Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2021 Intel Corporation
4 */
5
6#include "xe_exec_queue.h"
7
8#include <linux/nospec.h>
9
10#include <drm/drm_device.h>
11#include <drm/drm_drv.h>
12#include <drm/drm_file.h>
13#include <uapi/drm/xe_drm.h>
14
15#include "xe_device.h"
16#include "xe_gt.h"
17#include "xe_hw_engine_class_sysfs.h"
18#include "xe_hw_engine_group.h"
19#include "xe_hw_fence.h"
20#include "xe_irq.h"
21#include "xe_lrc.h"
22#include "xe_macros.h"
23#include "xe_migrate.h"
24#include "xe_pm.h"
25#include "xe_ring_ops_types.h"
26#include "xe_trace.h"
27#include "xe_vm.h"
28#include "xe_pxp.h"
29
30enum xe_exec_queue_sched_prop {
31 XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
32 XE_EXEC_QUEUE_TIMESLICE = 1,
33 XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
34 XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
35};
36
37static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
38 u64 extensions, int ext_number);
39
40static void __xe_exec_queue_free(struct xe_exec_queue *q)
41{
42 if (xe_exec_queue_uses_pxp(q))
43 xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
44 if (q->vm)
45 xe_vm_put(q->vm);
46
47 if (q->xef)
48 xe_file_put(q->xef);
49
50 kfree(q);
51}
52
53static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
54 struct xe_vm *vm,
55 u32 logical_mask,
56 u16 width, struct xe_hw_engine *hwe,
57 u32 flags, u64 extensions)
58{
59 struct xe_exec_queue *q;
60 struct xe_gt *gt = hwe->gt;
61 int err;
62
63 /* only kernel queues can be permanent */
64 XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
65
66 q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
67 if (!q)
68 return ERR_PTR(-ENOMEM);
69
70 kref_init(&q->refcount);
71 q->flags = flags;
72 q->hwe = hwe;
73 q->gt = gt;
74 q->class = hwe->class;
75 q->width = width;
76 q->msix_vec = XE_IRQ_DEFAULT_MSIX;
77 q->logical_mask = logical_mask;
78 q->fence_irq = >->fence_irq[hwe->class];
79 q->ring_ops = gt->ring_ops[hwe->class];
80 q->ops = gt->exec_queue_ops;
81 INIT_LIST_HEAD(&q->lr.link);
82 INIT_LIST_HEAD(&q->multi_gt_link);
83 INIT_LIST_HEAD(&q->hw_engine_group_link);
84 INIT_LIST_HEAD(&q->pxp.link);
85
86 q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
87 q->sched_props.preempt_timeout_us =
88 hwe->eclass->sched_props.preempt_timeout_us;
89 q->sched_props.job_timeout_ms =
90 hwe->eclass->sched_props.job_timeout_ms;
91 if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
92 q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
93 q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
94 else
95 q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
96
97 if (vm)
98 q->vm = xe_vm_get(vm);
99
100 if (extensions) {
101 /*
102 * may set q->usm, must come before xe_lrc_create(),
103 * may overwrite q->sched_props, must come before q->ops->init()
104 */
105 err = exec_queue_user_extensions(xe, q, extensions, 0);
106 if (err) {
107 __xe_exec_queue_free(q);
108 return ERR_PTR(err);
109 }
110 }
111
112 return q;
113}
114
115static int __xe_exec_queue_init(struct xe_exec_queue *q)
116{
117 int i, err;
118 u32 flags = 0;
119
120 /*
121 * PXP workloads executing on RCS or CCS must run in isolation (i.e. no
122 * other workload can use the EUs at the same time). On MTL this is done
123 * by setting the RUNALONE bit in the LRC, while starting on Xe2 there
124 * is a dedicated bit for it.
