at v6.17 80 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <linux/ftrace.h> 33#include <linux/hashtable.h> 34#include <linux/instrumentation.h> 35#include <linux/interval_tree.h> 36#include <linux/rbtree.h> 37#include <linux/xarray.h> 38#include <asm/signal.h> 39 40#include <linux/kvm.h> 41#include <linux/kvm_para.h> 42 43#include <linux/kvm_types.h> 44 45#include <asm/kvm_host.h> 46#include <linux/kvm_dirty_ring.h> 47 48#ifndef KVM_MAX_VCPU_IDS 49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50#endif 51 52/* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57#define KVM_MEMSLOT_INVALID (1UL << 16) 58 59/* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80/* Two fragments for cross MMIO pages. */ 81#define KVM_MAX_MMIO_FRAGMENTS 2 82 83#ifndef KVM_MAX_NR_ADDRESS_SPACES 84#define KVM_MAX_NR_ADDRESS_SPACES 1 85#endif 86 87/* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94#define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102/* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106static inline bool is_error_pfn(kvm_pfn_t pfn) 107{ 108 return !!(pfn & KVM_PFN_ERR_MASK); 109} 110 111/* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116{ 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118} 119 120/* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126{ 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128} 129 130/* noslot pfn indicates that the gfn is not in slot. */ 131static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132{ 133 return pfn == KVM_PFN_NOSLOT; 134} 135 136/* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140#ifndef KVM_HVA_ERR_BAD 141 142#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145static inline bool kvm_is_error_hva(unsigned long addr) 146{ 147 return addr >= PAGE_OFFSET; 148} 149 150#endif 151 152static inline bool kvm_is_error_gpa(gpa_t gpa) 153{ 154 return gpa == INVALID_GPA; 155} 156 157#define KVM_REQUEST_MASK GENMASK(7,0) 158#define KVM_REQUEST_NO_WAKEUP BIT(8) 159#define KVM_REQUEST_WAIT BIT(9) 160#define KVM_REQUEST_NO_ACTION BIT(10) 161/* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167#define KVM_REQ_UNBLOCK 2 168#define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169#define KVM_REQUEST_ARCH_BASE 8 170 171/* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184}) 185#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191#define KVM_USERSPACE_IRQ_SOURCE_ID 0 192#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193#define KVM_PIT_IRQ_SOURCE_ID 2 194 195extern struct mutex kvm_lock; 196extern struct list_head vm_list; 197 198struct kvm_io_range { 199 gpa_t addr; 200 int len; 201 struct kvm_io_device *dev; 202}; 203 204#define NR_IOBUS_DEVS 1000 205 206struct kvm_io_bus { 207 int dev_count; 208 int ioeventfd_count; 209 struct kvm_io_range range[]; 210}; 211 212enum kvm_bus { 213 KVM_MMIO_BUS, 214 KVM_PIO_BUS, 215 KVM_VIRTIO_CCW_NOTIFY_BUS, 216 KVM_FAST_MMIO_BUS, 217 KVM_IOCSR_BUS, 218 KVM_NR_BUSES 219}; 220 221int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 222 int len, const void *val); 223int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 224 gpa_t addr, int len, const void *val, long cookie); 225int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 226 int len, void *val); 227int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 228 int len, struct kvm_io_device *dev); 229int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 230 struct kvm_io_device *dev); 231struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 232 gpa_t addr); 233 234#ifdef CONFIG_KVM_ASYNC_PF 235struct kvm_async_pf { 236 struct work_struct work; 237 struct list_head link; 238 struct list_head queue; 239 struct kvm_vcpu *vcpu; 240 gpa_t cr2_or_gpa; 241 unsigned long addr; 242 struct kvm_arch_async_pf arch; 243 bool wakeup_all; 244 bool notpresent_injected; 245}; 246 247void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 248void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 249bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 250 unsigned long hva, struct kvm_arch_async_pf *arch); 251int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 252#endif 253 254#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 255union kvm_mmu_notifier_arg { 256 unsigned long attributes; 257}; 258 259enum kvm_gfn_range_filter { 260 KVM_FILTER_SHARED = BIT(0), 261 KVM_FILTER_PRIVATE = BIT(1), 262}; 263 264struct kvm_gfn_range { 265 struct kvm_memory_slot *slot; 266 gfn_t start; 267 gfn_t end; 268 union kvm_mmu_notifier_arg arg; 269 enum kvm_gfn_range_filter attr_filter; 270 bool may_block; 271 bool lockless; 272}; 273bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 274bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 275bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 276#endif 277 278enum { 279 OUTSIDE_GUEST_MODE, 280 IN_GUEST_MODE, 281 EXITING_GUEST_MODE, 282 READING_SHADOW_PAGE_TABLES, 283}; 284 285struct kvm_host_map { 286 /* 287 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 288 * a 'struct page' for it. When using mem= kernel parameter some memory 289 * can be used as guest memory but they are not managed by host 290 * kernel). 291 */ 292 struct page *pinned_page; 293 struct page *page; 294 void *hva; 295 kvm_pfn_t pfn; 296 kvm_pfn_t gfn; 297 bool writable; 298}; 299 300/* 301 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 302 * directly to check for that. 303 */ 304static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 305{ 306 return !!map->hva; 307} 308 309static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 310{ 311 return single_task_running() && !need_resched() && ktime_before(cur, stop); 312} 313 314/* 315 * Sometimes a large or cross-page mmio needs to be broken up into separate 316 * exits for userspace servicing. 317 */ 318struct kvm_mmio_fragment { 319 gpa_t gpa; 320 void *data; 321 unsigned len; 322}; 323 324struct kvm_vcpu { 325 struct kvm *kvm; 326#ifdef CONFIG_PREEMPT_NOTIFIERS 327 struct preempt_notifier preempt_notifier; 328#endif 329 int cpu; 330 int vcpu_id; /* id given by userspace at creation */ 331 int vcpu_idx; /* index into kvm->vcpu_array */ 332 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 333#ifdef CONFIG_PROVE_RCU 334 int srcu_depth; 335#endif 336 int mode; 337 u64 requests; 338 unsigned long guest_debug; 339 340 struct mutex mutex; 341 struct kvm_run *run; 342 343#ifndef __KVM_HAVE_ARCH_WQP 344 struct rcuwait wait; 345#endif 346 struct pid *pid; 347 rwlock_t pid_lock; 348 int sigset_active; 349 sigset_t sigset; 350 unsigned int halt_poll_ns; 351 bool valid_wakeup; 352 353#ifdef CONFIG_HAS_IOMEM 354 int mmio_needed; 355 int mmio_read_completed; 356 int mmio_is_write; 357 int mmio_cur_fragment; 358 int mmio_nr_fragments; 359 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 360#endif 361 362#ifdef CONFIG_KVM_ASYNC_PF 363 struct { 364 u32 queued; 365 struct list_head queue; 366 struct list_head done; 367 spinlock_t lock; 368 } async_pf; 369#endif 370 371#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 372 /* 373 * Cpu relax intercept or pause loop exit optimization 374 * in_spin_loop: set when a vcpu does a pause loop exit 375 * or cpu relax intercepted. 376 * dy_eligible: indicates whether vcpu is eligible for directed yield. 377 */ 378 struct { 379 bool in_spin_loop; 380 bool dy_eligible; 381 } spin_loop; 382#endif 383 bool wants_to_run; 384 bool preempted; 385 bool ready; 386 bool scheduled_out; 387 struct kvm_vcpu_arch arch; 388 struct kvm_vcpu_stat stat; 389 char stats_id[KVM_STATS_NAME_SIZE]; 390 struct kvm_dirty_ring dirty_ring; 391 392 /* 393 * The most recently used memslot by this vCPU and the slots generation 394 * for which it is valid. 395 * No wraparound protection is needed since generations won't overflow in 396 * thousands of years, even assuming 1M memslot operations per second. 397 */ 398 struct kvm_memory_slot *last_used_slot; 399 u64 last_used_slot_gen; 400}; 401 402/* 403 * Start accounting time towards a guest. 404 * Must be called before entering guest context. 405 */ 406static __always_inline void guest_timing_enter_irqoff(void) 407{ 408 /* 409 * This is running in ioctl context so its safe to assume that it's the 410 * stime pending cputime to flush. 411 */ 412 instrumentation_begin(); 413 vtime_account_guest_enter(); 414 instrumentation_end(); 415} 416 417/* 418 * Enter guest context and enter an RCU extended quiescent state. 419 * 420 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 421 * unsafe to use any code which may directly or indirectly use RCU, tracing 422 * (including IRQ flag tracing), or lockdep. All code in this period must be 423 * non-instrumentable. 424 */ 425static __always_inline void guest_context_enter_irqoff(void) 426{ 427 /* 428 * KVM does not hold any references to rcu protected data when it 429 * switches CPU into a guest mode. In fact switching to a guest mode 430 * is very similar to exiting to userspace from rcu point of view. In 431 * addition CPU may stay in a guest mode for quite a long time (up to 432 * one time slice). Lets treat guest mode as quiescent state, just like 433 * we do with user-mode execution. 434 */ 435 if (!context_tracking_guest_enter()) { 436 instrumentation_begin(); 437 rcu_virt_note_context_switch(); 438 instrumentation_end(); 439 } 440} 441 442/* 443 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 444 * guest_state_enter_irqoff(). 445 */ 446static __always_inline void guest_enter_irqoff(void) 447{ 448 guest_timing_enter_irqoff(); 449 guest_context_enter_irqoff(); 450} 451 452/** 453 * guest_state_enter_irqoff - Fixup state when entering a guest 454 * 455 * Entry to a guest will enable interrupts, but the kernel state is interrupts 456 * disabled when this is invoked. Also tell RCU about it. 457 * 458 * 1) Trace interrupts on state 459 * 2) Invoke context tracking if enabled to adjust RCU state 460 * 3) Tell lockdep that interrupts are enabled 461 * 462 * Invoked from architecture specific code before entering a guest. 