at v6.17 51 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <linux/atomic.h> 9#include <linux/bpf.h> 10#include <linux/refcount.h> 11#include <linux/compat.h> 12#include <linux/skbuff.h> 13#include <linux/linkage.h> 14#include <linux/printk.h> 15#include <linux/workqueue.h> 16#include <linux/sched.h> 17#include <linux/sched/clock.h> 18#include <linux/capability.h> 19#include <linux/set_memory.h> 20#include <linux/kallsyms.h> 21#include <linux/if_vlan.h> 22#include <linux/vmalloc.h> 23#include <linux/sockptr.h> 24#include <crypto/sha1.h> 25#include <linux/u64_stats_sync.h> 26 27#include <net/sch_generic.h> 28 29#include <asm/byteorder.h> 30#include <uapi/linux/filter.h> 31 32struct sk_buff; 33struct sock; 34struct seccomp_data; 35struct bpf_prog_aux; 36struct xdp_rxq_info; 37struct xdp_buff; 38struct sock_reuseport; 39struct ctl_table; 40struct ctl_table_header; 41 42/* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46#define BPF_REG_ARG1 BPF_REG_1 47#define BPF_REG_ARG2 BPF_REG_2 48#define BPF_REG_ARG3 BPF_REG_3 49#define BPF_REG_ARG4 BPF_REG_4 50#define BPF_REG_ARG5 BPF_REG_5 51#define BPF_REG_CTX BPF_REG_6 52#define BPF_REG_FP BPF_REG_10 53 54/* Additional register mappings for converted user programs. */ 55#define BPF_REG_A BPF_REG_0 56#define BPF_REG_X BPF_REG_7 57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61/* Kernel hidden auxiliary/helper register. */ 62#define BPF_REG_AX MAX_BPF_REG 63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66/* unused opcode to mark special call to bpf_tail_call() helper */ 67#define BPF_TAIL_CALL 0xf0 68 69/* unused opcode to mark special load instruction. Same as BPF_ABS */ 70#define BPF_PROBE_MEM 0x20 71 72/* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73#define BPF_PROBE_MEMSX 0x40 74 75/* unused opcode to mark special load instruction. Same as BPF_MSH */ 76#define BPF_PROBE_MEM32 0xa0 77 78/* unused opcode to mark special atomic instruction */ 79#define BPF_PROBE_ATOMIC 0xe0 80 81/* unused opcode to mark call to interpreter with arguments */ 82#define BPF_CALL_ARGS 0xe0 83 84/* unused opcode to mark speculation barrier for mitigating 85 * Spectre v1 and v4 86 */ 87#define BPF_NOSPEC 0xc0 88 89/* As per nm, we expose JITed images as text (code) section for 90 * kallsyms. That way, tools like perf can find it to match 91 * addresses. 92 */ 93#define BPF_SYM_ELF_TYPE 't' 94 95/* BPF program can access up to 512 bytes of stack space. */ 96#define MAX_BPF_STACK 512 97 98/* Helper macros for filter block array initializers. */ 99 100/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 101 102#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 103 ((struct bpf_insn) { \ 104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 105 .dst_reg = DST, \ 106 .src_reg = SRC, \ 107 .off = OFF, \ 108 .imm = 0 }) 109 110#define BPF_ALU64_REG(OP, DST, SRC) \ 111 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 112 113#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 114 ((struct bpf_insn) { \ 115 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 116 .dst_reg = DST, \ 117 .src_reg = SRC, \ 118 .off = OFF, \ 119 .imm = 0 }) 120 121#define BPF_ALU32_REG(OP, DST, SRC) \ 122 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 123 124/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 125 126#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 127 ((struct bpf_insn) { \ 128 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 129 .dst_reg = DST, \ 130 .src_reg = 0, \ 131 .off = OFF, \ 132 .imm = IMM }) 133#define BPF_ALU64_IMM(OP, DST, IMM) \ 134 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 135 136#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 137 ((struct bpf_insn) { \ 138 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 139 .dst_reg = DST, \ 140 .src_reg = 0, \ 141 .off = OFF, \ 142 .imm = IMM }) 143#define BPF_ALU32_IMM(OP, DST, IMM) \ 144 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 145 146/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 147 148#define BPF_ENDIAN(TYPE, DST, LEN) \ 149 ((struct bpf_insn) { \ 150 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 151 .dst_reg = DST, \ 152 .src_reg = 0, \ 153 .off = 0, \ 154 .imm = LEN }) 155 156/* Byte Swap, bswap16/32/64 */ 157 158#define BPF_BSWAP(DST, LEN) \ 159 ((struct bpf_insn) { \ 160 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 161 .dst_reg = DST, \ 162 .src_reg = 0, \ 163 .off = 0, \ 164 .imm = LEN }) 165 166/* Short form of mov, dst_reg = src_reg */ 167 168#define BPF_MOV64_REG(DST, SRC) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 171 .dst_reg = DST, \ 172 .src_reg = SRC, \ 173 .off = 0, \ 174 .imm = 0 }) 175 176#define BPF_MOV32_REG(DST, SRC) \ 177 ((struct bpf_insn) { \ 178 .code = BPF_ALU | BPF_MOV | BPF_X, \ 179 .dst_reg = DST, \ 180 .src_reg = SRC, \ 181 .off = 0, \ 182 .imm = 0 }) 183 184/* Special (internal-only) form of mov, used to resolve per-CPU addrs: 185 * dst_reg = src_reg + <percpu_base_off> 186 * BPF_ADDR_PERCPU is used as a special insn->off value. 187 */ 188#define BPF_ADDR_PERCPU (-1) 189 190#define BPF_MOV64_PERCPU_REG(DST, SRC) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = BPF_ADDR_PERCPU, \ 196 .imm = 0 }) 197 198static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) 199{ 200 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; 201} 202 203/* Short form of mov, dst_reg = imm32 */ 204 205#define BPF_MOV64_IMM(DST, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 208 .dst_reg = DST, \ 209 .src_reg = 0, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213#define BPF_MOV32_IMM(DST, IMM) \ 214 ((struct bpf_insn) { \ 215 .code = BPF_ALU | BPF_MOV | BPF_K, \ 216 .dst_reg = DST, \ 217 .src_reg = 0, \ 218 .off = 0, \ 219 .imm = IMM }) 220 221/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 222 223#define BPF_MOVSX64_REG(DST, SRC, OFF) \ 224 ((struct bpf_insn) { \ 225 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 226 .dst_reg = DST, \ 227 .src_reg = SRC, \ 228 .off = OFF, \ 229 .imm = 0 }) 230 231#define BPF_MOVSX32_REG(DST, SRC, OFF) \ 232 ((struct bpf_insn) { \ 233 .code = BPF_ALU | BPF_MOV | BPF_X, \ 234 .dst_reg = DST, \ 235 .src_reg = SRC, \ 236 .off = OFF, \ 237 .imm = 0 }) 238 239/* Special form of mov32, used for doing explicit zero extension on dst. */ 240#define BPF_ZEXT_REG(DST) \ 241 ((struct bpf_insn) { \ 242 .code = BPF_ALU | BPF_MOV | BPF_X, \ 243 .dst_reg = DST, \ 244 .src_reg = DST, \ 245 .off = 0, \ 246 .imm = 1 }) 247 