at v6.17 1065 lines 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_VERIFIER_H 5#define _LINUX_BPF_VERIFIER_H 1 6 7#include <linux/bpf.h> /* for enum bpf_reg_type */ 8#include <linux/btf.h> /* for struct btf and btf_id() */ 9#include <linux/filter.h> /* for MAX_BPF_STACK */ 10#include <linux/tnum.h> 11 12/* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16#define BPF_MAX_VAR_OFF (1 << 29) 17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20#define BPF_MAX_VAR_SIZ (1 << 29) 21/* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25#define TMP_STR_BUF_LEN 320 26/* Patch buffer size */ 27#define INSN_BUF_SIZE 32 28 29/* Liveness marks, used for registers and spilled-regs (in stack slots). 30 * Read marks propagate upwards until they find a write mark; they record that 31 * "one of this state's descendants read this reg" (and therefore the reg is 32 * relevant for states_equal() checks). 33 * Write marks collect downwards and do not propagate; they record that "the 34 * straight-line code that reached this state (from its parent) wrote this reg" 35 * (and therefore that reads propagated from this state or its descendants 36 * should not propagate to its parent). 37 * A state with a write mark can receive read marks; it just won't propagate 38 * them to its parent, since the write mark is a property, not of the state, 39 * but of the link between it and its parent. See mark_reg_read() and 40 * mark_stack_slot_read() in kernel/bpf/verifier.c. 41 */ 42enum bpf_reg_liveness { 43 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 44 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 45 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 46 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 47 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 48 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 49}; 50 51#define ITER_PREFIX "bpf_iter_" 52 53enum bpf_iter_state { 54 BPF_ITER_STATE_INVALID, /* for non-first slot */ 55 BPF_ITER_STATE_ACTIVE, 56 BPF_ITER_STATE_DRAINED, 57}; 58 59struct bpf_reg_state { 60 /* Ordering of fields matters. See states_equal() */ 61 enum bpf_reg_type type; 62 /* 63 * Fixed part of pointer offset, pointer types only. 64 * Or constant delta between "linked" scalars with the same ID. 65 */ 66 s32 off; 67 union { 68 /* valid when type == PTR_TO_PACKET */ 69 int range; 70 71 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 72 * PTR_TO_MAP_VALUE_OR_NULL 73 */ 74 struct { 75 struct bpf_map *map_ptr; 76 /* To distinguish map lookups from outer map 77 * the map_uid is non-zero for registers 78 * pointing to inner maps. 79 */ 80 u32 map_uid; 81 }; 82 83 /* for PTR_TO_BTF_ID */ 84 struct { 85 struct btf *btf; 86 u32 btf_id; 87 }; 88 89 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 90 u32 mem_size; 91 u32 dynptr_id; /* for dynptr slices */ 92 }; 93 94 /* For dynptr stack slots */ 95 struct { 96 enum bpf_dynptr_type type; 97 /* A dynptr is 16 bytes so it takes up 2 stack slots. 98 * We need to track which slot is the first slot 99 * to protect against cases where the user may try to 100 * pass in an address starting at the second slot of the 101 * dynptr. 102 */ 103 bool first_slot; 104 } dynptr; 105 106 /* For bpf_iter stack slots */ 107 struct { 108 /* BTF container and BTF type ID describing 109 * struct bpf_iter_<type> of an iterator state 110 */ 111 struct btf *btf; 112 u32 btf_id; 113 /* packing following two fields to fit iter state into 16 bytes */ 114 enum bpf_iter_state state:2; 115 int depth:30; 116 } iter; 117 118 /* For irq stack slots */ 119 struct { 120 enum { 121 IRQ_NATIVE_KFUNC, 122 IRQ_LOCK_KFUNC, 123 } kfunc_class; 124 } irq; 125 126 /* Max size from any of the above. */ 127 struct { 128 unsigned long raw1; 129 unsigned long raw2; 130 } raw; 131 132 u32 subprogno; /* for PTR_TO_FUNC */ 133 }; 134 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 135 * the actual value. 136 * For pointer types, this represents the variable part of the offset 137 * from the pointed-to object, and is shared with all bpf_reg_states 138 * with the same id as us. 139 */ 140 struct tnum var_off; 141 /* Used to determine if any memory access using this register will 142 * result in a bad access. 143 * These refer to the same value as var_off, not necessarily the actual 144 * contents of the register. 