463 * Must be called with interrupts disabled and the caller must be 464 * non-instrumentable. 465 * The caller has to invoke guest_timing_enter_irqoff() before this. 466 * 467 * Note: this is analogous to exit_to_user_mode(). 468 */ 469static __always_inline void guest_state_enter_irqoff(void) 470{ 471 instrumentation_begin(); 472 trace_hardirqs_on_prepare(); 473 lockdep_hardirqs_on_prepare(); 474 instrumentation_end(); 475 476 guest_context_enter_irqoff(); 477 lockdep_hardirqs_on(CALLER_ADDR0); 478} 479 480/* 481 * Exit guest context and exit an RCU extended quiescent state. 482 * 483 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 484 * unsafe to use any code which may directly or indirectly use RCU, tracing 485 * (including IRQ flag tracing), or lockdep. All code in this period must be 486 * non-instrumentable. 487 */ 488static __always_inline void guest_context_exit_irqoff(void) 489{ 490 /* 491 * Guest mode is treated as a quiescent state, see 492 * guest_context_enter_irqoff() for more details. 493 */ 494 if (!context_tracking_guest_exit()) { 495 instrumentation_begin(); 496 rcu_virt_note_context_switch(); 497 instrumentation_end(); 498 } 499} 500 501/* 502 * Stop accounting time towards a guest. 503 * Must be called after exiting guest context. 504 */ 505static __always_inline void guest_timing_exit_irqoff(void) 506{ 507 instrumentation_begin(); 508 /* Flush the guest cputime we spent on the guest */ 509 vtime_account_guest_exit(); 510 instrumentation_end(); 511} 512 513/* 514 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 515 * guest_timing_exit_irqoff(). 516 */ 517static __always_inline void guest_exit_irqoff(void) 518{ 519 guest_context_exit_irqoff(); 520 guest_timing_exit_irqoff(); 521} 522 523static inline void guest_exit(void) 524{ 525 unsigned long flags; 526 527 local_irq_save(flags); 528 guest_exit_irqoff(); 529 local_irq_restore(flags); 530} 531 532/** 533 * guest_state_exit_irqoff - Establish state when returning from guest mode 534 * 535 * Entry from a guest disables interrupts, but guest mode is traced as 536 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 537 * 538 * 1) Tell lockdep that interrupts are disabled 539 * 2) Invoke context tracking if enabled to reactivate RCU 540 * 3) Trace interrupts off state 541 * 542 * Invoked from architecture specific code after exiting a guest. 543 * Must be invoked with interrupts disabled and the caller must be 544 * non-instrumentable. 545 * The caller has to invoke guest_timing_exit_irqoff() after this. 546 * 547 * Note: this is analogous to enter_from_user_mode(). 548 */ 549static __always_inline void guest_state_exit_irqoff(void) 550{ 551 lockdep_hardirqs_off(CALLER_ADDR0); 552 guest_context_exit_irqoff(); 553 554 instrumentation_begin(); 555 trace_hardirqs_off_finish(); 556 instrumentation_end(); 557} 558 559static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 560{ 561 /* 562 * The memory barrier ensures a previous write to vcpu->requests cannot 563 * be reordered with the read of vcpu->mode. It pairs with the general 564 * memory barrier following the write of vcpu->mode in VCPU RUN. 565 */ 566 smp_mb__before_atomic(); 567 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 568} 569 570/* 571 * Some of the bitops functions do not support too long bitmaps. 572 * This number must be determined not to exceed such limits. 573 */ 574#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 575 576/* 577 * Since at idle each memslot belongs to two memslot sets it has to contain 578 * two embedded nodes for each data structure that it forms a part of. 579 * 580 * Two memslot sets (one active and one inactive) are necessary so the VM 581 * continues to run on one memslot set while the other is being modified. 582 * 583 * These two memslot sets normally point to the same set of memslots. 584 * They can, however, be desynchronized when performing a memslot management 585 * operation by replacing the memslot to be modified by its copy. 586 * After the operation is complete, both memslot sets once again point to 587 * the same, common set of memslot data. 588 * 589 * The memslots themselves are independent of each other so they can be 590 * individually added or deleted. 591 */ 592struct kvm_memory_slot { 593 struct hlist_node id_node[2]; 594 struct interval_tree_node hva_node[2]; 595 struct rb_node gfn_node[2]; 596 gfn_t base_gfn; 597 unsigned long npages; 598 unsigned long *dirty_bitmap; 599 struct kvm_arch_memory_slot arch; 600 unsigned long userspace_addr; 601 u32 flags; 602 short id; 603 u16 as_id; 604 605#ifdef CONFIG_KVM_PRIVATE_MEM 606 struct { 607 /* 608 * Writes protected by kvm->slots_lock. Acquiring a 609 * reference via kvm_gmem_get_file() is protected by 610 * either kvm->slots_lock or kvm->srcu. 611 */ 612 struct file *file; 613 pgoff_t pgoff; 614 } gmem; 615#endif 616}; 617 618static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 619{ 620 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 621} 622 623static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 624{ 625 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 626} 627 628static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 629{ 630 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 631} 632 633static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 634{ 635 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 636 637 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 638} 639 640#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 641#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 642#endif 643 644struct kvm_s390_adapter_int { 645 u64 ind_addr; 646 u64 summary_addr; 647 u64 ind_offset; 648 u32 summary_offset; 649 u32 adapter_id; 650}; 651 652struct kvm_hv_sint { 653 u32 vcpu; 654 u32 sint; 655}; 656 657struct kvm_xen_evtchn { 658 u32 port; 659 u32 vcpu_id; 660 int vcpu_idx; 661 u32 priority; 662}; 663 664struct kvm_kernel_irq_routing_entry { 665 u32 gsi; 666 u32 type; 667 int (*set)(struct kvm_kernel_irq_routing_entry *e, 668 struct kvm *kvm, int irq_source_id, int level, 669 bool line_status); 670 union { 671 struct { 672 unsigned irqchip; 673 unsigned pin; 674 } irqchip; 675 struct { 676 u32 address_lo; 677 u32 address_hi; 678 u32 data; 679 u32 flags; 680 u32 devid; 681 } msi; 682 struct kvm_s390_adapter_int adapter; 683 struct kvm_hv_sint hv_sint; 684 struct kvm_xen_evtchn xen_evtchn; 685 }; 686 struct hlist_node link; 687}; 688 689#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 690struct kvm_irq_routing_table { 691 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 692 u32 nr_rt_entries; 693 /* 694 * Array indexed by gsi. Each entry contains list of irq chips 695 * the gsi is connected to. 696 */ 697 struct hlist_head map[] __counted_by(nr_rt_entries); 698}; 699#endif 700 701bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 702 703#ifndef KVM_INTERNAL_MEM_SLOTS 704#define KVM_INTERNAL_MEM_SLOTS 0 705#endif 706 707#define KVM_MEM_SLOTS_NUM SHRT_MAX 708#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 709 710#if KVM_MAX_NR_ADDRESS_SPACES == 1 711static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 712{ 713 return KVM_MAX_NR_ADDRESS_SPACES; 714} 715 716static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 717{ 718 return 0; 719} 720#endif 721 722/* 723 * Arch code must define kvm_arch_has_private_mem if support for private memory 724 * is enabled. 725 */ 726#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 727static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 728{ 729 return false; 730} 731#endif 732 733#ifndef kvm_arch_has_readonly_mem 734static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 735{ 736 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 737} 738#endif 739 740struct kvm_memslots { 741 u64 generation; 742 atomic_long_t last_used_slot; 743 struct rb_root_cached hva_tree; 744 struct rb_root gfn_tree; 745 /* 746 * The mapping table from slot id to memslot. 747 * 748 * 7-bit bucket count matches the size of the old id to index array for 749 * 512 slots, while giving good performance with this slot count. 750 * Higher bucket counts bring only small performance improvements but 751 * always result in higher memory usage (even for lower memslot counts). 752 */ 753 DECLARE_HASHTABLE(id_hash, 7); 754 int node_idx; 755}; 756 757struct kvm { 758#ifdef KVM_HAVE_MMU_RWLOCK 759 rwlock_t mmu_lock; 760#else 761 spinlock_t mmu_lock; 762#endif /* KVM_HAVE_MMU_RWLOCK */ 763 764 struct mutex slots_lock; 765 766 /* 767 * Protects the arch-specific fields of struct kvm_memory_slots in 768 * use by the VM. To be used under the slots_lock (above) or in a 769 * kvm->srcu critical section where acquiring the slots_lock would 770 * lead to deadlock with the synchronize_srcu in 771 * kvm_swap_active_memslots(). 772 */ 773 struct mutex slots_arch_lock; 774 struct mm_struct *mm; /* userspace tied to this vm */ 775 unsigned long nr_memslot_pages; 776 /* The two memslot sets - active and inactive (per address space) */ 777 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 778 /* The current active memslot set for each address space */ 779 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 780 struct xarray vcpu_array; 781 /* 782 * Protected by slots_lock, but can be read outside if an 783 * incorrect answer is acceptable. 784 */ 785 atomic_t nr_memslots_dirty_logging; 786 787 /* Used to wait for completion of MMU notifiers. */ 788 spinlock_t mn_invalidate_lock; 789 unsigned long mn_active_invalidate_count; 790 struct rcuwait mn_memslots_update_rcuwait; 791 792 /* For management / invalidation of gfn_to_pfn_caches */ 793 spinlock_t gpc_lock; 794 struct list_head gpc_list; 795 796 /* 797 * created_vcpus is protected by kvm->lock, and is incremented 798 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 799 * incremented after storing the kvm_vcpu pointer in vcpus, 800 * and is accessed atomically. 