125 */
126 if (xe_exec_queue_uses_pxp(q) &&
127 (q->class == XE_ENGINE_CLASS_RENDER || q->class == XE_ENGINE_CLASS_COMPUTE)) {
128 if (GRAPHICS_VER(gt_to_xe(q->gt)) >= 20)
129 flags |= XE_LRC_CREATE_PXP;
130 else
131 flags |= XE_LRC_CREATE_RUNALONE;
132 }
133
134 for (i = 0; i < q->width; ++i) {
135 q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K, q->msix_vec, flags);
136 if (IS_ERR(q->lrc[i])) {
137 err = PTR_ERR(q->lrc[i]);
138 goto err_lrc;
139 }
140 }
141
142 err = q->ops->init(q);
143 if (err)
144 goto err_lrc;
145
146 return 0;
147
148err_lrc:
149 for (i = i - 1; i >= 0; --i)
150 xe_lrc_put(q->lrc[i]);
151 return err;
152}
153
154static void __xe_exec_queue_fini(struct xe_exec_queue *q)
155{
156 int i;
157
158 q->ops->fini(q);
159
160 for (i = 0; i < q->width; ++i)
161 xe_lrc_put(q->lrc[i]);
162}
163
164struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
165 u32 logical_mask, u16 width,
166 struct xe_hw_engine *hwe, u32 flags,
167 u64 extensions)
168{
169 struct xe_exec_queue *q;
170 int err;
171
172 /* VMs for GSCCS queues (and only those) must have the XE_VM_FLAG_GSC flag */
173 xe_assert(xe, !vm || (!!(vm->flags & XE_VM_FLAG_GSC) == !!(hwe->engine_id == XE_HW_ENGINE_GSCCS0)));
174
175 q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
176 extensions);
177 if (IS_ERR(q))
178 return q;
179
180 err = __xe_exec_queue_init(q);
181 if (err)
182 goto err_post_alloc;
183
184 /*
185 * We can only add the queue to the PXP list after the init is complete,
186 * because the PXP termination can call exec_queue_kill and that will
187 * go bad if the queue is only half-initialized. This means that we
188 * can't do it when we handle the PXP extension in __xe_exec_queue_alloc
189 * and we need to do it here instead.
190 */
191 if (xe_exec_queue_uses_pxp(q)) {
192 err = xe_pxp_exec_queue_add(xe->pxp, q);
193 if (err)
194 goto err_post_init;
195 }
196
197 return q;
198
199err_post_init:
200 __xe_exec_queue_fini(q);
201err_post_alloc:
202 __xe_exec_queue_free(q);
203 return ERR_PTR(err);
204}
205ALLOW_ERROR_INJECTION(xe_exec_queue_create, ERRNO);
206
207struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
208 struct xe_vm *vm,
209 enum xe_engine_class class,
210 u32 flags, u64 extensions)
211{
212 struct xe_hw_engine *hwe, *hwe0 = NULL;
213 enum xe_hw_engine_id id;
214 u32 logical_mask = 0;
215
216 for_each_hw_engine(hwe, gt, id) {
217 if (xe_hw_engine_is_reserved(hwe))
218 continue;
219
220 if (hwe->class == class) {
221 logical_mask |= BIT(hwe->logical_instance);
222 if (!hwe0)
223 hwe0 = hwe;
224 }
225 }
226
227 if (!logical_mask)
228 return ERR_PTR(-ENODEV);
229
230 return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
231}
232
233/**
234 * xe_exec_queue_create_bind() - Create bind exec queue.
235 * @xe: Xe device.
236 * @tile: tile which bind exec queue belongs to.
237 * @flags: exec queue creation flags
238 * @extensions: exec queue creation extensions
239 *
240 * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
241 * for access to physical memory required for page table programming. On a
242 * faulting devices the reserved copy engine instance must be used to avoid
243 * deadlocking (user binds cannot get stuck behind faults as kernel binds which
244 * resolve faults depend on user binds). On non-faulting devices any copy engine
245 * can be used.
246 *
247 * Returns exec queue on success, ERR_PTR on failure
248 */
249struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
250 struct xe_tile *tile,
251 u32 flags, u64 extensions)
252{
253 struct xe_gt *gt = tile->primary_gt;
254 struct xe_exec_queue *q;
255 struct xe_vm *migrate_vm;
256
257 migrate_vm = xe_migrate_get_vm(tile->migrate);
258 if (xe->info.has_usm) {
259 struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
260 XE_ENGINE_CLASS_COPY,
261 gt->usm.reserved_bcs_instance,
262 false);
263
264 if (!hwe) {
265 xe_vm_put(migrate_vm);
266 return ERR_PTR(-EINVAL);
267 }
268
269 q = xe_exec_queue_create(xe, migrate_vm,
270 BIT(hwe->logical_instance), 1, hwe,
271 flags, extensions);
272 } else {
273 q = xe_exec_queue_create_class(xe, gt, migrate_vm,
274 XE_ENGINE_CLASS_COPY, flags,
275 extensions);
276 }
277 xe_vm_put(migrate_vm);
278
279 return q;
280}
281ALLOW_ERROR_INJECTION(xe_exec_queue_create_bind, ERRNO);
282
283void xe_exec_queue_destroy(struct kref *ref)
284{
285 struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
286 struct xe_exec_queue *eq, *next;
287
288 if (xe_exec_queue_uses_pxp(q))
289 xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
290
291 xe_exec_queue_last_fence_put_unlocked(q);
292 if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
293 list_for_each_entry_safe(eq, next, &q->multi_gt_list,
294 multi_gt_link)
295 xe_exec_queue_put(eq);
296 }
297
298 q->ops->destroy(q);
299}
300
301void xe_exec_queue_fini(struct xe_exec_queue *q)
302{
303 /*
304 * Before releasing our ref to lrc and xef, accumulate our run ticks
305 * and wakeup any waiters.