145 */ 146 s64 smin_value; /* minimum possible (s64)value */ 147 s64 smax_value; /* maximum possible (s64)value */ 148 u64 umin_value; /* minimum possible (u64)value */ 149 u64 umax_value; /* maximum possible (u64)value */ 150 s32 s32_min_value; /* minimum possible (s32)value */ 151 s32 s32_max_value; /* maximum possible (s32)value */ 152 u32 u32_min_value; /* minimum possible (u32)value */ 153 u32 u32_max_value; /* maximum possible (u32)value */ 154 /* For PTR_TO_PACKET, used to find other pointers with the same variable 155 * offset, so they can share range knowledge. 156 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 157 * came from, when one is tested for != NULL. 158 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 159 * for the purpose of tracking that it's freed. 160 * For PTR_TO_SOCKET this is used to share which pointers retain the 161 * same reference to the socket, to determine proper reference freeing. 162 * For stack slots that are dynptrs, this is used to track references to 163 * the dynptr to determine proper reference freeing. 164 * Similarly to dynptrs, we use ID to track "belonging" of a reference 165 * to a specific instance of bpf_iter. 166 */ 167 /* 168 * Upper bit of ID is used to remember relationship between "linked" 169 * registers. Example: 170 * r1 = r2; both will have r1->id == r2->id == N 171 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10 172 */ 173#define BPF_ADD_CONST (1U << 31) 174 u32 id; 175 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 176 * from a pointer-cast helper, bpf_sk_fullsock() and 177 * bpf_tcp_sock(). 178 * 179 * Consider the following where "sk" is a reference counted 180 * pointer returned from "sk = bpf_sk_lookup_tcp();": 181 * 182 * 1: sk = bpf_sk_lookup_tcp(); 183 * 2: if (!sk) { return 0; } 184 * 3: fullsock = bpf_sk_fullsock(sk); 185 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 186 * 5: tp = bpf_tcp_sock(fullsock); 187 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 188 * 7: bpf_sk_release(sk); 189 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 190 * 191 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 192 * "tp" ptr should be invalidated also. In order to do that, 193 * the reg holding "fullsock" and "sk" need to remember 194 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 195 * such that the verifier can reset all regs which have 196 * ref_obj_id matching the sk_reg->id. 197 * 198 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 199 * sk_reg->id will stay as NULL-marking purpose only. 200 * After NULL-marking is done, sk_reg->id can be reset to 0. 201 * 202 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 203 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 204 * 205 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 206 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 207 * which is the same as sk_reg->ref_obj_id. 208 * 209 * From the verifier perspective, if sk, fullsock and tp 210 * are not NULL, they are the same ptr with different 211 * reg->type. In particular, bpf_sk_release(tp) is also 212 * allowed and has the same effect as bpf_sk_release(sk). 213 */ 214 u32 ref_obj_id; 215 /* parentage chain for liveness checking */ 216 struct bpf_reg_state *parent; 217 /* Inside the callee two registers can be both PTR_TO_STACK like 218 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 219 * while another to the caller's stack. To differentiate them 'frameno' 220 * is used which is an index in bpf_verifier_state->frame[] array 221 * pointing to bpf_func_state. 222 */ 223 u32 frameno; 224 /* Tracks subreg definition. The stored value is the insn_idx of the 225 * writing insn. This is safe because subreg_def is used before any insn 226 * patching which only happens after main verification finished. 227 */ 228 s32 subreg_def; 229 enum bpf_reg_liveness live; 230 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 231 bool precise; 232}; 233 234enum bpf_stack_slot_type { 235 STACK_INVALID, /* nothing was stored in this stack slot */ 236 STACK_SPILL, /* register spilled into stack */ 237 STACK_MISC, /* BPF program wrote some data into this slot */ 238 STACK_ZERO, /* BPF program wrote constant zero */ 239 /* A dynptr is stored in this stack slot. The type of dynptr 240 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 241 */ 242 STACK_DYNPTR, 243 STACK_ITER, 244 STACK_IRQ_FLAG, 245}; 246 247#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 248 249#define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 250 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 251 (1 << BPF_REG_5)) 252 253#define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 254#define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 255 256struct bpf_stack_state { 257 struct bpf_reg_state spilled_ptr; 258 u8 slot_type[BPF_REG_SIZE]; 259}; 260 261struct bpf_reference_state { 262 /* Each reference object has a type. Ensure REF_TYPE_PTR is zero to 263 * default to pointer reference on zero initialization of a state. 