Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/kernel.h>
18#include <linux/page_counter.h>
19#include <linux/vmpressure.h>
20#include <linux/eventfd.h>
21#include <linux/mm.h>
22#include <linux/vmstat.h>
23#include <linux/writeback.h>
24#include <linux/page-flags.h>
25#include <linux/shrinker.h>
26
27struct mem_cgroup;
28struct obj_cgroup;
29struct page;
30struct mm_struct;
31struct kmem_cache;
32
33/* Cgroup-specific page state, on top of universal node page state */
34enum memcg_stat_item {
35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 MEMCG_SOCK,
37 MEMCG_PERCPU_B,
38 MEMCG_VMALLOC,
39 MEMCG_KMEM,
40 MEMCG_ZSWAP_B,
41 MEMCG_ZSWAPPED,
42 MEMCG_NR_STAT,
43};
44
45enum memcg_memory_event {
46 MEMCG_LOW,
47 MEMCG_HIGH,
48 MEMCG_MAX,
49 MEMCG_OOM,
50 MEMCG_OOM_KILL,
51 MEMCG_OOM_GROUP_KILL,
52 MEMCG_SWAP_HIGH,
53 MEMCG_SWAP_MAX,
54 MEMCG_SWAP_FAIL,
55 MEMCG_NR_MEMORY_EVENTS,
56};
57
58struct mem_cgroup_reclaim_cookie {
59 pg_data_t *pgdat;
60 int generation;
61};
62
63#ifdef CONFIG_MEMCG
64
65#define MEM_CGROUP_ID_SHIFT 16
66
67struct mem_cgroup_id {
68 int id;
69 refcount_t ref;
70};
71
72struct memcg_vmstats_percpu;
73struct memcg1_events_percpu;
74struct memcg_vmstats;
75struct lruvec_stats_percpu;
76struct lruvec_stats;
77
78struct mem_cgroup_reclaim_iter {
79 struct mem_cgroup *position;
80 /* scan generation, increased every round-trip */
81 atomic_t generation;
82};
83
84/*
85 * per-node information in memory controller.
86 */
87struct mem_cgroup_per_node {
88 /* Keep the read-only fields at the start */
89 struct mem_cgroup *memcg; /* Back pointer, we cannot */
90 /* use container_of */
91
92 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
93 struct lruvec_stats *lruvec_stats;
94 struct shrinker_info __rcu *shrinker_info;
95
96#ifdef CONFIG_MEMCG_V1
97 /*
98 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 * and update often fields to avoid false sharing. If v1 stuff is
100 * not present, an explicit padding is needed.
101 */
102
103 struct rb_node tree_node; /* RB tree node */
104 unsigned long usage_in_excess;/* Set to the value by which */
105 /* the soft limit is exceeded*/
106 bool on_tree;
107#else
108 CACHELINE_PADDING(_pad1_);
109#endif
110
111 /* Fields which get updated often at the end. */
112 struct lruvec lruvec;
113 CACHELINE_PADDING(_pad2_);
114 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 struct mem_cgroup_reclaim_iter iter;
116
117#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
118 /* slab stats for nmi context */
119 atomic_t slab_reclaimable;
120 atomic_t slab_unreclaimable;
121#endif
122};
123
124struct mem_cgroup_threshold {
125 struct eventfd_ctx *eventfd;
126 unsigned long threshold;
127};
128
129/* For threshold */
130struct mem_cgroup_threshold_ary {
131 /* An array index points to threshold just below or equal to usage. */
132 int current_threshold;
133 /* Size of entries[] */
134 unsigned int size;
135 /* Array of thresholds */
136 struct mem_cgroup_threshold entries[] __counted_by(size);
137};
138
139struct mem_cgroup_thresholds {
140 /* Primary thresholds array */
141 struct mem_cgroup_threshold_ary *primary;
142 /*
143 * Spare threshold array.
144 * This is needed to make mem_cgroup_unregister_event() "never fail".
145 * It must be able to store at least primary->size - 1 entries.
146 */
147 struct mem_cgroup_threshold_ary *spare;
148};
149
150/*
151 * Remember four most recent foreign writebacks with dirty pages in this
152 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
153 * one in a given round, we're likely to catch it later if it keeps
154 * foreign-dirtying, so a fairly low count should be enough.
155 *
156 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
157 */
158#define MEMCG_CGWB_FRN_CNT 4
159
160struct memcg_cgwb_frn {
161 u64 bdi_id; /* bdi->id of the foreign inode */
162 int memcg_id; /* memcg->css.id of foreign inode */
163 u64 at; /* jiffies_64 at the time of dirtying */
164 struct wb_completion done; /* tracks in-flight foreign writebacks */
165};
166
167/*
168 * Bucket for arbitrarily byte-sized objects charged to a memory
169 * cgroup. The bucket can be reparented in one piece when the cgroup
170 * is destroyed, without having to round up the individual references
171 * of all live memory objects in the wild.
172 */
173struct obj_cgroup {
174 struct percpu_ref refcnt;
175 struct mem_cgroup *memcg;
176 atomic_t nr_charged_bytes;
177 union {
178 struct list_head list; /* protected by objcg_lock */
179 struct rcu_head rcu;
180 };
181};
182
183/*
184 * The memory controller data structure. The memory controller controls both
185 * page cache and RSS per cgroup. We would eventually like to provide
186 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
187 * to help the administrator determine what knobs to tune.
188 */
189struct mem_cgroup {
190 struct cgroup_subsys_state css;
191
192 /* Private memcg ID. Used to ID objects that outlive the cgroup */
193 struct mem_cgroup_id id;
194
195 /* Accounted resources */
196 struct page_counter memory; /* Both v1 & v2 */
197
198 union {
199 struct page_counter swap; /* v2 only */
200 struct page_counter memsw; /* v1 only */
201 };
202
203 /* registered local peak watchers */
204 struct list_head memory_peaks;
205 struct list_head swap_peaks;
206 spinlock_t peaks_lock;
207
208 /* Range enforcement for interrupt charges */
209 struct work_struct high_work;
210
211#ifdef CONFIG_ZSWAP
212 unsigned long zswap_max;
213
214 /*
215 * Prevent pages from this memcg from being written back from zswap to
216 * swap, and from being swapped out on zswap store failures.