801 */ 802 atomic_t online_vcpus; 803 int max_vcpus; 804 int created_vcpus; 805 int last_boosted_vcpu; 806 struct list_head vm_list; 807 struct mutex lock; 808 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 809#ifdef CONFIG_HAVE_KVM_IRQCHIP 810 struct { 811 spinlock_t lock; 812 struct list_head items; 813 /* resampler_list update side is protected by resampler_lock. */ 814 struct list_head resampler_list; 815 struct mutex resampler_lock; 816 } irqfds; 817#endif 818 struct list_head ioeventfds; 819 struct kvm_vm_stat stat; 820 struct kvm_arch arch; 821 refcount_t users_count; 822#ifdef CONFIG_KVM_MMIO 823 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 824 spinlock_t ring_lock; 825 struct list_head coalesced_zones; 826#endif 827 828 struct mutex irq_lock; 829#ifdef CONFIG_HAVE_KVM_IRQCHIP 830 /* 831 * Update side is protected by irq_lock. 832 */ 833 struct kvm_irq_routing_table __rcu *irq_routing; 834 835 struct hlist_head irq_ack_notifier_list; 836#endif 837 838#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 839 struct mmu_notifier mmu_notifier; 840 unsigned long mmu_invalidate_seq; 841 long mmu_invalidate_in_progress; 842 gfn_t mmu_invalidate_range_start; 843 gfn_t mmu_invalidate_range_end; 844#endif 845 struct list_head devices; 846 u64 manual_dirty_log_protect; 847 struct dentry *debugfs_dentry; 848 struct kvm_stat_data **debugfs_stat_data; 849 struct srcu_struct srcu; 850 struct srcu_struct irq_srcu; 851 pid_t userspace_pid; 852 bool override_halt_poll_ns; 853 unsigned int max_halt_poll_ns; 854 u32 dirty_ring_size; 855 bool dirty_ring_with_bitmap; 856 bool vm_bugged; 857 bool vm_dead; 858 859#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 860 struct notifier_block pm_notifier; 861#endif 862#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 863 /* Protected by slots_locks (for writes) and RCU (for reads) */ 864 struct xarray mem_attr_array; 865#endif 866 char stats_id[KVM_STATS_NAME_SIZE]; 867}; 868 869#define kvm_err(fmt, ...) \ 870 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 871#define kvm_info(fmt, ...) \ 872 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 873#define kvm_debug(fmt, ...) \ 874 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 875#define kvm_debug_ratelimited(fmt, ...) \ 876 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 877 ## __VA_ARGS__) 878#define kvm_pr_unimpl(fmt, ...) \ 879 pr_err_ratelimited("kvm [%i]: " fmt, \ 880 task_tgid_nr(current), ## __VA_ARGS__) 881 882/* The guest did something we don't support. */ 883#define vcpu_unimpl(vcpu, fmt, ...) \ 884 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 885 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 886 887#define vcpu_debug(vcpu, fmt, ...) \ 888 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 889#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 890 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 891 ## __VA_ARGS__) 892#define vcpu_err(vcpu, fmt, ...) \ 893 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 894 895static inline void kvm_vm_dead(struct kvm *kvm) 896{ 897 kvm->vm_dead = true; 898 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 899} 900 901static inline void kvm_vm_bugged(struct kvm *kvm) 902{ 903 kvm->vm_bugged = true; 904 kvm_vm_dead(kvm); 905} 906 907 908#define KVM_BUG(cond, kvm, fmt...) \ 909({ \ 910 bool __ret = !!(cond); \ 911 \ 912 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 913 kvm_vm_bugged(kvm); \ 914 unlikely(__ret); \ 915}) 916 917#define KVM_BUG_ON(cond, kvm) \ 918({ \ 919 bool __ret = !!(cond); \ 920 \ 921 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 922 kvm_vm_bugged(kvm); \ 923 unlikely(__ret); \ 924}) 925 926/* 927 * Note, "data corruption" refers to corruption of host kernel data structures, 928 * not guest data. Guest data corruption, suspected or confirmed, that is tied 929 * and contained to a single VM should *never* BUG() and potentially panic the 930 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 931 * is corrupted and that corruption can have a cascading effect to other parts 932 * of the hosts and/or to other VMs. 933 */ 934#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 935({ \ 936 bool __ret = !!(cond); \ 937 \ 938 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 939 BUG_ON(__ret); \ 940 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 941 kvm_vm_bugged(kvm); \ 942 unlikely(__ret); \ 943}) 944 945static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 946{ 947#ifdef CONFIG_PROVE_RCU 948 WARN_ONCE(vcpu->srcu_depth++, 949 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 950#endif 951 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 952} 953 954static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 955{ 956 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 957 958#ifdef CONFIG_PROVE_RCU 959 WARN_ONCE(--vcpu->srcu_depth, 960 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 961#endif 962} 963 964static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 965{ 966 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 967} 968 969static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 970{ 971 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 972 lockdep_is_held(&kvm->slots_lock) || 973 !refcount_read(&kvm->users_count)); 974} 975 976static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 977{ 978 int num_vcpus = atomic_read(&kvm->online_vcpus); 979 980 /* 981 * Explicitly verify the target vCPU is online, as the anti-speculation 982 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 983 * index, clamping the index to 0 would return vCPU0, not NULL. 984 */ 985 if (i >= num_vcpus) 986 return NULL; 987 988 i = array_index_nospec(i, num_vcpus); 989 990 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 991 smp_rmb(); 992 return xa_load(&kvm->vcpu_array, i); 993} 994 995#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 996 if (atomic_read(&kvm->online_vcpus)) \ 997 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 998 (atomic_read(&kvm->online_vcpus) - 1)) 999 1000static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 1001{ 1002 struct kvm_vcpu *vcpu = NULL; 1003 unsigned long i; 1004 1005 if (id < 0) 1006 return NULL; 1007 if (id < KVM_MAX_VCPUS) 1008 vcpu = kvm_get_vcpu(kvm, id); 1009 if (vcpu && vcpu->vcpu_id == id) 1010 return vcpu; 1011 kvm_for_each_vcpu(i, vcpu, kvm) 1012 if (vcpu->vcpu_id == id) 1013 return vcpu; 1014 return NULL; 1015} 1016 1017void kvm_destroy_vcpus(struct kvm *kvm); 1018 1019int kvm_trylock_all_vcpus(struct kvm *kvm); 1020int kvm_lock_all_vcpus(struct kvm *kvm); 1021void kvm_unlock_all_vcpus(struct kvm *kvm); 1022 1023void vcpu_load(struct kvm_vcpu *vcpu); 1024void vcpu_put(struct kvm_vcpu *vcpu); 1025 1026#ifdef CONFIG_KVM_IOAPIC 1027void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1028#else 1029static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1030{ 1031} 1032#endif 1033 1034#ifdef CONFIG_HAVE_KVM_IRQCHIP 1035int kvm_irqfd_init(void); 1036void kvm_irqfd_exit(void); 1037#else 1038static inline int kvm_irqfd_init(void) 1039{ 1040 return 0; 1041} 1042 1043static inline void kvm_irqfd_exit(void) 1044{ 1045} 1046#endif 1047int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1048void kvm_exit(void); 1049 1050void kvm_get_kvm(struct kvm *kvm); 1051bool kvm_get_kvm_safe(struct kvm *kvm); 1052void kvm_put_kvm(struct kvm *kvm); 1053bool file_is_kvm(struct file *file); 1054void kvm_put_kvm_no_destroy(struct kvm *kvm); 1055 1056static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1057{ 1058 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1059 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1060 lockdep_is_held(&kvm->slots_lock) || 1061 !refcount_read(&kvm->users_count)); 1062} 1063 1064static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1065{ 1066 return __kvm_memslots(kvm, 0); 1067} 1068 1069static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1070{ 1071 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1072 1073 return __kvm_memslots(vcpu->kvm, as_id); 1074} 1075 1076static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1077{ 1078 return RB_EMPTY_ROOT(&slots->gfn_tree); 1079} 1080 1081bool kvm_are_all_memslots_empty(struct kvm *kvm); 1082 1083#define kvm_for_each_memslot(memslot, bkt, slots) \ 1084 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1085 if (WARN_ON_ONCE(!memslot->npages)) { \ 1086 } else 1087 1088static inline 1089struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1090{ 1091 struct kvm_memory_slot *slot; 1092 int idx = slots->node_idx; 1093 1094 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1095 if (slot->id == id) 1096 return slot; 1097 } 1098 1099 return NULL; 1100} 1101 1102/* Iterator used for walking memslots that overlap a gfn range. */ 1103struct kvm_memslot_iter { 1104 struct kvm_memslots *slots; 1105 struct rb_node *node; 1106 struct kvm_memory_slot *slot; 1107}; 1108 1109static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1110{ 1111 iter->node = rb_next(iter->node); 1112 if (!iter->node) 1113 return; 1114 1115 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1116} 1117 1118static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1119 struct kvm_memslots *slots, 1120 gfn_t start) 1121{ 1122 int idx = slots->node_idx; 1123 struct rb_node *tmp; 1124 struct kvm_memory_slot *slot; 1125 1126 iter->slots = slots; 1127 1128 /* 1129 * Find the so called "upper bound" of a key - the first node that has 1130 * its key strictly greater than the searched one (the start gfn in our case). 