Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Secure Encrypted Virtualization (SEV) interface
4 *
5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6 *
7 * Author: Brijesh Singh <brijesh.singh@amd.com>
8 */
9
10#include <linux/bitfield.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/kthread.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/spinlock.h>
17#include <linux/spinlock_types.h>
18#include <linux/types.h>
19#include <linux/mutex.h>
20#include <linux/delay.h>
21#include <linux/hw_random.h>
22#include <linux/ccp.h>
23#include <linux/firmware.h>
24#include <linux/panic_notifier.h>
25#include <linux/gfp.h>
26#include <linux/cpufeature.h>
27#include <linux/fs.h>
28#include <linux/fs_struct.h>
29#include <linux/psp.h>
30#include <linux/amd-iommu.h>
31
32#include <asm/smp.h>
33#include <asm/cacheflush.h>
34#include <asm/e820/types.h>
35#include <asm/sev.h>
36#include <asm/msr.h>
37
38#include "psp-dev.h"
39#include "sev-dev.h"
40
41#define DEVICE_NAME "sev"
42#define SEV_FW_FILE "amd/sev.fw"
43#define SEV_FW_NAME_SIZE 64
44
45/* Minimum firmware version required for the SEV-SNP support */
46#define SNP_MIN_API_MAJOR 1
47#define SNP_MIN_API_MINOR 51
48
49/*
50 * Maximum number of firmware-writable buffers that might be specified
51 * in the parameters of a legacy SEV command buffer.
52 */
53#define CMD_BUF_FW_WRITABLE_MAX 2
54
55/* Leave room in the descriptor array for an end-of-list indicator. */
56#define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
57
58static DEFINE_MUTEX(sev_cmd_mutex);
59static struct sev_misc_dev *misc_dev;
60
61static int psp_cmd_timeout = 100;
62module_param(psp_cmd_timeout, int, 0644);
63MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
64
65static int psp_probe_timeout = 5;
66module_param(psp_probe_timeout, int, 0644);
67MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
68
69static char *init_ex_path;
70module_param(init_ex_path, charp, 0444);
71MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
72
73static bool psp_init_on_probe = true;
74module_param(psp_init_on_probe, bool, 0444);
75MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
76
77MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
78MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
79MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
80MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
81
82static bool psp_dead;
83static int psp_timeout;
84
85/* Trusted Memory Region (TMR):
86 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator
87 * to allocate the memory, which will return aligned memory for the specified
88 * allocation order.
89 *
90 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
91 */
92#define SEV_TMR_SIZE (1024 * 1024)
93#define SNP_TMR_SIZE (2 * 1024 * 1024)
94
95static void *sev_es_tmr;
96static size_t sev_es_tmr_size = SEV_TMR_SIZE;
97
98/* INIT_EX NV Storage:
99 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page
100 * allocator to allocate the memory, which will return aligned memory for the
101 * specified allocation order.
102 */
103#define NV_LENGTH (32 * 1024)
104static void *sev_init_ex_buffer;
105
106/*
107 * SEV_DATA_RANGE_LIST:
108 * Array containing range of pages that firmware transitions to HV-fixed
109 * page state.
110 */
111static struct sev_data_range_list *snp_range_list;
112
113static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
114
115static int snp_shutdown_on_panic(struct notifier_block *nb,
116 unsigned long reason, void *arg);
117
118static struct notifier_block snp_panic_notifier = {
119 .notifier_call = snp_shutdown_on_panic,
120};
121
122static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
123{
124 struct sev_device *sev = psp_master->sev_data;
125
126 if (sev->api_major > maj)
127 return true;
128
129 if (sev->api_major == maj && sev->api_minor >= min)
130 return true;
131
132 return false;
133}
134
135static void sev_irq_handler(int irq, void *data, unsigned int status)
136{
137 struct sev_device *sev = data;
138 int reg;
139
140 /* Check if it is command completion: */
141 if (!(status & SEV_CMD_COMPLETE))
142 return;
143
144 /* Check if it is SEV command completion: */
145 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
146 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
147 sev->int_rcvd = 1;
148 wake_up(&sev->int_queue);
149 }
150}
151
152static int sev_wait_cmd_ioc(struct sev_device *sev,
153 unsigned int *reg, unsigned int timeout)
154{
155 int ret;
156
157 /*
158 * If invoked during panic handling, local interrupts are disabled,
159 * so the PSP command completion interrupt can't be used. Poll for
160 * PSP command completion instead.