248static inline bool insn_is_zext(const struct bpf_insn *insn) 249{ 250 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 251} 252 253/* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 254 * to pointers in user vma. 255 */ 256static inline bool insn_is_cast_user(const struct bpf_insn *insn) 257{ 258 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 259 insn->off == BPF_ADDR_SPACE_CAST && 260 insn->imm == 1U << 16; 261} 262 263/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 264#define BPF_LD_IMM64(DST, IMM) \ 265 BPF_LD_IMM64_RAW(DST, 0, IMM) 266 267#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 268 ((struct bpf_insn) { \ 269 .code = BPF_LD | BPF_DW | BPF_IMM, \ 270 .dst_reg = DST, \ 271 .src_reg = SRC, \ 272 .off = 0, \ 273 .imm = (__u32) (IMM) }), \ 274 ((struct bpf_insn) { \ 275 .code = 0, /* zero is reserved opcode */ \ 276 .dst_reg = 0, \ 277 .src_reg = 0, \ 278 .off = 0, \ 279 .imm = ((__u64) (IMM)) >> 32 }) 280 281/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 282#define BPF_LD_MAP_FD(DST, MAP_FD) \ 283 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 284 285/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 286 287#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 288 ((struct bpf_insn) { \ 289 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 290 .dst_reg = DST, \ 291 .src_reg = SRC, \ 292 .off = 0, \ 293 .imm = IMM }) 294 295#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 298 .dst_reg = DST, \ 299 .src_reg = SRC, \ 300 .off = 0, \ 301 .imm = IMM }) 302 303/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 304 305#define BPF_LD_ABS(SIZE, IMM) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 308 .dst_reg = 0, \ 309 .src_reg = 0, \ 310 .off = 0, \ 311 .imm = IMM }) 312 313/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 314 315#define BPF_LD_IND(SIZE, SRC, IMM) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 318 .dst_reg = 0, \ 319 .src_reg = SRC, \ 320 .off = 0, \ 321 .imm = IMM }) 322 323/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 324 325#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 334 335#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 338 .dst_reg = DST, \ 339 .src_reg = SRC, \ 340 .off = OFF, \ 341 .imm = 0 }) 342 343/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 344 345#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 348 .dst_reg = DST, \ 349 .src_reg = SRC, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353 354/* 355 * Atomic operations: 356 * 357 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 358 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 359 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 360 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 361 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 362 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 363 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 364 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 365 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 366 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 367 * BPF_LOAD_ACQ dst_reg = smp_load_acquire(src_reg + off16) 368 * BPF_STORE_REL smp_store_release(dst_reg + off16, src_reg) 369 */ 370 371#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 372 ((struct bpf_insn) { \ 373 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 374 .dst_reg = DST, \ 375 .src_reg = SRC, \ 376 .off = OFF, \ 377 .imm = OP }) 378 379/* Legacy alias */ 380#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 381 382/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 383 384#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 385 ((struct bpf_insn) { \ 386 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 387 .dst_reg = DST, \ 388 .src_reg = 0, \ 389 .off = OFF, \ 390 .imm = IMM }) 391 392/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 393 394#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 395 ((struct bpf_insn) { \ 396 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 397 .dst_reg = DST, \ 398 .src_reg = SRC, \ 399 .off = OFF, \ 400 .imm = 0 }) 401 402/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 403 404#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 405 ((struct bpf_insn) { \ 406 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 407 .dst_reg = DST, \ 408 .src_reg = 0, \ 409 .off = OFF, \ 410 .imm = IMM }) 411 412/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 413 414#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 415 ((struct bpf_insn) { \ 416 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 417 .dst_reg = DST, \ 418 .src_reg = SRC, \ 419 .off = OFF, \ 420 .imm = 0 }) 421 422/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 423 424#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 425 ((struct bpf_insn) { \ 426 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 427 .dst_reg = DST, \ 428 .src_reg = 0, \ 429 .off = OFF, \ 430 .imm = IMM }) 431 432/* Unconditional jumps, goto pc + off16 */ 433 434#define BPF_JMP_A(OFF) \ 435 ((struct bpf_insn) { \ 436 .code = BPF_JMP | BPF_JA, \ 437 .dst_reg = 0, \ 438 .src_reg = 0, \ 439 .off = OFF, \ 440 .imm = 0 }) 441 442/* Unconditional jumps, gotol pc + imm32 */ 443 444#define BPF_JMP32_A(IMM) \ 445 ((struct bpf_insn) { \ 446 .code = BPF_JMP32 | BPF_JA, \ 447 .dst_reg = 0, \ 448 .src_reg = 0, \ 449 .off = 0, \ 450 .imm = IMM }) 451 452/* Relative call */ 453 454#define BPF_CALL_REL(TGT) \ 455 ((struct bpf_insn) { \ 456 .code = BPF_JMP | BPF_CALL, \ 457 .dst_reg = 0, \ 458 .src_reg = BPF_PSEUDO_CALL, \ 459 .off = 0, \ 460 .imm = TGT }) 461 462/* Convert function address to BPF immediate */ 463 464#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 465 466#define BPF_EMIT_CALL(FUNC) \ 467 ((struct bpf_insn) { \ 468 .code = BPF_JMP | BPF_CALL, \ 469 .dst_reg = 0, \ 470 .src_reg = 0, \ 471 .off = 0, \ 472 .imm = BPF_CALL_IMM(FUNC) }) 473 474/* Kfunc call */ 475 476#define BPF_CALL_KFUNC(OFF, IMM) \ 477 ((struct bpf_insn) { \ 478 .code = BPF_JMP | BPF_CALL, \ 479 .dst_reg = 0, \ 480 .src_reg = BPF_PSEUDO_KFUNC_CALL, \ 481 .off = OFF, \ 482 .imm = IMM }) 483 484/* Raw code statement block */ 485 486#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 487 ((struct bpf_insn) { \ 488 .code = CODE, \ 489 .dst_reg = DST, \ 490 .src_reg = SRC, \ 491 .off = OFF, \ 492 .imm = IMM }) 493 494/* Program exit */ 495 496#define BPF_EXIT_INSN() \ 497 ((struct bpf_insn) { \ 498 .code = BPF_JMP | BPF_EXIT, \ 499 .dst_reg = 0, \ 500 .src_reg = 0, \ 501 .off = 0, \ 502 .imm = 0 }) 503 504/* Speculation barrier */ 505 506#define BPF_ST_NOSPEC() \ 507 ((struct bpf_insn) { \ 508 .code = BPF_ST | BPF_NOSPEC, \ 509 .dst_reg = 0, \ 510 .src_reg = 0, \ 511 .off = 0, \ 512 .imm = 0 }) 513 514/* Internal classic blocks for direct assignment */ 515 516#define __BPF_STMT(CODE, K) \ 517 ((struct sock_filter) BPF_STMT(CODE, K)) 518 519#define __BPF_JUMP(CODE, K, JT, JF) \ 520 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 521 522#define bytes_to_bpf_size(bytes) \ 523({ \ 524 int bpf_size = -EINVAL; \ 525 \ 526 if (bytes == sizeof(u8)) \ 527 bpf_size = BPF_B; \ 528 else if (bytes == sizeof(u16)) \ 529 bpf_size = BPF_H; \ 530 else if (bytes == sizeof(u32)) \ 531 bpf_size = BPF_W; \ 532 else if (bytes == sizeof(u64)) \ 533 bpf_size = BPF_DW; \ 534 \ 535 bpf_size; \ 536}) 537 538#define bpf_size_to_bytes(bpf_size) \ 539({ \ 540 int bytes = -EINVAL; \ 541 \ 542 if (bpf_size == BPF_B) \ 543 bytes = sizeof(u8); \ 544 else if (bpf_size == BPF_H) \ 545 bytes = sizeof(u16); \ 546 else if (bpf_size == BPF_W) \ 547 bytes = sizeof(u32); \ 548 else if (bpf_size == BPF_DW) \ 549 bytes = sizeof(u64); \ 550 \ 551 bytes; \ 552}) 553 554#define BPF_SIZEOF(type) \ 555 ({ \ 556 const int __size = bytes_to_bpf_size(sizeof(type)); \ 557 BUILD_BUG_ON(__size < 0); \ 558 __size; \ 559 }) 560 561#define BPF_FIELD_SIZEOF(type, field) \ 562 ({ \ 563 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 564 BUILD_BUG_ON(__size < 0); \ 565 __size; \ 566 }) 567 568#define BPF_LDST_BYTES(insn) \ 569 ({ \ 570 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 571 WARN_ON(__size < 0); \ 572 __size; \ 573 }) 574 575#define __BPF_MAP_0(m, v, ...) v 576#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 577#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 578#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 579#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 580#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 581 582#define __BPF_REG_0(...) __BPF_PAD(5) 583#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 584#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 585#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 586#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 587#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 588 589#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 590#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 591 592#define __BPF_CAST(t, a) \ 593 (__force t) \ 594 (__force \ 595 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 596 (unsigned long)0, (t)0))) a 597#define __BPF_V void 598#define __BPF_N 599 600#define __BPF_DECL_ARGS(t, a) t a 601#define __BPF_DECL_REGS(t, a) u64 a 602 603#define __BPF_PAD(n) \ 604 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 605 u64, __ur_3, u64, __ur_4, u64, __ur_5) 606 607#define BPF_CALL_x(x, attr, name, ...) \ 608 static __always_inline \ 609 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 610 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 611 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 612 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 613 { \ 614 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 615 } \ 616 static __always_inline \ 617 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 618 619#define __NOATTR 620#define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 621#define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 622#define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 623#define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 624#define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 625#define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 626 627#define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 628 629#define bpf_ctx_range(TYPE, MEMBER) \ 630 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 631#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 632 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 633#if BITS_PER_LONG == 64 634# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 635 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 636#else 637# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 638 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 639#endif /* BITS_PER_LONG == 64 */ 640 641#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 642 ({ \ 643 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 644 *(PTR_SIZE) = (SIZE); \ 645 offsetof(TYPE, MEMBER); \ 646 }) 647 648/* A struct sock_filter is architecture independent. */ 649struct compat_sock_fprog { 650 u16 len; 651 compat_uptr_t filter; /* struct sock_filter * */ 652}; 653 654struct sock_fprog_kern { 655 u16 len; 656 struct sock_filter *filter; 657}; 658 659/* Some arches need doubleword alignment for their instructions and/or data */ 660#define BPF_IMAGE_ALIGNMENT 8 661 662struct bpf_binary_header { 663 u32 size; 664 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 665}; 666 667struct bpf_prog_stats { 668 u64_stats_t cnt; 669 u64_stats_t nsecs; 670 u64_stats_t misses; 671 struct u64_stats_sync syncp; 672} __aligned(2 * sizeof(u64)); 673 674struct bpf_timed_may_goto { 675 u64 count; 676 u64 timestamp; 677}; 678 679struct sk_filter { 680 refcount_t refcnt; 681 struct rcu_head rcu; 682 struct bpf_prog *prog; 683}; 684 685DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 686 687extern struct mutex nf_conn_btf_access_lock; 688extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 689 const struct bpf_reg_state *reg, 690 int off, int size); 691 692typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 693 const struct bpf_insn *insnsi, 694 unsigned int (*bpf_func)(const void *, 695 const struct bpf_insn *)); 696 697static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 698 const void *ctx, 699 bpf_dispatcher_fn dfunc) 700{ 701 u32 ret; 702 703 cant_migrate(); 704 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 705 struct bpf_prog_stats *stats; 706 u64 duration, start = sched_clock(); 707 unsigned long flags; 708 709 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 710 711 duration = sched_clock() - start; 712 stats = this_cpu_ptr(prog->stats); 713 flags = u64_stats_update_begin_irqsave(&stats->syncp); 714 u64_stats_inc(&stats->cnt); 715 u64_stats_add(&stats->nsecs, duration); 716 u64_stats_update_end_irqrestore(&stats->syncp, flags); 717 } else { 718 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 