306 */
307 xe_exec_queue_update_run_ticks(q);
308 if (q->xef && atomic_dec_and_test(&q->xef->exec_queue.pending_removal))
309 wake_up_var(&q->xef->exec_queue.pending_removal);
310
311 __xe_exec_queue_fini(q);
312 __xe_exec_queue_free(q);
313}
314
315void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
316{
317 switch (q->class) {
318 case XE_ENGINE_CLASS_RENDER:
319 snprintf(q->name, sizeof(q->name), "rcs%d", instance);
320 break;
321 case XE_ENGINE_CLASS_VIDEO_DECODE:
322 snprintf(q->name, sizeof(q->name), "vcs%d", instance);
323 break;
324 case XE_ENGINE_CLASS_VIDEO_ENHANCE:
325 snprintf(q->name, sizeof(q->name), "vecs%d", instance);
326 break;
327 case XE_ENGINE_CLASS_COPY:
328 snprintf(q->name, sizeof(q->name), "bcs%d", instance);
329 break;
330 case XE_ENGINE_CLASS_COMPUTE:
331 snprintf(q->name, sizeof(q->name), "ccs%d", instance);
332 break;
333 case XE_ENGINE_CLASS_OTHER:
334 snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
335 break;
336 default:
337 XE_WARN_ON(q->class);
338 }
339}
340
341struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
342{
343 struct xe_exec_queue *q;
344
345 mutex_lock(&xef->exec_queue.lock);
346 q = xa_load(&xef->exec_queue.xa, id);
347 if (q)
348 xe_exec_queue_get(q);
349 mutex_unlock(&xef->exec_queue.lock);
350
351 return q;
352}
353
354enum xe_exec_queue_priority
355xe_exec_queue_device_get_max_priority(struct xe_device *xe)
356{
357 return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
358 XE_EXEC_QUEUE_PRIORITY_NORMAL;
359}
360
361static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
362 u64 value)
363{
364 if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
365 return -EINVAL;
366
367 if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
368 return -EPERM;
369
370 q->sched_props.priority = value;
371 return 0;
372}
373
374static bool xe_exec_queue_enforce_schedule_limit(void)
375{
376#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
377 return true;
378#else
379 return !capable(CAP_SYS_NICE);
380#endif
381}
382
383static void
384xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
385 enum xe_exec_queue_sched_prop prop,
386 u32 *min, u32 *max)
387{
388 switch (prop) {
389 case XE_EXEC_QUEUE_JOB_TIMEOUT:
390 *min = eclass->sched_props.job_timeout_min;
391 *max = eclass->sched_props.job_timeout_max;
392 break;
393 case XE_EXEC_QUEUE_TIMESLICE:
394 *min = eclass->sched_props.timeslice_min;
395 *max = eclass->sched_props.timeslice_max;
396 break;
397 case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
398 *min = eclass->sched_props.preempt_timeout_min;
399 *max = eclass->sched_props.preempt_timeout_max;
400 break;
401 default:
402 break;
403 }
404#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
405 if (capable(CAP_SYS_NICE)) {
406 switch (prop) {
407 case XE_EXEC_QUEUE_JOB_TIMEOUT:
408 *min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
409 *max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
410 break;
411 case XE_EXEC_QUEUE_TIMESLICE:
412 *min = XE_HW_ENGINE_TIMESLICE_MIN;
413 *max = XE_HW_ENGINE_TIMESLICE_MAX;
414 break;
415 case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
416 *min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
417 *max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
418 break;
419 default:
420 break;
421 }
422 }
423#endif
424}
425
426static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
427 u64 value)
428{
429 u32 min = 0, max = 0;
430
431 xe_exec_queue_get_prop_minmax(q->hwe->eclass,
432 XE_EXEC_QUEUE_TIMESLICE, &min, &max);
433
434 if (xe_exec_queue_enforce_schedule_limit() &&
435 !xe_hw_engine_timeout_in_range(value, min, max))
436 return -EINVAL;
437
438 q->sched_props.timeslice_us = value;
439 return 0;
440}
441
442static int
443exec_queue_set_pxp_type(struct xe_device *xe, struct xe_exec_queue *q, u64 value)
444{
445 if (value == DRM_XE_PXP_TYPE_NONE)
446 return 0;
447
448 /* we only support HWDRM sessions right now */
449 if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
450 return -EINVAL;
451
452 if (!xe_pxp_is_enabled(xe->pxp))
453 return -ENODEV;
454