161 */
162 if (irqs_disabled()) {
163 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
164
165 /* Poll for SEV command completion: */
166 while (timeout_usecs--) {
167 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
168 if (*reg & PSP_CMDRESP_RESP)
169 return 0;
170
171 udelay(10);
172 }
173 return -ETIMEDOUT;
174 }
175
176 ret = wait_event_timeout(sev->int_queue,
177 sev->int_rcvd, timeout * HZ);
178 if (!ret)
179 return -ETIMEDOUT;
180
181 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
182
183 return 0;
184}
185
186static int sev_cmd_buffer_len(int cmd)
187{
188 switch (cmd) {
189 case SEV_CMD_INIT: return sizeof(struct sev_data_init);
190 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex);
191 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex);
192 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex);
193 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status);
194 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr);
195 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import);
196 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export);
197 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start);
198 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data);
199 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa);
200 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish);
201 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure);
202 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate);
203 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate);
204 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission);
205 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status);
206 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg);
207 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg);
208 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start);
209 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data);
210 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa);
211 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish);
212 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start);
213 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish);
214 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data);
215 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa);
216 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret);
217 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware);
218 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id);
219 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report);
220 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel);
221 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr);
222 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start);
223 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update);
224 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate);
225 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr);
226 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim);
227 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status);
228 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish);
229 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg);
230 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg);
231 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash);
232 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr);
233 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request);
234 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config);
235 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit);
236 default: return 0;
237 }
238
239 return 0;
240}
241
242static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
243{
244 struct file *fp;
245 struct path root;
246 struct cred *cred;
247 const struct cred *old_cred;
248
249 task_lock(&init_task);
250 get_fs_root(init_task.fs, &root);
251 task_unlock(&init_task);
252
253 cred = prepare_creds();
254 if (!cred)
255 return ERR_PTR(-ENOMEM);
256 cred->fsuid = GLOBAL_ROOT_UID;
257 old_cred = override_creds(cred);
258
259 fp = file_open_root(&root, filename, flags, mode);
260 path_put(&root);
261
262 put_cred(revert_creds(old_cred));
263
264 return fp;
265}
266
267static int sev_read_init_ex_file(void)
268{
269 struct sev_device *sev = psp_master->sev_data;
270 struct file *fp;
271 ssize_t nread;
272
273 lockdep_assert_held(&sev_cmd_mutex);
274
275 if (!sev_init_ex_buffer)
276 return -EOPNOTSUPP;
277
278 fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
279 if (IS_ERR(fp)) {
280 int ret = PTR_ERR(fp);
281
282 if (ret == -ENOENT) {
283 dev_info(sev->dev,
284 "SEV: %s does not exist and will be created later.\n",
285 init_ex_path);
286 ret = 0;
287 } else {
288 dev_err(sev->dev,
289 "SEV: could not open %s for read, error %d\n",
290 init_ex_path, ret);
291 }
292 return ret;
293 }
294
295 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
296 if (nread != NV_LENGTH) {
297 dev_info(sev->dev,
298 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
299 NV_LENGTH, nread);
300 }
301
302 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
303 filp_close(fp, NULL);
304
305 return 0;
306}
307
308static int sev_write_init_ex_file(void)
309{
310 struct sev_device *sev = psp_master->sev_data;
311 struct file *fp;
312 loff_t offset = 0;
313 ssize_t nwrite;
314
315 lockdep_assert_held(&sev_cmd_mutex);
316
317 if (!sev_init_ex_buffer)
318 return 0;
319
320 fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
321 if (IS_ERR(fp)) {
322 int ret = PTR_ERR(fp);
323
324 dev_err(sev->dev,
325 "SEV: could not open file for write, error %d\n",
326 ret);
327 return ret;
328 }
329
330 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
331 vfs_fsync(fp, 0);
332 filp_close(fp, NULL);
333
334 if (nwrite != NV_LENGTH) {
335 dev_err(sev->dev,
336 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
337 NV_LENGTH, nwrite);
338 return -EIO;
339 }
340
341 dev_dbg(sev->dev, "SEV: write successful to NV file\n");
342
343 return 0;
344}
345
346static int sev_write_init_ex_file_if_required(int cmd_id)
347{
348 lockdep_assert_held(&sev_cmd_mutex);
349
350 if (!sev_init_ex_buffer)
351 return 0;
352
353 /*
354 * Only a few platform commands modify the SPI/NV area, but none of the
355 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
356 * PEK_CERT_IMPORT, and PDH_GEN do.