719 } 720 return ret; 721} 722 723static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 724{ 725 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 726} 727 728/* 729 * Use in preemptible and therefore migratable context to make sure that 730 * the execution of the BPF program runs on one CPU. 731 * 732 * This uses migrate_disable/enable() explicitly to document that the 733 * invocation of a BPF program does not require reentrancy protection 734 * against a BPF program which is invoked from a preempting task. 735 */ 736static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 737 const void *ctx) 738{ 739 u32 ret; 740 741 migrate_disable(); 742 ret = bpf_prog_run(prog, ctx); 743 migrate_enable(); 744 return ret; 745} 746 747#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 748 749struct bpf_skb_data_end { 750 struct qdisc_skb_cb qdisc_cb; 751 void *data_meta; 752 void *data_end; 753}; 754 755struct bpf_nh_params { 756 u32 nh_family; 757 union { 758 u32 ipv4_nh; 759 struct in6_addr ipv6_nh; 760 }; 761}; 762 763/* flags for bpf_redirect_info kern_flags */ 764#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 765#define BPF_RI_F_RI_INIT BIT(1) 766#define BPF_RI_F_CPU_MAP_INIT BIT(2) 767#define BPF_RI_F_DEV_MAP_INIT BIT(3) 768#define BPF_RI_F_XSK_MAP_INIT BIT(4) 769 770struct bpf_redirect_info { 771 u64 tgt_index; 772 void *tgt_value; 773 struct bpf_map *map; 774 u32 flags; 775 u32 map_id; 776 enum bpf_map_type map_type; 777 struct bpf_nh_params nh; 778 u32 kern_flags; 779}; 780 781struct bpf_net_context { 782 struct bpf_redirect_info ri; 783 struct list_head cpu_map_flush_list; 784 struct list_head dev_map_flush_list; 785 struct list_head xskmap_map_flush_list; 786}; 787 788static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx) 789{ 790 struct task_struct *tsk = current; 791 792 if (tsk->bpf_net_context != NULL) 793 return NULL; 794 bpf_net_ctx->ri.kern_flags = 0; 795 796 tsk->bpf_net_context = bpf_net_ctx; 797 return bpf_net_ctx; 798} 799 800static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx) 801{ 802 if (bpf_net_ctx) 803 current->bpf_net_context = NULL; 804} 805 806static inline struct bpf_net_context *bpf_net_ctx_get(void) 807{ 808 return current->bpf_net_context; 809} 810 811static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void) 812{ 813 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 814 815 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) { 816 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh)); 817 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT; 818 } 819 820 return &bpf_net_ctx->ri; 821} 822 823static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void) 824{ 825 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 826 827 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) { 828 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list); 829 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT; 830 } 831 832 return &bpf_net_ctx->cpu_map_flush_list; 833} 834 835static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void) 836{ 837 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 838 839 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) { 840 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list); 841 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT; 842 } 843 844 return &bpf_net_ctx->dev_map_flush_list; 845} 846 847static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void) 848{ 849 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 850 851 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) { 852 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list); 853 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT; 854 } 855 856 return &bpf_net_ctx->xskmap_map_flush_list; 857} 858 859static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map, 860 struct list_head **lh_dev, 861 struct list_head **lh_xsk) 862{ 863 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 864 u32 kern_flags = bpf_net_ctx->ri.kern_flags; 865 struct list_head *lh; 866 867 *lh_map = *lh_dev = *lh_xsk = NULL; 868 869 if (!IS_ENABLED(CONFIG_BPF_SYSCALL)) 870 return; 871 872 lh = &bpf_net_ctx->dev_map_flush_list; 873 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh)) 874 *lh_dev = lh; 875 876 lh = &bpf_net_ctx->cpu_map_flush_list; 877 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh)) 878 *lh_map = lh; 879 880 lh = &bpf_net_ctx->xskmap_map_flush_list; 881 if (IS_ENABLED(CONFIG_XDP_SOCKETS) && 882 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh)) 883 *lh_xsk = lh; 884} 885 886/* Compute the linear packet data range [data, data_end) which 887 * will be accessed by various program types (cls_bpf, act_bpf, 888 * lwt, ...). Subsystems allowing direct data access must (!) 889 * ensure that cb[] area can be written to when BPF program is 890 * invoked (otherwise cb[] save/restore is necessary). 891 */ 892static inline void bpf_compute_data_pointers(struct sk_buff *skb) 893{ 894 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 895 896 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 897 cb->data_meta = skb->data - skb_metadata_len(skb); 898 cb->data_end = skb->data + skb_headlen(skb); 899} 900 901/* Similar to bpf_compute_data_pointers(), except that save orginal 902 * data in cb->data and cb->meta_data for restore. 903 */ 904static inline void bpf_compute_and_save_data_end( 905 struct sk_buff *skb, void **saved_data_end) 906{ 907 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 908 909 *saved_data_end = cb->data_end; 910 cb->data_end = skb->data + skb_headlen(skb); 911} 912 913/* Restore data saved by bpf_compute_and_save_data_end(). */ 914static inline void bpf_restore_data_end( 915 struct sk_buff *skb, void *saved_data_end) 916{ 917 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 918 919 cb->data_end = saved_data_end; 920} 921 922static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 923{ 924 /* eBPF programs may read/write skb->cb[] area to transfer meta 925 * data between tail calls. Since this also needs to work with 926 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 927 * 928 * In some socket filter cases, the cb unfortunately needs to be 929 * saved/restored so that protocol specific skb->cb[] data won't 930 * be lost. In any case, due to unpriviledged eBPF programs 931 * attached to sockets, we need to clear the bpf_skb_cb() area 932 * to not leak previous contents to user space. 