217 */
218 bool zswap_writeback;
219#endif
220
221 /* vmpressure notifications */
222 struct vmpressure vmpressure;
223
224 /*
225 * Should the OOM killer kill all belonging tasks, had it kill one?
226 */
227 bool oom_group;
228
229 int swappiness;
230
231 /* memory.events and memory.events.local */
232 struct cgroup_file events_file;
233 struct cgroup_file events_local_file;
234
235 /* handle for "memory.swap.events" */
236 struct cgroup_file swap_events_file;
237
238 /* memory.stat */
239 struct memcg_vmstats *vmstats;
240
241 /* memory.events */
242 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
243 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
244
245#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
246 /* MEMCG_KMEM for nmi context */
247 atomic_t kmem_stat;
248#endif
249 /*
250 * Hint of reclaim pressure for socket memroy management. Note
251 * that this indicator should NOT be used in legacy cgroup mode
252 * where socket memory is accounted/charged separately.
253 */
254 u64 socket_pressure;
255#if BITS_PER_LONG < 64
256 seqlock_t socket_pressure_seqlock;
257#endif
258 int kmemcg_id;
259 /*
260 * memcg->objcg is wiped out as a part of the objcg repaprenting
261 * process. memcg->orig_objcg preserves a pointer (and a reference)
262 * to the original objcg until the end of live of memcg.
263 */
264 struct obj_cgroup __rcu *objcg;
265 struct obj_cgroup *orig_objcg;
266 /* list of inherited objcgs, protected by objcg_lock */
267 struct list_head objcg_list;
268
269 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
270
271#ifdef CONFIG_CGROUP_WRITEBACK
272 struct list_head cgwb_list;
273 struct wb_domain cgwb_domain;
274 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
275#endif
276
277#ifdef CONFIG_TRANSPARENT_HUGEPAGE
278 struct deferred_split deferred_split_queue;
279#endif
280
281#ifdef CONFIG_LRU_GEN_WALKS_MMU
282 /* per-memcg mm_struct list */
283 struct lru_gen_mm_list mm_list;
284#endif
285
286#ifdef CONFIG_MEMCG_V1
287 /* Legacy consumer-oriented counters */
288 struct page_counter kmem; /* v1 only */
289 struct page_counter tcpmem; /* v1 only */
290
291 struct memcg1_events_percpu __percpu *events_percpu;
292
293 unsigned long soft_limit;
294
295 /* protected by memcg_oom_lock */
296 bool oom_lock;
297 int under_oom;
298
299 /* OOM-Killer disable */
300 int oom_kill_disable;
301
302 /* protect arrays of thresholds */
303 struct mutex thresholds_lock;
304
305 /* thresholds for memory usage. RCU-protected */
306 struct mem_cgroup_thresholds thresholds;
307
308 /* thresholds for mem+swap usage. RCU-protected */
309 struct mem_cgroup_thresholds memsw_thresholds;
310
311 /* For oom notifier event fd */
312 struct list_head oom_notify;
313
314 /* Legacy tcp memory accounting */
315 bool tcpmem_active;
316 int tcpmem_pressure;
317
318 /* List of events which userspace want to receive */
319 struct list_head event_list;
320 spinlock_t event_list_lock;
321#endif /* CONFIG_MEMCG_V1 */
322
323 struct mem_cgroup_per_node *nodeinfo[];
324};
325
326/*
327 * size of first charge trial.
328 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
329 * workload.
330 */
331#define MEMCG_CHARGE_BATCH 64U
332
333extern struct mem_cgroup *root_mem_cgroup;
334
335enum page_memcg_data_flags {
336 /* page->memcg_data is a pointer to an slabobj_ext vector */
337 MEMCG_DATA_OBJEXTS = (1UL << 0),
338 /* page has been accounted as a non-slab kernel page */
339 MEMCG_DATA_KMEM = (1UL << 1),
340 /* the next bit after the last actual flag */
341 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
342};
343
344#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
345
346#else /* CONFIG_MEMCG */
347
348#define __FIRST_OBJEXT_FLAG (1UL << 0)
349
350#endif /* CONFIG_MEMCG */
351
352enum objext_flags {
353 /* slabobj_ext vector failed to allocate */
354 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
355 /* the next bit after the last actual flag */
356 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
357};
358
359#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
360
361#ifdef CONFIG_MEMCG
362
363static inline bool folio_memcg_kmem(struct folio *folio);
364
365/*
366 * After the initialization objcg->memcg is always pointing at
367 * a valid memcg, but can be atomically swapped to the parent memcg.
368 *
369 * The caller must ensure that the returned memcg won't be released.
370 */
371static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
372{
373 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
374 return READ_ONCE(objcg->memcg);
375}
376
377/*
378 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
379 * @folio: Pointer to the folio.
380 *
381 * Returns a pointer to the memory cgroup associated with the folio,
382 * or NULL. This function assumes that the folio is known to have a
383 * proper memory cgroup pointer. It's not safe to call this function
384 * against some type of folios, e.g. slab folios or ex-slab folios or
385 * kmem folios.
386 */
387static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
388{
389 unsigned long memcg_data = folio->memcg_data;
390
391 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
392 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
393 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
394
395 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
396}
397
398/*
399 * __folio_objcg - get the object cgroup associated with a kmem folio.
400 * @folio: Pointer to the folio.
401 *
402 * Returns a pointer to the object cgroup associated with the folio,
403 * or NULL. This function assumes that the folio is known to have a
404 * proper object cgroup pointer. It's not safe to call this function
405 * against some type of folios, e.g. slab folios or ex-slab folios or
406 * LRU folios.
