned int kobjsize(const void *objp);
243#endif
244
245/*
246 * vm_flags in vm_area_struct, see mm_types.h.
247 * When changing, update also include/trace/events/mmflags.h
248 */
249#define VM_NONE 0x00000000
250
251#define VM_READ 0x00000001 /* currently active flags */
252#define VM_WRITE 0x00000002
253#define VM_EXEC 0x00000004
254#define VM_SHARED 0x00000008
255
256/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
258#define VM_MAYWRITE 0x00000020
259#define VM_MAYEXEC 0x00000040
260#define VM_MAYSHARE 0x00000080
261
262#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
263#ifdef CONFIG_MMU
264#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
265#else /* CONFIG_MMU */
266#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267#define VM_UFFD_MISSING 0
268#endif /* CONFIG_MMU */
269#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
271
272#define VM_LOCKED 0x00002000
273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285#define VM_SYNC 0x00800000 /* Synchronous page faults */
286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
289
290#ifdef CONFIG_MEM_SOFT_DIRTY
291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292#else
293# define VM_SOFTDIRTY 0
294#endif
295
296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
300
301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
308#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
309#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
310#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
311#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
312#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
313#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
314#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
315#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
316#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317
318#ifdef CONFIG_ARCH_HAS_PKEYS
319# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320# define VM_PKEY_BIT0 VM_HIGH_ARCH_0
321# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
322# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323#if CONFIG_ARCH_PKEY_BITS > 3
324# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
325#else
326# define VM_PKEY_BIT3 0
327#endif
328#if CONFIG_ARCH_PKEY_BITS > 4
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
332#endif
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#ifdef CONFIG_X86_USER_SHADOW_STACK
336/*
337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
338 * support core mm.
339 *
340 * These VMAs will get a single end guard page. This helps userspace protect
341 * itself from attacks. A single page is enough for current shadow stack archs
342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343 * for more details on the guard size.
344 */
345# define VM_SHADOW_STACK VM_HIGH_ARCH_5
346#endif
347
348#if defined(CONFIG_ARM64_GCS)
349/*
350 * arm64's Guarded Control Stack implements similar functionality and
351 * has similar constraints to shadow stacks.
352 */
353# define VM_SHADOW_STACK VM_HIGH_ARCH_6
354#endif
355
356#ifndef VM_SHADOW_STACK
357# define VM_SHADOW_STACK VM_NONE
358#endif
359
360#if defined(CONFIG_PPC64)
361# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
362#elif defined(CONFIG_PARISC)
363# define VM_GROWSUP VM_ARCH_1
364#elif defined(CONFIG_SPARC64)
365# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
366# define VM_ARCH_CLEAR VM_SPARC_ADI
367#elif defined(CONFIG_ARM64)
368# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
369# define VM_ARCH_CLEAR VM_ARM64_BTI
370#elif !defined(CONFIG_MMU)
371# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
372#endif
373
374#if defined(CONFIG_ARM64_MTE)
375# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
376# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
377#else
378# define VM_MTE VM_NONE
379# define VM_MTE_ALLOWED VM_NONE
380#endif
381
382#ifndef VM_GROWSUP
383# define VM_GROWSUP VM_NONE
384#endif
385
386#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387# define VM_UFFD_MINOR_BIT 41
388# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
389#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390# define VM_UFFD_MINOR VM_NONE
391#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392
393/*
394 * This flag is used to connect VFIO to arch specific KVM code. It
395 * indicates that the memory under this VMA is safe for use with any
396 * non-cachable memory type inside KVM. Some VFIO devices, on some
397 * platforms, are thought to be unsafe and can cause machine crashes
398 * if KVM does not lock down the memory type.
399 */
400#ifdef CONFIG_64BIT
401#define VM_ALLOW_ANY_UNCACHED_BIT 39
402#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
403#else
404#define VM_ALLOW_ANY_UNCACHED VM_NONE
405#endif
406
407#ifdef CONFIG_64BIT
408#define VM_DROPPABLE_BIT 40
409#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
410#elif defined(CONFIG_PPC32)
411#define VM_DROPPABLE VM_ARCH_1
412#else
413#define VM_DROPPABLE VM_NONE
414#endif
415
416#ifdef CONFIG_64BIT
417#define VM_SEALED_BIT 42
418#define VM_SEALED BIT(VM_SEALED_BIT)
419#else
420#define VM_SEALED VM_NONE
421#endif
422
423/* Bits set in the VMA until the stack is in its final location */
424#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
425
426#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
427
428/* Common data flag combinations */
429#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
430 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
431#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
432 VM_MAYWRITE | VM_MAYEXEC)
433#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
434 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
435
436#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
437#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
438#endif
439
440#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
441#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
442#endif
443
444#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
445
446#ifdef CONFIG_STACK_GROWSUP
447#define VM_STACK VM_GROWSUP
448#define VM_STACK_EARLY VM_GROWSDOWN
449#else
450#define VM_STACK VM_GROWSDOWN
451#define VM_STACK_EARLY 0
452#endif
453
454#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
455
456/* VMA basic access permission flags */
457#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
458
459
460/*
461 * Special vmas that are non-mergable, non-mlock()able.
462 */
463#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
464
465/* This mask prevents VMA from being scanned with khugepaged */
466#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
467
468/* This mask defines which mm->def_flags a process can inherit its parent */
469#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
470
471/* This mask represents all the VMA flag bits used by mlock */
472#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
473
474/* Arch-specific flags to clear when updating VM flags on protection change */
475#ifndef VM_ARCH_CLEAR
476# define VM_ARCH_CLEAR VM_NONE
477#endif
478#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
479
480/*
481 * mapping from the currently active vm_flags protection bits (the
482 * low four bits) to a page protection mask..
483 */
484
485/*
486 * The default fault flags that should be used by most of the
487 * arch-specific page fault handlers.
488 */
489#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
490 FAULT_FLAG_KILLABLE | \
491 FAULT_FLAG_INTERRUPTIBLE)
492
493/**
494 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
495 * @flags: Fault flags.
496 *
497 * This is mostly used for places where we want to try to avoid taking
498 * the mmap_lock for too long a time when waiting for another condition
499 * to change, in which case we can try to be polite to release the
500 * mmap_lock in the first round to avoid potential starvation of other
501 * processes that would also want the mmap_lock.
502 *
503 * Return: true if the page fault allows retry and this is the first
504 * attempt of the fault handling; false otherwise.
505 */
506static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
507{
508 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
509 (!(flags & FAULT_FLAG_TRIED));
510}
511
512#define FAULT_FLAG_TRACE \
513 { FAULT_FLAG_WRITE, "WRITE" }, \
514 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
515 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
516 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
517 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
518 { FAULT_FLAG_TRIED, "TRIED" }, \
519 { FAULT_FLAG_USER, "USER" }, \
520 { FAULT_FLAG_REMOTE, "REMOTE" }, \
521 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
522 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
523 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
524
525/*
526 * vm_fault is filled by the pagefault handler and passed to the vma's
527 * ->fault function. The vma's ->fault is responsible for returning a bitmask
528 * of VM_FAULT_xxx flags that give details about how the fault was handled.
529 *
530 * MM layer fills up gfp_mask for page allocations but fault handler might
531 * alter it if its implementation requires a different allocation context.
532 *
533 * pgoff should be used in favour of virtual_address, if possible.
534 */
535struct vm_fault {
536 const struct {
537 struct vm_area_struct *vma; /* Target VMA */
538 gfp_t gfp_mask; /* gfp mask to be used for allocations */
539 pgoff_t pgoff; /* Logical page offset based on vma */
540 unsigned long address; /* Faulting virtual address - masked */
541 unsigned long real_address; /* Faulting virtual address - unmasked */
542 };
543 enum fault_flag flags; /* FAULT_FLAG_xxx flags
544 * XXX: should really be 'const' */
545 pmd_t *pmd; /* Pointer to pmd entry matching
546 * the 'address' */
547 pud_t *pud; /* Pointer to pud entry matching
548 * the 'address'
549 */
550 union {
551 pte_t orig_pte; /* Value of PTE at the time of fault */
552 pmd_t orig_pmd; /* Value of PMD at the time of fault,
553 * used by PMD fault only.
554 */
555 };
556
557 struct page *cow_page; /* Page handler may use for COW fault */
558 struct page *page; /* ->fault handlers should return a
559 * page here, unless VM_FAULT_NOPAGE
560 * is set (which is also implied by
561 * VM_FAULT_ERROR).
562 */
563 /* These three entries are valid only while holding ptl lock */
564 pte_t *pte; /* Pointer to pte entry matching
565 * the 'address'. NULL if the page
566 * table hasn't been allocated.
567 */
568 spinlock_t *ptl; /* Page table lock.
569 * Protects pte page table if 'pte'
570 * is not NULL, otherwise pmd.
571 */
572 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
573 * vm_ops->map_pages() sets up a page
574 * table from atomic context.
575 * do_fault_around() pre-allocates
576 * page table to avoid allocation from
577 * atomic context.
578 */
579};
580
581/*
582 * These are the virtual MM functions - opening of an area, closing and
583 * unmapping it (needed to keep files on disk up-to-date etc), pointer
584 * to the functions called when a no-page or a wp-page exception occurs.
585 */
586struct vm_operations_struct {
587 void (*open)(struct vm_area_struct * area);
588 /**
589 * @close: Called when the VMA is being removed from the MM.
590 * Context: User context. May sleep. Caller holds mmap_lock.
591 */
592 void (*close)(struct vm_area_struct * area);
593 /* Called any time before splitting to check if it's allowed */
594 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
595 int (*mremap)(struct vm_area_struct *area);
596 /*
597 * Called by mprotect() to make driver-specific permission
598 * checks before mprotect() is finalised. The VMA must not
599 * be modified. Returns 0 if mprotect() can proceed.
600 */
601 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
602 unsigned long end, unsigned long newflags);
603 vm_fault_t (*fault)(struct vm_fault *vmf);
604 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
605 vm_fault_t (*map_pages)(struct vm_fault *vmf,
606 pgoff_t start_pgoff, pgoff_t end_pgoff);
607 unsigned long (*pagesize)(struct vm_area_struct * area);
608
609 /* notification that a previously read-only page is about to become
610 * writable, if an error is returned it will cause a SIGBUS */
611 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
612
613 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
614 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
615
616 /* called by access_process_vm when get_user_pages() fails, typically
617 * for use by special VMAs. See also generic_access_phys() for a generic
618 * implementation useful for any iomem mapping.
619 */
620 int (*access)(struct vm_area_struct *vma, unsigned long addr,
621 void *buf, int len, int write);
622
623 /* Called by the /proc/PID/maps code to ask the vma whether it
624 * has a special name. Returning non-NULL will also cause this
625 * vma to be dumped unconditionally. */
626 const char *(*name)(struct vm_area_struct *vma);
627
628#ifdef CONFIG_NUMA
629 /*
630 * set_policy() op must add a reference to any non-NULL @new mempolicy
631 * to hold the policy upon return. Caller should pass NULL @new to
632 * remove a policy and fall back to surrounding context--i.e. do not
633 * install a MPOL_DEFAULT policy, nor the task or system default
634 * mempolicy.
635 */
636 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
637
638 /*
639 * get_policy() op must add reference [mpol_get()] to any policy at
640 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
641 * in mm/mempolicy.c will do this automatically.
642 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
643 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
644 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
645 * must return NULL--i.e., do not "fallback" to task or system default
646 * policy.
647 */
648 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
649 unsigned long addr, pgoff_t *ilx);
650#endif
651 /*
652 * Called by vm_normal_page() for special PTEs to find the
653 * page for @addr. This is useful if the default behavior
654 * (using pte_page()) would not find the correct page.
655 */
656 struct page *(*find_special_page)(struct vm_area_struct *vma,
657 unsigned long addr);
658};
659
660#ifdef CONFIG_NUMA_BALANCING
661static inline void vma_numab_state_init(struct vm_area_struct *vma)
662{
663 vma->numab_state = NULL;
664}
665static inline void vma_numab_state_free(struct vm_area_struct *vma)
666{
667 kfree(vma->numab_state);
668}
669#else
670static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
671static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
672#endif /* CONFIG_NUMA_BALANCING */
673
674/*
675 * These must be here rather than mmap_lock.h as dependent on vm_fault type,
676 * declared in this header.
677 */
678#ifdef CONFIG_PER_VMA_LOCK
679static inline void release_fault_lock(struct vm_fault *vmf)
680{
681 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
682 vma_end_read(vmf->vma);
683 else
684 mmap_read_unlock(vmf->vma->vm_mm);
685}
686
687static inline void assert_fault_locked(struct vm_fault *vmf)
688{
689 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
690 vma_assert_locked(vmf->vma);
691 else
692 mmap_assert_locked(vmf->vma->vm_mm);
693}
694#else
695static inline void release_fault_lock(struct vm_fault *vmf)
696{
697 mmap_read_unlock(vmf->vma->vm_mm);
698}
699
700static inline void assert_fault_locked(struct vm_fault *vmf)
701{
702 mmap_assert_locked(vmf->vma->vm_mm);
703}
704#endif /* CONFIG_PER_VMA_LOCK */
705
706extern const struct vm_operations_struct vma_dummy_vm_ops;
707
708static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
709{
710 memset(vma, 0, sizeof(*vma));
711 vma->vm_mm = mm;
712 vma->vm_ops = &vma_dummy_vm_ops;
713 INIT_LIST_HEAD(&vma->anon_vma_chain);
714 vma_lock_init(vma, false);
715}
716
717/* Use when VMA is not part of the VMA tree and needs no locking */
718static inline void vm_flags_init(struct vm_area_struct *vma,
719 vm_flags_t flags)
720{
721 ACCESS_PRIVATE(vma, __vm_flags) = flags;
722}
723
724/*
725 * Use when VMA is part of the VMA tree and modifications need coordination
726 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
727 * it should be locked explicitly beforehand.