1131 */ 1132 iter->node = NULL; 1133 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1134 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1135 if (start < slot->base_gfn) { 1136 iter->node = tmp; 1137 tmp = tmp->rb_left; 1138 } else { 1139 tmp = tmp->rb_right; 1140 } 1141 } 1142 1143 /* 1144 * Find the slot with the lowest gfn that can possibly intersect with 1145 * the range, so we'll ideally have slot start <= range start 1146 */ 1147 if (iter->node) { 1148 /* 1149 * A NULL previous node means that the very first slot 1150 * already has a higher start gfn. 1151 * In this case slot start > range start. 1152 */ 1153 tmp = rb_prev(iter->node); 1154 if (tmp) 1155 iter->node = tmp; 1156 } else { 1157 /* a NULL node below means no slots */ 1158 iter->node = rb_last(&slots->gfn_tree); 1159 } 1160 1161 if (iter->node) { 1162 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1163 1164 /* 1165 * It is possible in the slot start < range start case that the 1166 * found slot ends before or at range start (slot end <= range start) 1167 * and so it does not overlap the requested range. 1168 * 1169 * In such non-overlapping case the next slot (if it exists) will 1170 * already have slot start > range start, otherwise the logic above 1171 * would have found it instead of the current slot. 1172 */ 1173 if (iter->slot->base_gfn + iter->slot->npages <= start) 1174 kvm_memslot_iter_next(iter); 1175 } 1176} 1177 1178static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1179{ 1180 if (!iter->node) 1181 return false; 1182 1183 /* 1184 * If this slot starts beyond or at the end of the range so does 1185 * every next one 1186 */ 1187 return iter->slot->base_gfn < end; 1188} 1189 1190/* Iterate over each memslot at least partially intersecting [start, end) range */ 1191#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1192 for (kvm_memslot_iter_start(iter, slots, start); \ 1193 kvm_memslot_iter_is_valid(iter, end); \ 1194 kvm_memslot_iter_next(iter)) 1195 1196struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1197struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1198struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1199 1200/* 1201 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1202 * - create a new memory slot 1203 * - delete an existing memory slot 1204 * - modify an existing memory slot 1205 * -- move it in the guest physical memory space 1206 * -- just change its flags 1207 * 1208 * Since flags can be changed by some of these operations, the following 1209 * differentiation is the best we can do for kvm_set_memory_region(): 1210 */ 1211enum kvm_mr_change { 1212 KVM_MR_CREATE, 1213 KVM_MR_DELETE, 1214 KVM_MR_MOVE, 1215 KVM_MR_FLAGS_ONLY, 1216}; 1217 1218int kvm_set_internal_memslot(struct kvm *kvm, 1219 const struct kvm_userspace_memory_region2 *mem); 1220void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1221void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1222int kvm_arch_prepare_memory_region(struct kvm *kvm, 1223 const struct kvm_memory_slot *old, 1224 struct kvm_memory_slot *new, 1225 enum kvm_mr_change change); 1226void kvm_arch_commit_memory_region(struct kvm *kvm, 1227 struct kvm_memory_slot *old, 1228 const struct kvm_memory_slot *new, 1229 enum kvm_mr_change change); 1230/* flush all memory translations */ 1231void kvm_arch_flush_shadow_all(struct kvm *kvm); 1232/* flush memory translations pointing to 'slot' */ 1233void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1234 struct kvm_memory_slot *slot); 1235 1236int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1237 struct page **pages, int nr_pages); 1238 1239struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1240static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1241{ 1242 return __gfn_to_page(kvm, gfn, true); 1243} 1244 1245unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1246unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1247unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1248unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1249 bool *writable); 1250 1251static inline void kvm_release_page_unused(struct page *page) 1252{ 1253 if (!page) 1254 return; 1255 1256 put_page(page); 1257} 1258 1259void kvm_release_page_clean(struct page *page); 1260void kvm_release_page_dirty(struct page *page); 1261 1262static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1263 bool unused, bool dirty) 1264{ 1265 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1266 1267 if (!page) 1268 return; 1269 1270 /* 1271 * If the page that KVM got from the *primary MMU* is writable, and KVM 1272 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1273 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1274 * the GFN is write-protected. Folios can't be safely marked dirty 1275 * outside of mmu_lock as doing so could race with writeback on the 1276 * folio. As a result, KVM can't mark folios dirty in the fast page 1277 * fault handler, and so KVM must (somewhat) speculatively mark the 1278 * folio dirty if KVM could locklessly make the SPTE writable. 1279 */ 1280 if (unused) 1281 kvm_release_page_unused(page); 1282 else if (dirty) 1283 kvm_release_page_dirty(page); 1284 else 1285 kvm_release_page_clean(page); 1286} 1287 1288kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1289 unsigned int foll, bool *writable, 1290 struct page **refcounted_page); 1291 1292static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1293 bool write, bool *writable, 1294 struct page **refcounted_page) 1295{ 1296 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1297 write ? FOLL_WRITE : 0, writable, refcounted_page); 1298} 1299 1300int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1301 int len); 1302int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1303int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1304 void *data, unsigned long len); 1305int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1306 void *data, unsigned int offset, 1307 unsigned long len); 1308int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1309 int offset, int len); 1310int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1311 unsigned long len); 1312int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1313 void *data, unsigned long len); 1314int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1315 void *data, unsigned int offset, 1316 unsigned long len); 1317int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1318 gpa_t gpa, unsigned long len); 1319 1320#define __kvm_get_guest(kvm, gfn, offset, v) \ 1321({ \ 1322 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1323 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1324 int __ret = -EFAULT; \ 1325 \ 1326 if (!kvm_is_error_hva(__addr)) \ 1327 __ret = get_user(v, __uaddr); \ 1328 __ret; \ 1329}) 1330 1331#define kvm_get_guest(kvm, gpa, v) \ 1332({ \ 1333 gpa_t __gpa = gpa; \ 1334 struct kvm *__kvm = kvm; \ 1335 \ 1336 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1337 offset_in_page(__gpa), v); \ 1338}) 1339 1340#define __kvm_put_guest(kvm, gfn, offset, v) \ 1341({ \ 1342 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1343 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1344 int __ret = -EFAULT; \ 1345 \ 1346 if (!kvm_is_error_hva(__addr)) \ 1347 __ret = put_user(v, __uaddr); \ 1348 if (!__ret) \ 1349 mark_page_dirty(kvm, gfn); \ 1350 __ret; \ 1351}) 1352 1353#define kvm_put_guest(kvm, gpa, v) \ 1354({ \ 1355 gpa_t __gpa = gpa; \ 1356 struct kvm *__kvm = kvm; \ 1357 \ 1358 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1359 offset_in_page(__gpa), v); \ 1360}) 1361 1362int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1363bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1364bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1365unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1366void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1367void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1368 1369int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1370 bool writable); 1371void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1372 1373static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1374 struct kvm_host_map *map) 1375{ 1376 return __kvm_vcpu_map(vcpu, gpa, map, true); 1377} 1378 1379static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1380 struct kvm_host_map *map) 1381{ 1382 return __kvm_vcpu_map(vcpu, gpa, map, false); 1383} 1384 1385unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1386unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1387int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1388 int len); 1389int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1390 unsigned long len); 1391int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1392 unsigned long len); 1393int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1394 int offset, int len); 1395int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1396 unsigned long len); 1397void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1398 1399/** 1400 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1401 * 1402 * @gpc: struct gfn_to_pfn_cache object. 1403 * @kvm: pointer to kvm instance. 1404 * 1405 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1406 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1407 * the caller before init). 1408 */ 1409void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1410 1411/** 1412 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1413 * physical address. 1414 * 1415 * @gpc: struct gfn_to_pfn_cache object. 1416 * @gpa: guest physical address to map. 1417 * @len: sanity check; the range being access must fit a single page. 1418 * 1419 * @return: 0 for success. 1420 * -EINVAL for a mapping which would cross a page boundary. 1421 * -EFAULT for an untranslatable guest physical address. 