264 */ 265 enum ref_state_type { 266 REF_TYPE_PTR = (1 << 1), 267 REF_TYPE_IRQ = (1 << 2), 268 REF_TYPE_LOCK = (1 << 3), 269 REF_TYPE_RES_LOCK = (1 << 4), 270 REF_TYPE_RES_LOCK_IRQ = (1 << 5), 271 REF_TYPE_LOCK_MASK = REF_TYPE_LOCK | REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, 272 } type; 273 /* Track each reference created with a unique id, even if the same 274 * instruction creates the reference multiple times (eg, via CALL). 275 */ 276 int id; 277 /* Instruction where the allocation of this reference occurred. This 278 * is used purely to inform the user of a reference leak. 279 */ 280 int insn_idx; 281 /* Use to keep track of the source object of a lock, to ensure 282 * it matches on unlock. 283 */ 284 void *ptr; 285}; 286 287struct bpf_retval_range { 288 s32 minval; 289 s32 maxval; 290}; 291 292/* state of the program: 293 * type of all registers and stack info 294 */ 295struct bpf_func_state { 296 struct bpf_reg_state regs[MAX_BPF_REG]; 297 /* index of call instruction that called into this func */ 298 int callsite; 299 /* stack frame number of this function state from pov of 300 * enclosing bpf_verifier_state. 301 * 0 = main function, 1 = first callee. 302 */ 303 u32 frameno; 304 /* subprog number == index within subprog_info 305 * zero == main subprog 306 */ 307 u32 subprogno; 308 /* Every bpf_timer_start will increment async_entry_cnt. 309 * It's used to distinguish: 310 * void foo(void) { for(;;); } 311 * void foo(void) { bpf_timer_set_callback(,foo); } 312 */ 313 u32 async_entry_cnt; 314 struct bpf_retval_range callback_ret_range; 315 bool in_callback_fn; 316 bool in_async_callback_fn; 317 bool in_exception_callback_fn; 318 /* For callback calling functions that limit number of possible 319 * callback executions (e.g. bpf_loop) keeps track of current 320 * simulated iteration number. 321 * Value in frame N refers to number of times callback with frame 322 * N+1 was simulated, e.g. for the following call: 323 * 324 * bpf_loop(..., fn, ...); | suppose current frame is N 325 * | fn would be simulated in frame N+1 326 * | number of simulations is tracked in frame N 327 */ 328 u32 callback_depth; 329 330 /* The following fields should be last. See copy_func_state() */ 331 /* The state of the stack. Each element of the array describes BPF_REG_SIZE 332 * (i.e. 8) bytes worth of stack memory. 333 * stack[0] represents bytes [*(r10-8)..*(r10-1)] 334 * stack[1] represents bytes [*(r10-16)..*(r10-9)] 335 * ... 336 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] 337 */ 338 struct bpf_stack_state *stack; 339 /* Size of the current stack, in bytes. The stack state is tracked below, in 340 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. 341 */ 342 int allocated_stack; 343}; 344 345#define MAX_CALL_FRAMES 8 346 347/* instruction history flags, used in bpf_jmp_history_entry.flags field */ 348enum { 349 /* instruction references stack slot through PTR_TO_STACK register; 350 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) 351 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, 352 * 8 bytes per slot, so slot index (spi) is [0, 63]) 353 */ 354 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ 355 356 INSN_F_SPI_MASK = 0x3f, /* 6 bits */ 357 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ 358 359 INSN_F_STACK_ACCESS = BIT(9), 360 361 INSN_F_DST_REG_STACK = BIT(10), /* dst_reg is PTR_TO_STACK */ 362 INSN_F_SRC_REG_STACK = BIT(11), /* src_reg is PTR_TO_STACK */ 363 /* total 12 bits are used now. */ 364}; 365 366static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); 367static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); 368 369struct bpf_jmp_history_entry { 370 u32 idx; 371 /* insn idx can't be bigger than 1 million */ 372 u32 prev_idx : 20; 373 /* special INSN_F_xxx flags */ 374 u32 flags : 12; 375 /* additional registers that need precision tracking when this 376 * jump is backtracked, vector of six 10-bit records 377 */ 378 u64 linked_regs; 379}; 380 381/* Maximum number of register states that can exist at once */ 382#define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 383struct bpf_verifier_state { 384 /* call stack tracking */ 385 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 386 struct bpf_verifier_state *parent; 387 /* Acquired reference states */ 388 struct bpf_reference_state *refs; 389 /* 390 * 'branches' field is the number of branches left to explore: 391 * 0 - all possible paths from this state reached bpf_exit or 392 * were safely pruned 393 * 1 - at least one path is being explored. 