728 */
729static inline void vm_flags_reset(struct vm_area_struct *vma,
730 vm_flags_t flags)
731{
732 vma_assert_write_locked(vma);
733 vm_flags_init(vma, flags);
734}
735
736static inline void vm_flags_reset_once(struct vm_area_struct *vma,
737 vm_flags_t flags)
738{
739 vma_assert_write_locked(vma);
740 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
741}
742
743static inline void vm_flags_set(struct vm_area_struct *vma,
744 vm_flags_t flags)
745{
746 vma_start_write(vma);
747 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
748}
749
750static inline void vm_flags_clear(struct vm_area_struct *vma,
751 vm_flags_t flags)
752{
753 vma_start_write(vma);
754 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
755}
756
757/*
758 * Use only if VMA is not part of the VMA tree or has no other users and
759 * therefore needs no locking.
760 */
761static inline void __vm_flags_mod(struct vm_area_struct *vma,
762 vm_flags_t set, vm_flags_t clear)
763{
764 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
765}
766
767/*
768 * Use only when the order of set/clear operations is unimportant, otherwise
769 * use vm_flags_{set|clear} explicitly.
770 */
771static inline void vm_flags_mod(struct vm_area_struct *vma,
772 vm_flags_t set, vm_flags_t clear)
773{
774 vma_start_write(vma);
775 __vm_flags_mod(vma, set, clear);
776}
777
778static inline void vma_set_anonymous(struct vm_area_struct *vma)
779{
780 vma->vm_ops = NULL;
781}
782
783static inline bool vma_is_anonymous(struct vm_area_struct *vma)
784{
785 return !vma->vm_ops;
786}
787
788/*
789 * Indicate if the VMA is a heap for the given task; for
790 * /proc/PID/maps that is the heap of the main task.
791 */
792static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
793{
794 return vma->vm_start < vma->vm_mm->brk &&
795 vma->vm_end > vma->vm_mm->start_brk;
796}
797
798/*
799 * Indicate if the VMA is a stack for the given task; for
800 * /proc/PID/maps that is the stack of the main task.
801 */
802static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
803{
804 /*
805 * We make no effort to guess what a given thread considers to be
806 * its "stack". It's not even well-defined for programs written
807 * languages like Go.
808 */
809 return vma->vm_start <= vma->vm_mm->start_stack &&
810 vma->vm_end >= vma->vm_mm->start_stack;
811}
812
813static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
814{
815 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
816
817 if (!maybe_stack)
818 return false;
819
820 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
821 VM_STACK_INCOMPLETE_SETUP)
822 return true;
823
824 return false;
825}
826
827static inline bool vma_is_foreign(struct vm_area_struct *vma)
828{
829 if (!current->mm)
830 return true;
831
832 if (current->mm != vma->vm_mm)
833 return true;
834
835 return false;
836}
837
838static inline bool vma_is_accessible(struct vm_area_struct *vma)
839{
840 return vma->vm_flags & VM_ACCESS_FLAGS;
841}
842
843static inline bool is_shared_maywrite(vm_flags_t vm_flags)
844{
845 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
846 (VM_SHARED | VM_MAYWRITE);
847}
848
849static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
850{
851 return is_shared_maywrite(vma->vm_flags);
852}
853
854static inline
855struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
856{
857 return mas_find(&vmi->mas, max - 1);
858}
859
860static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861{
862 /*
863 * Uses mas_find() to get the first VMA when the iterator starts.
864 * Calling mas_next() could skip the first entry.
865 */
866 return mas_find(&vmi->mas, ULONG_MAX);
867}
868
869static inline
870struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
871{
872 return mas_next_range(&vmi->mas, ULONG_MAX);
873}
874
875
876static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
877{
878 return mas_prev(&vmi->mas, 0);
879}
880
881static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
882 unsigned long start, unsigned long end, gfp_t gfp)
883{
884 __mas_set_range(&vmi->mas, start, end - 1);
885 mas_store_gfp(&vmi->mas, NULL, gfp);
886 if (unlikely(mas_is_err(&vmi->mas)))
887 return -ENOMEM;
888
889 return 0;
890}
891
892/* Free any unused preallocations */
893static inline void vma_iter_free(struct vma_iterator *vmi)
894{
895 mas_destroy(&vmi->mas);
896}
897
898static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
899 struct vm_area_struct *vma)
900{
901 vmi->mas.index = vma->vm_start;
902 vmi->mas.last = vma->vm_end - 1;
903 mas_store(&vmi->mas, vma);
904 if (unlikely(mas_is_err(&vmi->mas)))
905 return -ENOMEM;
906
907 vma_mark_attached(vma);
908 return 0;
909}
910
911static inline void vma_iter_invalidate(struct vma_iterator *vmi)
912{
913 mas_pause(&vmi->mas);
914}
915
916static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
917{
918 mas_set(&vmi->mas, addr);
919}
920
921#define for_each_vma(__vmi, __vma) \
922 while (((__vma) = vma_next(&(__vmi))) != NULL)
923
924/* The MM code likes to work with exclusive end addresses */
925#define for_each_vma_range(__vmi, __vma, __end) \
926 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
927
928#ifdef CONFIG_SHMEM
929/*
930 * The vma_is_shmem is not inline because it is used only by slow
931 * paths in userfault.
932 */
933bool vma_is_shmem(struct vm_area_struct *vma);
934bool vma_is_anon_shmem(struct vm_area_struct *vma);
935#else
936static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
937static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
938#endif
939
940int vma_is_stack_for_current(struct vm_area_struct *vma);
941
942/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
943#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
944
945struct mmu_gather;
946struct inode;
947
948extern void prep_compound_page(struct page *page, unsigned int order);
949
950static inline unsigned int folio_large_order(const struct folio *folio)
951{
952 return folio->_flags_1 & 0xff;
953}
954
955#ifdef NR_PAGES_IN_LARGE_FOLIO
956static inline long folio_large_nr_pages(const struct folio *folio)
957{
958 return folio->_nr_pages;
959}
960#else
961static inline long folio_large_nr_pages(const struct folio *folio)
962{
963 return 1L << folio_large_order(folio);
964}
965#endif
966
967/*
968 * compound_order() can be called without holding a reference, which means
969 * that niceties like page_folio() don't work. These callers should be
970 * prepared to handle wild return values. For example, PG_head may be
971 * set before the order is initialised, or this may be a tail page.
972 * See compaction.c for some good examples.
973 */
974static inline unsigned int compound_order(struct page *page)
975{
976 struct folio *folio = (struct folio *)page;
977
978 if (!test_bit(PG_head, &folio->flags))
979 return 0;
980 return folio_large_order(folio);
981}
982
983/**
984 * folio_order - The allocation order of a folio.
985 * @folio: The folio.
986 *
987 * A folio is composed of 2^order pages. See get_order() for the definition
988 * of order.
989 *
990 * Return: The order of the folio.
991 */
992static inline unsigned int folio_order(const struct folio *folio)
993{
994 if (!folio_test_large(folio))
995 return 0;
996 return folio_large_order(folio);
997}
998
999/**
1000 * folio_reset_order - Reset the folio order and derived _nr_pages
1001 * @folio: The folio.
1002 *
1003 * Reset the order and derived _nr_pages to 0. Must only be used in the
1004 * process of splitting large folios.
1005 */
1006static inline void folio_reset_order(struct folio *folio)
1007{
1008 if (WARN_ON_ONCE(!folio_test_large(folio)))
1009 return;
1010 folio->_flags_1 &= ~0xffUL;
1011#ifdef NR_PAGES_IN_LARGE_FOLIO
1012 folio->_nr_pages = 0;
1013#endif
1014}
1015
1016#include <linux/huge_mm.h>
1017
1018/*
1019 * Methods to modify the page usage count.
1020 *
1021 * What counts for a page usage:
1022 * - cache mapping (page->mapping)
1023 * - private data (page->private)
1024 * - page mapped in a task's page tables, each mapping
1025 * is counted separately
1026 *
1027 * Also, many kernel routines increase the page count before a critical
1028 * routine so they can be sure the page doesn't go away from under them.
1029 */
1030
1031/*
1032 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1033 */
1034static inline int put_page_testzero(struct page *page)
1035{
1036 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1037 return page_ref_dec_and_test(page);
1038}
1039
1040static inline int folio_put_testzero(struct folio *folio)
1041{
1042 return put_page_testzero(&folio->page);
1043}
1044
1045/*
1046 * Try to grab a ref unless the page has a refcount of zero, return false if
1047 * that is the case.
1048 * This can be called when MMU is off so it must not access
1049 * any of the virtual mappings.
1050 */
1051static inline bool get_page_unless_zero(struct page *page)
1052{
1053 return page_ref_add_unless(page, 1, 0);
1054}
1055
1056static inline struct folio *folio_get_nontail_page(struct page *page)
1057{
1058 if (unlikely(!get_page_unless_zero(page)))
1059 return NULL;
1060 return (struct folio *)page;
1061}
1062
1063extern int page_is_ram(unsigned long pfn);
1064
1065enum {
1066 REGION_INTERSECTS,
1067 REGION_DISJOINT,
1068 REGION_MIXED,
1069};
1070
1071int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1072 unsigned long desc);
1073
1074/* Support for virtually mapped pages */
1075struct page *vmalloc_to_page(const void *addr);
1076unsigned long vmalloc_to_pfn(const void *addr);
1077
1078/*
1079 * Determine if an address is within the vmalloc range
1080 *
1081 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1082 * is no special casing required.
1083 */
1084#ifdef CONFIG_MMU
1085extern bool is_vmalloc_addr(const void *x);
1086extern int is_vmalloc_or_module_addr(const void *x);
1087#else
1088static inline bool is_vmalloc_addr(const void *x)
1089{
1090 return false;
1091}
1092static inline int is_vmalloc_or_module_addr(const void *x)
1093{
1094 return 0;
1095}
1096#endif
1097
1098/*
1099 * How many times the entire folio is mapped as a single unit (eg by a
1100 * PMD or PUD entry). This is probably not what you want, except for
1101 * debugging purposes or implementation of other core folio_*() primitives.
1102 */
1103static inline int folio_entire_mapcount(const struct folio *folio)
1104{
1105 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1106 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1107 return 0;
1108 return atomic_read(&folio->_entire_mapcount) + 1;
1109}
1110
1111static inline int folio_large_mapcount(const struct folio *folio)
1112{
1113 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1114 return atomic_read(&folio->_large_mapcount) + 1;
1115}
1116
1117/**
1118 * folio_mapcount() - Number of mappings of this folio.
1119 * @folio: The folio.
1120 *
1121 * The folio mapcount corresponds to the number of present user page table
1122 * entries that reference any part of a folio. Each such present user page
1123 * table entry must be paired with exactly on folio reference.
1124 *
1125 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1126 * exactly once.
1127 *
1128 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1129 * references the entire folio counts exactly once, even when such special
1130 * page table entries are comprised of multiple ordinary page table entries.
1131 *
1132 * Will report 0 for pages which cannot be mapped into userspace, such as
1133 * slab, page tables and similar.
1134 *
1135 * Return: The number of times this folio is mapped.
1136 */
1137static inline int folio_mapcount(const struct folio *folio)
1138{
1139 int mapcount;
1140
1141 if (likely(!folio_test_large(folio))) {
1142 mapcount = atomic_read(&folio->_mapcount) + 1;
1143 if (page_mapcount_is_type(mapcount))
1144 mapcount = 0;
1145 return mapcount;
1146 }
1147 return folio_large_mapcount(folio);
1148}
1149
1150/**
1151 * folio_mapped - Is this folio mapped into userspace?
1152 * @folio: The folio.
1153 *
1154 * Return: True if any page in this folio is referenced by user page tables.
1155 */
1156static inline bool folio_mapped(const struct folio *folio)
1157{
1158 return folio_mapcount(folio) >= 1;
1159}
1160
1161/*
1162 * Return true if this page is mapped into pagetables.
1163 * For compound page it returns true if any sub-page of compound page is mapped,
1164 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1165 */
1166static inline bool page_mapped(const struct page *page)
1167{
1168 return folio_mapped(page_folio(page));
1169}
1170
1171static inline struct page *virt_to_head_page(const void *x)
1172{
1173 struct page *page = virt_to_page(x);
1174
1175 return compound_head(page);
1176}
1177
1178static inline struct folio *virt_to_folio(const void *x)
1179{
1180 struct page *page = virt_to_page(x);
1181
1182 return page_folio(page);
1183}
1184
1185void __folio_put(struct folio *folio);
1186
1187void split_page(struct page *page, unsigned int order);
1188void folio_copy(struct folio *dst, struct folio *src);
1189int folio_mc_copy(struct folio *dst, struct folio *src);
1190
1191unsigned long nr_free_buffer_pages(void);
1192
1193/* Returns the number of bytes in this potentially compound page. */
1194static inline unsigned long page_size(struct page *page)
1195{
1196 return PAGE_SIZE << compound_order(page);
1197}
1198
1199/* Returns the number of bits needed for the number of bytes in a page */
1200static inline unsigned int page_shift(struct page *page)
1201{
1202 return PAGE_SHIFT + compound_order(page);
1203}
1204
1205/**
1206 * thp_order - Order of a transparent huge page.
1207 * @page: Head page of a transparent huge page.
1208 */
1209static inline unsigned int thp_order(struct page *page)
1210{
1211 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1212 return compound_order(page);
1213}
1214
1215/**
1216 * thp_size - Size of a transparent huge page.
1217 * @page: Head page of a transparent huge page.
1218 *
1219 * Return: Number of bytes in this page.
1220 */
1221static inline unsigned long thp_size(struct page *page)
1222{
1223 return PAGE_SIZE << thp_order(page);
1224}
1225
1226#ifdef CONFIG_MMU
1227/*
1228 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1229 * servicing faults for write access. In the normal case, do always want
1230 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1231 * that do not have writing enabled, when used by access_process_vm.