407 */
408static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
409{
410 unsigned long memcg_data = folio->memcg_data;
411
412 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
413 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
414 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
415
416 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
417}
418
419/*
420 * folio_memcg - Get the memory cgroup associated with a folio.
421 * @folio: Pointer to the folio.
422 *
423 * Returns a pointer to the memory cgroup associated with the folio,
424 * or NULL. This function assumes that the folio is known to have a
425 * proper memory cgroup pointer. It's not safe to call this function
426 * against some type of folios, e.g. slab folios or ex-slab folios.
427 *
428 * For a non-kmem folio any of the following ensures folio and memcg binding
429 * stability:
430 *
431 * - the folio lock
432 * - LRU isolation
433 * - exclusive reference
434 *
435 * For a kmem folio a caller should hold an rcu read lock to protect memcg
436 * associated with a kmem folio from being released.
437 */
438static inline struct mem_cgroup *folio_memcg(struct folio *folio)
439{
440 if (folio_memcg_kmem(folio))
441 return obj_cgroup_memcg(__folio_objcg(folio));
442 return __folio_memcg(folio);
443}
444
445/*
446 * folio_memcg_charged - If a folio is charged to a memory cgroup.
447 * @folio: Pointer to the folio.
448 *
449 * Returns true if folio is charged to a memory cgroup, otherwise returns false.
450 */
451static inline bool folio_memcg_charged(struct folio *folio)
452{
453 return folio->memcg_data != 0;
454}
455
456/*
457 * folio_memcg_check - Get the memory cgroup associated with a folio.
458 * @folio: Pointer to the folio.
459 *
460 * Returns a pointer to the memory cgroup associated with the folio,
461 * or NULL. This function unlike folio_memcg() can take any folio
462 * as an argument. It has to be used in cases when it's not known if a folio
463 * has an associated memory cgroup pointer or an object cgroups vector or
464 * an object cgroup.
465 *
466 * For a non-kmem folio any of the following ensures folio and memcg binding
467 * stability:
468 *
469 * - the folio lock
470 * - LRU isolation
471 * - exclusive reference
472 *
473 * For a kmem folio a caller should hold an rcu read lock to protect memcg
474 * associated with a kmem folio from being released.
475 */
476static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
477{
478 /*
479 * Because folio->memcg_data might be changed asynchronously
480 * for slabs, READ_ONCE() should be used here.
481 */
482 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
483
484 if (memcg_data & MEMCG_DATA_OBJEXTS)
485 return NULL;
486
487 if (memcg_data & MEMCG_DATA_KMEM) {
488 struct obj_cgroup *objcg;
489
490 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
491 return obj_cgroup_memcg(objcg);
492 }
493
494 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
495}
496
497static inline struct mem_cgroup *page_memcg_check(struct page *page)
498{
499 if (PageTail(page))
500 return NULL;
501 return folio_memcg_check((struct folio *)page);
502}
503
504static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
505{
506 struct mem_cgroup *memcg;
507
508 rcu_read_lock();
509retry:
510 memcg = obj_cgroup_memcg(objcg);
511 if (unlikely(!css_tryget(&memcg->css)))
512 goto retry;
513 rcu_read_unlock();
514
515 return memcg;
516}
517
518/*
519 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
520 * @folio: Pointer to the folio.
521 *
522 * Checks if the folio has MemcgKmem flag set. The caller must ensure
523 * that the folio has an associated memory cgroup. It's not safe to call
524 * this function against some types of folios, e.g. slab folios.
525 */
526static inline bool folio_memcg_kmem(struct folio *folio)
527{
528 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
529 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
530 return folio->memcg_data & MEMCG_DATA_KMEM;
531}
532
533static inline bool PageMemcgKmem(struct page *page)
534{
535 return folio_memcg_kmem(page_folio(page));
536}
537
538static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
539{
540 return (memcg == root_mem_cgroup);
541}
542
543static inline bool mem_cgroup_disabled(void)
544{
545 return !cgroup_subsys_enabled(memory_cgrp_subsys);
546}
547
548static inline void mem_cgroup_protection(struct mem_cgroup *root,
549 struct mem_cgroup *memcg,
550 unsigned long *min,
551 unsigned long *low)
552{
553 *min = *low = 0;
554
555 if (mem_cgroup_disabled())
556 return;
557
558 /*
559 * There is no reclaim protection applied to a targeted reclaim.
560 * We are special casing this specific case here because
561 * mem_cgroup_calculate_protection is not robust enough to keep
562 * the protection invariant for calculated effective values for
563 * parallel reclaimers with different reclaim target. This is
564 * especially a problem for tail memcgs (as they have pages on LRU)
565 * which would want to have effective values 0 for targeted reclaim
566 * but a different value for external reclaim.
567 *
568 * Example
569 * Let's have global and A's reclaim in parallel:
570 * |
571 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
572 * |\
573 * | C (low = 1G, usage = 2.5G)
574 * B (low = 1G, usage = 0.5G)
575 *
576 * For the global reclaim
577 * A.elow = A.low
578 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
579 * C.elow = min(C.usage, C.low)
580 *
581 * With the effective values resetting we have A reclaim
582 * A.elow = 0
583 * B.elow = B.low
584 * C.elow = C.low
585 *
586 * If the global reclaim races with A's reclaim then
587 * B.elow = C.elow = 0 because children_low_usage > A.elow)
588 * is possible and reclaiming B would be violating the protection.