1422 * 1423 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1424 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1425 * to ensure that the cache is valid before accessing the target page. 1426 */ 1427int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1428 1429/** 1430 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1431 * 1432 * @gpc: struct gfn_to_pfn_cache object. 1433 * @hva: userspace virtual address to map. 1434 * @len: sanity check; the range being access must fit a single page. 1435 * 1436 * @return: 0 for success. 1437 * -EINVAL for a mapping which would cross a page boundary. 1438 * -EFAULT for an untranslatable guest physical address. 1439 * 1440 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1441 * merely bypasses a layer of address translation. 1442 */ 1443int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1444 1445/** 1446 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1447 * 1448 * @gpc: struct gfn_to_pfn_cache object. 1449 * @len: sanity check; the range being access must fit a single page. 1450 * 1451 * @return: %true if the cache is still valid and the address matches. 1452 * %false if the cache is not valid. 1453 * 1454 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1455 * while calling this function, and then continue to hold the lock until the 1456 * access is complete. 1457 * 1458 * Callers in IN_GUEST_MODE may do so without locking, although they should 1459 * still hold a read lock on kvm->scru for the memslot checks. 1460 */ 1461bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1462 1463/** 1464 * kvm_gpc_refresh - update a previously initialized cache. 1465 * 1466 * @gpc: struct gfn_to_pfn_cache object. 1467 * @len: sanity check; the range being access must fit a single page. 1468 * 1469 * @return: 0 for success. 1470 * -EINVAL for a mapping which would cross a page boundary. 1471 * -EFAULT for an untranslatable guest physical address. 1472 * 1473 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1474 * return from this function does not mean the page can be immediately 1475 * accessed because it may have raced with an invalidation. Callers must 1476 * still lock and check the cache status, as this function does not return 1477 * with the lock still held to permit access. 1478 */ 1479int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1480 1481/** 1482 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1483 * 1484 * @gpc: struct gfn_to_pfn_cache object. 1485 * 1486 * This removes a cache from the VM's list to be processed on MMU notifier 1487 * invocation. 1488 */ 1489void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1490 1491static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1492{ 1493 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1494} 1495 1496static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1497{ 1498 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1499} 1500 1501void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1502void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1503 1504void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1505bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1506void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1507void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1508bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1509 1510#ifndef CONFIG_S390 1511void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait); 1512 1513static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1514{ 1515 __kvm_vcpu_kick(vcpu, false); 1516} 1517#endif 1518 1519int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1520void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1521 1522void kvm_flush_remote_tlbs(struct kvm *kvm); 1523void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1524void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1525 const struct kvm_memory_slot *memslot); 1526 1527#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1528int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1529int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1530int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1531void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1532void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1533#endif 1534 1535void kvm_mmu_invalidate_begin(struct kvm *kvm); 1536void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1537void kvm_mmu_invalidate_end(struct kvm *kvm); 1538bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1539 1540long kvm_arch_dev_ioctl(struct file *filp, 1541 unsigned int ioctl, unsigned long arg); 1542long kvm_arch_vcpu_ioctl(struct file *filp, 1543 unsigned int ioctl, unsigned long arg); 1544vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1545 1546int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1547 1548void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1549 struct kvm_memory_slot *slot, 1550 gfn_t gfn_offset, 1551 unsigned long mask); 1552void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1553 1554#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1555int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1556int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1557 int *is_dirty, struct kvm_memory_slot **memslot); 1558#endif 1559 1560int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1561 bool line_status); 1562int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1563 struct kvm_enable_cap *cap); 1564int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1565long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1566 unsigned long arg); 1567 1568int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1569int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1570 1571int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1572 struct kvm_translation *tr); 1573 1574int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1575int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1576int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1577 struct kvm_sregs *sregs); 1578int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1579 struct kvm_sregs *sregs); 1580int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1581 struct kvm_mp_state *mp_state); 1582int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1583 struct kvm_mp_state *mp_state); 1584int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1585 struct kvm_guest_debug *dbg); 1586int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1587 1588void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1589void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1590int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1591int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1592void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1593void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1594 1595#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1596int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1597#endif 1598 1599#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1600void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1601#else 1602static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1603#endif 1604 1605#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1606/* 1607 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1608 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1609 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1610 * sequence, and at the end of the generic hardware disabling sequence. 1611 */ 1612void kvm_arch_enable_virtualization(void); 1613void kvm_arch_disable_virtualization(void); 1614/* 1615 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1616 * do the actual twiddling of hardware bits. The hooks are called on all 1617 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1618 * when that CPU is onlined/offlined (including for Resume/Suspend). 1619 */ 1620int kvm_arch_enable_virtualization_cpu(void); 1621void kvm_arch_disable_virtualization_cpu(void); 1622#endif 1623bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu); 1624int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1625bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1626int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1627bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1628bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1629bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1630void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1631void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1632 1633#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1634/* 1635 * All architectures that want to use vzalloc currently also 1636 * need their own kvm_arch_alloc_vm implementation. 1637 */ 1638static inline struct kvm *kvm_arch_alloc_vm(void) 1639{ 1640 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1641} 1642#endif 1643 1644static inline void __kvm_arch_free_vm(struct kvm *kvm) 1645{ 1646 kvfree(kvm); 1647} 1648 1649#ifndef __KVM_HAVE_ARCH_VM_FREE 1650static inline void kvm_arch_free_vm(struct kvm *kvm) 1651{ 1652 __kvm_arch_free_vm(kvm); 1653} 1654#endif 1655 1656#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1657static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1658{ 1659 return -ENOTSUPP; 1660} 1661#else 1662int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1663#endif 1664 1665#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1666static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1667 gfn_t gfn, u64 nr_pages) 1668{ 1669 return -EOPNOTSUPP; 1670} 1671#else 1672int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1673#endif 1674 1675#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1676void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1677void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1678bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1679#else 1680static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1681{ 1682} 1683 1684static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1685{ 1686} 1687 1688static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1689{ 1690 return false; 1691} 1692#endif 1693 1694static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1695{ 1696#ifdef __KVM_HAVE_ARCH_WQP 1697 return vcpu->arch.waitp; 1698#else 1699 return &vcpu->wait; 1700#endif 1701} 1702 1703/* 1704 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1705 * true if the vCPU was blocking and was awakened, false otherwise. 