394 * This state hasn't reached bpf_exit 395 * 2 - at least two paths are being explored. 396 * This state is an immediate parent of two children. 397 * One is fallthrough branch with branches==1 and another 398 * state is pushed into stack (to be explored later) also with 399 * branches==1. The parent of this state has branches==1. 400 * The verifier state tree connected via 'parent' pointer looks like: 401 * 1 402 * 1 403 * 2 -> 1 (first 'if' pushed into stack) 404 * 1 405 * 2 -> 1 (second 'if' pushed into stack) 406 * 1 407 * 1 408 * 1 bpf_exit. 409 * 410 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 411 * and the verifier state tree will look: 412 * 1 413 * 1 414 * 2 -> 1 (first 'if' pushed into stack) 415 * 1 416 * 1 -> 1 (second 'if' pushed into stack) 417 * 0 418 * 0 419 * 0 bpf_exit. 420 * After pop_stack() the do_check() will resume at second 'if'. 421 * 422 * If is_state_visited() sees a state with branches > 0 it means 423 * there is a loop. If such state is exactly equal to the current state 424 * it's an infinite loop. Note states_equal() checks for states 425 * equivalency, so two states being 'states_equal' does not mean 426 * infinite loop. The exact comparison is provided by 427 * states_maybe_looping() function. It's a stronger pre-check and 428 * much faster than states_equal(). 429 * 430 * This algorithm may not find all possible infinite loops or 431 * loop iteration count may be too high. 432 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 433 */ 434 u32 branches; 435 u32 insn_idx; 436 u32 curframe; 437 438 u32 acquired_refs; 439 u32 active_locks; 440 u32 active_preempt_locks; 441 u32 active_irq_id; 442 u32 active_lock_id; 443 void *active_lock_ptr; 444 bool active_rcu_lock; 445 446 bool speculative; 447 bool in_sleepable; 448 449 /* first and last insn idx of this verifier state */ 450 u32 first_insn_idx; 451 u32 last_insn_idx; 452 /* if this state is a backedge state then equal_state 453 * records cached state to which this state is equal. 454 */ 455 struct bpf_verifier_state *equal_state; 456 /* jmp history recorded from first to last. 457 * backtracking is using it to go from last to first. 458 * For most states jmp_history_cnt is [0-3]. 459 * For loops can go up to ~40. 460 */ 461 struct bpf_jmp_history_entry *jmp_history; 462 u32 jmp_history_cnt; 463 u32 dfs_depth; 464 u32 callback_unroll_depth; 465 u32 may_goto_depth; 466}; 467 468#define bpf_get_spilled_reg(slot, frame, mask) \ 469 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 470 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ 471 ? &frame->stack[slot].spilled_ptr : NULL) 472 473/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 474#define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 475 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 476 iter < frame->allocated_stack / BPF_REG_SIZE; \ 477 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 478 479#define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 480 ({ \ 481 struct bpf_verifier_state *___vstate = __vst; \ 482 int ___i, ___j; \ 483 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 484 struct bpf_reg_state *___regs; \ 485 __state = ___vstate->frame[___i]; \ 486 ___regs = __state->regs; \ 487 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 488 __reg = &___regs[___j]; \ 489 (void)(__expr); \ 490 } \ 491 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 492 if (!