589 *
590 */
591 if (root == memcg)
592 return;
593
594 *min = READ_ONCE(memcg->memory.emin);
595 *low = READ_ONCE(memcg->memory.elow);
596}
597
598void mem_cgroup_calculate_protection(struct mem_cgroup *root,
599 struct mem_cgroup *memcg);
600
601static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
602 struct mem_cgroup *memcg)
603{
604 /*
605 * The root memcg doesn't account charges, and doesn't support
606 * protection. The target memcg's protection is ignored, see
607 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
608 */
609 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
610 memcg == target;
611}
612
613static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
614 struct mem_cgroup *memcg)
615{
616 if (mem_cgroup_unprotected(target, memcg))
617 return false;
618
619 return READ_ONCE(memcg->memory.elow) >=
620 page_counter_read(&memcg->memory);
621}
622
623static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
624 struct mem_cgroup *memcg)
625{
626 if (mem_cgroup_unprotected(target, memcg))
627 return false;
628
629 return READ_ONCE(memcg->memory.emin) >=
630 page_counter_read(&memcg->memory);
631}
632
633int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
634
635/**
636 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
637 * @folio: Folio to charge.
638 * @mm: mm context of the allocating task.
639 * @gfp: Reclaim mode.
640 *
641 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
642 * pages according to @gfp if necessary. If @mm is NULL, try to
643 * charge to the active memcg.
644 *
645 * Do not use this for folios allocated for swapin.
646 *
647 * Return: 0 on success. Otherwise, an error code is returned.
648 */
649static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
650 gfp_t gfp)
651{
652 if (mem_cgroup_disabled())
653 return 0;
654 return __mem_cgroup_charge(folio, mm, gfp);
655}
656
657int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
658
659int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
660 gfp_t gfp, swp_entry_t entry);
661
662void __mem_cgroup_uncharge(struct folio *folio);
663
664/**
665 * mem_cgroup_uncharge - Uncharge a folio.
666 * @folio: Folio to uncharge.
667 *
668 * Uncharge a folio previously charged with mem_cgroup_charge().
669 */
670static inline void mem_cgroup_uncharge(struct folio *folio)
671{
672 if (mem_cgroup_disabled())
673 return;
674 __mem_cgroup_uncharge(folio);
675}
676
677void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
678static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
679{
680 if (mem_cgroup_disabled())
681 return;
682 __mem_cgroup_uncharge_folios(folios);
683}
684
685void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
686void mem_cgroup_migrate(struct folio *old, struct folio *new);
687
688/**
689 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
690 * @memcg: memcg of the wanted lruvec
691 * @pgdat: pglist_data
692 *
693 * Returns the lru list vector holding pages for a given @memcg &
694 * @pgdat combination. This can be the node lruvec, if the memory
695 * controller is disabled.
696 */
697static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
698 struct pglist_data *pgdat)
699{
700 struct mem_cgroup_per_node *mz;
701 struct lruvec *lruvec;
702
703 if (mem_cgroup_disabled()) {
704 lruvec = &pgdat->__lruvec;
705 goto out;
706 }
707
708 if (!memcg)
709 memcg = root_mem_cgroup;
710
711 mz = memcg->nodeinfo[pgdat->node_id];
712 lruvec = &mz->lruvec;
713out:
714 /*
715 * Since a node can be onlined after the mem_cgroup was created,
716 * we have to be prepared to initialize lruvec->pgdat here;
717 * and if offlined then reonlined, we need to reinitialize it.
718 */
719 if (unlikely(lruvec->pgdat != pgdat))
720 lruvec->pgdat = pgdat;
721 return lruvec;
722}
723
724/**
725 * folio_lruvec - return lruvec for isolating/putting an LRU folio
726 * @folio: Pointer to the folio.
727 *
728 * This function relies on folio->mem_cgroup being stable.
729 */
730static inline struct lruvec *folio_lruvec(struct folio *folio)
731{
732 struct mem_cgroup *memcg = folio_memcg(folio);
733
734 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
735 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
736}
737
738struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
739
740struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
741
742struct mem_cgroup *get_mem_cgroup_from_current(void);
743
744struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
745
746struct lruvec *folio_lruvec_lock(struct folio *folio);
747struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
748struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
749 unsigned long *flags);
750
751#ifdef CONFIG_DEBUG_VM
752void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
753#else
754static inline
755void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
756{
757}
758#endif
759
760static inline
761struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
762 return css ? container_of(css, struct mem_cgroup, css) : NULL;
763}
764
765static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
766{
767 return percpu_ref_tryget(&objcg->refcnt);
768}
769
770static inline void obj_cgroup_get(struct obj_cgroup *objcg)
771{
772 percpu_ref_get(&objcg->refcnt);
773}
774
775static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
776 unsigned long nr)
777{
778 percpu_ref_get_many(&objcg->refcnt, nr);
779}
780
781static inline void obj_cgroup_put(struct obj_cgroup *objcg)
782{
783 if (objcg)
784 percpu_ref_put(&objcg->refcnt);
785}
786
787static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
788{
789 return !memcg || css_tryget(&memcg->css);
790}
791
792static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
793{
794 return !memcg || css_tryget_online(&memcg->css);
795}
796
797static inline void mem_cgroup_put(struct mem_cgroup *memcg)
798{
799 if (memcg)
800 css_put(&memcg->css);
801}
802
803#define mem_cgroup_from_counter(counter, member) \
804 container_of(counter, struct mem_cgroup, member)
805
806struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
807 struct mem_cgroup *,
808 struct mem_cgroup_reclaim_cookie *);
809void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
810void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
811 int (*)(struct task_struct *, void *), void *arg);
812
813static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
814{
815 if (mem_cgroup_disabled())
816 return 0;
817
818 return memcg->id.id;
819}
820struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
821
822#ifdef CONFIG_SHRINKER_DEBUG
823static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
824{
825 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
826}
827
828struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
829#endif
830
831static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
832{
833 return mem_cgroup_from_css(seq_css(m));
834}
835
836static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
837{
838 struct mem_cgroup_per_node *mz;
839
840 if (mem_cgroup_disabled())
841 return NULL;
842
843 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
844 return mz->memcg;
845}
846
847/**
848 * parent_mem_cgroup - find the accounting parent of a memcg
849 * @memcg: memcg whose parent to find
850 *
851 * Returns the parent memcg, or NULL if this is the root.