455 return xe_pxp_exec_queue_set_type(xe->pxp, q, DRM_XE_PXP_TYPE_HWDRM);
456}
457
458typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
459 struct xe_exec_queue *q,
460 u64 value);
461
462static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
463 [DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
464 [DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
465 [DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE] = exec_queue_set_pxp_type,
466};
467
468static int exec_queue_user_ext_set_property(struct xe_device *xe,
469 struct xe_exec_queue *q,
470 u64 extension)
471{
472 u64 __user *address = u64_to_user_ptr(extension);
473 struct drm_xe_ext_set_property ext;
474 int err;
475 u32 idx;
476
477 err = copy_from_user(&ext, address, sizeof(ext));
478 if (XE_IOCTL_DBG(xe, err))
479 return -EFAULT;
480
481 if (XE_IOCTL_DBG(xe, ext.property >=
482 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
483 XE_IOCTL_DBG(xe, ext.pad) ||
484 XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
485 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE &&
486 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE))
487 return -EINVAL;
488
489 idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
490 if (!exec_queue_set_property_funcs[idx])
491 return -EINVAL;
492
493 return exec_queue_set_property_funcs[idx](xe, q, ext.value);
494}
495
496typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
497 struct xe_exec_queue *q,
498 u64 extension);
499
500static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
501 [DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
502};
503
504#define MAX_USER_EXTENSIONS 16
505static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
506 u64 extensions, int ext_number)
507{
508 u64 __user *address = u64_to_user_ptr(extensions);
509 struct drm_xe_user_extension ext;
510 int err;
511 u32 idx;
512
513 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
514 return -E2BIG;
515
516 err = copy_from_user(&ext, address, sizeof(ext));
517 if (XE_IOCTL_DBG(xe, err))
518 return -EFAULT;
519
520 if (XE_IOCTL_DBG(xe, ext.pad) ||
521 XE_IOCTL_DBG(xe, ext.name >=
522 ARRAY_SIZE(exec_queue_user_extension_funcs)))
523 return -EINVAL;
524
525 idx = array_index_nospec(ext.name,
526 ARRAY_SIZE(exec_queue_user_extension_funcs));
527 err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
528 if (XE_IOCTL_DBG(xe, err))
529 return err;
530
531 if (ext.next_extension)
532 return exec_queue_user_extensions(xe, q, ext.next_extension,
533 ++ext_number);
534
535 return 0;
536}
537
538static u32 calc_validate_logical_mask(struct xe_device *xe,
539 struct drm_xe_engine_class_instance *eci,
540 u16 width, u16 num_placements)
541{
542 int len = width * num_placements;
543 int i, j, n;
544 u16 class;
545 u16 gt_id;
546 u32 return_mask = 0, prev_mask;
547
548 if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
549 len > 1))
550 return 0;
551
552 for (i = 0; i < width; ++i) {
553 u32 current_mask = 0;
554
555 for (j = 0; j < num_placements; ++j) {
556 struct xe_hw_engine *hwe;
557
558 n = j * width + i;
559
560 hwe = xe_hw_engine_lookup(xe, eci[n]);
561 if (XE_IOCTL_DBG(xe, !hwe))
562 return 0;
563
564 if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
565 return 0;
566
567 if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
568 XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
569 return 0;
570
571 class = eci[n].engine_class;
572 gt_id = eci[n].gt_id;
573
574 if (width == 1 || !i)
575 return_mask |= BIT(eci[n].engine_instance);
576 current_mask |= BIT(eci[n].engine_instance);
577 }
578
579 /* Parallel submissions must be logically contiguous */
580 if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
581 return 0;
582
583 prev_mask = current_mask;
584 }
585
586 return return_mask;
587}
588
589int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
590 struct drm_file *file)
591{
592 struct xe_device *xe = to_xe_device(dev);
593 struct xe_file *xef = to_xe_file(file);
594 struct drm_xe_exec_queue_create *args = data;
595 struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