357 */
358 switch (cmd_id) {
359 case SEV_CMD_FACTORY_RESET:
360 case SEV_CMD_INIT_EX:
361 case SEV_CMD_PDH_GEN:
362 case SEV_CMD_PEK_CERT_IMPORT:
363 case SEV_CMD_PEK_GEN:
364 break;
365 default:
366 return 0;
367 }
368
369 return sev_write_init_ex_file();
370}
371
372/*
373 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
374 * needs snp_reclaim_pages(), so a forward declaration is needed.
375 */
376static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
377
378static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
379{
380 int ret, err, i;
381
382 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
383
384 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
385 struct sev_data_snp_page_reclaim data = {0};
386
387 data.paddr = paddr;
388
389 if (locked)
390 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
391 else
392 ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
393
394 if (ret)
395 goto cleanup;
396
397 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
398 if (ret)
399 goto cleanup;
400 }
401
402 return 0;
403
404cleanup:
405 /*
406 * If there was a failure reclaiming the page then it is no longer safe
407 * to release it back to the system; leak it instead.
408 */
409 snp_leak_pages(__phys_to_pfn(paddr), npages - i);
410 return ret;
411}
412
413static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
414{
415 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
416 int rc, i;
417
418 for (i = 0; i < npages; i++, pfn++) {
419 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
420 if (rc)
421 goto cleanup;
422 }
423
424 return 0;
425
426cleanup:
427 /*
428 * Try unrolling the firmware state changes by
429 * reclaiming the pages which were already changed to the
430 * firmware state.
431 */
432 snp_reclaim_pages(paddr, i, locked);
433
434 return rc;
435}
436
437static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
438{
439 unsigned long npages = 1ul << order, paddr;
440 struct sev_device *sev;
441 struct page *page;
442
443 if (!psp_master || !psp_master->sev_data)
444 return NULL;
445
446 page = alloc_pages(gfp_mask, order);
447 if (!page)
448 return NULL;
449
450 /* If SEV-SNP is initialized then add the page in RMP table. */
451 sev = psp_master->sev_data;
452 if (!sev->snp_initialized)
453 return page;
454
455 paddr = __pa((unsigned long)page_address(page));
456 if (rmp_mark_pages_firmware(paddr, npages, locked))
457 return NULL;
458
459 return page;
460}
461
462void *snp_alloc_firmware_page(gfp_t gfp_mask)
463{
464 struct page *page;
465
466 page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
467
468 return page ? page_address(page) : NULL;
469}
470EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
471
472static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
473{
474 struct sev_device *sev = psp_master->sev_data;
475 unsigned long paddr, npages = 1ul << order;
476
477 if (!page)
478 return;
479
480 paddr = __pa((unsigned long)page_address(page));
481 if (sev->snp_initialized &&
482 snp_reclaim_pages(paddr, npages, locked))
483 return;
484
485 __free_pages(page, order);
486}
487
488void snp_free_firmware_page(void *addr)
489{
490 if (!addr)
491 return;
492
493 __snp_free_firmware_pages(virt_to_page(addr), 0, false);
494}
495EXPORT_SYMBOL_GPL(snp_free_firmware_page);
496
497static void *sev_fw_alloc(unsigned long len)
498{
499 struct page *page;
500
501 page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
502 if (!page)
503 return NULL;
504
505 return page_address(page);
506}
507
508/**
509 * struct cmd_buf_desc - descriptors for managing legacy SEV command address
510 * parameters corresponding to buffers that may be written to by firmware.