1706 */ 1707static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1708{ 1709 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1710} 1711 1712static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1713{ 1714 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1715} 1716 1717#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1718/* 1719 * returns true if the virtual interrupt controller is initialized and 1720 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1721 * controller is dynamically instantiated and this is not always true. 1722 */ 1723bool kvm_arch_intc_initialized(struct kvm *kvm); 1724#else 1725static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1726{ 1727 return true; 1728} 1729#endif 1730 1731#ifdef CONFIG_GUEST_PERF_EVENTS 1732unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1733 1734void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1735void kvm_unregister_perf_callbacks(void); 1736#else 1737static inline void kvm_register_perf_callbacks(void *ign) {} 1738static inline void kvm_unregister_perf_callbacks(void) {} 1739#endif /* CONFIG_GUEST_PERF_EVENTS */ 1740 1741int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1742void kvm_arch_destroy_vm(struct kvm *kvm); 1743 1744int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1745 1746struct kvm_irq_ack_notifier { 1747 struct hlist_node link; 1748 unsigned gsi; 1749 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1750}; 1751 1752int kvm_irq_map_gsi(struct kvm *kvm, 1753 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1754int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1755 1756int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1757 bool line_status); 1758int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1759 int irq_source_id, int level, bool line_status); 1760int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1761 struct kvm *kvm, int irq_source_id, 1762 int level, bool line_status); 1763bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1764void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1765void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1766void kvm_register_irq_ack_notifier(struct kvm *kvm, 1767 struct kvm_irq_ack_notifier *kian); 1768void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1769 struct kvm_irq_ack_notifier *kian); 1770bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1771 1772/* 1773 * Returns a pointer to the memslot if it contains gfn. 1774 * Otherwise returns NULL. 1775 */ 1776static inline struct kvm_memory_slot * 1777try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1778{ 1779 if (!slot) 1780 return NULL; 1781 1782 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1783 return slot; 1784 else 1785 return NULL; 1786} 1787 1788/* 1789 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1790 * 1791 * With "approx" set returns the memslot also when the address falls 1792 * in a hole. In that case one of the memslots bordering the hole is 1793 * returned. 1794 */ 1795static inline struct kvm_memory_slot * 1796search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1797{ 1798 struct kvm_memory_slot *slot; 1799 struct rb_node *node; 1800 int idx = slots->node_idx; 1801 1802 slot = NULL; 1803 for (node = slots->gfn_tree.rb_node; node; ) { 1804 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1805 if (gfn >= slot->base_gfn) { 1806 if (gfn < slot->base_gfn + slot->npages) 1807 return slot; 1808 node = node->rb_right; 1809 } else 1810 node = node->rb_left; 1811 } 1812 1813 return approx ? slot : NULL; 1814} 1815 1816static inline struct kvm_memory_slot * 1817____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1818{ 1819 struct kvm_memory_slot *slot; 1820 1821 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1822 slot = try_get_memslot(slot, gfn); 1823 if (slot) 1824 return slot; 1825 1826 slot = search_memslots(slots, gfn, approx); 1827 if (slot) { 1828 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1829 return slot; 1830 } 1831 1832 return NULL; 1833} 1834 1835/* 1836 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1837 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1838 * because that would bloat other code too much. 1839 */ 1840static inline struct kvm_memory_slot * 1841__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1842{ 1843 return ____gfn_to_memslot(slots, gfn, false); 1844} 1845 1846static inline unsigned long 1847__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1848{ 1849 /* 1850 * The index was checked originally in search_memslots. To avoid 1851 * that a malicious guest builds a Spectre gadget out of e.g. page 1852 * table walks, do not let the processor speculate loads outside 1853 * the guest's registered memslots. 1854 */ 1855 unsigned long offset = gfn - slot->base_gfn; 1856 offset = array_index_nospec(offset, slot->npages); 1857 return slot->userspace_addr + offset * PAGE_SIZE; 1858} 1859 1860static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1861{ 1862 return gfn_to_memslot(kvm, gfn)->id; 1863} 1864 1865static inline gfn_t 1866hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1867{ 1868 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1869 1870 return slot->base_gfn + gfn_offset; 1871} 1872 1873static inline gpa_t gfn_to_gpa(gfn_t gfn) 1874{ 1875 return (gpa_t)gfn << PAGE_SHIFT; 1876} 1877 1878static inline gfn_t gpa_to_gfn(gpa_t gpa) 1879{ 1880 return (gfn_t)(gpa >> PAGE_SHIFT); 1881} 1882 1883static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1884{ 1885 return (hpa_t)pfn << PAGE_SHIFT; 1886} 1887 1888static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1889{ 1890 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1891 1892 return !kvm_is_error_hva(hva); 1893} 1894 1895static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1896{ 1897 lockdep_assert_held(&gpc->lock); 1898 1899 if (!gpc->memslot) 1900 return; 1901 1902 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1903} 1904 1905enum kvm_stat_kind { 1906 KVM_STAT_VM, 1907 KVM_STAT_VCPU, 1908}; 1909 1910struct kvm_stat_data { 1911 struct kvm *kvm; 1912 const struct _kvm_stats_desc *desc; 1913 enum kvm_stat_kind kind; 1914}; 1915 1916struct _kvm_stats_desc { 1917 struct kvm_stats_desc desc; 1918 char name[KVM_STATS_NAME_SIZE]; 1919}; 1920 1921#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1922 .flags = type | unit | base | \ 1923 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1924 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1925 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1926 .exponent = exp, \ 1927 .size = sz, \ 1928 .bucket_size = bsz 1929 1930#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1931 { \ 1932 { \ 1933 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1934 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1935 }, \ 1936 .name = #stat, \ 1937 } 1938#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1939 { \ 1940 { \ 1941 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1942 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1943 }, \ 1944 .name = #stat, \ 1945 } 1946#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1947 { \ 1948 { \ 1949 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1950 .offset = offsetof(struct kvm_vm_stat, stat) \ 1951 }, \ 1952 .name = #stat, \ 1953 } 1954#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1955 { \ 1956 { \ 1957 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1958 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1959 }, \ 1960 .name = #stat, \ 1961 } 1962/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1963#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1964 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1965 1966#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1967 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1968 unit, base, exponent, 1, 0) 1969#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1970 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1971 unit, base, exponent, 1, 0) 1972#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1973 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1974 unit, base, exponent, 1, 0) 1975#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1976 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1977 unit, base, exponent, sz, bsz) 1978#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1979 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1980 unit, base, exponent, sz, 0) 1981 1982/* Cumulative counter, read/write */ 1983#define STATS_DESC_COUNTER(SCOPE, name) \ 1984 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1985 KVM_STATS_BASE_POW10, 0) 1986/* Instantaneous counter, read only */ 1987#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1988 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1989 KVM_STATS_BASE_POW10, 0) 1990/* Peak counter, read/write */ 1991#define STATS_DESC_PCOUNTER(SCOPE, name) \ 1992 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1993 KVM_STATS_BASE_POW10, 0) 1994 1995/* Instantaneous boolean value, read only */ 1996#define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1997 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1998 KVM_STATS_BASE_POW10, 0) 1999/* Peak (sticky) boolean value, read/write */ 2000#define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2001 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2002 KVM_STATS_BASE_POW10, 0) 2003 