1232 */
1233static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1234{
1235 if (likely(vma->vm_flags & VM_WRITE))
1236 pte = pte_mkwrite(pte, vma);
1237 return pte;
1238}
1239
1240vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1241void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1242 struct page *page, unsigned int nr, unsigned long addr);
1243
1244vm_fault_t finish_fault(struct vm_fault *vmf);
1245#endif
1246
1247/*
1248 * Multiple processes may "see" the same page. E.g. for untouched
1249 * mappings of /dev/null, all processes see the same page full of
1250 * zeroes, and text pages of executables and shared libraries have
1251 * only one copy in memory, at most, normally.
1252 *
1253 * For the non-reserved pages, page_count(page) denotes a reference count.
1254 * page_count() == 0 means the page is free. page->lru is then used for
1255 * freelist management in the buddy allocator.
1256 * page_count() > 0 means the page has been allocated.
1257 *
1258 * Pages are allocated by the slab allocator in order to provide memory
1259 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1260 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1261 * unless a particular usage is carefully commented. (the responsibility of
1262 * freeing the kmalloc memory is the caller's, of course).
1263 *
1264 * A page may be used by anyone else who does a __get_free_page().
1265 * In this case, page_count still tracks the references, and should only
1266 * be used through the normal accessor functions. The top bits of page->flags
1267 * and page->virtual store page management information, but all other fields
1268 * are unused and could be used privately, carefully. The management of this
1269 * page is the responsibility of the one who allocated it, and those who have
1270 * subsequently been given references to it.
1271 *
1272 * The other pages (we may call them "pagecache pages") are completely
1273 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1274 * The following discussion applies only to them.
1275 *
1276 * A pagecache page contains an opaque `private' member, which belongs to the
1277 * page's address_space. Usually, this is the address of a circular list of
1278 * the page's disk buffers. PG_private must be set to tell the VM to call
1279 * into the filesystem to release these pages.
1280 *
1281 * A folio may belong to an inode's memory mapping. In this case,
1282 * folio->mapping points to the inode, and folio->index is the file
1283 * offset of the folio, in units of PAGE_SIZE.
1284 *
1285 * If pagecache pages are not associated with an inode, they are said to be
1286 * anonymous pages. These may become associated with the swapcache, and in that
1287 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1288 *
1289 * In either case (swapcache or inode backed), the pagecache itself holds one
1290 * reference to the page. Setting PG_private should also increment the
1291 * refcount. The each user mapping also has a reference to the page.
1292 *
1293 * The pagecache pages are stored in a per-mapping radix tree, which is
1294 * rooted at mapping->i_pages, and indexed by offset.
1295 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1296 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1297 *
1298 * All pagecache pages may be subject to I/O:
1299 * - inode pages may need to be read from disk,
1300 * - inode pages which have been modified and are MAP_SHARED may need
1301 * to be written back to the inode on disk,
1302 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1303 * modified may need to be swapped out to swap space and (later) to be read
1304 * back into memory.
1305 */
1306
1307/* 127: arbitrary random number, small enough to assemble well */
1308#define folio_ref_zero_or_close_to_overflow(folio) \
1309 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1310
1311/**
1312 * folio_get - Increment the reference count on a folio.
1313 * @folio: The folio.
1314 *
1315 * Context: May be called in any context, as long as you know that
1316 * you have a refcount on the folio. If you do not already have one,
1317 * folio_try_get() may be the right interface for you to use.
1318 */
1319static inline void folio_get(struct folio *folio)
1320{
1321 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1322 folio_ref_inc(folio);
1323}
1324
1325static inline void get_page(struct page *page)
1326{
1327 struct folio *folio = page_folio(page);
1328 if (WARN_ON_ONCE(folio_test_slab(folio)))
1329 return;
1330 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1331 return;
1332 folio_get(folio);
1333}
1334
1335static inline __must_check bool try_get_page(struct page *page)
1336{
1337 page = compound_head(page);
1338 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1339 return false;
1340 page_ref_inc(page);
1341 return true;
1342}
1343
1344/**
1345 * folio_put - Decrement the reference count on a folio.
1346 * @folio: The folio.
1347 *
1348 * If the folio's reference count reaches zero, the memory will be
1349 * released back to the page allocator and may be used by another
1350 * allocation immediately. Do not access the memory or the struct folio
1351 * after calling folio_put() unless you can be sure that it wasn't the
1352 * last reference.
1353 *
1354 * Context: May be called in process or interrupt context, but not in NMI
1355 * context. May be called while holding a spinlock.
1356 */
1357static inline void folio_put(struct folio *folio)
1358{
1359 if (folio_put_testzero(folio))
1360 __folio_put(folio);
1361}
1362
1363/**
1364 * folio_put_refs - Reduce the reference count on a folio.
1365 * @folio: The folio.
1366 * @refs: The amount to subtract from the folio's reference count.
1367 *
1368 * If the folio's reference count reaches zero, the memory will be
1369 * released back to the page allocator and may be used by another
1370 * allocation immediately. Do not access the memory or the struct folio
1371 * after calling folio_put_refs() unless you can be sure that these weren't
1372 * the last references.
1373 *
1374 * Context: May be called in process or interrupt context, but not in NMI
1375 * context. May be called while holding a spinlock.
1376 */
1377static inline void folio_put_refs(struct folio *folio, int refs)
1378{
1379 if (folio_ref_sub_and_test(folio, refs))
1380 __folio_put(folio);
1381}
1382
1383void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1384
1385/*
1386 * union release_pages_arg - an array of pages or folios
1387 *
1388 * release_pages() releases a simple array of multiple pages, and
1389 * accepts various different forms of said page array: either
1390 * a regular old boring array of pages, an array of folios, or
1391 * an array of encoded page pointers.
1392 *
1393 * The transparent union syntax for this kind of "any of these
1394 * argument types" is all kinds of ugly, so look away.
1395 */
1396typedef union {
1397 struct page **pages;
1398 struct folio **folios;
1399 struct encoded_page **encoded_pages;
1400} release_pages_arg __attribute__ ((__transparent_union__));
1401
1402void release_pages(release_pages_arg, int nr);
1403
1404/**
1405 * folios_put - Decrement the reference count on an array of folios.
1406 * @folios: The folios.
1407 *
1408 * Like folio_put(), but for a batch of folios. This is more efficient
1409 * than writing the loop yourself as it will optimise the locks which need
1410 * to be taken if the folios are freed. The folios batch is returned
1411 * empty and ready to be reused for another batch; there is no need to
1412 * reinitialise it.
1413 *
1414 * Context: May be called in process or interrupt context, but not in NMI
1415 * context. May be called while holding a spinlock.
1416 */
1417static inline void folios_put(struct folio_batch *folios)
1418{
1419 folios_put_refs(folios, NULL);
1420}
1421
1422static inline void put_page(struct page *page)
1423{
1424 struct folio *folio = page_folio(page);
1425
1426 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1427 return;
1428
1429 folio_put(folio);
1430}
1431
1432/*
1433 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1434 * the page's refcount so that two separate items are tracked: the original page
1435 * reference count, and also a new count of how many pin_user_pages() calls were
1436 * made against the page. ("gup-pinned" is another term for the latter).
1437 *
1438 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1439 * distinct from normal pages. As such, the unpin_user_page() call (and its
1440 * variants) must be used in order to release gup-pinned pages.
1441 *
1442 * Choice of value:
1443 *
1444 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1445 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1446 * simpler, due to the fact that adding an even power of two to the page
1447 * refcount has the effect of using only the upper N bits, for the code that
1448 * counts up using the bias value. This means that the lower bits are left for
1449 * the exclusive use of the original code that increments and decrements by one
1450 * (or at least, by much smaller values than the bias value).
1451 *
1452 * Of course, once the lower bits overflow into the upper bits (and this is
1453 * OK, because subtraction recovers the original values), then visual inspection
1454 * no longer suffices to directly view the separate counts. However, for normal
1455 * applications that don't have huge page reference counts, this won't be an
1456 * issue.
1457 *
1458 * Locking: the lockless algorithm described in folio_try_get_rcu()
1459 * provides safe operation for get_user_pages(), folio_mkclean() and
1460 * other calls that race to set up page table entries.
1461 */
1462#define GUP_PIN_COUNTING_BIAS (1U << 10)
1463
1464void unpin_user_page(struct page *page);
1465void unpin_folio(struct folio *folio);
1466void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1467 bool make_dirty);
1468void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1469 bool make_dirty);
1470void unpin_user_pages(struct page **pages, unsigned long npages);
1471void unpin_user_folio(struct folio *folio, unsigned long npages);
1472void unpin_folios(struct folio **folios, unsigned long nfolios);
1473
1474static inline bool is_cow_mapping(vm_flags_t flags)
1475{
1476 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1477}
1478
1479#ifndef CONFIG_MMU
1480static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1481{
1482 /*
1483 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1484 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1485 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1486 * underlying memory if ptrace is active, so this is only possible if
1487 * ptrace does not apply. Note that there is no mprotect() to upgrade
1488 * write permissions later.
1489 */
1490 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1491}
1492#endif
1493
1494#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1495#define SECTION_IN_PAGE_FLAGS
1496#endif
1497
1498/*
1499 * The identification function is mainly used by the buddy allocator for
1500 * determining if two pages could be buddies. We are not really identifying
1501 * the zone since we could be using the section number id if we do not have
1502 * node id available in page flags.
1503 * We only guarantee that it will return the same value for two combinable
1504 * pages in a zone.
1505 */
1506static inline int page_zone_id(struct page *page)
1507{
1508 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1509}
1510
1511#ifdef NODE_NOT_IN_PAGE_FLAGS
1512int page_to_nid(const struct page *page);
1513#else
1514static inline int page_to_nid(const struct page *page)
1515{
1516 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1517}
1518#endif
1519
1520static inline int folio_nid(const struct folio *folio)
1521{
1522 return page_to_nid(&folio->page);
1523}
1524
1525#ifdef CONFIG_NUMA_BALANCING
1526/* page access time bits needs to hold at least 4 seconds */
1527#define PAGE_ACCESS_TIME_MIN_BITS 12
1528#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1529#define PAGE_ACCESS_TIME_BUCKETS \
1530 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1531#else
1532#define PAGE_ACCESS_TIME_BUCKETS 0
1533#endif
1534
1535#define PAGE_ACCESS_TIME_MASK \
1536 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1537
1538static inline int cpu_pid_to_cpupid(int cpu, int pid)
1539{
1540 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1541}
1542
1543static inline int cpupid_to_pid(int cpupid)
1544{
1545 return cpupid & LAST__PID_MASK;
1546}
1547
1548static inline int cpupid_to_cpu(int cpupid)
1549{
1550 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1551}
1552
1553static inline int cpupid_to_nid(int cpupid)
1554{
1555 return cpu_to_node(cpupid_to_cpu(cpupid));
1556}
1557
1558static inline bool cpupid_pid_unset(int cpupid)
1559{
1560 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1561}
1562
1563static inline bool cpupid_cpu_unset(int cpupid)
1564{
1565 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1566}
1567
1568static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1569{
1570 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1571}
1572
1573#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1574#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1575static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1576{
1577 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1578}
1579
1580static inline int folio_last_cpupid(struct folio *folio)
1581{
1582 return folio->_last_cpupid;
1583}
1584static inline void page_cpupid_reset_last(struct page *page)
1585{
1586 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1587}
1588#else
1589static inline int folio_last_cpupid(struct folio *folio)
1590{
1591 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1592}
1593
1594int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1595
1596static inline void page_cpupid_reset_last(struct page *page)
1597{
1598 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1599}
1600#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1601
1602static inline int folio_xchg_access_time(struct folio *folio, int time)
1603{
1604 int last_time;
1605
1606 last_time = folio_xchg_last_cpupid(folio,
1607 time >> PAGE_ACCESS_TIME_BUCKETS);
1608 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1609}
1610
1611static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1612{
1613 unsigned int pid_bit;
1614
1615 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1616 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1617 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1618 }
1619}
1620
1621bool folio_use_access_time(struct folio *folio);
1622#else /* !CONFIG_NUMA_BALANCING */
1623static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1624{
1625 return folio_nid(folio); /* XXX */
1626}
1627
1628static inline int folio_xchg_access_time(struct folio *folio, int time)
1629{
1630 return 0;
1631}
1632
1633static inline int folio_last_cpupid(struct folio *folio)
1634{
1635 return folio_nid(folio); /* XXX */
1636}
1637
1638static inline int cpupid_to_nid(int cpupid)
1639{
1640 return -1;
1641}
1642
1643static inline int cpupid_to_pid(int cpupid)
1644{
1645 return -1;
1646}
1647
1648static inline int cpupid_to_cpu(int cpupid)
1649{
1650 return -1;
1651}
1652
1653static inline int cpu_pid_to_cpupid(int nid, int pid)
1654{
1655 return -1;
1656}
1657
1658static inline bool cpupid_pid_unset(int cpupid)
1659{
1660 return true;
1661}
1662
1663static inline void page_cpupid_reset_last(struct page *page)
1664{
1665}
1666
1667static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1668{
1669 return false;
1670}
1671
1672static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1673{
1674}
1675static inline bool folio_use_access_time(struct folio *folio)
1676{
1677 return false;
1678}
1679#endif /* CONFIG_NUMA_BALANCING */
1680
1681#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1682
1683/*
1684 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1685 * setting tags for all pages to native kernel tag value 0xff, as the default
1686 * value 0x00 maps to 0xff.