511 *
512 * @paddr_ptr: pointer to the address parameter in the command buffer which may
513 * need to be saved/restored depending on whether a bounce buffer
514 * is used. In the case of a bounce buffer, the command buffer
515 * needs to be updated with the address of the new bounce buffer
516 * snp_map_cmd_buf_desc() has allocated specifically for it. Must
517 * be NULL if this descriptor is only an end-of-list indicator.
518 *
519 * @paddr_orig: storage for the original address parameter, which can be used to
520 * restore the original value in @paddr_ptr in cases where it is
521 * replaced with the address of a bounce buffer.
522 *
523 * @len: length of buffer located at the address originally stored at @paddr_ptr
524 *
525 * @guest_owned: true if the address corresponds to guest-owned pages, in which
526 * case bounce buffers are not needed.
527 */
528struct cmd_buf_desc {
529 u64 *paddr_ptr;
530 u64 paddr_orig;
531 u32 len;
532 bool guest_owned;
533};
534
535/*
536 * If a legacy SEV command parameter is a memory address, those pages in
537 * turn need to be transitioned to/from firmware-owned before/after
538 * executing the firmware command.
539 *
540 * Additionally, in cases where those pages are not guest-owned, a bounce
541 * buffer is needed in place of the original memory address parameter.
542 *
543 * A set of descriptors are used to keep track of this handling, and
544 * initialized here based on the specific commands being executed.
545 */
546static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
547 struct cmd_buf_desc *desc_list)
548{
549 switch (cmd) {
550 case SEV_CMD_PDH_CERT_EXPORT: {
551 struct sev_data_pdh_cert_export *data = cmd_buf;
552
553 desc_list[0].paddr_ptr = &data->pdh_cert_address;
554 desc_list[0].len = data->pdh_cert_len;
555 desc_list[1].paddr_ptr = &data->cert_chain_address;
556 desc_list[1].len = data->cert_chain_len;
557 break;
558 }
559 case SEV_CMD_GET_ID: {
560 struct sev_data_get_id *data = cmd_buf;
561
562 desc_list[0].paddr_ptr = &data->address;
563 desc_list[0].len = data->len;
564 break;
565 }
566 case SEV_CMD_PEK_CSR: {
567 struct sev_data_pek_csr *data = cmd_buf;
568
569 desc_list[0].paddr_ptr = &data->address;
570 desc_list[0].len = data->len;
571 break;
572 }
573 case SEV_CMD_LAUNCH_UPDATE_DATA: {
574 struct sev_data_launch_update_data *data = cmd_buf;
575
576 desc_list[0].paddr_ptr = &data->address;
577 desc_list[0].len = data->len;
578 desc_list[0].guest_owned = true;
579 break;
580 }
581 case SEV_CMD_LAUNCH_UPDATE_VMSA: {
582 struct sev_data_launch_update_vmsa *data = cmd_buf;
583
584 desc_list[0].paddr_ptr = &data->address;
585 desc_list[0].len = data->len;
586 desc_list[0].guest_owned = true;
587 break;
588 }
589 case SEV_CMD_LAUNCH_MEASURE: {
590 struct sev_data_launch_measure *data = cmd_buf;
591
592 desc_list[0].paddr_ptr = &data->address;
593 desc_list[0].len = data->len;
594 break;
595 }
596 case SEV_CMD_LAUNCH_UPDATE_SECRET: {
597 struct sev_data_launch_secret *data = cmd_buf;
598
599 desc_list[0].paddr_ptr = &data->guest_address;
600 desc_list[0].len = data->guest_len;
601 desc_list[0].guest_owned = true;
602 break;
603 }
604 case SEV_CMD_DBG_DECRYPT: {
605 struct sev_data_dbg *data = cmd_buf;
606
607 desc_list[0].paddr_ptr = &data->dst_addr;
608 desc_list[0].len = data->len;
609 desc_list[0].guest_owned = true;
610 break;
611 }
612 case SEV_CMD_DBG_ENCRYPT: {
613 struct sev_data_dbg *data = cmd_buf;
614
615 desc_list[0].paddr_ptr = &data->dst_addr;
616 desc_list[0].len = data->len;
617 desc_list[0].guest_owned = true;
618 break;
619 }
620 case SEV_CMD_ATTESTATION_REPORT: {
621 struct sev_data_attestation_report *data = cmd_buf;
622
623 desc_list[0].paddr_ptr = &data->address;
624 desc_list[0].len = data->len;
625 break;
626 }
627 case SEV_CMD_SEND_START: {
628 struct sev_data_send_start *data = cmd_buf;
629
630 desc_list[0].paddr_ptr = &data->session_address;
631 desc_list[0].len = data->session_len;
632 break;