2004/* Cumulative time in nanosecond */ 2005#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2006 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2007 KVM_STATS_BASE_POW10, -9) 2008/* Linear histogram for time in nanosecond */ 2009#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2010 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2011 KVM_STATS_BASE_POW10, -9, sz, bsz) 2012/* Logarithmic histogram for time in nanosecond */ 2013#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2014 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2015 KVM_STATS_BASE_POW10, -9, sz) 2016 2017#define KVM_GENERIC_VM_STATS() \ 2018 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2019 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2020 2021#define KVM_GENERIC_VCPU_STATS() \ 2022 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2023 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2024 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2025 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2026 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2027 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2028 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2029 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2030 HALT_POLL_HIST_COUNT), \ 2031 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2032 HALT_POLL_HIST_COUNT), \ 2033 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2034 HALT_POLL_HIST_COUNT), \ 2035 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2036 2037ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2038 const struct _kvm_stats_desc *desc, 2039 void *stats, size_t size_stats, 2040 char __user *user_buffer, size_t size, loff_t *offset); 2041 2042/** 2043 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2044 * statistics data. 2045 * 2046 * @data: start address of the stats data 2047 * @size: the number of bucket of the stats data 2048 * @value: the new value used to update the linear histogram's bucket 2049 * @bucket_size: the size (width) of a bucket 2050 */ 2051static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2052 u64 value, size_t bucket_size) 2053{ 2054 size_t index = div64_u64(value, bucket_size); 2055 2056 index = min(index, size - 1); 2057 ++data[index]; 2058} 2059 2060/** 2061 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2062 * statistics data. 2063 * 2064 * @data: start address of the stats data 2065 * @size: the number of bucket of the stats data 2066 * @value: the new value used to update the logarithmic histogram's bucket 2067 */ 2068static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2069{ 2070 size_t index = fls64(value); 2071 2072 index = min(index, size - 1); 2073 ++data[index]; 2074} 2075 2076#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2077 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2078#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2079 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2080 2081 2082extern const struct kvm_stats_header kvm_vm_stats_header; 2083extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2084extern const struct kvm_stats_header kvm_vcpu_stats_header; 2085extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2086 2087#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2088static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2089{ 2090 if (unlikely(kvm->mmu_invalidate_in_progress)) 2091 return 1; 2092 /* 2093 * Ensure the read of mmu_invalidate_in_progress happens before 2094 * the read of mmu_invalidate_seq. This interacts with the 2095 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2096 * that the caller either sees the old (non-zero) value of 2097 * mmu_invalidate_in_progress or the new (incremented) value of 2098 * mmu_invalidate_seq. 2099 * 2100 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2101 * than under kvm->mmu_lock, for scalability, so can't rely on 2102 * kvm->mmu_lock to keep things ordered. 2103 */ 2104 smp_rmb(); 2105 if (kvm->mmu_invalidate_seq != mmu_seq) 2106 return 1; 2107 return 0; 2108} 2109 2110static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2111 unsigned long mmu_seq, 2112 gfn_t gfn) 2113{ 2114 lockdep_assert_held(&kvm->mmu_lock); 2115 /* 2116 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2117 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2118 * that might be being invalidated. Note that it may include some false 2119 * positives, due to shortcuts when handing concurrent invalidations. 2120 */ 2121 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2122 /* 2123 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2124 * but before updating the range is a KVM bug. 2125 */ 2126 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2127 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2128 return 1; 2129 2130 if (gfn >= kvm->mmu_invalidate_range_start && 2131 gfn < kvm->mmu_invalidate_range_end) 2132 return 1; 2133 } 2134 2135 if (kvm->mmu_invalidate_seq != mmu_seq) 2136 return 1; 2137 return 0; 2138} 2139 2140/* 2141 * This lockless version of the range-based retry check *must* be paired with a 2142 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2143 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2144 * get false negatives and false positives. 2145 */ 2146static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2147 unsigned long mmu_seq, 2148 gfn_t gfn) 2149{ 2150 /* 2151 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2152 * are always read from memory, e.g. so that checking for retry in a 2153 * loop won't result in an infinite retry loop. Don't force loads for 2154 * start+end, as the key to avoiding infinite retry loops is observing 2155 * the 1=>0 transition of in-progress, i.e. getting false negatives 2156 * due to stale start+end values is acceptable. 2157 */ 2158 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2159 gfn >= kvm->mmu_invalidate_range_start && 2160 gfn < kvm->mmu_invalidate_range_end) 2161 return true; 2162 2163 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2164} 2165#endif 2166 2167#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2168 2169#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2170 2171bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2172int kvm_set_irq_routing(struct kvm *kvm, 2173 const struct kvm_irq_routing_entry *entries, 2174 unsigned nr, 2175 unsigned flags); 2176int kvm_init_irq_routing(struct kvm *kvm); 2177int kvm_set_routing_entry(struct kvm *kvm, 2178 struct kvm_kernel_irq_routing_entry *e, 2179 const struct kvm_irq_routing_entry *ue); 2180void kvm_free_irq_routing(struct kvm *kvm); 2181 2182#else 2183 2184static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2185 2186static inline int kvm_init_irq_routing(struct kvm *kvm) 2187{ 2188 return 0; 2189} 2190 2191#endif 2192 2193int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2194 2195void kvm_eventfd_init(struct kvm *kvm); 2196int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2197 2198#ifdef CONFIG_HAVE_KVM_IRQCHIP 2199int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2200void kvm_irqfd_release(struct kvm *kvm); 2201bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2202 unsigned int irqchip, 2203 unsigned int pin); 2204void kvm_irq_routing_update(struct kvm *); 2205#else 2206static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2207{ 2208 return -EINVAL; 2209} 2210 2211static inline void kvm_irqfd_release(struct kvm *kvm) {} 2212 2213static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2214 unsigned int irqchip, 2215 unsigned int pin) 2216{ 2217 return false; 2218} 2219#endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2220 2221void kvm_arch_irq_routing_update(struct kvm *kvm); 2222 2223static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2224{ 2225 /* 2226 * Ensure the rest of the request is published to kvm_check_request's 2227 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2228 */ 2229 smp_wmb(); 2230 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2231} 2232 2233static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2234{ 2235 /* 2236 * Request that don't require vCPU action should never be logged in 2237 * vcpu->requests. The vCPU won't clear the request, so it will stay 2238 * logged indefinitely and prevent the vCPU from entering the guest. 2239 */ 2240 BUILD_BUG_ON(!__builtin_constant_p(req) || 2241 (req & KVM_REQUEST_NO_ACTION)); 2242 2243 __kvm_make_request(req, vcpu); 2244} 2245 2246#ifndef CONFIG_S390 2247static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu) 2248{ 2249 kvm_make_request(req, vcpu); 2250 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT); 2251} 2252#endif 2253 2254static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2255{ 2256 return READ_ONCE(vcpu->requests); 2257} 2258 2259static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2260{ 2261 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2262} 2263 2264static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2265{ 2266 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2267} 2268 2269static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2270{ 2271 if (kvm_test_request(req, vcpu)) { 2272 kvm_clear_request(req, vcpu); 2273 2274 /* 2275 * Ensure the rest of the request is visible to kvm_check_request's 2276 * caller. Paired with the smp_wmb in kvm_make_request. 2277 */ 2278 smp_mb__after_atomic(); 2279 return true; 2280 } else { 2281 return false; 2282 } 2283} 2284 2285#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2286extern bool enable_virt_at_load; 2287extern bool kvm_rebooting; 2288#endif 2289 2290extern unsigned int halt_poll_ns; 2291extern unsigned int halt_poll_ns_grow; 2292extern unsigned int halt_poll_ns_grow_start; 2293extern unsigned int halt_poll_ns_shrink; 2294 2295struct kvm_device { 2296 const struct kvm_device_ops *ops; 2297 struct kvm *kvm; 2298 void *private; 2299 struct list_head vm_node; 2300}; 2301 2302/* create, destroy, and name are mandatory */ 2303struct kvm_device_ops { 2304 const char *name; 2305 2306 /* 2307 * create is called holding kvm->lock and any operations not suitable 2308 * to do while holding the lock should be deferred to init (see 2309 * below). 