933 */ 934 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 935 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 936 sizeof_field(struct qdisc_skb_cb, data)); 937 938 return qdisc_skb_cb(skb)->data; 939} 940 941/* Must be invoked with migration disabled */ 942static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 943 const void *ctx) 944{ 945 const struct sk_buff *skb = ctx; 946 u8 *cb_data = bpf_skb_cb(skb); 947 u8 cb_saved[BPF_SKB_CB_LEN]; 948 u32 res; 949 950 if (unlikely(prog->cb_access)) { 951 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 952 memset(cb_data, 0, sizeof(cb_saved)); 953 } 954 955 res = bpf_prog_run(prog, skb); 956 957 if (unlikely(prog->cb_access)) 958 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 959 960 return res; 961} 962 963static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 964 struct sk_buff *skb) 965{ 966 u32 res; 967 968 migrate_disable(); 969 res = __bpf_prog_run_save_cb(prog, skb); 970 migrate_enable(); 971 return res; 972} 973 974static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 975 struct sk_buff *skb) 976{ 977 u8 *cb_data = bpf_skb_cb(skb); 978 u32 res; 979 980 if (unlikely(prog->cb_access)) 981 memset(cb_data, 0, BPF_SKB_CB_LEN); 982 983 res = bpf_prog_run_pin_on_cpu(prog, skb); 984 return res; 985} 986 987DECLARE_BPF_DISPATCHER(xdp) 988 989DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 990 991u32 xdp_master_redirect(struct xdp_buff *xdp); 992 993void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 994 995static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 996{ 997 return prog->len * sizeof(struct bpf_insn); 998} 999 1000static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 1001{ 1002 return round_up(bpf_prog_insn_size(prog) + 1003 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 1004} 1005 1006static inline unsigned int bpf_prog_size(unsigned int proglen) 1007{ 1008 return max(sizeof(struct bpf_prog), 1009 offsetof(struct bpf_prog, insns[proglen])); 1010} 1011 1012static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 1013{ 1014 /* When classic BPF programs have been loaded and the arch 1015 * does not have a classic BPF JIT (anymore), they have been 1016 * converted via bpf_migrate_filter() to eBPF and thus always 1017 * have an unspec program type. 1018 */ 1019 return prog->type == BPF_PROG_TYPE_UNSPEC; 1020} 1021 1022static inline u32 bpf_ctx_off_adjust_machine(u32 size) 1023{ 1024 const u32 size_machine = sizeof(unsigned long); 1025 1026 if (size > size_machine && size % size_machine == 0) 1027 size = size_machine; 1028 1029 return size; 1030} 1031 1032static inline bool 1033bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 1034{ 1035 return size <= size_default && (size & (size - 1)) == 0; 1036} 1037 1038static inline u8 1039bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 1040{ 1041 u8 access_off = off & (size_default - 1); 1042 1043#ifdef __LITTLE_ENDIAN 1044 return access_off; 1045#else 1046 return size_default - (access_off + size); 1047#endif 1048} 1049 1050#define bpf_ctx_wide_access_ok(off, size, type, field) \ 1051 (size == sizeof(__u64) && \ 1052 off >= offsetof(type, field) && \ 1053 off + sizeof(__u64) <= offsetofend(type, field) && \ 1054 off % sizeof(__u64) == 0) 1055 1056#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 1057 1058static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 1059{ 1060#ifndef CONFIG_BPF_JIT_ALWAYS_ON 1061 if (!fp->jited) { 1062 set_vm_flush_reset_perms(fp); 1063 return set_memory_ro((unsigned long)fp, fp->pages); 1064 } 1065#endif 1066 return 0; 1067} 1068 1069static inline int __must_check 1070bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 1071{ 1072 set_vm_flush_reset_perms(hdr); 1073 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 1074} 1075 1076int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap, 1077 enum skb_drop_reason *reason); 1078 1079static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 1080{ 1081 enum skb_drop_reason ignore_reason; 1082 1083 return sk_filter_trim_cap(sk, skb, 1, &ignore_reason); 1084} 1085 1086static inline int sk_filter_reason(struct sock *sk, struct sk_buff *skb, 1087 enum skb_drop_reason *reason) 1088{ 1089 return sk_filter_trim_cap(sk, skb, 1, reason); 1090} 1091 1092struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 1093void bpf_prog_free(struct bpf_prog *fp); 1094 1095bool bpf_opcode_in_insntable(u8 code); 1096 1097void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 1098 const u32 *insn_to_jit_off); 1099int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 1100void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 1101 1102struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 1103struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 1104struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 1105 gfp_t gfp_extra_flags); 1106void __bpf_prog_free(struct bpf_prog *fp); 1107 1108static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 1109{ 1110 __bpf_prog_free(fp); 1111} 1112 1113typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 1114 unsigned int flen); 1115 1116int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 1117int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1118 bpf_aux_classic_check_t trans, bool save_orig); 1119void bpf_prog_destroy(struct bpf_prog *fp); 1120 1121int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1122int sk_attach_bpf(u32 ufd, struct sock *sk); 1123int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1124int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 1125void sk_reuseport_prog_free(struct bpf_prog *prog); 1126int sk_detach_filter(struct sock *sk); 1127int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 1128 1129bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 1130void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 1131 1132u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 1133#define __bpf_call_base_args \ 1134 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 1135 (void *)__bpf_call_base) 1136 1137struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 1138void bpf_jit_compile(struct bpf_prog *prog); 1139bool bpf_jit_needs_zext(void); 1140bool bpf_jit_inlines_helper_call(s32 imm); 1141bool bpf_jit_supports_subprog_tailcalls(void); 1142bool bpf_jit_supports_percpu_insn(void); 1143bool bpf_jit_supports_kfunc_call(void); 1144bool bpf_jit_supports_far_kfunc_call(void); 1145bool bpf_jit_supports_exceptions(void); 1146bool bpf_jit_supports_ptr_xchg(void); 1147bool bpf_jit_supports_arena(void); 1148bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); 1149bool bpf_jit_supports_private_stack(void); 1150bool bpf_jit_supports_timed_may_goto(void); 1151u64 bpf_arch_uaddress_limit(void); 1152void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 1153u64 arch_bpf_timed_may_goto(void); 1154u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *); 1155bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id); 1156 1157static inline bool bpf_dump_raw_ok(const struct cred *cred) 1158{ 1159 /* Reconstruction of call-sites is dependent on kallsyms, 1160 * thus make dump the same restriction. 