852 */
853static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
854{
855 return mem_cgroup_from_css(memcg->css.parent);
856}
857
858static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
859 struct mem_cgroup *root)
860{
861 if (root == memcg)
862 return true;
863 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
864}
865
866static inline bool mm_match_cgroup(struct mm_struct *mm,
867 struct mem_cgroup *memcg)
868{
869 struct mem_cgroup *task_memcg;
870 bool match = false;
871
872 rcu_read_lock();
873 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
874 if (task_memcg)
875 match = mem_cgroup_is_descendant(task_memcg, memcg);
876 rcu_read_unlock();
877 return match;
878}
879
880struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
881ino_t page_cgroup_ino(struct page *page);
882
883static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
884{
885 if (mem_cgroup_disabled())
886 return true;
887 return !!(memcg->css.flags & CSS_ONLINE);
888}
889
890void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
891 int zid, int nr_pages);
892
893static inline
894unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
895 enum lru_list lru, int zone_idx)
896{
897 struct mem_cgroup_per_node *mz;
898
899 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
900 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
901}
902
903void mem_cgroup_handle_over_high(gfp_t gfp_mask);
904
905unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
906
907unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
908
909void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
910 struct task_struct *p);
911
912void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
913
914struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
915 struct mem_cgroup *oom_domain);
916void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
917
918/* idx can be of type enum memcg_stat_item or node_stat_item */
919void mod_memcg_state(struct mem_cgroup *memcg,
920 enum memcg_stat_item idx, int val);
921
922static inline void mod_memcg_page_state(struct page *page,
923 enum memcg_stat_item idx, int val)
924{
925 struct mem_cgroup *memcg;
926
927 if (mem_cgroup_disabled())
928 return;
929
930 rcu_read_lock();
931 memcg = folio_memcg(page_folio(page));
932 if (memcg)
933 mod_memcg_state(memcg, idx, val);
934 rcu_read_unlock();
935}
936
937unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
938unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
939unsigned long lruvec_page_state_local(struct lruvec *lruvec,
940 enum node_stat_item idx);
941
942void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
943void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
944
945void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
946
947static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
948 int val)
949{
950 unsigned long flags;
951
952 local_irq_save(flags);
953 __mod_lruvec_kmem_state(p, idx, val);
954 local_irq_restore(flags);
955}
956
957void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
958 unsigned long count);
959
960static inline void count_memcg_folio_events(struct folio *folio,
961 enum vm_event_item idx, unsigned long nr)
962{
963 struct mem_cgroup *memcg = folio_memcg(folio);
964
965 if (memcg)
966 count_memcg_events(memcg, idx, nr);
967}
968
969static inline void count_memcg_events_mm(struct mm_struct *mm,
970 enum vm_event_item idx, unsigned long count)
971{
972 struct mem_cgroup *memcg;
973
974 if (mem_cgroup_disabled())
975 return;
976
977 rcu_read_lock();
978 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
979 if (likely(memcg))
980 count_memcg_events(memcg, idx, count);
981 rcu_read_unlock();
982}
983
984static inline void count_memcg_event_mm(struct mm_struct *mm,
985 enum vm_event_item idx)
986{
987 count_memcg_events_mm(mm, idx, 1);
988}
989
990static inline void memcg_memory_event(struct mem_cgroup *memcg,
991 enum memcg_memory_event event)
992{
993 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
994 event == MEMCG_SWAP_FAIL;
995
996 atomic_long_inc(&memcg->memory_events_local[event]);
997 if (!swap_event)
998 cgroup_file_notify(&memcg->events_local_file);
999
1000 do {
1001 atomic_long_inc(&memcg->memory_events[event]);
1002 if (swap_event)
1003 cgroup_file_notify(&memcg->swap_events_file);
1004 else
1005 cgroup_file_notify(&memcg->events_file);
1006
1007 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1008 break;
1009 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1010 break;
1011 } while ((memcg = parent_mem_cgroup(memcg)) &&
1012 !mem_cgroup_is_root(memcg));
1013}
1014
1015static inline void memcg_memory_event_mm(struct mm_struct *mm,
1016 enum memcg_memory_event event)
1017{
1018 struct mem_cgroup *memcg;
1019
1020 if (mem_cgroup_disabled())
1021 return;
1022
1023 rcu_read_lock();
1024 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1025 if (likely(memcg))
1026 memcg_memory_event(memcg, event);
1027 rcu_read_unlock();
1028}
1029
1030void split_page_memcg(struct page *first, unsigned order);
1031void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1032 unsigned new_order);
1033
1034static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1035{
1036 struct mem_cgroup *memcg;
1037 u64 id;
1038
1039 if (mem_cgroup_disabled())
1040 return 0;
1041
1042 rcu_read_lock();
1043 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1044 if (!memcg)
1045 memcg = root_mem_cgroup;
1046 id = cgroup_id(memcg->css.cgroup);
1047 rcu_read_unlock();
1048 return id;
1049}
1050
1051extern int mem_cgroup_init(void);
1052#else /* CONFIG_MEMCG */
1053
1054#define MEM_CGROUP_ID_SHIFT 0
1055
1056static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1057{
1058 return NULL;
1059}
1060
1061static inline bool folio_memcg_charged(struct folio *folio)
1062{
1063 return false;
1064}
1065
1066static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1067{
1068 return NULL;
1069}
1070
1071static inline struct mem_cgroup *page_memcg_check(struct page *page)
1072{
1073 return NULL;
1074}
1075
1076static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1077{
1078 return NULL;
1079}
1080
1081static inline bool folio_memcg_kmem(struct folio *folio)
1082{
1083 return false;
1084}
1085
1086static inline bool PageMemcgKmem(struct page *page)
1087{
1088 return false;
1089}
1090
1091static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1092{
1093 return true;
1094}
1095
1096static inline bool mem_cgroup_disabled(void)
1097{
1098 return true;
1099}
1100
1101static inline void memcg_memory_event(struct mem_cgroup *memcg,
1102 enum memcg_memory_event event)
1103{
1104}
1105
1106static inline void memcg_memory_event_mm(struct mm_struct *mm,
1107 enum memcg_memory_event event)
1108{
1109}
1110
1111static inline void mem_cgroup_protection(struct mem_cgroup *root,
1112 struct mem_cgroup *memcg,
1113 unsigned long *min,
1114 unsigned long *low)
1115{
1116 *min = *low = 0;
1117}
1118
1119static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1120 struct mem_cgroup *memcg)
1121{
1122}
1123
1124static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1125 struct mem_cgroup *memcg)
1126{
1127 return true;
1128}
1129static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1130 struct mem_cgroup *memcg)
1131{
1132 return false;
1133}
1134
1135static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1136 struct mem_cgroup *memcg)