596 struct drm_xe_engine_class_instance __user *user_eci =
597 u64_to_user_ptr(args->instances);
598 struct xe_hw_engine *hwe;
599 struct xe_vm *vm;
600 struct xe_tile *tile;
601 struct xe_exec_queue *q = NULL;
602 u32 logical_mask;
603 u32 flags = 0;
604 u32 id;
605 u32 len;
606 int err;
607
608 if (XE_IOCTL_DBG(xe, args->flags & ~DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT) ||
609 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
610 return -EINVAL;
611
612 len = args->width * args->num_placements;
613 if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
614 return -EINVAL;
615
616 err = copy_from_user(eci, user_eci,
617 sizeof(struct drm_xe_engine_class_instance) * len);
618 if (XE_IOCTL_DBG(xe, err))
619 return -EFAULT;
620
621 if (XE_IOCTL_DBG(xe, !xe_device_get_gt(xe, eci[0].gt_id)))
622 return -EINVAL;
623
624 if (args->flags & DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT)
625 flags |= EXEC_QUEUE_FLAG_LOW_LATENCY;
626
627 if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
628 if (XE_IOCTL_DBG(xe, args->width != 1) ||
629 XE_IOCTL_DBG(xe, args->num_placements != 1) ||
630 XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
631 return -EINVAL;
632
633 for_each_tile(tile, xe, id) {
634 struct xe_exec_queue *new;
635
636 flags |= EXEC_QUEUE_FLAG_VM;
637 if (id)
638 flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
639
640 new = xe_exec_queue_create_bind(xe, tile, flags,
641 args->extensions);
642 if (IS_ERR(new)) {
643 err = PTR_ERR(new);
644 if (q)
645 goto put_exec_queue;
646 return err;
647 }
648 if (id == 0)
649 q = new;
650 else
651 list_add_tail(&new->multi_gt_list,
652 &q->multi_gt_link);
653 }
654 } else {
655 logical_mask = calc_validate_logical_mask(xe, eci,
656 args->width,
657 args->num_placements);
658 if (XE_IOCTL_DBG(xe, !logical_mask))
659 return -EINVAL;
660
661 hwe = xe_hw_engine_lookup(xe, eci[0]);
662 if (XE_IOCTL_DBG(xe, !hwe))
663 return -EINVAL;
664
665 vm = xe_vm_lookup(xef, args->vm_id);
666 if (XE_IOCTL_DBG(xe, !vm))
667 return -ENOENT;
668
669 err = down_read_interruptible(&vm->lock);
670 if (err) {
671 xe_vm_put(vm);
672 return err;
673 }
674
675 if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
676 up_read(&vm->lock);
677 xe_vm_put(vm);
678 return -ENOENT;
679 }
680
681 q = xe_exec_queue_create(xe, vm, logical_mask,
682 args->width, hwe, flags,
683 args->extensions);
684 up_read(&vm->lock);
685 xe_vm_put(vm);
686 if (IS_ERR(q))
687 return PTR_ERR(q);
688
689 if (xe_vm_in_preempt_fence_mode(vm)) {
690 q->lr.context = dma_fence_context_alloc(1);
691
692 err = xe_vm_add_compute_exec_queue(vm, q);
693 if (XE_IOCTL_DBG(xe, err))
694 goto put_exec_queue;
695 }
696
697 if (q->vm && q->hwe->hw_engine_group) {
698 err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
699 if (err)
700 goto put_exec_queue;
701 }
702 }
703
704 q->xef = xe_file_get(xef);
705
706 /* user id alloc must always be last in ioctl to prevent UAF */
707 err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
708 if (err)
709 goto kill_exec_queue;
710
711 args->exec_queue_id = id;
712
713 return 0;
714
715kill_exec_queue:
716 xe_exec_queue_kill(q);
717put_exec_queue:
718 xe_exec_queue_put(q);
719 return err;
720}
721
722int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
723 struct drm_file *file)
724{
725 struct xe_device *xe = to_xe_device(dev);
726 struct xe_file *xef = to_xe_file(file);
727 struct drm_xe_exec_queue_get_property *args = data;
728 struct xe_exec_queue *q;
729 int ret;
730
731 if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
732 return -EINVAL;
733
734 q = xe_exec_queue_lookup(xef, args->exec_queue_id);
735 if (XE_IOCTL_DBG(xe, !q))
736 return -ENOENT;
737
738 switch (args->property) {
739 case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
740 args->value = q->ops->reset_status(q);
741 ret = 0;
742 break;
743 default:
744 ret = -EINVAL;
745 }
746
747 xe_exec_queue_put(q);
748
749 return ret;
750}
751
752/**
753 * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
754 * @q: The exec_queue
755 *
756 * Return: True if the exec_queue is long-running, false otherwise.