__reg) \ 493 continue; \ 494 (void)(__expr); \ 495 } \ 496 } \ 497 }) 498 499/* Invoke __expr over regsiters in __vst, setting __state and __reg */ 500#define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 501 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 502 503/* linked list of verifier states used to prune search */ 504struct bpf_verifier_state_list { 505 struct bpf_verifier_state state; 506 struct list_head node; 507 u32 miss_cnt; 508 u32 hit_cnt:31; 509 u32 in_free_list:1; 510}; 511 512struct bpf_loop_inline_state { 513 unsigned int initialized:1; /* set to true upon first entry */ 514 unsigned int fit_for_inline:1; /* true if callback function is the same 515 * at each call and flags are always zero 516 */ 517 u32 callback_subprogno; /* valid when fit_for_inline is true */ 518}; 519 520/* pointer and state for maps */ 521struct bpf_map_ptr_state { 522 struct bpf_map *map_ptr; 523 bool poison; 524 bool unpriv; 525}; 526 527/* Possible states for alu_state member. */ 528#define BPF_ALU_SANITIZE_SRC (1U << 0) 529#define BPF_ALU_SANITIZE_DST (1U << 1) 530#define BPF_ALU_NEG_VALUE (1U << 2) 531#define BPF_ALU_NON_POINTER (1U << 3) 532#define BPF_ALU_IMMEDIATE (1U << 4) 533#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 534 BPF_ALU_SANITIZE_DST) 535 536struct bpf_insn_aux_data { 537 union { 538 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 539 struct bpf_map_ptr_state map_ptr_state; 540 s32 call_imm; /* saved imm field of call insn */ 541 u32 alu_limit; /* limit for add/sub register with pointer */ 542 struct { 543 u32 map_index; /* index into used_maps[] */ 544 u32 map_off; /* offset from value base address */ 545 }; 546 struct { 547 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 548 union { 549 struct { 550 struct btf *btf; 551 u32 btf_id; /* btf_id for struct typed var */ 552 }; 553 u32 mem_size; /* mem_size for non-struct typed var */ 554 }; 555 } btf_var; 556 /* if instruction is a call to bpf_loop this field tracks 557 * the state of the relevant registers to make decision about inlining 558 */ 559 struct bpf_loop_inline_state loop_inline_state; 560 }; 561 union { 562 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 563 u64 obj_new_size; 564 /* remember the offset of node field within type to rewrite */ 565 u64 insert_off; 566 }; 567 struct btf_struct_meta *kptr_struct_meta; 568 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 569 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 570 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 571 bool nospec; /* do not execute this instruction speculatively */ 572 bool nospec_result; /* result is unsafe under speculation, nospec must follow */ 573 bool zext_dst; /* this insn zero extends dst reg */ 574 bool needs_zext; /* alu op needs to clear upper bits */ 575 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 576 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 577 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 578 u8 alu_state; /* used in combination with alu_limit */ 579 /* true if STX or LDX instruction is a part of a spill/fill 580 * pattern for a bpf_fastcall call. 581 */ 582 u8 fastcall_pattern:1; 583 /* for CALL instructions, a number of spill/fill pairs in the 584 * bpf_fastcall pattern. 585 */ 586 u8 fastcall_spills_num:3; 587 u8 arg_prog:4; 588 589 /* below fields are initialized once */ 590 unsigned int orig_idx; /* original instruction index */ 591 bool jmp_point; 592 bool prune_point; 593 /* ensure we check state equivalence and save state checkpoint and 594 * this instruction, regardless of any heuristics 595 */ 596 bool force_checkpoint; 597 /* true if instruction is a call to a helper function that 598 * accepts callback function as a parameter. 599 */ 600 bool calls_callback; 601 /* 602 * CFG strongly connected component this instruction belongs to, 603 * zero if it is a singleton SCC. 604 */ 605 u32 scc; 606 /* registers alive before this instruction. */ 607 u16 live_regs_before; 608}; 609 610#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 611#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 612 613#define BPF_VERIFIER_TMP_LOG_SIZE 1024 614 615struct bpf_verifier_log { 616 /* Logical start and end positions of a "log window" of the verifier log. 617 * start_pos == 0 means we haven't truncated anything. 618 * Once truncation starts to happen, start_pos + len_total == end_pos, 619 * except during log reset situations, in which (end_pos - start_pos) 620 * might get smaller than len_total (see bpf_vlog_reset()). 621 * Generally, (end_pos - start_pos) gives number of useful data in 622 * user log buffer. 