1137{
1138 return false;
1139}
1140
1141static inline int mem_cgroup_charge(struct folio *folio,
1142 struct mm_struct *mm, gfp_t gfp)
1143{
1144 return 0;
1145}
1146
1147static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1148{
1149 return 0;
1150}
1151
1152static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1153 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1154{
1155 return 0;
1156}
1157
1158static inline void mem_cgroup_uncharge(struct folio *folio)
1159{
1160}
1161
1162static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1163{
1164}
1165
1166static inline void mem_cgroup_replace_folio(struct folio *old,
1167 struct folio *new)
1168{
1169}
1170
1171static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1172{
1173}
1174
1175static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1176 struct pglist_data *pgdat)
1177{
1178 return &pgdat->__lruvec;
1179}
1180
1181static inline struct lruvec *folio_lruvec(struct folio *folio)
1182{
1183 struct pglist_data *pgdat = folio_pgdat(folio);
1184 return &pgdat->__lruvec;
1185}
1186
1187static inline
1188void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1189{
1190}
1191
1192static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1193{
1194 return NULL;
1195}
1196
1197static inline bool mm_match_cgroup(struct mm_struct *mm,
1198 struct mem_cgroup *memcg)
1199{
1200 return true;
1201}
1202
1203static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1204{
1205 return NULL;
1206}
1207
1208static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1209{
1210 return NULL;
1211}
1212
1213static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1214{
1215 return NULL;
1216}
1217
1218static inline
1219struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1220{
1221 return NULL;
1222}
1223
1224static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1225{
1226}
1227
1228static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1229{
1230}
1231
1232static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1233{
1234 return true;
1235}
1236
1237static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1238{
1239 return true;
1240}
1241
1242static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1243{
1244}
1245
1246static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1247{
1248 struct pglist_data *pgdat = folio_pgdat(folio);
1249
1250 spin_lock(&pgdat->__lruvec.lru_lock);
1251 return &pgdat->__lruvec;
1252}
1253
1254static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1255{
1256 struct pglist_data *pgdat = folio_pgdat(folio);
1257
1258 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1259 return &pgdat->__lruvec;
1260}
1261
1262static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1263 unsigned long *flagsp)
1264{
1265 struct pglist_data *pgdat = folio_pgdat(folio);
1266
1267 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1268 return &pgdat->__lruvec;
1269}
1270
1271static inline struct mem_cgroup *
1272mem_cgroup_iter(struct mem_cgroup *root,
1273 struct mem_cgroup *prev,
1274 struct mem_cgroup_reclaim_cookie *reclaim)
1275{
1276 return NULL;
1277}
1278
1279static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1280 struct mem_cgroup *prev)
1281{
1282}
1283
1284static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1285 int (*fn)(struct task_struct *, void *), void *arg)
1286{
1287}
1288
1289static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1290{
1291 return 0;
1292}
1293
1294static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1295{
1296 WARN_ON_ONCE(id);
1297 /* XXX: This should always return root_mem_cgroup */
1298 return NULL;
1299}
1300
1301#ifdef CONFIG_SHRINKER_DEBUG
1302static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1303{
1304 return 0;
1305}
1306
1307static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1308{
1309 return NULL;
1310}
1311#endif
1312
1313static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1314{
1315 return NULL;
1316}
1317
1318static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1319{
1320 return NULL;
1321}
1322
1323static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1324{
1325 return true;
1326}
1327
1328static inline
1329unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1330 enum lru_list lru, int zone_idx)
1331{
1332 return 0;
1333}
1334
1335static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1336{
1337 return 0;
1338}
1339
1340static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1341{
1342 return 0;
1343}
1344
1345static inline void
1346mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1347{
1348}
1349
1350static inline void
1351mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1352{
1353}
1354
1355static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1356{
1357}
1358
1359static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1360 struct task_struct *victim, struct mem_cgroup *oom_domain)
1361{
1362 return NULL;
1363}
1364
1365static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1366{
1367}
1368
1369static inline void mod_memcg_state(struct mem_cgroup *memcg,
1370 enum memcg_stat_item idx,
1371 int nr)
1372{
1373}
1374
1375static inline void mod_memcg_page_state(struct page *page,
1376 enum memcg_stat_item idx, int val)
1377{
1378}
1379
1380static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1381{
1382 return 0;
1383}
1384
1385static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1386 enum node_stat_item idx)
1387{
1388 return node_page_state(lruvec_pgdat(lruvec), idx);
1389}
1390
1391static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1392 enum node_stat_item idx)
1393{
1394 return node_page_state(lruvec_pgdat(lruvec), idx);
1395}
1396
1397static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1398{
1399}
1400
1401static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1402{
1403}
1404
1405static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1406 int val)
1407{
1408 struct page *page = virt_to_head_page(p);
1409
1410 __mod_node_page_state(page_pgdat(page), idx, val);
1411}
1412
1413static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1414 int val)
1415{
1416 struct page *page = virt_to_head_page(p);
1417
1418 mod_node_page_state(page_pgdat(page), idx, val);
1419}
1420
1421static inline void count_memcg_events(struct mem_cgroup *memcg,
1422 enum vm_event_item idx,
1423 unsigned long count)
1424{
1425}
1426
1427static inline void count_memcg_folio_events(struct folio *folio,
1428 enum vm_event_item idx, unsigned long nr)
1429{
1430}
1431
1432static inline void count_memcg_events_mm(struct mm_struct *mm,
1433 enum vm_event_item idx, unsigned long count)
1434{
1435}
1436
1437static inline
1438void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1439{
1440}
1441
1442static inline void split_page_memcg(struct page *first, unsigned order)
1443{
1444}
1445
1446static inline void folio_split_memcg_refs(struct folio *folio,
1447 unsigned old_order, unsigned new_order)
1448{
1449}
1450
1451static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1452{
1453 return 0;
1454}
1455
1456static inline int mem_cgroup_init(void) { return 0; }
1457#endif /* CONFIG_MEMCG */
1458
1459/*
1460 * Extended information for slab objects stored as an array in page->memcg_data
1461 * if MEMCG_DATA_OBJEXTS is set.