2310 */ 2311 int (*create)(struct kvm_device *dev, u32 type); 2312 2313 /* 2314 * init is called after create if create is successful and is called 2315 * outside of holding kvm->lock. 2316 */ 2317 void (*init)(struct kvm_device *dev); 2318 2319 /* 2320 * Destroy is responsible for freeing dev. 2321 * 2322 * Destroy may be called before or after destructors are called 2323 * on emulated I/O regions, depending on whether a reference is 2324 * held by a vcpu or other kvm component that gets destroyed 2325 * after the emulated I/O. 2326 */ 2327 void (*destroy)(struct kvm_device *dev); 2328 2329 /* 2330 * Release is an alternative method to free the device. It is 2331 * called when the device file descriptor is closed. Once 2332 * release is called, the destroy method will not be called 2333 * anymore as the device is removed from the device list of 2334 * the VM. kvm->lock is held. 2335 */ 2336 void (*release)(struct kvm_device *dev); 2337 2338 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2339 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2340 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2341 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2342 unsigned long arg); 2343 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2344}; 2345 2346struct kvm_device *kvm_device_from_filp(struct file *filp); 2347int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2348void kvm_unregister_device_ops(u32 type); 2349 2350extern struct kvm_device_ops kvm_mpic_ops; 2351extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2352extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2353 2354#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2355 2356static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2357{ 2358 vcpu->spin_loop.in_spin_loop = val; 2359} 2360static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2361{ 2362 vcpu->spin_loop.dy_eligible = val; 2363} 2364 2365#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2366 2367static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2368{ 2369} 2370 2371static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2372{ 2373} 2374#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2375 2376static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2377{ 2378 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2379 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2380} 2381 2382struct kvm_vcpu *kvm_get_running_vcpu(void); 2383struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2384 2385#if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS) 2386struct kvm_kernel_irqfd; 2387 2388bool kvm_arch_has_irq_bypass(void); 2389int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2390 struct irq_bypass_producer *); 2391void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2392 struct irq_bypass_producer *); 2393void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2394void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2395void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd, 2396 struct kvm_kernel_irq_routing_entry *old, 2397 struct kvm_kernel_irq_routing_entry *new); 2398#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2399 2400#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2401/* If we wakeup during the poll time, was it a sucessful poll? */ 2402static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2403{ 2404 return vcpu->valid_wakeup; 2405} 2406 2407#else 2408static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2409{ 2410 return true; 2411} 2412#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2413 2414#ifdef CONFIG_HAVE_KVM_NO_POLL 2415/* Callback that tells if we must not poll */ 2416bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2417#else 2418static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2419{ 2420 return false; 2421} 2422#endif /* CONFIG_HAVE_KVM_NO_POLL */ 2423 2424#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2425long kvm_arch_vcpu_async_ioctl(struct file *filp, 2426 unsigned int ioctl, unsigned long arg); 2427#else 2428static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2429 unsigned int ioctl, 2430 unsigned long arg) 2431{ 2432 return -ENOIOCTLCMD; 2433} 2434#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2435 2436void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2437 2438#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2439int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2440#else 2441static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2442{ 2443 return 0; 2444} 2445#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2446 2447#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2448static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2449{ 2450 vcpu->run->exit_reason = KVM_EXIT_INTR; 2451 vcpu->stat.signal_exits++; 2452} 2453#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2454 2455/* 2456 * If more than one page is being (un)accounted, @virt must be the address of 2457 * the first page of a block of pages what were allocated together (i.e 2458 * accounted together). 2459 * 2460 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2461 * is thread-safe. 2462 */ 2463static inline void kvm_account_pgtable_pages(void *virt, int nr) 2464{ 2465 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2466} 2467 2468/* 2469 * This defines how many reserved entries we want to keep before we 2470 * kick the vcpu to the userspace to avoid dirty ring full. This 2471 * value can be tuned to higher if e.g. PML is enabled on the host. 2472 */ 2473#define KVM_DIRTY_RING_RSVD_ENTRIES 64 2474 2475/* Max number of entries allowed for each kvm dirty ring */ 2476#define KVM_DIRTY_RING_MAX_ENTRIES 65536 2477 2478static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2479 gpa_t gpa, gpa_t size, 2480 bool is_write, bool is_exec, 2481 bool is_private) 2482{ 2483 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2484 vcpu->run->memory_fault.gpa = gpa; 2485 vcpu->run->memory_fault.size = size; 2486 2487 /* RWX flags are not (yet) defined or communicated to userspace. */ 2488 vcpu->run->memory_fault.flags = 0; 2489 if (is_private) 2490 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2491} 2492 2493#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2494static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2495{ 2496 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2497} 2498 2499bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2500 unsigned long mask, unsigned long attrs); 2501bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2502 struct kvm_gfn_range *range); 2503bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2504 struct kvm_gfn_range *range); 2505 2506static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2507{ 2508 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2509 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2510} 2511#else 2512static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2513{ 2514 return false; 2515} 2516#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2517 2518#ifdef CONFIG_KVM_PRIVATE_MEM 2519int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2520 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2521 int *max_order); 2522#else 2523static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2524 struct kvm_memory_slot *slot, gfn_t gfn, 2525 kvm_pfn_t *pfn, struct page **page, 2526 int *max_order) 2527{ 2528 KVM_BUG_ON(1, kvm); 2529 return -EIO; 2530} 2531#endif /* CONFIG_KVM_PRIVATE_MEM */ 2532 2533#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2534int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2535#endif 2536 2537#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2538/** 2539 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2540 * 2541 * @kvm: KVM instance 2542 * @gfn: starting GFN to be populated 2543 * @src: userspace-provided buffer containing data to copy into GFN range 2544 * (passed to @post_populate, and incremented on each iteration 2545 * if not NULL) 2546 * @npages: number of pages to copy from userspace-buffer 2547 * @post_populate: callback to issue for each gmem page that backs the GPA 2548 * range 2549 * @opaque: opaque data to pass to @post_populate callback 2550 * 2551 * This is primarily intended for cases where a gmem-backed GPA range needs 2552 * to be initialized with userspace-provided data prior to being mapped into 2553 * the guest as a private page. This should be called with the slots->lock 2554 * held so that caller-enforced invariants regarding the expected memory 2555 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2556 * 2557 * Returns the number of pages that were populated. 2558 */ 2559typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2560 void __user *src, int order, void *opaque); 2561 2562long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2563 kvm_gmem_populate_cb post_populate, void *opaque); 2564#endif 2565 2566#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2567void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2568#endif 2569 2570#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2571long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2572 struct kvm_pre_fault_memory *range); 2573#endif 2574 2575#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2576int kvm_enable_virtualization(void); 2577void kvm_disable_virtualization(void); 2578#else 2579static inline int kvm_enable_virtualization(void) { return 0; } 2580static inline void kvm_disable_virtualization(void) { } 2581#endif 2582 2583#endif