1687 */
1688
1689static inline u8 page_kasan_tag(const struct page *page)
1690{
1691 u8 tag = KASAN_TAG_KERNEL;
1692
1693 if (kasan_enabled()) {
1694 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1695 tag ^= 0xff;
1696 }
1697
1698 return tag;
1699}
1700
1701static inline void page_kasan_tag_set(struct page *page, u8 tag)
1702{
1703 unsigned long old_flags, flags;
1704
1705 if (!kasan_enabled())
1706 return;
1707
1708 tag ^= 0xff;
1709 old_flags = READ_ONCE(page->flags);
1710 do {
1711 flags = old_flags;
1712 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1713 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1714 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1715}
1716
1717static inline void page_kasan_tag_reset(struct page *page)
1718{
1719 if (kasan_enabled())
1720 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1721}
1722
1723#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1724
1725static inline u8 page_kasan_tag(const struct page *page)
1726{
1727 return 0xff;
1728}
1729
1730static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1731static inline void page_kasan_tag_reset(struct page *page) { }
1732
1733#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1734
1735static inline struct zone *page_zone(const struct page *page)
1736{
1737 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1738}
1739
1740static inline pg_data_t *page_pgdat(const struct page *page)
1741{
1742 return NODE_DATA(page_to_nid(page));
1743}
1744
1745static inline struct zone *folio_zone(const struct folio *folio)
1746{
1747 return page_zone(&folio->page);
1748}
1749
1750static inline pg_data_t *folio_pgdat(const struct folio *folio)
1751{
1752 return page_pgdat(&folio->page);
1753}
1754
1755#ifdef SECTION_IN_PAGE_FLAGS
1756static inline void set_page_section(struct page *page, unsigned long section)
1757{
1758 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1759 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1760}
1761
1762static inline unsigned long page_to_section(const struct page *page)
1763{
1764 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1765}
1766#endif
1767
1768/**
1769 * folio_pfn - Return the Page Frame Number of a folio.
1770 * @folio: The folio.
1771 *
1772 * A folio may contain multiple pages. The pages have consecutive
1773 * Page Frame Numbers.
1774 *
1775 * Return: The Page Frame Number of the first page in the folio.
1776 */
1777static inline unsigned long folio_pfn(const struct folio *folio)
1778{
1779 return page_to_pfn(&folio->page);
1780}
1781
1782static inline struct folio *pfn_folio(unsigned long pfn)
1783{
1784 return page_folio(pfn_to_page(pfn));
1785}
1786
1787#ifdef CONFIG_MMU
1788static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1789{
1790 return pfn_pte(page_to_pfn(page), pgprot);
1791}
1792
1793/**
1794 * folio_mk_pte - Create a PTE for this folio
1795 * @folio: The folio to create a PTE for
1796 * @pgprot: The page protection bits to use
1797 *
1798 * Create a page table entry for the first page of this folio.
1799 * This is suitable for passing to set_ptes().
1800 *
1801 * Return: A page table entry suitable for mapping this folio.
1802 */
1803static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1804{
1805 return pfn_pte(folio_pfn(folio), pgprot);
1806}
1807
1808#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1809/**
1810 * folio_mk_pmd - Create a PMD for this folio
1811 * @folio: The folio to create a PMD for
1812 * @pgprot: The page protection bits to use
1813 *
1814 * Create a page table entry for the first page of this folio.
1815 * This is suitable for passing to set_pmd_at().
1816 *
1817 * Return: A page table entry suitable for mapping this folio.
1818 */
1819static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1820{
1821 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1822}
1823
1824#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1825/**
1826 * folio_mk_pud - Create a PUD for this folio
1827 * @folio: The folio to create a PUD for
1828 * @pgprot: The page protection bits to use
1829 *
1830 * Create a page table entry for the first page of this folio.
1831 * This is suitable for passing to set_pud_at().
1832 *
1833 * Return: A page table entry suitable for mapping this folio.
1834 */
1835static inline pud_t folio_mk_pud(struct folio *folio, pgprot_t pgprot)
1836{
1837 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
1838}
1839#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1840#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1841#endif /* CONFIG_MMU */
1842
1843static inline bool folio_has_pincount(const struct folio *folio)
1844{
1845 if (IS_ENABLED(CONFIG_64BIT))
1846 return folio_test_large(folio);
1847 return folio_order(folio) > 1;
1848}
1849
1850/**
1851 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1852 * @folio: The folio.
1853 *
1854 * This function checks if a folio has been pinned via a call to
1855 * a function in the pin_user_pages() family.
1856 *
1857 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1858 * because it means "definitely not pinned for DMA", but true means "probably
1859 * pinned for DMA, but possibly a false positive due to having at least
1860 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1861 *
1862 * False positives are OK, because: a) it's unlikely for a folio to
1863 * get that many refcounts, and b) all the callers of this routine are
1864 * expected to be able to deal gracefully with a false positive.
1865 *
1866 * For most large folios, the result will be exactly correct. That's because
1867 * we have more tracking data available: the _pincount field is used
1868 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1869 *
1870 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1871 *
1872 * Return: True, if it is likely that the folio has been "dma-pinned".
1873 * False, if the folio is definitely not dma-pinned.
1874 */
1875static inline bool folio_maybe_dma_pinned(struct folio *folio)
1876{
1877 if (folio_has_pincount(folio))
1878 return atomic_read(&folio->_pincount) > 0;
1879
1880 /*
1881 * folio_ref_count() is signed. If that refcount overflows, then
1882 * folio_ref_count() returns a negative value, and callers will avoid
1883 * further incrementing the refcount.
1884 *
1885 * Here, for that overflow case, use the sign bit to count a little
1886 * bit higher via unsigned math, and thus still get an accurate result.
1887 */
1888 return ((unsigned int)folio_ref_count(folio)) >=
1889 GUP_PIN_COUNTING_BIAS;
1890}
1891
1892/*
1893 * This should most likely only be called during fork() to see whether we
1894 * should break the cow immediately for an anon page on the src mm.
1895 *
1896 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1897 */
1898static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1899 struct folio *folio)
1900{
1901 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1902
1903 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1904 return false;
1905
1906 return folio_maybe_dma_pinned(folio);
1907}
1908
1909/**
1910 * is_zero_page - Query if a page is a zero page
1911 * @page: The page to query
1912 *
1913 * This returns true if @page is one of the permanent zero pages.
1914 */
1915static inline bool is_zero_page(const struct page *page)
1916{
1917 return is_zero_pfn(page_to_pfn(page));
1918}
1919
1920/**
1921 * is_zero_folio - Query if a folio is a zero page
1922 * @folio: The folio to query
1923 *
1924 * This returns true if @folio is one of the permanent zero pages.
1925 */
1926static inline bool is_zero_folio(const struct folio *folio)
1927{
1928 return is_zero_page(&folio->page);
1929}
1930
1931/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1932#ifdef CONFIG_MIGRATION
1933static inline bool folio_is_longterm_pinnable(struct folio *folio)
1934{
1935#ifdef CONFIG_CMA
1936 int mt = folio_migratetype(folio);
1937
1938 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1939 return false;
1940#endif
1941 /* The zero page can be "pinned" but gets special handling. */
1942 if (is_zero_folio(folio))
1943 return true;
1944
1945 /* Coherent device memory must always allow eviction. */
1946 if (folio_is_device_coherent(folio))
1947 return false;
1948
1949 /*
1950 * Filesystems can only tolerate transient delays to truncate and
1951 * hole-punch operations
1952 */
1953 if (folio_is_fsdax(folio))
1954 return false;
1955
1956 /* Otherwise, non-movable zone folios can be pinned. */
1957 return !folio_is_zone_movable(folio);
1958
1959}
1960#else
1961static inline bool folio_is_longterm_pinnable(struct folio *folio)
1962{
1963 return true;
1964}
1965#endif
1966
1967static inline void set_page_zone(struct page *page, enum zone_type zone)
1968{
1969 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1970 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1971}
1972
1973static inline void set_page_node(struct page *page, unsigned long node)
1974{
1975 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1976 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1977}
1978
1979static inline void set_page_links(struct page *page, enum zone_type zone,
1980 unsigned long node, unsigned long pfn)
1981{
1982 set_page_zone(page, zone);
1983 set_page_node(page, node);
1984#ifdef SECTION_IN_PAGE_FLAGS
1985 set_page_section(page, pfn_to_section_nr(pfn));
1986#endif
1987}
1988
1989/**
1990 * folio_nr_pages - The number of pages in the folio.
1991 * @folio: The folio.
1992 *
1993 * Return: A positive power of two.
1994 */
1995static inline long folio_nr_pages(const struct folio *folio)
1996{
1997 if (!folio_test_large(folio))
1998 return 1;
1999 return folio_large_nr_pages(folio);
2000}
2001
2002/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2003#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2004#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2005#else
2006#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2007#endif
2008
2009/*
2010 * compound_nr() returns the number of pages in this potentially compound
2011 * page. compound_nr() can be called on a tail page, and is defined to
2012 * return 1 in that case.
2013 */
2014static inline long compound_nr(struct page *page)
2015{
2016 struct folio *folio = (struct folio *)page;
2017
2018 if (!test_bit(PG_head, &folio->flags))
2019 return 1;
2020 return folio_large_nr_pages(folio);
2021}
2022
2023/**
2024 * folio_next - Move to the next physical folio.
2025 * @folio: The folio we're currently operating on.
2026 *
2027 * If you have physically contiguous memory which may span more than
2028 * one folio (eg a &struct bio_vec), use this function to move from one
2029 * folio to the next. Do not use it if the memory is only virtually
2030 * contiguous as the folios are almost certainly not adjacent to each
2031 * other. This is the folio equivalent to writing ``page++``.
2032 *
2033 * Context: We assume that the folios are refcounted and/or locked at a
2034 * higher level and do not adjust the reference counts.
2035 * Return: The next struct folio.
2036 */
2037static inline struct folio *folio_next(struct folio *folio)
2038{
2039 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2040}
2041
2042/**
2043 * folio_shift - The size of the memory described by this folio.
2044 * @folio: The folio.
2045 *
2046 * A folio represents a number of bytes which is a power-of-two in size.
2047 * This function tells you which power-of-two the folio is. See also
2048 * folio_size() and folio_order().
2049 *
2050 * Context: The caller should have a reference on the folio to prevent
2051 * it from being split. It is not necessary for the folio to be locked.
2052 * Return: The base-2 logarithm of the size of this folio.
2053 */
2054static inline unsigned int folio_shift(const struct folio *folio)
2055{
2056 return PAGE_SHIFT + folio_order(folio);
2057}
2058
2059/**
2060 * folio_size - The number of bytes in a folio.
2061 * @folio: The folio.
2062 *
2063 * Context: The caller should have a reference on the folio to prevent
2064 * it from being split. It is not necessary for the folio to be locked.
2065 * Return: The number of bytes in this folio.
2066 */
2067static inline size_t folio_size(const struct folio *folio)
2068{
2069 return PAGE_SIZE << folio_order(folio);
2070}
2071
2072/**
2073 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2074 * tables of more than one MM
2075 * @folio: The folio.
2076 *
2077 * This function checks if the folio maybe currently mapped into more than one
2078 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2079 * MM ("mapped exclusively").
2080 *
2081 * For KSM folios, this function also returns "mapped shared" when a folio is
2082 * mapped multiple times into the same MM, because the individual page mappings
2083 * are independent.
2084 *
2085 * For small anonymous folios and anonymous hugetlb folios, the return
2086 * value will be exactly correct: non-KSM folios can only be mapped at most once
2087 * into an MM, and they cannot be partially mapped. KSM folios are
2088 * considered shared even if mapped multiple times into the same MM.
2089 *
2090 * For other folios, the result can be fuzzy:
2091 * #. For partially-mappable large folios (THP), the return value can wrongly
2092 * indicate "mapped shared" (false positive) if a folio was mapped by
2093 * more than two MMs at one point in time.
2094 * #. For pagecache folios (including hugetlb), the return value can wrongly
2095 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2096 * cover the same file range.
2097 *
2098 * Further, this function only considers current page table mappings that
2099 * are tracked using the folio mapcount(s).
2100 *
2101 * This function does not consider:
2102 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2103 * pagecache, temporary unmapping for migration).
2104 * #. If the folio is mapped differently (VM_PFNMAP).
2105 * #. If hugetlb page table sharing applies. Callers might want to check
2106 * hugetlb_pmd_shared().
2107 *
2108 * Return: Whether the folio is estimated to be mapped into more than one MM.
2109 */
2110static inline bool folio_maybe_mapped_shared(struct folio *folio)
2111{
2112 int mapcount = folio_mapcount(folio);
2113
2114 /* Only partially-mappable folios require more care. */
2115 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2116 return mapcount > 1;
2117
2118 /*
2119 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2120 * simply assume "mapped shared", nobody should really care
2121 * about this for arbitrary kernel allocations.
2122 */
2123 if (!IS_ENABLED(CONFIG_MM_ID))
2124 return true;
2125
2126 /*
2127 * A single mapping implies "mapped exclusively", even if the
2128 * folio flag says something different: it's easier to handle this
2129 * case here instead of on the RMAP hot path.
2130 */
2131 if (mapcount <= 1)
2132 return false;
2133 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2134}
2135
2136/**
2137 * folio_expected_ref_count - calculate the expected folio refcount
2138 * @folio: the folio
2139 *
2140 * Calculate the expected folio refcount, taking references from the pagecache,
2141 * swapcache, PG_private and page table mappings into account. Useful in
2142 * combination with folio_ref_count() to detect unexpected references (e.g.,
2143 * GUP or other temporary references).
2144 *
2145 * Does currently not consider references from the LRU cache. If the folio
2146 * was isolated from the LRU (which is the case during migration or split),
2147 * the LRU cache does not apply.
2148 *
2149 * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2150 * locked will return a stable result.
2151 *
2152 * Calling this function on a mapped folio will not result in a stable result,
2153 * because nothing stops additional page table mappings from coming (e.g.,
2154 * fork()) or going (e.g., munmap()).
2155 *
2156 * Calling this function without the folio lock will also not result in a
2157 * stable result: for example, the folio might get dropped from the swapcache
2158 * concurrently.
2159 *
2160 * However, even when called without the folio lock or on a mapped folio,
2161 * this function can be used to detect unexpected references early (for example,
2162 * if it makes sense to even lock the folio and unmap it).
2163 *
2164 * The caller must add any reference (e.g., from folio_try_get()) it might be
2165 * holding itself to the result.
2166 *
2167 * Returns the expected folio refcount.