1161 */ 1162 return kallsyms_show_value(cred); 1163} 1164 1165struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 1166 const struct bpf_insn *patch, u32 len); 1167int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 1168 1169static inline bool xdp_return_frame_no_direct(void) 1170{ 1171 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1172 1173 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1174} 1175 1176static inline void xdp_set_return_frame_no_direct(void) 1177{ 1178 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1179 1180 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1181} 1182 1183static inline void xdp_clear_return_frame_no_direct(void) 1184{ 1185 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1186 1187 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1188} 1189 1190static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1191 unsigned int pktlen) 1192{ 1193 unsigned int len; 1194 1195 if (unlikely(!(fwd->flags & IFF_UP))) 1196 return -ENETDOWN; 1197 1198 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1199 if (pktlen > len) 1200 return -EMSGSIZE; 1201 1202 return 0; 1203} 1204 1205/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1206 * same cpu context. Further for best results no more than a single map 1207 * for the do_redirect/do_flush pair should be used. This limitation is 1208 * because we only track one map and force a flush when the map changes. 1209 * This does not appear to be a real limitation for existing software. 1210 */ 1211int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1212 struct xdp_buff *xdp, const struct bpf_prog *prog); 1213int xdp_do_redirect(struct net_device *dev, 1214 struct xdp_buff *xdp, 1215 const struct bpf_prog *prog); 1216int xdp_do_redirect_frame(struct net_device *dev, 1217 struct xdp_buff *xdp, 1218 struct xdp_frame *xdpf, 1219 const struct bpf_prog *prog); 1220void xdp_do_flush(void); 1221 1222void bpf_warn_invalid_xdp_action(const struct net_device *dev, 1223 const struct bpf_prog *prog, u32 act); 1224 1225#ifdef CONFIG_INET 1226struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1227 struct bpf_prog *prog, struct sk_buff *skb, 1228 struct sock *migrating_sk, 1229 u32 hash); 1230#else 1231static inline struct sock * 1232bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1233 struct bpf_prog *prog, struct sk_buff *skb, 1234 struct sock *migrating_sk, 1235 u32 hash) 1236{ 1237 return NULL; 1238} 1239#endif 1240 1241#ifdef CONFIG_BPF_JIT 1242extern int bpf_jit_enable; 1243extern int bpf_jit_harden; 1244extern int bpf_jit_kallsyms; 1245extern long bpf_jit_limit; 1246extern long bpf_jit_limit_max; 1247 1248typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1249 1250void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1251 1252struct bpf_binary_header * 1253bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1254 unsigned int alignment, 1255 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1256void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1257u64 bpf_jit_alloc_exec_limit(void); 1258void *bpf_jit_alloc_exec(unsigned long size); 1259void bpf_jit_free_exec(void *addr); 1260void bpf_jit_free(struct bpf_prog *fp); 1261struct bpf_binary_header * 1262bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1263 1264void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1265void bpf_prog_pack_free(void *ptr, u32 size); 1266 1267static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1268{ 1269 return list_empty(&fp->aux->ksym.lnode) || 1270 fp->aux->ksym.lnode.prev == LIST_POISON2; 1271} 1272 1273struct bpf_binary_header * 1274bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1275 unsigned int alignment, 1276 struct bpf_binary_header **rw_hdr, 1277 u8 **rw_image, 1278 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1279int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, 1280 struct bpf_binary_header *rw_header); 1281void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1282 struct bpf_binary_header *rw_header); 1283 1284int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1285 struct bpf_jit_poke_descriptor *poke); 1286 1287int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1288 const struct bpf_insn *insn, bool extra_pass, 1289 u64 *func_addr, bool *func_addr_fixed); 1290 1291const char *bpf_jit_get_prog_name(struct bpf_prog *prog); 1292 1293struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1294void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1295 1296static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1297 u32 pass, void *image) 1298{ 1299 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1300 proglen, pass, image, current->comm, task_pid_nr(current)); 1301 1302 if (image) 1303 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1304 16, 1, image, proglen, false); 1305} 1306 1307static inline bool bpf_jit_is_ebpf(void) 1308{ 1309# ifdef CONFIG_HAVE_EBPF_JIT 1310 return true; 1311# else 1312 return false; 1313# endif 1314} 1315 1316static inline bool ebpf_jit_enabled(void) 1317{ 1318 return bpf_jit_enable && bpf_jit_is_ebpf(); 1319} 1320 1321static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1322{ 1323 return fp->jited && bpf_jit_is_ebpf(); 1324} 1325 1326static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1327{ 1328 /* These are the prerequisites, should someone ever have the 1329 * idea to call blinding outside of them, we make sure to 1330 * bail out. 1331 */ 1332 if (!bpf_jit_is_ebpf()) 1333 return false; 1334 if (!prog->jit_requested) 1335 return false; 1336 if (!bpf_jit_harden) 1337 return false; 1338 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1339 return false; 1340 1341 return true; 1342} 1343 1344static inline bool bpf_jit_kallsyms_enabled(void) 1345{ 1346 /* There are a couple of corner cases where kallsyms should 1347 * not be enabled f.e. on hardening. 