623 */ 624 u64 start_pos; 625 u64 end_pos; 626 char __user *ubuf; 627 u32 level; 628 u32 len_total; 629 u32 len_max; 630 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 631}; 632 633#define BPF_LOG_LEVEL1 1 634#define BPF_LOG_LEVEL2 2 635#define BPF_LOG_STATS 4 636#define BPF_LOG_FIXED 8 637#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 638#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 639#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 640#define BPF_LOG_MIN_ALIGNMENT 8U 641#define BPF_LOG_ALIGNMENT 40U 642 643static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 644{ 645 return log && log->level; 646} 647 648#define BPF_MAX_SUBPROGS 256 649 650struct bpf_subprog_arg_info { 651 enum bpf_arg_type arg_type; 652 union { 653 u32 mem_size; 654 u32 btf_id; 655 }; 656}; 657 658enum priv_stack_mode { 659 PRIV_STACK_UNKNOWN, 660 NO_PRIV_STACK, 661 PRIV_STACK_ADAPTIVE, 662}; 663 664struct bpf_subprog_info { 665 /* 'start' has to be the first field otherwise find_subprog() won't work */ 666 u32 start; /* insn idx of function entry point */ 667 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 668 u16 stack_depth; /* max. stack depth used by this function */ 669 u16 stack_extra; 670 /* offsets in range [stack_depth .. fastcall_stack_off) 671 * are used for bpf_fastcall spills and fills. 672 */ 673 s16 fastcall_stack_off; 674 bool has_tail_call: 1; 675 bool tail_call_reachable: 1; 676 bool has_ld_abs: 1; 677 bool is_cb: 1; 678 bool is_async_cb: 1; 679 bool is_exception_cb: 1; 680 bool args_cached: 1; 681 /* true if bpf_fastcall stack region is used by functions that can't be inlined */ 682 bool keep_fastcall_stack: 1; 683 bool changes_pkt_data: 1; 684 bool might_sleep: 1; 685 686 enum priv_stack_mode priv_stack_mode; 687 u8 arg_cnt; 688 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; 689}; 690 691struct bpf_verifier_env; 692 693struct backtrack_state { 694 struct bpf_verifier_env *env; 695 u32 frame; 696 u32 reg_masks[MAX_CALL_FRAMES]; 697 u64 stack_masks[MAX_CALL_FRAMES]; 698}; 699 700struct bpf_id_pair { 701 u32 old; 702 u32 cur; 703}; 704 705struct bpf_idmap { 706 u32 tmp_id_gen; 707 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 708}; 709 710struct bpf_idset { 711 u32 count; 712 u32 ids[BPF_ID_MAP_SIZE]; 713}; 714 715/* see verifier.c:compute_scc_callchain() */ 716struct bpf_scc_callchain { 717 /* call sites from bpf_verifier_state->frame[*]->callsite leading to this SCC */ 718 u32 callsites[MAX_CALL_FRAMES - 1]; 719 /* last frame in a chain is identified by SCC id */ 720 u32 scc; 721}; 722 723/* verifier state waiting for propagate_backedges() */ 724struct bpf_scc_backedge { 725 struct bpf_scc_backedge *next; 726 struct bpf_verifier_state state; 727}; 728 729struct bpf_scc_visit { 730 struct bpf_scc_callchain callchain; 731 /* first state in current verification path that entered SCC 732 * identified by the callchain 733 */ 734 struct bpf_verifier_state *entry_state; 735 struct bpf_scc_backedge *backedges; /* list of backedges */ 736 u32 num_backedges; 737}; 738 739/* An array of bpf_scc_visit structs sharing tht same bpf_scc_callchain->scc 740 * but having different bpf_scc_callchain->callsites. 741 */ 742struct bpf_scc_info { 743 u32 num_visits; 744 struct bpf_scc_visit visits[]; 745}; 746 747/* single container for all structs 748 * one verifier_env per bpf_check() call 749 */ 750struct bpf_verifier_env { 751 u32 insn_idx; 752 u32 prev_insn_idx; 753 struct bpf_prog *prog; /* eBPF program being verified */ 754 const struct bpf_verifier_ops *ops; 755 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ 756 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 757 int stack_size; /* number of states to be processed */ 758 bool strict_alignment; /* perform strict pointer alignment checks */ 759 bool test_state_freq; /* test verifier with different pruning frequency */ 760 bool test_reg_invariants; /* fail verification on register invariants violations */ 761 struct bpf_verifier_state *cur_state; /* current verifier state */ 762 /* Search pruning optimization, array of list_heads for 763 * lists of struct bpf_verifier_state_list. 764 */ 765 struct list_head *explored_states; 766 struct list_head free_list; /* list of struct bpf_verifier_state_list */ 767 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 768 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 769 u32 used_map_cnt; /* number of used maps */ 770 u32 used_btf_cnt; /* number of used BTF objects */ 771 u32 id_gen; /* used to generate unique reg IDs */ 772 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 773 int exception_callback_subprog; 774 bool explore_alu_limits; 775 bool allow_ptr_leaks; 776 /* Allow access to uninitialized stack memory. Writes with fixed offset are 777 * always allowed, so this refers to reads (with fixed or variable offset), 778 * to writes with variable offset and to indirect (helper) accesses. 