2168 */
2169static inline int folio_expected_ref_count(const struct folio *folio)
2170{
2171 const int order = folio_order(folio);
2172 int ref_count = 0;
2173
2174 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2175 return 0;
2176
2177 if (folio_test_anon(folio)) {
2178 /* One reference per page from the swapcache. */
2179 ref_count += folio_test_swapcache(folio) << order;
2180 } else {
2181 /* One reference per page from the pagecache. */
2182 ref_count += !!folio->mapping << order;
2183 /* One reference from PG_private. */
2184 ref_count += folio_test_private(folio);
2185 }
2186
2187 /* One reference per page table mapping. */
2188 return ref_count + folio_mapcount(folio);
2189}
2190
2191#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2192static inline int arch_make_folio_accessible(struct folio *folio)
2193{
2194 return 0;
2195}
2196#endif
2197
2198/*
2199 * Some inline functions in vmstat.h depend on page_zone()
2200 */
2201#include <linux/vmstat.h>
2202
2203#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2204#define HASHED_PAGE_VIRTUAL
2205#endif
2206
2207#if defined(WANT_PAGE_VIRTUAL)
2208static inline void *page_address(const struct page *page)
2209{
2210 return page->virtual;
2211}
2212static inline void set_page_address(struct page *page, void *address)
2213{
2214 page->virtual = address;
2215}
2216#define page_address_init() do { } while(0)
2217#endif
2218
2219#if defined(HASHED_PAGE_VIRTUAL)
2220void *page_address(const struct page *page);
2221void set_page_address(struct page *page, void *virtual);
2222void page_address_init(void);
2223#endif
2224
2225static __always_inline void *lowmem_page_address(const struct page *page)
2226{
2227 return page_to_virt(page);
2228}
2229
2230#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2231#define page_address(page) lowmem_page_address(page)
2232#define set_page_address(page, address) do { } while(0)
2233#define page_address_init() do { } while(0)
2234#endif
2235
2236static inline void *folio_address(const struct folio *folio)
2237{
2238 return page_address(&folio->page);
2239}
2240
2241/*
2242 * Return true only if the page has been allocated with
2243 * ALLOC_NO_WATERMARKS and the low watermark was not
2244 * met implying that the system is under some pressure.
2245 */
2246static inline bool page_is_pfmemalloc(const struct page *page)
2247{
2248 /*
2249 * lru.next has bit 1 set if the page is allocated from the
2250 * pfmemalloc reserves. Callers may simply overwrite it if
2251 * they do not need to preserve that information.
2252 */
2253 return (uintptr_t)page->lru.next & BIT(1);
2254}
2255
2256/*
2257 * Return true only if the folio has been allocated with
2258 * ALLOC_NO_WATERMARKS and the low watermark was not
2259 * met implying that the system is under some pressure.
2260 */
2261static inline bool folio_is_pfmemalloc(const struct folio *folio)
2262{
2263 /*
2264 * lru.next has bit 1 set if the page is allocated from the
2265 * pfmemalloc reserves. Callers may simply overwrite it if
2266 * they do not need to preserve that information.
2267 */
2268 return (uintptr_t)folio->lru.next & BIT(1);
2269}
2270
2271/*
2272 * Only to be called by the page allocator on a freshly allocated
2273 * page.
2274 */
2275static inline void set_page_pfmemalloc(struct page *page)
2276{
2277 page->lru.next = (void *)BIT(1);
2278}
2279
2280static inline void clear_page_pfmemalloc(struct page *page)
2281{
2282 page->lru.next = NULL;
2283}
2284
2285/*
2286 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2287 */
2288extern void pagefault_out_of_memory(void);
2289
2290#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2291#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2292
2293/*
2294 * Parameter block passed down to zap_pte_range in exceptional cases.
2295 */
2296struct zap_details {
2297 struct folio *single_folio; /* Locked folio to be unmapped */
2298 bool even_cows; /* Zap COWed private pages too? */
2299 bool reclaim_pt; /* Need reclaim page tables? */
2300 zap_flags_t zap_flags; /* Extra flags for zapping */
2301};
2302
2303/*
2304 * Whether to drop the pte markers, for example, the uffd-wp information for
2305 * file-backed memory. This should only be specified when we will completely
2306 * drop the page in the mm, either by truncation or unmapping of the vma. By
2307 * default, the flag is not set.
2308 */
2309#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2310/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2311#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2312
2313#ifdef CONFIG_SCHED_MM_CID
2314void sched_mm_cid_before_execve(struct task_struct *t);
2315void sched_mm_cid_after_execve(struct task_struct *t);
2316void sched_mm_cid_fork(struct task_struct *t);
2317void sched_mm_cid_exit_signals(struct task_struct *t);
2318static inline int task_mm_cid(struct task_struct *t)
2319{
2320 return t->mm_cid;
2321}
2322#else
2323static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2324static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2325static inline void sched_mm_cid_fork(struct task_struct *t) { }
2326static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2327static inline int task_mm_cid(struct task_struct *t)
2328{
2329 /*
2330 * Use the processor id as a fall-back when the mm cid feature is
2331 * disabled. This provides functional per-cpu data structure accesses
2332 * in user-space, althrough it won't provide the memory usage benefits.
2333 */
2334 return raw_smp_processor_id();
2335}
2336#endif
2337
2338#ifdef CONFIG_MMU
2339extern bool can_do_mlock(void);
2340#else
2341static inline bool can_do_mlock(void) { return false; }
2342#endif
2343extern int user_shm_lock(size_t, struct ucounts *);
2344extern void user_shm_unlock(size_t, struct ucounts *);
2345
2346struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2347 pte_t pte);
2348struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2349 pte_t pte);
2350struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2351 unsigned long addr, pmd_t pmd);
2352struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2353 pmd_t pmd);
2354
2355void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2356 unsigned long size);
2357void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2358 unsigned long size, struct zap_details *details);
2359static inline void zap_vma_pages(struct vm_area_struct *vma)
2360{
2361 zap_page_range_single(vma, vma->vm_start,
2362 vma->vm_end - vma->vm_start, NULL);
2363}
2364void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2365 struct vm_area_struct *start_vma, unsigned long start,
2366 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2367
2368struct mmu_notifier_range;
2369
2370void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2371 unsigned long end, unsigned long floor, unsigned long ceiling);
2372int
2373copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2374int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2375 void *buf, int len, int write);
2376
2377struct follow_pfnmap_args {
2378 /**
2379 * Inputs:
2380 * @vma: Pointer to @vm_area_struct struct
2381 * @address: the virtual address to walk
2382 */
2383 struct vm_area_struct *vma;
2384 unsigned long address;
2385 /**
2386 * Internals:
2387 *
2388 * The caller shouldn't touch any of these.
2389 */
2390 spinlock_t *lock;
2391 pte_t *ptep;
2392 /**
2393 * Outputs:
2394 *
2395 * @pfn: the PFN of the address
2396 * @addr_mask: address mask covering pfn
2397 * @pgprot: the pgprot_t of the mapping
2398 * @writable: whether the mapping is writable
2399 * @special: whether the mapping is a special mapping (real PFN maps)
2400 */
2401 unsigned long pfn;
2402 unsigned long addr_mask;
2403 pgprot_t pgprot;
2404 bool writable;
2405 bool special;
2406};
2407int follow_pfnmap_start(struct follow_pfnmap_args *args);
2408void follow_pfnmap_end(struct follow_pfnmap_args *args);
2409
2410extern void truncate_pagecache(struct inode *inode, loff_t new);
2411extern void truncate_setsize(struct inode *inode, loff_t newsize);
2412void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2413void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2414int generic_error_remove_folio(struct address_space *mapping,
2415 struct folio *folio);
2416
2417struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2418 unsigned long address, struct pt_regs *regs);
2419
2420#ifdef CONFIG_MMU
2421extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2422 unsigned long address, unsigned int flags,
2423 struct pt_regs *regs);
2424extern int fixup_user_fault(struct mm_struct *mm,
2425 unsigned long address, unsigned int fault_flags,
2426 bool *unlocked);
2427void unmap_mapping_pages(struct address_space *mapping,
2428 pgoff_t start, pgoff_t nr, bool even_cows);
2429void unmap_mapping_range(struct address_space *mapping,
2430 loff_t const holebegin, loff_t const holelen, int even_cows);
2431#else
2432static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2433 unsigned long address, unsigned int flags,
2434 struct pt_regs *regs)
2435{
2436 /* should never happen if there's no MMU */
2437 BUG();
2438 return VM_FAULT_SIGBUS;
2439}
2440static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2441 unsigned int fault_flags, bool *unlocked)
2442{
2443 /* should never happen if there's no MMU */
2444 BUG();
2445 return -EFAULT;
2446}
2447static inline void unmap_mapping_pages(struct address_space *mapping,
2448 pgoff_t start, pgoff_t nr, bool even_cows) { }
2449static inline void unmap_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2451#endif
2452
2453static inline void unmap_shared_mapping_range(struct address_space *mapping,
2454 loff_t const holebegin, loff_t const holelen)
2455{
2456 unmap_mapping_range(mapping, holebegin, holelen, 0);
2457}
2458
2459static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2460 unsigned long addr);
2461
2462extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2463 void *buf, int len, unsigned int gup_flags);
2464extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2465 void *buf, int len, unsigned int gup_flags);
2466
2467#ifdef CONFIG_BPF_SYSCALL
2468extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2469 void *buf, int len, unsigned int gup_flags);
2470#endif
2471
2472long get_user_pages_remote(struct mm_struct *mm,
2473 unsigned long start, unsigned long nr_pages,
2474 unsigned int gup_flags, struct page **pages,
2475 int *locked);
2476long pin_user_pages_remote(struct mm_struct *mm,
2477 unsigned long start, unsigned long nr_pages,
2478 unsigned int gup_flags, struct page **pages,
2479 int *locked);
2480
2481/*
2482 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2483 */
2484static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2485 unsigned long addr,
2486 int gup_flags,
2487 struct vm_area_struct **vmap)
2488{
2489 struct page *page;
2490 struct vm_area_struct *vma;
2491 int got;
2492
2493 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2494 return ERR_PTR(-EINVAL);
2495
2496 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2497
2498 if (got < 0)
2499 return ERR_PTR(got);
2500
2501 vma = vma_lookup(mm, addr);
2502 if (WARN_ON_ONCE(!vma)) {
2503 put_page(page);
2504 return ERR_PTR(-EINVAL);
2505 }
2506
2507 *vmap = vma;
2508 return page;
2509}
2510
2511long get_user_pages(unsigned long start, unsigned long nr_pages,
2512 unsigned int gup_flags, struct page **pages);
2513long pin_user_pages(unsigned long start, unsigned long nr_pages,
2514 unsigned int gup_flags, struct page **pages);
2515long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2516 struct page **pages, unsigned int gup_flags);
2517long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2518 struct page **pages, unsigned int gup_flags);
2519long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2520 struct folio **folios, unsigned int max_folios,
2521 pgoff_t *offset);
2522int folio_add_pins(struct folio *folio, unsigned int pins);
2523
2524int get_user_pages_fast(unsigned long start, int nr_pages,
2525 unsigned int gup_flags, struct page **pages);
2526int pin_user_pages_fast(unsigned long start, int nr_pages,
2527 unsigned int gup_flags, struct page **pages);
2528void folio_add_pin(struct folio *folio);
2529
2530int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2531int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2532 struct task_struct *task, bool bypass_rlim);
2533
2534struct kvec;
2535struct page *get_dump_page(unsigned long addr, int *locked);
2536
2537bool folio_mark_dirty(struct folio *folio);
2538bool folio_mark_dirty_lock(struct folio *folio);
2539bool set_page_dirty(struct page *page);
2540int set_page_dirty_lock(struct page *page);
2541
2542int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2543
2544/*
2545 * Flags used by change_protection(). For now we make it a bitmap so
2546 * that we can pass in multiple flags just like parameters. However
2547 * for now all the callers are only use one of the flags at the same
2548 * time.
2549 */
2550/*
2551 * Whether we should manually check if we can map individual PTEs writable,
2552 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2553 * PTEs automatically in a writable mapping.
2554 */
2555#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2556/* Whether this protection change is for NUMA hints */
2557#define MM_CP_PROT_NUMA (1UL << 1)
2558/* Whether this change is for write protecting */
2559#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2560#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2561#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2562 MM_CP_UFFD_WP_RESOLVE)
2563
2564bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2565 pte_t pte);
2566extern long change_protection(struct mmu_gather *tlb,
2567 struct vm_area_struct *vma, unsigned long start,
2568 unsigned long end, unsigned long cp_flags);
2569extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2570 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2571 unsigned long start, unsigned long end, vm_flags_t newflags);
2572
2573/*
2574 * doesn't attempt to fault and will return short.
2575 */
2576int get_user_pages_fast_only(unsigned long start, int nr_pages,
2577 unsigned int gup_flags, struct page **pages);
2578
2579static inline bool get_user_page_fast_only(unsigned long addr,
2580 unsigned int gup_flags, struct page **pagep)
2581{
2582 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2583}
2584/*
2585 * per-process(per-mm_struct) statistics.