1348 */ 1349 if (bpf_jit_harden) 1350 return false; 1351 if (!bpf_jit_kallsyms) 1352 return false; 1353 if (bpf_jit_kallsyms == 1) 1354 return true; 1355 1356 return false; 1357} 1358 1359int __bpf_address_lookup(unsigned long addr, unsigned long *size, 1360 unsigned long *off, char *sym); 1361bool is_bpf_text_address(unsigned long addr); 1362int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1363 char *sym); 1364struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1365 1366static inline int 1367bpf_address_lookup(unsigned long addr, unsigned long *size, 1368 unsigned long *off, char **modname, char *sym) 1369{ 1370 int ret = __bpf_address_lookup(addr, size, off, sym); 1371 1372 if (ret && modname) 1373 *modname = NULL; 1374 return ret; 1375} 1376 1377void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1378void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1379 1380#else /* CONFIG_BPF_JIT */ 1381 1382static inline bool ebpf_jit_enabled(void) 1383{ 1384 return false; 1385} 1386 1387static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1388{ 1389 return false; 1390} 1391 1392static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1393{ 1394 return false; 1395} 1396 1397static inline int 1398bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1399 struct bpf_jit_poke_descriptor *poke) 1400{ 1401 return -ENOTSUPP; 1402} 1403 1404static inline void bpf_jit_free(struct bpf_prog *fp) 1405{ 1406 bpf_prog_unlock_free(fp); 1407} 1408 1409static inline bool bpf_jit_kallsyms_enabled(void) 1410{ 1411 return false; 1412} 1413 1414static inline int 1415__bpf_address_lookup(unsigned long addr, unsigned long *size, 1416 unsigned long *off, char *sym) 1417{ 1418 return 0; 1419} 1420 1421static inline bool is_bpf_text_address(unsigned long addr) 1422{ 1423 return false; 1424} 1425 1426static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1427 char *type, char *sym) 1428{ 1429 return -ERANGE; 1430} 1431 1432static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1433{ 1434 return NULL; 1435} 1436 1437static inline int 1438bpf_address_lookup(unsigned long addr, unsigned long *size, 1439 unsigned long *off, char **modname, char *sym) 1440{ 1441 return 0; 1442} 1443 1444static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1445{ 1446} 1447 1448static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1449{ 1450} 1451 1452#endif /* CONFIG_BPF_JIT */ 1453 1454void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1455 1456#define BPF_ANC BIT(15) 1457 1458static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1459{ 1460 switch (first->code) { 1461 case BPF_RET | BPF_K: 1462 case BPF_LD | BPF_W | BPF_LEN: 1463 return false; 1464 1465 case BPF_LD | BPF_W | BPF_ABS: 1466 case BPF_LD | BPF_H | BPF_ABS: 1467 case BPF_LD | BPF_B | BPF_ABS: 1468 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1469 return true; 1470 return false; 1471 1472 default: 1473 return true; 1474 } 1475} 1476 1477static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1478{ 1479 BUG_ON(ftest->code & BPF_ANC); 1480 1481 switch (ftest->code) { 1482 case BPF_LD | BPF_W | BPF_ABS: 1483 case BPF_LD | BPF_H | BPF_ABS: 1484 case BPF_LD | BPF_B | BPF_ABS: 1485#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1486 return BPF_ANC | SKF_AD_##CODE 1487 switch (ftest->k) { 1488 BPF_ANCILLARY(PROTOCOL); 1489 BPF_ANCILLARY(PKTTYPE); 1490 BPF_ANCILLARY(IFINDEX); 1491 BPF_ANCILLARY(NLATTR); 1492 BPF_ANCILLARY(NLATTR_NEST); 1493 BPF_ANCILLARY(MARK); 1494 BPF_ANCILLARY(QUEUE); 1495 BPF_ANCILLARY(HATYPE); 1496 BPF_ANCILLARY(RXHASH); 1497 BPF_ANCILLARY(CPU); 1498 BPF_ANCILLARY(ALU_XOR_X); 1499 BPF_ANCILLARY(VLAN_TAG); 1500 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1501 BPF_ANCILLARY(PAY_OFFSET); 1502 BPF_ANCILLARY(RANDOM); 1503 BPF_ANCILLARY(VLAN_TPID); 1504 } 1505 fallthrough; 1506 default: 1507 return ftest->code; 1508 } 1509} 1510 1511void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1512 int k, unsigned int size); 1513 1514static inline int bpf_tell_extensions(void) 1515{ 1516 return SKF_AD_MAX; 1517} 1518 1519struct bpf_sock_addr_kern { 1520 struct sock *sk; 1521 struct sockaddr *uaddr; 1522 /* Temporary "register" to make indirect stores to nested structures 1523 * defined above. We need three registers to make such a store, but 1524 * only two (src and dst) are available at convert_ctx_access time 1525 */ 1526 u64 tmp_reg; 1527 void *t_ctx; /* Attach type specific context. */ 1528 u32 uaddrlen; 1529}; 1530 1531struct bpf_sock_ops_kern { 1532 struct sock *sk; 1533 union { 1534 u32 args[4]; 1535 u32 reply; 1536 u32 replylong[4]; 1537 }; 1538 struct sk_buff *syn_skb; 1539 struct sk_buff *skb; 1540 void *skb_data_end; 1541 u8 op; 1542 u8 is_fullsock; 1543 u8 is_locked_tcp_sock; 1544 u8 remaining_opt_len; 1545 u64 temp; /* temp and everything after is not 1546 * initialized to 0 before calling 1547 * the BPF program. New fields that 1548 * should be initialized to 0 should 1549 * be inserted before temp. 1550 * temp is scratch storage used by 1551 * sock_ops_convert_ctx_access 1552 * as temporary storage of a register. 1553 */ 1554}; 1555 1556struct bpf_sysctl_kern { 1557 struct ctl_table_header *head; 1558 const struct ctl_table *table; 1559 void *cur_val; 1560 size_t cur_len; 1561 void *new_val; 1562 size_t new_len; 1563 int new_updated; 1564 int write; 1565 loff_t *ppos; 1566 /* Temporary "register" for indirect stores to ppos. */ 1567 u64 tmp_reg; 1568}; 1569 1570#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1571struct bpf_sockopt_buf { 1572 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1573}; 1574 1575struct bpf_sockopt_kern { 1576 struct sock *sk; 1577 u8 *optval; 1578 u8 *optval_end; 1579 s32 level; 1580 s32 optname; 1581 s32 optlen; 1582 /* for retval in struct bpf_cg_run_ctx */ 1583 struct task_struct *current_task; 1584 /* Temporary "register" for indirect stores to ppos. */ 1585 u64 tmp_reg; 1586}; 1587 1588int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1589 1590struct bpf_sk_lookup_kern { 1591 u16 family; 1592 u16 protocol; 1593 __be16 sport; 1594 u16 dport; 1595 struct { 1596 __be32 saddr; 1597 __be32 daddr; 1598 } v4; 1599 struct { 1600 const struct in6_addr *saddr; 1601 const struct in6_addr *daddr; 1602 } v6; 1603 struct sock *selected_sk; 1604 u32 ingress_ifindex; 1605 bool no_reuseport; 1606}; 1607 1608extern struct static_key_false bpf_sk_lookup_enabled; 1609 1610/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1611 * 1612 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1613 * SK_DROP. Their meaning is as follows: 1614 * 1615 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1616 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1617 * SK_DROP : terminate lookup with -ECONNREFUSED 1618 * 1619 * This macro aggregates return values and selected sockets from 1620 * multiple BPF programs according to following rules in order: 1621 * 1622 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1623 * macro result is SK_PASS and last ctx.selected_sk is used. 1624 * 2. If any program returned SK_DROP return value, 1625 * macro result is SK_DROP. 1626 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1627 * 1628 * Caller must ensure that the prog array is non-NULL, and that the 1629 * array as well as the programs it contains remain valid. 