757 */
758bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
759{
760 return q->vm && xe_vm_in_lr_mode(q->vm) &&
761 !(q->flags & EXEC_QUEUE_FLAG_VM);
762}
763
764static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
765{
766 return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1;
767}
768
769/**
770 * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
771 * @q: The exec_queue
772 *
773 * Return: True if the exec_queue's ring is full, false otherwise.
774 */
775bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
776{
777 struct xe_lrc *lrc = q->lrc[0];
778 s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
779
780 return xe_exec_queue_num_job_inflight(q) >= max_job;
781}
782
783/**
784 * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
785 * @q: The exec_queue
786 *
787 * FIXME: Need to determine what to use as the short-lived
788 * timeline lock for the exec_queues, so that the return value
789 * of this function becomes more than just an advisory
790 * snapshot in time. The timeline lock must protect the
791 * seqno from racing submissions on the same exec_queue.
792 * Typically vm->resv, but user-created timeline locks use the migrate vm
793 * and never grabs the migrate vm->resv so we have a race there.
794 *
795 * Return: True if the exec_queue is idle, false otherwise.
796 */
797bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
798{
799 if (xe_exec_queue_is_parallel(q)) {
800 int i;
801
802 for (i = 0; i < q->width; ++i) {
803 if (xe_lrc_seqno(q->lrc[i]) !=
804 q->lrc[i]->fence_ctx.next_seqno - 1)
805 return false;
806 }
807
808 return true;
809 }
810
811 return xe_lrc_seqno(q->lrc[0]) ==
812 q->lrc[0]->fence_ctx.next_seqno - 1;
813}
814
815/**
816 * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
817 * from hw
818 * @q: The exec queue
819 *
820 * Update the timestamp saved by HW for this exec queue and save run ticks
821 * calculated by using the delta from last update.
822 */
823void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
824{
825 struct xe_device *xe = gt_to_xe(q->gt);
826 struct xe_lrc *lrc;
827 u64 old_ts, new_ts;
828 int idx;
829
830 /*
831 * Jobs that are executed by kernel doesn't have a corresponding xe_file
832 * and thus are not accounted.
833 */
834 if (!q->xef)
835 return;
836
837 /* Synchronize with unbind while holding the xe file open */
838 if (!drm_dev_enter(&xe->drm, &idx))
839 return;
840 /*
841 * Only sample the first LRC. For parallel submission, all of them are
842 * scheduled together and we compensate that below by multiplying by
843 * width - this may introduce errors if that premise is not true and
844 * they don't exit 100% aligned. On the other hand, looping through
845 * the LRCs and reading them in different time could also introduce
846 * errors.
847 */
848 lrc = q->lrc[0];
849 new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
850 q->xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
851
852 drm_dev_exit(idx);
853}
854
855/**
856 * xe_exec_queue_kill - permanently stop all execution from an exec queue
857 * @q: The exec queue
858 *
859 * This function permanently stops all activity on an exec queue. If the queue
860 * is actively executing on the HW, it will be kicked off the engine; any
861 * pending jobs are discarded and all future submissions are rejected.
862 * This function is safe to call multiple times.