779 */ 780 bool allow_uninit_stack; 781 bool bpf_capable; 782 bool bypass_spec_v1; 783 bool bypass_spec_v4; 784 bool seen_direct_write; 785 bool seen_exception; 786 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 787 const struct bpf_line_info *prev_linfo; 788 struct bpf_verifier_log log; 789 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 790 union { 791 struct bpf_idmap idmap_scratch; 792 struct bpf_idset idset_scratch; 793 }; 794 struct { 795 int *insn_state; 796 int *insn_stack; 797 /* vector of instruction indexes sorted in post-order */ 798 int *insn_postorder; 799 int cur_stack; 800 /* current position in the insn_postorder vector */ 801 int cur_postorder; 802 } cfg; 803 struct backtrack_state bt; 804 struct bpf_jmp_history_entry *cur_hist_ent; 805 u32 pass_cnt; /* number of times do_check() was called */ 806 u32 subprog_cnt; 807 /* number of instructions analyzed by the verifier */ 808 u32 prev_insn_processed, insn_processed; 809 /* number of jmps, calls, exits analyzed so far */ 810 u32 prev_jmps_processed, jmps_processed; 811 /* total verification time */ 812 u64 verification_time; 813 /* maximum number of verifier states kept in 'branching' instructions */ 814 u32 max_states_per_insn; 815 /* total number of allocated verifier states */ 816 u32 total_states; 817 /* some states are freed during program analysis. 818 * this is peak number of states. this number dominates kernel 819 * memory consumption during verification 820 */ 821 u32 peak_states; 822 /* longest register parentage chain walked for liveness marking */ 823 u32 longest_mark_read_walk; 824 u32 free_list_size; 825 u32 explored_states_size; 826 u32 num_backedges; 827 bpfptr_t fd_array; 828 829 /* bit mask to keep track of whether a register has been accessed 830 * since the last time the function state was printed 831 */ 832 u32 scratched_regs; 833 /* Same as scratched_regs but for stack slots */ 834 u64 scratched_stack_slots; 835 u64 prev_log_pos, prev_insn_print_pos; 836 /* buffer used to temporary hold constants as scalar registers */ 837 struct bpf_reg_state fake_reg[2]; 838 /* buffer used to generate temporary string representations, 839 * e.g., in reg_type_str() to generate reg_type string 840 */ 841 char tmp_str_buf[TMP_STR_BUF_LEN]; 842 struct bpf_insn insn_buf[INSN_BUF_SIZE]; 843 struct bpf_insn epilogue_buf[INSN_BUF_SIZE]; 844 struct bpf_scc_callchain callchain_buf; 845 /* array of pointers to bpf_scc_info indexed by SCC id */ 846 struct bpf_scc_info **scc_info; 847 u32 scc_cnt; 848}; 849 850static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) 851{ 852 return &env->prog->aux->func_info_aux[subprog]; 853} 854 855static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) 856{ 857 return &env->subprog_info[subprog]; 858} 859 860__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 861 const char *fmt, va_list args); 862__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 863 const char *fmt, ...); 864__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 865 const char *fmt, ...); 866int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 867 char __user *log_buf, u32 log_size); 868void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 869int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 870 871__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 872 u32 insn_off, 873 const char *prefix_fmt, ...); 874 875#define verifier_bug_if(cond, env, fmt, args...) \ 876 ({ \ 877 bool __cond = (cond); \ 878 if (unlikely(__cond)) { \ 879 BPF_WARN_ONCE(1, "verifier bug: " fmt "(" #cond ")\n", ##args); \ 880 bpf_log(&env->log, "verifier bug: " fmt "(" #cond ")\n", ##args); \ 881 } \ 882 (__cond); \ 883 }) 884#define verifier_bug(env, fmt, args...) verifier_bug_if(1, env, fmt, ##args) 885 886static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 887{ 888 struct bpf_verifier_state *cur = env->cur_state; 889 890 return cur->frame[cur->curframe]; 891} 892 893static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 894{ 895 return cur_func(env)->regs; 896} 897 898int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 899int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 900 int insn_idx, int prev_insn_idx); 901int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 902void 903bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 904 struct bpf_insn *insn); 905void 906bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 907 