633 }
634 case SEV_CMD_SEND_UPDATE_DATA: {
635 struct sev_data_send_update_data *data = cmd_buf;
636
637 desc_list[0].paddr_ptr = &data->hdr_address;
638 desc_list[0].len = data->hdr_len;
639 desc_list[1].paddr_ptr = &data->trans_address;
640 desc_list[1].len = data->trans_len;
641 break;
642 }
643 case SEV_CMD_SEND_UPDATE_VMSA: {
644 struct sev_data_send_update_vmsa *data = cmd_buf;
645
646 desc_list[0].paddr_ptr = &data->hdr_address;
647 desc_list[0].len = data->hdr_len;
648 desc_list[1].paddr_ptr = &data->trans_address;
649 desc_list[1].len = data->trans_len;
650 break;
651 }
652 case SEV_CMD_RECEIVE_UPDATE_DATA: {
653 struct sev_data_receive_update_data *data = cmd_buf;
654
655 desc_list[0].paddr_ptr = &data->guest_address;
656 desc_list[0].len = data->guest_len;
657 desc_list[0].guest_owned = true;
658 break;
659 }
660 case SEV_CMD_RECEIVE_UPDATE_VMSA: {
661 struct sev_data_receive_update_vmsa *data = cmd_buf;
662
663 desc_list[0].paddr_ptr = &data->guest_address;
664 desc_list[0].len = data->guest_len;
665 desc_list[0].guest_owned = true;
666 break;
667 }
668 default:
669 break;
670 }
671}
672
673static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
674{
675 unsigned int npages;
676
677 if (!desc->len)
678 return 0;
679
680 /* Allocate a bounce buffer if this isn't a guest owned page. */
681 if (!desc->guest_owned) {
682 struct page *page;
683
684 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
685 if (!page) {
686 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
687 return -ENOMEM;
688 }
689
690 desc->paddr_orig = *desc->paddr_ptr;
691 *desc->paddr_ptr = __psp_pa(page_to_virt(page));
692 }
693
694 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
695
696 /* Transition the buffer to firmware-owned. */
697 if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
698 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
699 return -EFAULT;
700 }
701
702 return 0;
703}
704
705static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
706{
707 unsigned int npages;
708
709 if (!desc->len)
710 return 0;
711
712 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
713
714 /* Transition the buffers back to hypervisor-owned. */
715 if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
716 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
717 return -EFAULT;
718 }
719
720 /* Copy data from bounce buffer and then free it. */
721 if (!desc->guest_owned) {
722 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
723 void *dst_buf = __va(__sme_clr(desc->paddr_orig));
724
725 memcpy(dst_buf, bounce_buf, desc->len);
726 __free_pages(virt_to_page(bounce_buf), get_order(desc->len));
727
728 /* Restore the original address in the command buffer. */
729 *desc->paddr_ptr = desc->paddr_orig;
730 }
731
732 return 0;
733}
734
735static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
736{
737 int i;
738
739 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
740
741 for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
742 struct cmd_buf_desc *desc = &desc_list[i];
743
744 if (!desc->paddr_ptr)
745 break;
746
747 if (snp_map_cmd_buf_desc(desc))
748 goto err_unmap;
749 }
750
751 return 0;
752
753err_unmap:
754 for (i--; i >= 0; i--)
755 snp_unmap_cmd_buf_desc(&desc_list[i]);
756
757 return -EFAULT;
758}
759
760static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
761{
762 int i, ret = 0;
763
764 for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
765 struct cmd_buf_desc *desc = &desc_list[i];
766
767 if (!desc->paddr_ptr)
768 break;
769
770 if (snp_unmap_cmd_buf_desc(&desc_list[i]))
771 ret = -EFAULT;
772 }
773
774 return ret;
775}
776
777static bool sev_cmd_buf_writable(int cmd)
778{
779 switch (cmd) {
780 case SEV_CMD_PLATFORM_STATUS:
781 case SEV_CMD_GUEST_STATUS:
782 case SEV_CMD_LAUNCH_START:
783 case SEV_CMD_RECEIVE_START:
784 case SEV_CMD_LAUNCH_MEASURE:
785 case SEV_CMD_SEND_START:
786 case SEV_CMD_SEND_UPDATE_DATA:
787 case SEV_CMD_SEND_UPDATE_VMSA:
788 case SEV_CMD_PEK_CSR:
789 case SEV_CMD_PDH_CERT_EXPORT:
790 case SEV_CMD_GET_ID:
791 case SEV_CMD_ATTESTATION_REPORT:
792 return true;
793 default:
794 return false;
795 }
796}
797
798/* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
799static bool snp_legacy_handling_needed(int cmd)
800{
801 struct sev_device *sev = psp_master->sev_data;
802
803 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
804}
805
806static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
807{
808 if (!snp_legacy_handling_needed(cmd))
809 return 0;
810
811 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
812 return -EFAULT;
813
814 /*
815 * Before command execution, the command buffer needs to be put into
816 * the firmware-owned state.
817 */
818 if (sev_cmd_buf_writable(cmd)) {
819 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
820 return -EFAULT;
821 }
822
823 return 0;
824}
825
826static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
827{
828 if (!snp_legacy_handling_needed(cmd))
829 return 0;
830
831 /*
832 * After command completion, the command buffer needs to be put back
833 * into the hypervisor-owned state.
834 */
835 if (sev_cmd_buf_writable(cmd))
836 if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
837 return -EFAULT;
838
839 return 0;
840}
841
842static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
843{
844 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
845 struct psp_device *psp = psp_master;
846 struct sev_device *sev;
847 unsigned int cmdbuff_hi, cmdbuff_lo;
848 unsigned int phys_lsb, phys_msb;
849 unsigned int reg, ret = 0;
850 void *cmd_buf;
851 int buf_len;
852
853 if (!psp || !psp->sev_data)
854 return -ENODEV;
855
856 if (psp_dead)
857 return -EBUSY;
858
859 sev = psp->sev_data;
860
861 buf_len = sev_cmd_buffer_len(cmd);
862 if (WARN_ON_ONCE(!data != !buf_len))
863 return -EINVAL;
864
865 /*
866 * Copy the incoming data to driver's scratch buffer as __pa() will not
867 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
868 * physically contiguous.
869 */
870 if (data) {
871 /*
872 * Commands are generally issued one at a time and require the
873 * sev_cmd_mutex, but there could be recursive firmware requests
874 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
875 * preparing buffers for another command. This is the only known
876 * case of nesting in the current code, so exactly one
877 * additional command buffer is available for that purpose.
878 */
879 if (!sev->cmd_buf_active) {
880 cmd_buf = sev->cmd_buf;
881 sev->cmd_buf_active = true;
882 } else if (!sev->cmd_buf_backup_active) {
883 cmd_buf = sev->cmd_buf_backup;
884 sev->cmd_buf_backup_active = true;
885 } else {
886 dev_err(sev->dev,
887 "SEV: too many firmware commands in progress, no command buffers available.\n");
888 return -EBUSY;
889 }
890
891 memcpy(cmd_buf, data, buf_len);
892
893 /*
894 * The behavior of the SEV-legacy commands is altered when the
895 * SNP firmware is in the INIT state.
896 */
897 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
898 if (ret) {
899 dev_err(sev->dev,
900 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
901 cmd, ret);
902 return ret;
903 }
904 } else {
905 cmd_buf = sev->cmd_buf;
906 }
907
908 /* Get the physical address of the command buffer */
909 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
910 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
911
912 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
913 cmd, phys_msb, phys_lsb, psp_timeout);
914
915 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data,
916 buf_len, false);
917
918 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
919 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
920
921 sev->int_rcvd = 0;
922
923 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
924
925 /*
926 * If invoked during panic handling, local interrupts are disabled so
927 * the PSP command completion interrupt can't be used.