1462 */
1463struct slabobj_ext {
1464#ifdef CONFIG_MEMCG
1465 struct obj_cgroup *objcg;
1466#endif
1467#ifdef CONFIG_MEM_ALLOC_PROFILING
1468 union codetag_ref ref;
1469#endif
1470} __aligned(8);
1471
1472static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1473{
1474 __mod_lruvec_kmem_state(p, idx, 1);
1475}
1476
1477static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1478{
1479 __mod_lruvec_kmem_state(p, idx, -1);
1480}
1481
1482static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1483{
1484 struct mem_cgroup *memcg;
1485
1486 memcg = lruvec_memcg(lruvec);
1487 if (!memcg)
1488 return NULL;
1489 memcg = parent_mem_cgroup(memcg);
1490 if (!memcg)
1491 return NULL;
1492 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1493}
1494
1495static inline void unlock_page_lruvec(struct lruvec *lruvec)
1496{
1497 spin_unlock(&lruvec->lru_lock);
1498}
1499
1500static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1501{
1502 spin_unlock_irq(&lruvec->lru_lock);
1503}
1504
1505static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1506 unsigned long flags)
1507{
1508 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1509}
1510
1511/* Test requires a stable folio->memcg binding, see folio_memcg() */
1512static inline bool folio_matches_lruvec(struct folio *folio,
1513 struct lruvec *lruvec)
1514{
1515 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1516 lruvec_memcg(lruvec) == folio_memcg(folio);
1517}
1518
1519/* Don't lock again iff page's lruvec locked */
1520static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1521 struct lruvec *locked_lruvec)
1522{
1523 if (locked_lruvec) {
1524 if (folio_matches_lruvec(folio, locked_lruvec))
1525 return locked_lruvec;
1526
1527 unlock_page_lruvec_irq(locked_lruvec);
1528 }
1529
1530 return folio_lruvec_lock_irq(folio);
1531}
1532
1533/* Don't lock again iff folio's lruvec locked */
1534static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1535 struct lruvec **lruvecp, unsigned long *flags)
1536{
1537 if (*lruvecp) {
1538 if (folio_matches_lruvec(folio, *lruvecp))
1539 return;
1540
1541 unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1542 }
1543
1544 *lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1545}
1546
1547#ifdef CONFIG_CGROUP_WRITEBACK
1548
1549struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1550void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1551 unsigned long *pheadroom, unsigned long *pdirty,
1552 unsigned long *pwriteback);
1553
1554void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1555 struct bdi_writeback *wb);
1556
1557static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1558 struct bdi_writeback *wb)
1559{
1560 struct mem_cgroup *memcg;
1561
1562 if (mem_cgroup_disabled())
1563 return;
1564
1565 memcg = folio_memcg(folio);
1566 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1567 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1568}
1569
1570void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1571
1572#else /* CONFIG_CGROUP_WRITEBACK */
1573
1574static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1575{
1576 return NULL;
1577}
1578
1579static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1580 unsigned long *pfilepages,
1581 unsigned long *pheadroom,
1582 unsigned long *pdirty,
1583 unsigned long *pwriteback)
1584{
1585}
1586
1587static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1588 struct bdi_writeback *wb)
1589{
1590}
1591
1592static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1593{
1594}
1595
1596#endif /* CONFIG_CGROUP_WRITEBACK */
1597
1598struct sock;
1599bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1600 gfp_t gfp_mask);
1601void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1602#ifdef CONFIG_MEMCG
1603extern struct static_key_false memcg_sockets_enabled_key;
1604#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1605void mem_cgroup_sk_alloc(struct sock *sk);
1606void mem_cgroup_sk_free(struct sock *sk);
1607
1608#if BITS_PER_LONG < 64
1609static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1610{
1611 u64 val = get_jiffies_64() + HZ;
1612 unsigned long flags;
1613
1614 write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags);
1615 memcg->socket_pressure = val;
1616 write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags);
1617}
1618
1619static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1620{
1621 unsigned int seq;
1622 u64 val;
1623
1624 do {
1625 seq = read_seqbegin(&memcg->socket_pressure_seqlock);
1626 val = memcg->socket_pressure;
1627 } while (read_seqretry(&memcg->socket_pressure_seqlock, seq));
1628
1629 return val;
1630}
1631#else
1632static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1633{
1634 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ);
1635}
1636
1637static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1638{
1639 return READ_ONCE(memcg->socket_pressure);
1640}
1641#endif
1642
1643static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1644{
1645#ifdef CONFIG_MEMCG_V1
1646 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1647 return !!memcg->tcpmem_pressure;
1648#endif /* CONFIG_MEMCG_V1 */
1649 do {
1650 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg)))
1651 return true;
1652 } while ((memcg = parent_mem_cgroup(memcg)));
1653 return false;
1654}
1655
1656int alloc_shrinker_info(struct mem_cgroup *memcg);
1657void free_shrinker_info(struct mem_cgroup *memcg);
1658void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1659void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1660#else
1661#define mem_cgroup_sockets_enabled 0
1662static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1663static inline void mem_cgroup_sk_free(struct sock *sk) { };
1664static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1665{
1666 return false;
1667}
1668
1669static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1670 int nid, int shrinker_id)
1671{
1672}
1673#endif
1674
1675#ifdef CONFIG_MEMCG
1676bool mem_cgroup_kmem_disabled(void);
1677int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1678void __memcg_kmem_uncharge_page(struct page *page, int order);
1679
1680/*
1681 * The returned objcg pointer is safe to use without additional
1682 * protection within a scope. The scope is defined either by
1683 * the current task (similar to the "current" global variable)
1684 * or by set_active_memcg() pair.