2586 */
2587static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2588{
2589 return percpu_counter_read_positive(&mm->rss_stat[member]);
2590}
2591
2592static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2593{
2594 return percpu_counter_sum_positive(&mm->rss_stat[member]);
2595}
2596
2597void mm_trace_rss_stat(struct mm_struct *mm, int member);
2598
2599static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2600{
2601 percpu_counter_add(&mm->rss_stat[member], value);
2602
2603 mm_trace_rss_stat(mm, member);
2604}
2605
2606static inline void inc_mm_counter(struct mm_struct *mm, int member)
2607{
2608 percpu_counter_inc(&mm->rss_stat[member]);
2609
2610 mm_trace_rss_stat(mm, member);
2611}
2612
2613static inline void dec_mm_counter(struct mm_struct *mm, int member)
2614{
2615 percpu_counter_dec(&mm->rss_stat[member]);
2616
2617 mm_trace_rss_stat(mm, member);
2618}
2619
2620/* Optimized variant when folio is already known not to be anon */
2621static inline int mm_counter_file(struct folio *folio)
2622{
2623 if (folio_test_swapbacked(folio))
2624 return MM_SHMEMPAGES;
2625 return MM_FILEPAGES;
2626}
2627
2628static inline int mm_counter(struct folio *folio)
2629{
2630 if (folio_test_anon(folio))
2631 return MM_ANONPAGES;
2632 return mm_counter_file(folio);
2633}
2634
2635static inline unsigned long get_mm_rss(struct mm_struct *mm)
2636{
2637 return get_mm_counter(mm, MM_FILEPAGES) +
2638 get_mm_counter(mm, MM_ANONPAGES) +
2639 get_mm_counter(mm, MM_SHMEMPAGES);
2640}
2641
2642static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2643{
2644 return max(mm->hiwater_rss, get_mm_rss(mm));
2645}
2646
2647static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2648{
2649 return max(mm->hiwater_vm, mm->total_vm);
2650}
2651
2652static inline void update_hiwater_rss(struct mm_struct *mm)
2653{
2654 unsigned long _rss = get_mm_rss(mm);
2655
2656 if (data_race(mm->hiwater_rss) < _rss)
2657 (mm)->hiwater_rss = _rss;
2658}
2659
2660static inline void update_hiwater_vm(struct mm_struct *mm)
2661{
2662 if (mm->hiwater_vm < mm->total_vm)
2663 mm->hiwater_vm = mm->total_vm;
2664}
2665
2666static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2667{
2668 mm->hiwater_rss = get_mm_rss(mm);
2669}
2670
2671static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2672 struct mm_struct *mm)
2673{
2674 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2675
2676 if (*maxrss < hiwater_rss)
2677 *maxrss = hiwater_rss;
2678}
2679
2680#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2681static inline int pte_special(pte_t pte)
2682{
2683 return 0;
2684}
2685
2686static inline pte_t pte_mkspecial(pte_t pte)
2687{
2688 return pte;
2689}
2690#endif
2691
2692#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2693static inline bool pmd_special(pmd_t pmd)
2694{
2695 return false;
2696}
2697
2698static inline pmd_t pmd_mkspecial(pmd_t pmd)
2699{
2700 return pmd;
2701}
2702#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2703
2704#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2705static inline bool pud_special(pud_t pud)
2706{
2707 return false;
2708}
2709
2710static inline pud_t pud_mkspecial(pud_t pud)
2711{
2712 return pud;
2713}
2714#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2715
2716extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2717 spinlock_t **ptl);
2718static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2719 spinlock_t **ptl)
2720{
2721 pte_t *ptep;
2722 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2723 return ptep;
2724}
2725
2726#ifdef __PAGETABLE_P4D_FOLDED
2727static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2728 unsigned long address)
2729{
2730 return 0;
2731}
2732#else
2733int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2734#endif
2735
2736#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2737static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2738 unsigned long address)
2739{
2740 return 0;
2741}
2742static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2743static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2744
2745#else
2746int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2747
2748static inline void mm_inc_nr_puds(struct mm_struct *mm)
2749{
2750 if (mm_pud_folded(mm))
2751 return;
2752 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2753}
2754
2755static inline void mm_dec_nr_puds(struct mm_struct *mm)
2756{
2757 if (mm_pud_folded(mm))
2758 return;
2759 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2760}
2761#endif
2762
2763#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2764static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2765 unsigned long address)
2766{
2767 return 0;
2768}
2769
2770static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2771static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2772
2773#else
2774int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2775
2776static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2777{
2778 if (mm_pmd_folded(mm))
2779 return;
2780 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2781}
2782
2783static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2784{
2785 if (mm_pmd_folded(mm))
2786 return;
2787 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2788}
2789#endif
2790
2791#ifdef CONFIG_MMU
2792static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2793{
2794 atomic_long_set(&mm->pgtables_bytes, 0);
2795}
2796
2797static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2798{
2799 return atomic_long_read(&mm->pgtables_bytes);
2800}
2801
2802static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2803{
2804 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2805}
2806
2807static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2808{
2809 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2810}
2811#else
2812
2813static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2814static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2815{
2816 return 0;
2817}
2818
2819static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2820static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2821#endif
2822
2823int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2824int __pte_alloc_kernel(pmd_t *pmd);
2825
2826#if defined(CONFIG_MMU)
2827
2828static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2829 unsigned long address)
2830{
2831 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2832 NULL : p4d_offset(pgd, address);
2833}
2834
2835static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2836 unsigned long address)
2837{
2838 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2839 NULL : pud_offset(p4d, address);
2840}
2841
2842static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2843{
2844 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2845 NULL: pmd_offset(pud, address);
2846}
2847#endif /* CONFIG_MMU */
2848
2849static inline struct ptdesc *virt_to_ptdesc(const void *x)
2850{
2851 return page_ptdesc(virt_to_page(x));
2852}
2853
2854static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2855{
2856 return page_to_virt(ptdesc_page(pt));
2857}
2858
2859static inline void *ptdesc_address(const struct ptdesc *pt)
2860{
2861 return folio_address(ptdesc_folio(pt));
2862}
2863
2864static inline bool pagetable_is_reserved(struct ptdesc *pt)
2865{
2866 return folio_test_reserved(ptdesc_folio(pt));
2867}
2868
2869/**
2870 * pagetable_alloc - Allocate pagetables
2871 * @gfp: GFP flags
2872 * @order: desired pagetable order
2873 *
2874 * pagetable_alloc allocates memory for page tables as well as a page table
2875 * descriptor to describe that memory.
2876 *
2877 * Return: The ptdesc describing the allocated page tables.
2878 */
2879static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2880{
2881 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2882
2883 return page_ptdesc(page);
2884}
2885#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2886
2887/**
2888 * pagetable_free - Free pagetables
2889 * @pt: The page table descriptor
2890 *
2891 * pagetable_free frees the memory of all page tables described by a page
2892 * table descriptor and the memory for the descriptor itself.
2893 */
2894static inline void pagetable_free(struct ptdesc *pt)
2895{
2896 struct page *page = ptdesc_page(pt);
2897
2898 __free_pages(page, compound_order(page));
2899}
2900
2901#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2902#if ALLOC_SPLIT_PTLOCKS
2903void __init ptlock_cache_init(void);
2904bool ptlock_alloc(struct ptdesc *ptdesc);
2905void ptlock_free(struct ptdesc *ptdesc);
2906
2907static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2908{
2909 return ptdesc->ptl;
2910}
2911#else /* ALLOC_SPLIT_PTLOCKS */
2912static inline void ptlock_cache_init(void)
2913{
2914}
2915
2916static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2917{
2918 return true;
2919}
2920
2921static inline void ptlock_free(struct ptdesc *ptdesc)
2922{
2923}
2924
2925static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2926{
2927 return &ptdesc->ptl;
2928}
2929#endif /* ALLOC_SPLIT_PTLOCKS */
2930
2931static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2932{
2933 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2934}
2935
2936static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2937{
2938 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2939 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2940 return ptlock_ptr(virt_to_ptdesc(pte));
2941}
2942
2943static inline bool ptlock_init(struct ptdesc *ptdesc)
2944{
2945 /*
2946 * prep_new_page() initialize page->private (and therefore page->ptl)
2947 * with 0. Make sure nobody took it in use in between.
2948 *
2949 * It can happen if arch try to use slab for page table allocation:
2950 * slab code uses page->slab_cache, which share storage with page->ptl.
2951 */
2952 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2953 if (!ptlock_alloc(ptdesc))
2954 return false;
2955 spin_lock_init(ptlock_ptr(ptdesc));
2956 return true;
2957}
2958
2959#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2960/*
2961 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2962 */
2963static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2964{
2965 return &mm->page_table_lock;
2966}
2967static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2968{
2969 return &mm->page_table_lock;
2970}
2971static inline void ptlock_cache_init(void) {}
2972static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2973static inline void ptlock_free(struct ptdesc *ptdesc) {}
2974#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2975
2976static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2977{
2978 struct folio *folio = ptdesc_folio(ptdesc);
2979
2980 __folio_set_pgtable(folio);
2981 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2982}
2983
2984static inline void pagetable_dtor(struct ptdesc *ptdesc)
2985{
2986 struct folio *folio = ptdesc_folio(ptdesc);
2987
2988 ptlock_free(ptdesc);
2989 __folio_clear_pgtable(folio);
2990 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2991}
2992
2993static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2994{
2995 pagetable_dtor(ptdesc);
2996 pagetable_free(ptdesc);
2997}
2998
2999static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3000 struct ptdesc *ptdesc)
3001{
3002 if (mm != &init_mm && !ptlock_init(ptdesc))
3003 return false;
3004 __pagetable_ctor(ptdesc);
3005 return true;
3006}
3007
3008pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3009static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3010 pmd_t *pmdvalp)
3011{
3012 pte_t *pte;
3013
3014 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3015 return pte;
3016}
3017static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3018{
3019 return __pte_offset_map(pmd, addr, NULL);
3020}
3021
3022pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3023 unsigned long addr, spinlock_t **ptlp);
3024static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3025 unsigned long addr, spinlock_t **ptlp)
3026{
3027 pte_t *pte;
3028
3029 __cond_lock(RCU, __cond_lock(*ptlp,
3030 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3031 return pte;
3032}
3033
3034pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3035 unsigned long addr, spinlock_t **ptlp);
3036pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3037 unsigned long addr, pmd_t *pmdvalp,
3038 spinlock_t **ptlp);
3039
3040#define pte_unmap_unlock(pte, ptl) do { \
3041 spin_unlock(ptl); \
3042 pte_unmap(pte); \
3043} while (0)
3044
3045#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3046
3047#define pte_alloc_map(mm, pmd, address) \
3048 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3049
3050#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3051 (pte_alloc(mm, pmd) ? \
3052 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3053
3054#define pte_alloc_kernel(pmd, address) \
3055 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3056 NULL: pte_offset_kernel(pmd, address))
3057
3058#if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3059
3060static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3061{
3062 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3063 return virt_to_page((void *)((unsigned long) pmd & mask));
3064}
3065
3066static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3067{
3068 return page_ptdesc(pmd_pgtable_page(pmd));
3069}
3070
3071static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3072{
3073 return ptlock_ptr(pmd_ptdesc(pmd));
3074}
3075
3076static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3077{
3078#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3079 ptdesc->pmd_huge_pte = NULL;
3080#endif
3081 return ptlock_init(ptdesc);
3082}
3083
3084#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3085
3086#else
3087
3088static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3089{
3090 return &mm->page_table_lock;
3091}
3092
3093static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3094
3095#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3096
3097#endif
3098
3099static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3100{
3101 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3102 spin_lock(ptl);
3103 return ptl;
3104}
3105
3106static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3107 struct ptdesc *ptdesc)
3108{
3109 if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3110 return false;
3111 ptdesc_pmd_pts_init(ptdesc);
3112 __pagetable_ctor(ptdesc);
3113 return true;
3114}
3115
3116/*
3117 * No scalability reason to split PUD locks yet, but follow the same pattern
3118 * as the PMD locks to make it easier if we decide to. The VM should not be
3119 * considered ready to switch to split PUD locks yet; there may be places
3120 * which need to be converted from page_table_lock.
3121 */
3122static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3123{
3124 return &mm->page_table_lock;
3125}
3126
3127static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3128{
3129 spinlock_t *ptl = pud_lockptr(mm, pud);
3130
3131 spin_lock(ptl);
3132 return ptl;
3133}
3134
3135static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3136{
3137 __pagetable_ctor(ptdesc);
3138}
3139
3140static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3141{
3142 __pagetable_ctor(ptdesc);
3143}
3144
3145static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3146{
3147 __pagetable_ctor(ptdesc);
3148}
3149
3150extern void __init pagecache_init(void);
3151extern void free_initmem(void);
3152
3153/*
3154 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3155 * into the buddy system. The freed pages will be poisoned with pattern
3156 * "poison" if it's within range [0, UCHAR_MAX].
3157 * Return pages freed into the buddy system.
3158 */
3159extern unsigned long free_reserved_area(void *start, void *end,
3160 int poison, const char *s);
3161
3162extern void adjust_managed_page_count(struct page *page, long count);
3163
3164extern void reserve_bootmem_region(phys_addr_t start,
3165 phys_addr_t end, int nid);
3166
3167/* Free the reserved page into the buddy system, so it gets managed. */
3168void free_reserved_page(struct page *page);
3169
3170static inline void mark_page_reserved(struct page *page)
3171{
3172 SetPageReserved(page);
3173 adjust_managed_page_count(page, -1);
3174}
3175
3176static inline void free_reserved_ptdesc(struct ptdesc *pt)
3177{
3178 free_reserved_page(ptdesc_page(pt));
3179}
3180
3181/*
3182 * Default method to free all the __init memory into the buddy system.
3183 * The freed pages will be poisoned with pattern "poison" if it's within
3184 * range [0, UCHAR_MAX].
3185 * Return pages freed into the buddy system.
3186 */
3187static inline unsigned long free_initmem_default(int poison)
3188{
3189 extern char __init_begin[], __init_end[];
3190
3191 return free_reserved_area(&__init_begin, &__init_end,
3192 poison, "unused kernel image (initmem)");
3193}
3194
3195static inline unsigned long get_num_physpages(void)
3196{
3197 int nid;
3198 unsigned long phys_pages = 0;
3199
3200 for_each_online_node(nid)
3201 phys_pages += node_present_pages(nid);
3202
3203 return phys_pages;
3204}
3205
3206/*
3207 * Using memblock node mappings, an architecture may initialise its
3208 * zones, allocate the backing mem_map and account for memory holes in an
3209 * architecture independent manner.