928 * sev_wait_cmd_ioc() already checks for interrupts disabled and
929 * polls for PSP command completion. Ensure we do not request an
930 * interrupt from the PSP if irqs disabled.
931 */
932 if (!irqs_disabled())
933 reg |= SEV_CMDRESP_IOC;
934
935 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
936
937 /* wait for command completion */
938 ret = sev_wait_cmd_ioc(sev, ®, psp_timeout);
939 if (ret) {
940 if (psp_ret)
941 *psp_ret = 0;
942
943 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
944 psp_dead = true;
945
946 return ret;
947 }
948
949 psp_timeout = psp_cmd_timeout;
950
951 if (psp_ret)
952 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
953
954 if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
955 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
956 cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
957
958 /*
959 * PSP firmware may report additional error information in the
960 * command buffer registers on error. Print contents of command
961 * buffer registers if they changed.
962 */
963 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
964 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
965 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
966 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
967 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi);
968 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo);
969 }
970 ret = -EIO;
971 } else {
972 ret = sev_write_init_ex_file_if_required(cmd);
973 }
974
975 /*
976 * Copy potential output from the PSP back to data. Do this even on
977 * failure in case the caller wants to glean something from the error.
978 */
979 if (data) {
980 int ret_reclaim;
981 /*
982 * Restore the page state after the command completes.
983 */
984 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
985 if (ret_reclaim) {
986 dev_err(sev->dev,
987 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
988 cmd, ret_reclaim);
989 return ret_reclaim;
990 }
991
992 memcpy(data, cmd_buf, buf_len);
993
994 if (sev->cmd_buf_backup_active)
995 sev->cmd_buf_backup_active = false;
996 else
997 sev->cmd_buf_active = false;
998
999 if (snp_unmap_cmd_buf_desc_list(desc_list))
1000 return -EFAULT;
1001 }
1002
1003 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1004 buf_len, false);
1005
1006 return ret;
1007}
1008
1009int sev_do_cmd(int cmd, void *data, int *psp_ret)
1010{
1011 int rc;
1012
1013 mutex_lock(&sev_cmd_mutex);
1014 rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1015 mutex_unlock(&sev_cmd_mutex);
1016
1017 return rc;
1018}
1019EXPORT_SYMBOL_GPL(sev_do_cmd);
1020
1021static int __sev_init_locked(int *error)
1022{
1023 struct sev_data_init data;
1024
1025 memset(&data, 0, sizeof(data));
1026 if (sev_es_tmr) {
1027 /*
1028 * Do not include the encryption mask on the physical
1029 * address of the TMR (firmware should clear it anyway).
1030 */
1031 data.tmr_address = __pa(sev_es_tmr);
1032
1033 data.flags |= SEV_INIT_FLAGS_SEV_ES;
1034 data.tmr_len = sev_es_tmr_size;
1035 }
1036
1037 return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1038}
1039
1040static int __sev_init_ex_locked(int *error)
1041{
1042 struct sev_data_init_ex data;
1043
1044 memset(&data, 0, sizeof(data));
1045 data.length = sizeof(data);
1046 data.nv_address = __psp_pa(sev_init_ex_buffer);
1047 data.nv_len = NV_LENGTH;
1048
1049 if (sev_es_tmr) {
1050 /*
1051 * Do not include the encryption mask on the physical
1052 * address of the TMR (firmware should clear it anyway).
1053 */
1054 data.tmr_address = __pa(sev_es_tmr);
1055
1056 data.flags |= SEV_INIT_FLAGS_SEV_ES;
1057 data.tmr_len = sev_es_tmr_size;
1058 }
1059
1060 return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1061}
1062
1063static inline int __sev_do_init_locked(int *psp_ret)
1064{
1065 if (sev_init_ex_buffer)
1066 return __sev_init_ex_locked(psp_ret);
1067 else
1068 return __sev_init_locked(psp_ret);
1069}
1070
1071static void snp_set_hsave_pa(void *arg)
1072{
1073 wrmsrq(MSR_VM_HSAVE_PA, 0);
1074}
1075
1076static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1077{
1078 struct sev_data_range_list *range_list = arg;
1079 struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1080 size_t size;
1081
1082 /*
1083 * Ensure the list of HV_FIXED pages that will be passed to firmware
1084 * do not exceed the page-sized argument buffer.