1685 * Please, use obj_cgroup_get() to get a reference if the pointer
1686 * needs to be used outside of the local scope.
1687 */
1688struct obj_cgroup *current_obj_cgroup(void);
1689struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1690
1691static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1692{
1693 struct obj_cgroup *objcg = current_obj_cgroup();
1694
1695 if (objcg)
1696 obj_cgroup_get(objcg);
1697
1698 return objcg;
1699}
1700
1701int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1702void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1703
1704extern struct static_key_false memcg_bpf_enabled_key;
1705static inline bool memcg_bpf_enabled(void)
1706{
1707 return static_branch_likely(&memcg_bpf_enabled_key);
1708}
1709
1710extern struct static_key_false memcg_kmem_online_key;
1711
1712static inline bool memcg_kmem_online(void)
1713{
1714 return static_branch_likely(&memcg_kmem_online_key);
1715}
1716
1717static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1718 int order)
1719{
1720 if (memcg_kmem_online())
1721 return __memcg_kmem_charge_page(page, gfp, order);
1722 return 0;
1723}
1724
1725static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1726{
1727 if (memcg_kmem_online())
1728 __memcg_kmem_uncharge_page(page, order);
1729}
1730
1731/*
1732 * A helper for accessing memcg's kmem_id, used for getting
1733 * corresponding LRU lists.
1734 */
1735static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1736{
1737 return memcg ? memcg->kmemcg_id : -1;
1738}
1739
1740struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1741
1742static inline void count_objcg_events(struct obj_cgroup *objcg,
1743 enum vm_event_item idx,
1744 unsigned long count)
1745{
1746 struct mem_cgroup *memcg;
1747
1748 if (!memcg_kmem_online())
1749 return;
1750
1751 rcu_read_lock();
1752 memcg = obj_cgroup_memcg(objcg);
1753 count_memcg_events(memcg, idx, count);
1754 rcu_read_unlock();
1755}
1756
1757bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid);
1758
1759#else
1760static inline bool mem_cgroup_kmem_disabled(void)
1761{
1762 return true;
1763}
1764
1765static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1766 int order)
1767{
1768 return 0;
1769}
1770
1771static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1772{
1773}
1774
1775static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1776 int order)
1777{
1778 return 0;
1779}
1780
1781static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1782{
1783}
1784
1785static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1786{
1787 return NULL;
1788}
1789
1790static inline bool memcg_bpf_enabled(void)
1791{
1792 return false;
1793}
1794
1795static inline bool memcg_kmem_online(void)
1796{
1797 return false;
1798}
1799
1800static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1801{
1802 return -1;
1803}
1804
1805static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1806{
1807 return NULL;
1808}
1809
1810static inline void count_objcg_events(struct obj_cgroup *objcg,
1811 enum vm_event_item idx,
1812 unsigned long count)
1813{
1814}
1815
1816static inline ino_t page_cgroup_ino(struct page *page)
1817{
1818 return 0;
1819}
1820
1821static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
1822{
1823 return true;
1824}
1825#endif /* CONFIG_MEMCG */
1826
1827#if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1828bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1829void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1830void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1831bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1832#else
1833static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1834{
1835 return true;
1836}
1837static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1838 size_t size)
1839{
1840}
1841static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1842 size_t size)
1843{
1844}
1845static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1846{
1847 /* if zswap is disabled, do not block pages going to the swapping device */
1848 return true;
1849}
1850#endif
1851
1852
1853/* Cgroup v1-related declarations */
1854
1855#ifdef CONFIG_MEMCG_V1
1856unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1857 gfp_t gfp_mask,
1858 unsigned long *total_scanned);
1859
1860bool mem_cgroup_oom_synchronize(bool wait);
1861
1862static inline bool task_in_memcg_oom(struct task_struct *p)
1863{
1864 return p->memcg_in_oom;
1865}
1866
1867static inline void mem_cgroup_enter_user_fault(void)
1868{
1869 WARN_ON(current->in_user_fault);
1870 current->in_user_fault = 1;
1871}
1872
1873static inline void mem_cgroup_exit_user_fault(void)
1874{
1875 WARN_ON(!current->in_user_fault);
1876 current->in_user_fault = 0;
1877}
1878
1879void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1880void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1881
1882#else /* CONFIG_MEMCG_V1 */
1883static inline
1884unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1885 gfp_t gfp_mask,
1886 unsigned long *total_scanned)
1887{
1888 return 0;
1889}
1890
1891static inline bool task_in_memcg_oom(struct task_struct *p)
1892{
1893 return false;
1894}
1895
1896static inline bool mem_cgroup_oom_synchronize(bool wait)
1897{
1898 return false;
1899}
1900
1901static inline void mem_cgroup_enter_user_fault(void)
1902{
1903}
1904
1905static inline void mem_cgroup_exit_user_fault(void)
1906{
1907}
1908
1909static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1910{
1911}
1912
1913static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1914{
1915}
1916
1917#endif /* CONFIG_MEMCG_V1 */
1918
1919#endif /* _LINUX_MEMCONTROL_H */