863 */
864void xe_exec_queue_kill(struct xe_exec_queue *q)
865{
866 struct xe_exec_queue *eq = q, *next;
867
868 list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
869 multi_gt_link) {
870 q->ops->kill(eq);
871 xe_vm_remove_compute_exec_queue(q->vm, eq);
872 }
873
874 q->ops->kill(q);
875 xe_vm_remove_compute_exec_queue(q->vm, q);
876}
877
878int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
879 struct drm_file *file)
880{
881 struct xe_device *xe = to_xe_device(dev);
882 struct xe_file *xef = to_xe_file(file);
883 struct drm_xe_exec_queue_destroy *args = data;
884 struct xe_exec_queue *q;
885
886 if (XE_IOCTL_DBG(xe, args->pad) ||
887 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
888 return -EINVAL;
889
890 mutex_lock(&xef->exec_queue.lock);
891 q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
892 if (q)
893 atomic_inc(&xef->exec_queue.pending_removal);
894 mutex_unlock(&xef->exec_queue.lock);
895
896 if (XE_IOCTL_DBG(xe, !q))
897 return -ENOENT;
898
899 if (q->vm && q->hwe->hw_engine_group)
900 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
901
902 xe_exec_queue_kill(q);
903
904 trace_xe_exec_queue_close(q);
905 xe_exec_queue_put(q);
906
907 return 0;
908}
909
910static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
911 struct xe_vm *vm)
912{
913 if (q->flags & EXEC_QUEUE_FLAG_VM) {
914 lockdep_assert_held(&vm->lock);
915 } else {
916 xe_vm_assert_held(vm);
917 lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
918 }
919}
920
921/**
922 * xe_exec_queue_last_fence_put() - Drop ref to last fence
923 * @q: The exec queue
924 * @vm: The VM the engine does a bind or exec for
925 */
926void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
927{
928 xe_exec_queue_last_fence_lockdep_assert(q, vm);
929
930 xe_exec_queue_last_fence_put_unlocked(q);
931}
932
933/**
934 * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
935 * @q: The exec queue
936 *
937 * Only safe to be called from xe_exec_queue_destroy().
938 */
939void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
940{
941 if (q->last_fence) {
942 dma_fence_put(q->last_fence);
943 q->last_fence = NULL;
944 }
945}
946
947/**
948 * xe_exec_queue_last_fence_get() - Get last fence
949 * @q: The exec queue
950 * @vm: The VM the engine does a bind or exec for
951 *
952 * Get last fence, takes a ref
953 *
954 * Returns: last fence if not signaled, dma fence stub if signaled
955 */
956struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
957 struct xe_vm *vm)
958{
959 struct dma_fence *fence;
960
961 xe_exec_queue_last_fence_lockdep_assert(q, vm);
962
963 if (q->last_fence &&
964 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
965 xe_exec_queue_last_fence_put(q, vm);
966
967 fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
968 dma_fence_get(fence);
969 return fence;
970}
971
972/**
973 * xe_exec_queue_last_fence_get_for_resume() - Get last fence
974 * @q: The exec queue
975 * @vm: The VM the engine does a bind or exec for
976 *
977 * Get last fence, takes a ref. Only safe to be called in the context of
978 * resuming the hw engine group's long-running exec queue, when the group
979 * semaphore is held.
980 *
981 * Returns: last fence if not signaled, dma fence stub if signaled
982 */
983struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
984 struct xe_vm *vm)
985{
986 struct dma_fence *fence;
987
988 lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
989
990 if (q->last_fence &&
991 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
992 xe_exec_queue_last_fence_put_unlocked(q);
993
994 fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
995 dma_fence_get(fence);
996 return fence;
997}
998
999/**
1000 * xe_exec_queue_last_fence_set() - Set last fence
1001 * @q: The exec queue
1002 * @vm: The VM the engine does a bind or exec for
1003 * @fence: The fence
1004 *
1005 * Set the last fence for the engine. Increases reference count for fence, when
1006 * closing engine xe_exec_queue_last_fence_put should be called.
1007 */
1008void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
1009 struct dma_fence *fence)
1010{
1011 xe_exec_queue_last_fence_lockdep_assert(q, vm);
1012
1013 xe_exec_queue_last_fence_put(q, vm);
1014 q->last_fence = dma_fence_get(fence);
1015}
1016
1017/**
1018 * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue
1019 * @q: The exec queue
1020 * @vm: The VM the engine does a bind or exec for
1021 *
1022 * Returns:
1023 * -ETIME if there exists an unsignalled last fence dependency, zero otherwise.
1024 */
1025int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm)
1026{
1027 struct dma_fence *fence;
1028 int err = 0;
1029
1030 fence = xe_exec_queue_last_fence_get(q, vm);
1031 if (fence) {
1032 err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ?
1033 0 : -ETIME;
1034 dma_fence_put(fence);
1035 }
1036
1037 return err;
1038}