3210 *
3211 * An architecture is expected to register range of page frames backed by
3212 * physical memory with memblock_add[_node]() before calling
3213 * free_area_init() passing in the PFN each zone ends at. At a basic
3214 * usage, an architecture is expected to do something like
3215 *
3216 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3217 * max_highmem_pfn};
3218 * for_each_valid_physical_page_range()
3219 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3220 * free_area_init(max_zone_pfns);
3221 */
3222void free_area_init(unsigned long *max_zone_pfn);
3223unsigned long node_map_pfn_alignment(void);
3224extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3225 unsigned long end_pfn);
3226extern void get_pfn_range_for_nid(unsigned int nid,
3227 unsigned long *start_pfn, unsigned long *end_pfn);
3228
3229#ifndef CONFIG_NUMA
3230static inline int early_pfn_to_nid(unsigned long pfn)
3231{
3232 return 0;
3233}
3234#else
3235/* please see mm/page_alloc.c */
3236extern int __meminit early_pfn_to_nid(unsigned long pfn);
3237#endif
3238
3239extern void mem_init(void);
3240extern void __init mmap_init(void);
3241
3242extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3243static inline void show_mem(void)
3244{
3245 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3246}
3247extern long si_mem_available(void);
3248extern void si_meminfo(struct sysinfo * val);
3249extern void si_meminfo_node(struct sysinfo *val, int nid);
3250
3251extern __printf(3, 4)
3252void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3253
3254extern void setup_per_cpu_pageset(void);
3255
3256/* nommu.c */
3257extern atomic_long_t mmap_pages_allocated;
3258extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3259
3260/* interval_tree.c */
3261void vma_interval_tree_insert(struct vm_area_struct *node,
3262 struct rb_root_cached *root);
3263void vma_interval_tree_insert_after(struct vm_area_struct *node,
3264 struct vm_area_struct *prev,
3265 struct rb_root_cached *root);
3266void vma_interval_tree_remove(struct vm_area_struct *node,
3267 struct rb_root_cached *root);
3268struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3269 unsigned long start, unsigned long last);
3270struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3271 unsigned long start, unsigned long last);
3272
3273#define vma_interval_tree_foreach(vma, root, start, last) \
3274 for (vma = vma_interval_tree_iter_first(root, start, last); \
3275 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3276
3277void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3278 struct rb_root_cached *root);
3279void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3280 struct rb_root_cached *root);
3281struct anon_vma_chain *
3282anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3283 unsigned long start, unsigned long last);
3284struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3285 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3286#ifdef CONFIG_DEBUG_VM_RB
3287void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3288#endif
3289
3290#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3291 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3292 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3293
3294/* mmap.c */
3295extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3296extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3297extern void exit_mmap(struct mm_struct *);
3298bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3299 unsigned long addr, bool write);
3300
3301static inline int check_data_rlimit(unsigned long rlim,
3302 unsigned long new,
3303 unsigned long start,
3304 unsigned long end_data,
3305 unsigned long start_data)
3306{
3307 if (rlim < RLIM_INFINITY) {
3308 if (((new - start) + (end_data - start_data)) > rlim)
3309 return -ENOSPC;
3310 }
3311
3312 return 0;
3313}
3314
3315extern int mm_take_all_locks(struct mm_struct *mm);
3316extern void mm_drop_all_locks(struct mm_struct *mm);
3317
3318extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3319extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3320extern struct file *get_mm_exe_file(struct mm_struct *mm);
3321extern struct file *get_task_exe_file(struct task_struct *task);
3322
3323extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3324extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3325
3326extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3327 const struct vm_special_mapping *sm);
3328struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3329 unsigned long addr, unsigned long len,
3330 vm_flags_t vm_flags,
3331 const struct vm_special_mapping *spec);
3332
3333unsigned long randomize_stack_top(unsigned long stack_top);
3334unsigned long randomize_page(unsigned long start, unsigned long range);
3335
3336unsigned long
3337__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3338 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3339
3340static inline unsigned long
3341get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3342 unsigned long pgoff, unsigned long flags)
3343{
3344 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3345}
3346
3347extern unsigned long do_mmap(struct file *file, unsigned long addr,
3348 unsigned long len, unsigned long prot, unsigned long flags,
3349 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3350 struct list_head *uf);
3351extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3352 unsigned long start, size_t len, struct list_head *uf,
3353 bool unlock);
3354int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3355 struct mm_struct *mm, unsigned long start,
3356 unsigned long end, struct list_head *uf, bool unlock);
3357extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3358 struct list_head *uf);
3359extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3360
3361#ifdef CONFIG_MMU
3362extern int __mm_populate(unsigned long addr, unsigned long len,
3363 int ignore_errors);
3364static inline void mm_populate(unsigned long addr, unsigned long len)
3365{
3366 /* Ignore errors */
3367 (void) __mm_populate(addr, len, 1);
3368}
3369#else
3370static inline void mm_populate(unsigned long addr, unsigned long len) {}
3371#endif
3372
3373/* This takes the mm semaphore itself */
3374extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3375extern int vm_munmap(unsigned long, size_t);
3376extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3377 unsigned long, unsigned long,
3378 unsigned long, unsigned long);
3379
3380struct vm_unmapped_area_info {
3381#define VM_UNMAPPED_AREA_TOPDOWN 1
3382 unsigned long flags;
3383 unsigned long length;
3384 unsigned long low_limit;
3385 unsigned long high_limit;
3386 unsigned long align_mask;
3387 unsigned long align_offset;
3388 unsigned long start_gap;
3389};
3390
3391extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3392
3393/* truncate.c */
3394extern void truncate_inode_pages(struct address_space *, loff_t);
3395extern void truncate_inode_pages_range(struct address_space *,
3396 loff_t lstart, loff_t lend);
3397extern void truncate_inode_pages_final(struct address_space *);
3398
3399/* generic vm_area_ops exported for stackable file systems */
3400extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3401extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3402 pgoff_t start_pgoff, pgoff_t end_pgoff);
3403extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3404
3405extern unsigned long stack_guard_gap;
3406/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3407int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3408struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3409
3410/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3411extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3412extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3413 struct vm_area_struct **pprev);
3414
3415/*
3416 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3417 * NULL if none. Assume start_addr < end_addr.
3418 */
3419struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3420 unsigned long start_addr, unsigned long end_addr);
3421
3422/**
3423 * vma_lookup() - Find a VMA at a specific address
3424 * @mm: The process address space.
3425 * @addr: The user address.
3426 *
3427 * Return: The vm_area_struct at the given address, %NULL otherwise.
3428 */
3429static inline
3430struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3431{
3432 return mtree_load(&mm->mm_mt, addr);
3433}
3434
3435static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3436{
3437 if (vma->vm_flags & VM_GROWSDOWN)
3438 return stack_guard_gap;
3439
3440 /* See reasoning around the VM_SHADOW_STACK definition */
3441 if (vma->vm_flags & VM_SHADOW_STACK)
3442 return PAGE_SIZE;
3443
3444 return 0;
3445}
3446
3447static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3448{
3449 unsigned long gap = stack_guard_start_gap(vma);
3450 unsigned long vm_start = vma->vm_start;
3451
3452 vm_start -= gap;
3453 if (vm_start > vma->vm_start)
3454 vm_start = 0;
3455 return vm_start;
3456}
3457
3458static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3459{
3460 unsigned long vm_end = vma->vm_end;
3461
3462 if (vma->vm_flags & VM_GROWSUP) {
3463 vm_end += stack_guard_gap;
3464 if (vm_end < vma->vm_end)
3465 vm_end = -PAGE_SIZE;
3466 }
3467 return vm_end;
3468}
3469
3470static inline unsigned long vma_pages(struct vm_area_struct *vma)
3471{
3472 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3473}
3474
3475/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3476static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3477 unsigned long vm_start, unsigned long vm_end)
3478{
3479 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3480
3481 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3482 vma = NULL;
3483
3484 return vma;
3485}
3486
3487static inline bool range_in_vma(struct vm_area_struct *vma,
3488 unsigned long start, unsigned long end)
3489{
3490 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3491}
3492
3493#ifdef CONFIG_MMU
3494pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3495void vma_set_page_prot(struct vm_area_struct *vma);
3496#else
3497static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3498{
3499 return __pgprot(0);
3500}
3501static inline void vma_set_page_prot(struct vm_area_struct *vma)
3502{
3503 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3504}
3505#endif
3506
3507void vma_set_file(struct vm_area_struct *vma, struct file *file);
3508
3509#ifdef CONFIG_NUMA_BALANCING
3510unsigned long change_prot_numa(struct vm_area_struct *vma,
3511 unsigned long start, unsigned long end);
3512#endif
3513
3514struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3515 unsigned long addr);
3516int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3517 unsigned long pfn, unsigned long size, pgprot_t);
3518int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3519 unsigned long pfn, unsigned long size, pgprot_t prot);
3520int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3521int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3522 struct page **pages, unsigned long *num);
3523int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3524 unsigned long num);
3525int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3526 unsigned long num);
3527vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3528 bool write);
3529vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3530 unsigned long pfn);
3531vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3532 unsigned long pfn, pgprot_t pgprot);
3533vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3534 unsigned long pfn);
3535vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3536 unsigned long addr, unsigned long pfn);
3537int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3538
3539static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3540 unsigned long addr, struct page *page)
3541{
3542 int err = vm_insert_page(vma, addr, page);
3543
3544 if (err == -ENOMEM)
3545 return VM_FAULT_OOM;
3546 if (err < 0 && err != -EBUSY)
3547 return VM_FAULT_SIGBUS;
3548
3549 return VM_FAULT_NOPAGE;
3550}
3551
3552#ifndef io_remap_pfn_range
3553static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3554 unsigned long addr, unsigned long pfn,
3555 unsigned long size, pgprot_t prot)
3556{
3557 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3558}
3559#endif
3560
3561static inline vm_fault_t vmf_error(int err)
3562{
3563 if (err == -ENOMEM)
3564 return VM_FAULT_OOM;
3565 else if (err == -EHWPOISON)
3566 return VM_FAULT_HWPOISON;
3567 return VM_FAULT_SIGBUS;
3568}
3569
3570/*
3571 * Convert errno to return value for ->page_mkwrite() calls.
3572 *
3573 * This should eventually be merged with vmf_error() above, but will need a
3574 * careful audit of all vmf_error() callers.
3575 */
3576static inline vm_fault_t vmf_fs_error(int err)
3577{
3578 if (err == 0)
3579 return VM_FAULT_LOCKED;
3580 if (err == -EFAULT || err == -EAGAIN)
3581 return VM_FAULT_NOPAGE;
3582 if (err == -ENOMEM)
3583 return VM_FAULT_OOM;
3584 /* -ENOSPC, -EDQUOT, -EIO ... */
3585 return VM_FAULT_SIGBUS;
3586}
3587
3588static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3589{
3590 if (vm_fault & VM_FAULT_OOM)
3591 return -ENOMEM;
3592 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3593 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3594 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3595 return -EFAULT;
3596 return 0;
3597}
3598
3599/*
3600 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3601 * a (NUMA hinting) fault is required.
3602 */
3603static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3604 unsigned int flags)
3605{
3606 /*
3607 * If callers don't want to honor NUMA hinting faults, no need to
3608 * determine if we would actually have to trigger a NUMA hinting fault.
3609 */
3610 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3611 return true;
3612
3613 /*
3614 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3615 *
3616 * Requiring a fault here even for inaccessible VMAs would mean that
3617 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3618 * refuses to process NUMA hinting faults in inaccessible VMAs.
3619 */
3620 return !vma_is_accessible(vma);
3621}
3622
3623typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3624extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3625 unsigned long size, pte_fn_t fn, void *data);
3626extern int apply_to_existing_page_range(struct mm_struct *mm,
3627 unsigned long address, unsigned long size,
3628 pte_fn_t fn, void *data);
3629
3630#ifdef CONFIG_PAGE_POISONING
3631extern void __kernel_poison_pages(struct page *page, int numpages);
3632extern void __kernel_unpoison_pages(struct page *page, int numpages);
3633extern bool _page_poisoning_enabled_early;
3634DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3635static inline bool page_poisoning_enabled(void)
3636{
3637 return _page_poisoning_enabled_early;
3638}
3639/*
3640 * For use in fast paths after init_mem_debugging() has run, or when a
3641 * false negative result is not harmful when called too early.
3642 */
3643static inline bool page_poisoning_enabled_static(void)
3644{
3645 return static_branch_unlikely(&_page_poisoning_enabled);
3646}
3647static inline void kernel_poison_pages(struct page *page, int numpages)
3648{
3649 if (page_poisoning_enabled_static())
3650 __kernel_poison_pages(page, numpages);
3651}
3652static inline void kernel_unpoison_pages(struct page *page, int numpages)
3653{
3654 if (page_poisoning_enabled_static())
3655 __kernel_unpoison_pages(page, numpages);
3656}
3657#else
3658static inline bool page_poisoning_enabled(void) { return false; }
3659static inline bool page_poisoning_enabled_static(void) { return false; }
3660static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3661static inline void kernel_poison_pages(struct page *page, int numpages) { }
3662static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3663#endif
3664
3665DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3666static inline bool want_init_on_alloc(gfp_t flags)
3667{
3668 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3669 &init_on_alloc))
3670 return true;
3671 return flags & __GFP_ZERO;
3672}
3673
3674DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3675static inline bool want_init_on_free(void)
3676{
3677 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3678 &init_on_free);
3679}
3680
3681extern bool _debug_pagealloc_enabled_early;
3682DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3683
3684static inline bool debug_pagealloc_enabled(void)
3685{
3686 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3687 _debug_pagealloc_enabled_early;
3688}
3689
3690/*
3691 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3692 * or when a false negative result is not harmful when called too early.