908/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 909static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 910 struct btf *btf, u32 btf_id) 911{ 912 if (tgt_prog) 913 return ((u64)tgt_prog->aux->id << 32) | btf_id; 914 else 915 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 916} 917 918/* unpack the IDs from the key as constructed above */ 919static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 920{ 921 if (obj_id) 922 *obj_id = key >> 32; 923 if (btf_id) 924 *btf_id = key & 0x7FFFFFFF; 925} 926 927int bpf_check_attach_target(struct bpf_verifier_log *log, 928 const struct bpf_prog *prog, 929 const struct bpf_prog *tgt_prog, 930 u32 btf_id, 931 struct bpf_attach_target_info *tgt_info); 932void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 933 934int mark_chain_precision(struct bpf_verifier_env *env, int regno); 935 936#define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 937 938/* extract base type from bpf_{arg, return, reg}_type. */ 939static inline u32 base_type(u32 type) 940{ 941 return type & BPF_BASE_TYPE_MASK; 942} 943 944/* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 945static inline u32 type_flag(u32 type) 946{ 947 return type & ~BPF_BASE_TYPE_MASK; 948} 949 950/* only use after check_attach_btf_id() */ 951static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 952{ 953 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ? 954 prog->aux->saved_dst_prog_type : prog->type; 955} 956 957static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 958{ 959 switch (resolve_prog_type(prog)) { 960 case BPF_PROG_TYPE_TRACING: 961 return prog->expected_attach_type != BPF_TRACE_ITER; 962 case BPF_PROG_TYPE_STRUCT_OPS: 963 return prog->aux->jits_use_priv_stack; 964 case BPF_PROG_TYPE_LSM: 965 return false; 966 default: 967 return true; 968 } 969} 970 971#define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 972 973static inline bool bpf_type_has_unsafe_modifiers(u32 type) 974{ 975 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 976} 977 978static inline bool type_is_ptr_alloc_obj(u32 type) 979{ 980 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 981} 982 983static inline bool type_is_non_owning_ref(u32 type) 984{ 985 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 986} 987 988static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 989{ 990 type = base_type(type); 991 return type == PTR_TO_PACKET || 992 type == PTR_TO_PACKET_META; 993} 994 995static inline bool type_is_sk_pointer(enum bpf_reg_type type) 996{ 997 return type == PTR_TO_SOCKET || 998 type == PTR_TO_SOCK_COMMON || 999 type == PTR_TO_TCP_SOCK || 1000 type == PTR_TO_XDP_SOCK; 1001} 1002 1003static inline bool type_may_be_null(u32 type) 1004{ 1005 return type & PTR_MAYBE_NULL; 1006} 1007 1008static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 1009{ 1010 env->scratched_regs |= 1U << regno; 1011} 1012 1013static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 1014{ 1015 env->scratched_stack_slots |= 1ULL << spi; 1016} 1017 1018static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 1019{ 1020 return (env->scratched_regs >> regno) & 1; 1021} 1022 1023static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 1024{ 1025 return (env->scratched_stack_slots >> regno) & 1; 1026} 1027 1028static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 1029{ 1030 return env->scratched_regs || env->scratched_stack_slots; 1031} 1032 1033static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 1034{ 1035 env->scratched_regs = 0U; 1036 env->scratched_stack_slots = 0ULL; 1037} 1038 1039/* Used for printing the entire verifier state. */ 1040static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 1041{ 1042 env->scratched_regs = ~0U; 1043 env->scratched_stack_slots = ~0ULL; 1044} 1045 1046static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) 1047{ 1048#ifdef __BIG_ENDIAN 1049 off -= spill_size - fill_size; 1050#endif 1051 1052 return !(off % BPF_REG_SIZE); 1053} 1054 1055const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 1056const char *dynptr_type_str(enum bpf_dynptr_type type); 1057const char *iter_type_str(const struct btf *btf, u32 btf_id); 1058const char *iter_state_str(enum bpf_iter_state state); 1059 1060void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, 1061 u32 frameno, bool print_all); 1062void print_insn_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, 1063 u32 frameno); 1064 1065#endif /* _LINUX_BPF_VERIFIER_H */