1630 */ 1631#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1632 ({ \ 1633 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1634 struct bpf_prog_array_item *_item; \ 1635 struct sock *_selected_sk = NULL; \ 1636 bool _no_reuseport = false; \ 1637 struct bpf_prog *_prog; \ 1638 bool _all_pass = true; \ 1639 u32 _ret; \ 1640 \ 1641 migrate_disable(); \ 1642 _item = &(array)->items[0]; \ 1643 while ((_prog = READ_ONCE(_item->prog))) { \ 1644 /* restore most recent selection */ \ 1645 _ctx->selected_sk = _selected_sk; \ 1646 _ctx->no_reuseport = _no_reuseport; \ 1647 \ 1648 _ret = func(_prog, _ctx); \ 1649 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1650 /* remember last non-NULL socket */ \ 1651 _selected_sk = _ctx->selected_sk; \ 1652 _no_reuseport = _ctx->no_reuseport; \ 1653 } else if (_ret == SK_DROP && _all_pass) { \ 1654 _all_pass = false; \ 1655 } \ 1656 _item++; \ 1657 } \ 1658 _ctx->selected_sk = _selected_sk; \ 1659 _ctx->no_reuseport = _no_reuseport; \ 1660 migrate_enable(); \ 1661 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1662 }) 1663 1664static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol, 1665 const __be32 saddr, const __be16 sport, 1666 const __be32 daddr, const u16 dport, 1667 const int ifindex, struct sock **psk) 1668{ 1669 struct bpf_prog_array *run_array; 1670 struct sock *selected_sk = NULL; 1671 bool no_reuseport = false; 1672 1673 rcu_read_lock(); 1674 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1675 if (run_array) { 1676 struct bpf_sk_lookup_kern ctx = { 1677 .family = AF_INET, 1678 .protocol = protocol, 1679 .v4.saddr = saddr, 1680 .v4.daddr = daddr, 1681 .sport = sport, 1682 .dport = dport, 1683 .ingress_ifindex = ifindex, 1684 }; 1685 u32 act; 1686 1687 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1688 if (act == SK_PASS) { 1689 selected_sk = ctx.selected_sk; 1690 no_reuseport = ctx.no_reuseport; 1691 } else { 1692 selected_sk = ERR_PTR(-ECONNREFUSED); 1693 } 1694 } 1695 rcu_read_unlock(); 1696 *psk = selected_sk; 1697 return no_reuseport; 1698} 1699 1700#if IS_ENABLED(CONFIG_IPV6) 1701static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol, 1702 const struct in6_addr *saddr, 1703 const __be16 sport, 1704 const struct in6_addr *daddr, 1705 const u16 dport, 1706 const int ifindex, struct sock **psk) 1707{ 1708 struct bpf_prog_array *run_array; 1709 struct sock *selected_sk = NULL; 1710 bool no_reuseport = false; 1711 1712 rcu_read_lock(); 1713 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1714 if (run_array) { 1715 struct bpf_sk_lookup_kern ctx = { 1716 .family = AF_INET6, 1717 .protocol = protocol, 1718 .v6.saddr = saddr, 1719 .v6.daddr = daddr, 1720 .sport = sport, 1721 .dport = dport, 1722 .ingress_ifindex = ifindex, 1723 }; 1724 u32 act; 1725 1726 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1727 if (act == SK_PASS) { 1728 selected_sk = ctx.selected_sk; 1729 no_reuseport = ctx.no_reuseport; 1730 } else { 1731 selected_sk = ERR_PTR(-ECONNREFUSED); 1732 } 1733 } 1734 rcu_read_unlock(); 1735 *psk = selected_sk; 1736 return no_reuseport; 1737} 1738#endif /* IS_ENABLED(CONFIG_IPV6) */ 1739 1740static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1741 u64 flags, const u64 flag_mask, 1742 void *lookup_elem(struct bpf_map *map, u32 key)) 1743{ 1744 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1745 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1746 1747 /* Lower bits of the flags are used as return code on lookup failure */ 1748 if (unlikely(flags & ~(action_mask | flag_mask))) 1749 return XDP_ABORTED; 1750 1751 ri->tgt_value = lookup_elem(map, index); 1752 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1753 /* If the lookup fails we want to clear out the state in the 1754 * redirect_info struct completely, so that if an eBPF program 1755 * performs multiple lookups, the last one always takes 1756 * precedence. 1757 */ 1758 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1759 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1760 return flags & action_mask; 1761 } 1762 1763 ri->tgt_index = index; 1764 ri->map_id = map->id; 1765 ri->map_type = map->map_type; 1766 1767 if (flags & BPF_F_BROADCAST) { 1768 WRITE_ONCE(ri->map, map); 1769 ri->flags = flags; 1770 } else { 1771 WRITE_ONCE(ri->map, NULL); 1772 ri->flags = 0; 1773 } 1774 1775 return XDP_REDIRECT; 1776} 1777 1778#ifdef CONFIG_NET 1779int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1780int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1781 u32 len, u64 flags); 1782int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1783int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1784void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1785void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1786 void *buf, unsigned long len, bool flush); 1787#else /* CONFIG_NET */ 1788static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1789 void *to, u32 len) 1790{ 1791 return -EOPNOTSUPP; 1792} 1793 1794static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1795 const void *from, u32 len, u64 flags) 1796{ 1797 return -EOPNOTSUPP; 1798} 1799 1800static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1801 void *buf, u32 len) 1802{ 1803 return -EOPNOTSUPP; 1804} 1805 1806static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1807 void *buf, u32 len) 1808{ 1809 return -EOPNOTSUPP; 1810} 1811 1812static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1813{ 1814 return NULL; 1815} 1816 1817static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1818 unsigned long len, bool flush) 1819{ 1820} 1821#endif /* CONFIG_NET */ 1822 1823#endif /* __LINUX_FILTER_H__ */