3693 */
3694static inline bool debug_pagealloc_enabled_static(void)
3695{
3696 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3697 return false;
3698
3699 return static_branch_unlikely(&_debug_pagealloc_enabled);
3700}
3701
3702/*
3703 * To support DEBUG_PAGEALLOC architecture must ensure that
3704 * __kernel_map_pages() never fails
3705 */
3706extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3707#ifdef CONFIG_DEBUG_PAGEALLOC
3708static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3709{
3710 if (debug_pagealloc_enabled_static())
3711 __kernel_map_pages(page, numpages, 1);
3712}
3713
3714static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3715{
3716 if (debug_pagealloc_enabled_static())
3717 __kernel_map_pages(page, numpages, 0);
3718}
3719
3720extern unsigned int _debug_guardpage_minorder;
3721DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3722
3723static inline unsigned int debug_guardpage_minorder(void)
3724{
3725 return _debug_guardpage_minorder;
3726}
3727
3728static inline bool debug_guardpage_enabled(void)
3729{
3730 return static_branch_unlikely(&_debug_guardpage_enabled);
3731}
3732
3733static inline bool page_is_guard(struct page *page)
3734{
3735 if (!debug_guardpage_enabled())
3736 return false;
3737
3738 return PageGuard(page);
3739}
3740
3741bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3742static inline bool set_page_guard(struct zone *zone, struct page *page,
3743 unsigned int order)
3744{
3745 if (!debug_guardpage_enabled())
3746 return false;
3747 return __set_page_guard(zone, page, order);
3748}
3749
3750void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3751static inline void clear_page_guard(struct zone *zone, struct page *page,
3752 unsigned int order)
3753{
3754 if (!debug_guardpage_enabled())
3755 return;
3756 __clear_page_guard(zone, page, order);
3757}
3758
3759#else /* CONFIG_DEBUG_PAGEALLOC */
3760static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3761static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3762static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3763static inline bool debug_guardpage_enabled(void) { return false; }
3764static inline bool page_is_guard(struct page *page) { return false; }
3765static inline bool set_page_guard(struct zone *zone, struct page *page,
3766 unsigned int order) { return false; }
3767static inline void clear_page_guard(struct zone *zone, struct page *page,
3768 unsigned int order) {}
3769#endif /* CONFIG_DEBUG_PAGEALLOC */
3770
3771#ifdef __HAVE_ARCH_GATE_AREA
3772extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3773extern int in_gate_area_no_mm(unsigned long addr);
3774extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3775#else
3776static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3777{
3778 return NULL;
3779}
3780static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3781static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3782{
3783 return 0;
3784}
3785#endif /* __HAVE_ARCH_GATE_AREA */
3786
3787extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3788
3789void drop_slab(void);
3790
3791#ifndef CONFIG_MMU
3792#define randomize_va_space 0
3793#else
3794extern int randomize_va_space;
3795#endif
3796
3797const char * arch_vma_name(struct vm_area_struct *vma);
3798#ifdef CONFIG_MMU
3799void print_vma_addr(char *prefix, unsigned long rip);
3800#else
3801static inline void print_vma_addr(char *prefix, unsigned long rip)
3802{
3803}
3804#endif
3805
3806void *sparse_buffer_alloc(unsigned long size);
3807unsigned long section_map_size(void);
3808struct page * __populate_section_memmap(unsigned long pfn,
3809 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3810 struct dev_pagemap *pgmap);
3811pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3812p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3813pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3814pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3815pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3816 struct vmem_altmap *altmap, unsigned long ptpfn,
3817 unsigned long flags);
3818void *vmemmap_alloc_block(unsigned long size, int node);
3819struct vmem_altmap;
3820void *vmemmap_alloc_block_buf(unsigned long size, int node,
3821 struct vmem_altmap *altmap);
3822void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3823void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3824 unsigned long addr, unsigned long next);
3825int vmemmap_check_pmd(pmd_t *pmd, int node,
3826 unsigned long addr, unsigned long next);
3827int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3828 int node, struct vmem_altmap *altmap);
3829int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3830 int node, struct vmem_altmap *altmap);
3831int vmemmap_populate(unsigned long start, unsigned long end, int node,
3832 struct vmem_altmap *altmap);
3833int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3834 unsigned long headsize);
3835int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3836 unsigned long headsize);
3837void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3838 unsigned long headsize);
3839void vmemmap_populate_print_last(void);
3840#ifdef CONFIG_MEMORY_HOTPLUG
3841void vmemmap_free(unsigned long start, unsigned long end,
3842 struct vmem_altmap *altmap);
3843#endif
3844
3845#ifdef CONFIG_SPARSEMEM_VMEMMAP
3846static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3847{
3848 /* number of pfns from base where pfn_to_page() is valid */
3849 if (altmap)
3850 return altmap->reserve + altmap->free;
3851 return 0;
3852}
3853
3854static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3855 unsigned long nr_pfns)
3856{
3857 altmap->alloc -= nr_pfns;
3858}
3859#else
3860static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3861{
3862 return 0;
3863}
3864
3865static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3866 unsigned long nr_pfns)
3867{
3868}
3869#endif
3870
3871#define VMEMMAP_RESERVE_NR 2
3872#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3873static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3874 struct dev_pagemap *pgmap)
3875{
3876 unsigned long nr_pages;
3877 unsigned long nr_vmemmap_pages;
3878
3879 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3880 return false;
3881
3882 nr_pages = pgmap_vmemmap_nr(pgmap);
3883 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3884 /*
3885 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3886 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3887 */
3888 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3889}
3890/*
3891 * If we don't have an architecture override, use the generic rule
3892 */
3893#ifndef vmemmap_can_optimize
3894#define vmemmap_can_optimize __vmemmap_can_optimize
3895#endif
3896
3897#else
3898static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3899 struct dev_pagemap *pgmap)
3900{
3901 return false;
3902}
3903#endif
3904
3905enum mf_flags {
3906 MF_COUNT_INCREASED = 1 << 0,
3907 MF_ACTION_REQUIRED = 1 << 1,
3908 MF_MUST_KILL = 1 << 2,
3909 MF_SOFT_OFFLINE = 1 << 3,
3910 MF_UNPOISON = 1 << 4,
3911 MF_SW_SIMULATED = 1 << 5,
3912 MF_NO_RETRY = 1 << 6,
3913 MF_MEM_PRE_REMOVE = 1 << 7,
3914};
3915int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3916 unsigned long count, int mf_flags);
3917extern int memory_failure(unsigned long pfn, int flags);
3918extern int unpoison_memory(unsigned long pfn);
3919extern atomic_long_t num_poisoned_pages __read_mostly;
3920extern int soft_offline_page(unsigned long pfn, int flags);
3921#ifdef CONFIG_MEMORY_FAILURE
3922/*
3923 * Sysfs entries for memory failure handling statistics.
3924 */
3925extern const struct attribute_group memory_failure_attr_group;
3926extern void memory_failure_queue(unsigned long pfn, int flags);
3927extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3928 bool *migratable_cleared);
3929void num_poisoned_pages_inc(unsigned long pfn);
3930void num_poisoned_pages_sub(unsigned long pfn, long i);
3931#else
3932static inline void memory_failure_queue(unsigned long pfn, int flags)
3933{
3934}
3935
3936static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3937 bool *migratable_cleared)
3938{
3939 return 0;
3940}
3941
3942static inline void num_poisoned_pages_inc(unsigned long pfn)
3943{
3944}
3945
3946static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3947{
3948}
3949#endif
3950
3951#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3952extern void memblk_nr_poison_inc(unsigned long pfn);
3953extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3954#else
3955static inline void memblk_nr_poison_inc(unsigned long pfn)
3956{
3957}
3958
3959static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3960{
3961}
3962#endif
3963
3964#ifndef arch_memory_failure
3965static inline int arch_memory_failure(unsigned long pfn, int flags)
3966{
3967 return -ENXIO;
3968}
3969#endif
3970
3971#ifndef arch_is_platform_page
3972static inline bool arch_is_platform_page(u64 paddr)
3973{
3974 return false;
3975}
3976#endif
3977
3978/*
3979 * Error handlers for various types of pages.
3980 */
3981enum mf_result {
3982 MF_IGNORED, /* Error: cannot be handled */
3983 MF_FAILED, /* Error: handling failed */
3984 MF_DELAYED, /* Will be handled later */
3985 MF_RECOVERED, /* Successfully recovered */
3986};
3987
3988enum mf_action_page_type {
3989 MF_MSG_KERNEL,
3990 MF_MSG_KERNEL_HIGH_ORDER,
3991 MF_MSG_DIFFERENT_COMPOUND,
3992 MF_MSG_HUGE,
3993 MF_MSG_FREE_HUGE,
3994 MF_MSG_GET_HWPOISON,
3995 MF_MSG_UNMAP_FAILED,
3996 MF_MSG_DIRTY_SWAPCACHE,
3997 MF_MSG_CLEAN_SWAPCACHE,
3998 MF_MSG_DIRTY_MLOCKED_LRU,
3999 MF_MSG_CLEAN_MLOCKED_LRU,
4000 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4001 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4002 MF_MSG_DIRTY_LRU,
4003 MF_MSG_CLEAN_LRU,
4004 MF_MSG_TRUNCATED_LRU,
4005 MF_MSG_BUDDY,
4006 MF_MSG_DAX,
4007 MF_MSG_UNSPLIT_THP,
4008 MF_MSG_ALREADY_POISONED,
4009 MF_MSG_UNKNOWN,
4010};
4011
4012#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4013void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4014int copy_user_large_folio(struct folio *dst, struct folio *src,
4015 unsigned long addr_hint,
4016 struct vm_area_struct *vma);
4017long copy_folio_from_user(struct folio *dst_folio,
4018 const void __user *usr_src,
4019 bool allow_pagefault);
4020
4021/**
4022 * vma_is_special_huge - Are transhuge page-table entries considered special?
4023 * @vma: Pointer to the struct vm_area_struct to consider
4024 *
4025 * Whether transhuge page-table entries are considered "special" following
4026 * the definition in vm_normal_page().
4027 *
4028 * Return: true if transhuge page-table entries should be considered special,
4029 * false otherwise.
4030 */
4031static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4032{
4033 return vma_is_dax(vma) || (vma->vm_file &&
4034 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4035}
4036
4037#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4038
4039#if MAX_NUMNODES > 1
4040void __init setup_nr_node_ids(void);
4041#else
4042static inline void setup_nr_node_ids(void) {}
4043#endif
4044
4045extern int memcmp_pages(struct page *page1, struct page *page2);
4046
4047static inline int pages_identical(struct page *page1, struct page *page2)
4048{
4049 return !memcmp_pages(page1, page2);
4050}
4051
4052#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4053unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4054 pgoff_t first_index, pgoff_t nr,
4055 pgoff_t bitmap_pgoff,
4056 unsigned long *bitmap,
4057 pgoff_t *start,
4058 pgoff_t *end);
4059
4060unsigned long wp_shared_mapping_range(struct address_space *mapping,
4061 pgoff_t first_index, pgoff_t nr);
4062#endif
4063
4064#ifdef CONFIG_ANON_VMA_NAME
4065int set_anon_vma_name(unsigned long addr, unsigned long size,
4066 const char __user *uname);
4067#else
4068static inline
4069int set_anon_vma_name(unsigned long addr, unsigned long size,
4070 const char __user *uname)
4071{
4072 return -EINVAL;
4073}
4074#endif
4075
4076#ifdef CONFIG_UNACCEPTED_MEMORY
4077
4078bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4079void accept_memory(phys_addr_t start, unsigned long size);
4080
4081#else
4082
4083static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4084 unsigned long size)
4085{
4086 return false;
4087}
4088
4089static inline void accept_memory(phys_addr_t start, unsigned long size)
4090{
4091}
4092
4093#endif
4094
4095static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4096{
4097 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4098}
4099
4100void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4101void vma_pgtable_walk_end(struct vm_area_struct *vma);
4102
4103int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4104int reserve_mem_release_by_name(const char *name);
4105
4106#ifdef CONFIG_64BIT
4107int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4108#else
4109static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4110{
4111 /* noop on 32 bit */
4112 return 0;
4113}
4114#endif
4115
4116/*
4117 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4118 * be zeroed or not.
4119 */
4120static inline bool user_alloc_needs_zeroing(void)
4121{
4122 /*
4123 * for user folios, arch with cache aliasing requires cache flush and
4124 * arc changes folio->flags to make icache coherent with dcache, so
4125 * always return false to make caller use
4126 * clear_user_page()/clear_user_highpage().
4127 */
4128 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4129 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4130 &init_on_alloc);
4131}
4132
4133int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4134int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4135int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4136
4137
4138/*
4139 * mseal of userspace process's system mappings.
4140 */
4141#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4142#define VM_SEALED_SYSMAP VM_SEALED
4143#else
4144#define VM_SEALED_SYSMAP VM_NONE
4145#endif
4146
4147/*
4148 * DMA mapping IDs for page_pool
4149 *
4150 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4151 * stashes it in the upper bits of page->pp_magic. We always want to be able to
4152 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4153 * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4154 * (since it overlaps with page->lru.next), so we must ensure that we cannot
4155 * mistake a valid kernel pointer with any of the values we write into this
4156 * field.
4157 *
4158 * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4159 * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4160 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4161 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4162 * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4163 * we won't mistake a valid kernel pointer for a value we set, regardless of the
4164 * VMSPLIT setting.
4165 *
4166 * Altogether, this means that the number of bits available is constrained by
4167 * the size of an unsigned long (at the upper end, subtracting two bits per the
4168 * above), and the definition of PP_SIGNATURE (with or without
4169 * POISON_POINTER_DELTA).
4170 */
4171#define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4172#if POISON_POINTER_DELTA > 0
4173/* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4174 * index to not overlap with that if set
4175 */
4176#define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4177#else
4178/* Always leave out the topmost two; see above. */
4179#define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4180#endif
4181
4182#define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4183 PP_DMA_INDEX_SHIFT)
4184
4185/* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4186 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4187 * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4188 * bits used for the DMA index. page_is_pfmemalloc() is checked in
4189 * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4190 */
4191#define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4192
4193#ifdef CONFIG_PAGE_POOL
4194static inline bool page_pool_page_is_pp(const struct page *page)
4195{
4196 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4197}
4198#else
4199static inline bool page_pool_page_is_pp(const struct page *page)
4200{
4201 return false;
4202}
4203#endif
4204
4205#define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4206#define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4207#define PAGE_SNAPSHOT_PG_IDLE (1 << 2)
4208
4209struct page_snapshot {
4210 struct folio folio_snapshot;
4211 struct page page_snapshot;
4212 unsigned long pfn;
4213 unsigned long idx;
4214 unsigned long flags;
4215};
4216
4217static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4218{
4219 return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4220}
4221
4222void snapshot_page(struct page_snapshot *ps, const struct page *page);
4223
4224#endif /* _LINUX_MM_H */