1085 */
1086 if ((range_list->num_elements * sizeof(struct sev_data_range) +
1087 sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1088 return -E2BIG;
1089
1090 switch (rs->desc) {
1091 case E820_TYPE_RESERVED:
1092 case E820_TYPE_PMEM:
1093 case E820_TYPE_ACPI:
1094 range->base = rs->start & PAGE_MASK;
1095 size = PAGE_ALIGN((rs->end + 1) - rs->start);
1096 range->page_count = size >> PAGE_SHIFT;
1097 range_list->num_elements++;
1098 break;
1099 default:
1100 break;
1101 }
1102
1103 return 0;
1104}
1105
1106static int __sev_snp_init_locked(int *error)
1107{
1108 struct psp_device *psp = psp_master;
1109 struct sev_data_snp_init_ex data;
1110 struct sev_device *sev;
1111 void *arg = &data;
1112 int cmd, rc = 0;
1113
1114 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1115 return -ENODEV;
1116
1117 sev = psp->sev_data;
1118
1119 if (sev->snp_initialized)
1120 return 0;
1121
1122 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1123 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1124 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1125 return -EOPNOTSUPP;
1126 }
1127
1128 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1129 on_each_cpu(snp_set_hsave_pa, NULL, 1);
1130
1131 /*
1132 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1133 * of system physical address ranges to convert into HV-fixed page
1134 * states during the RMP initialization. For instance, the memory that
1135 * UEFI reserves should be included in the that list. This allows system
1136 * components that occasionally write to memory (e.g. logging to UEFI
1137 * reserved regions) to not fail due to RMP initialization and SNP
1138 * enablement.
1139 *
1140 */
1141 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1142 /*
1143 * Firmware checks that the pages containing the ranges enumerated
1144 * in the RANGES structure are either in the default page state or in the
1145 * firmware page state.
1146 */
1147 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1148 if (!snp_range_list) {
1149 dev_err(sev->dev,
1150 "SEV: SNP_INIT_EX range list memory allocation failed\n");
1151 return -ENOMEM;
1152 }
1153
1154 /*
1155 * Retrieve all reserved memory regions from the e820 memory map
1156 * to be setup as HV-fixed pages.
1157 */
1158 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1159 snp_range_list, snp_filter_reserved_mem_regions);
1160 if (rc) {
1161 dev_err(sev->dev,
1162 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1163 return rc;
1164 }
1165
1166 memset(&data, 0, sizeof(data));
1167 data.init_rmp = 1;
1168 data.list_paddr_en = 1;
1169 data.list_paddr = __psp_pa(snp_range_list);
1170 cmd = SEV_CMD_SNP_INIT_EX;
1171 } else {
1172 cmd = SEV_CMD_SNP_INIT;
1173 arg = NULL;
1174 }
1175
1176 /*
1177 * The following sequence must be issued before launching the first SNP
1178 * guest to ensure all dirty cache lines are flushed, including from
1179 * updates to the RMP table itself via the RMPUPDATE instruction:
1180 *
1181 * - WBINVD on all running CPUs
1182 * - SEV_CMD_SNP_INIT[_EX] firmware command
1183 * - WBINVD on all running CPUs
1184 * - SEV_CMD_SNP_DF_FLUSH firmware command
1185 */
1186 wbinvd_on_all_cpus();
1187
1188 rc = __sev_do_cmd_locked(cmd, arg, error);
1189 if (rc) {
1190 dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1191 cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1192 rc, *error);
1193 return rc;
1194 }
1195
1196 /* Prepare for first SNP guest launch after INIT. */
1197 wbinvd_on_all_cpus();
1198 rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1199 if (rc) {
1200 dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1201 rc, *error);
1202 return rc;
1203 }
1204
1205 sev->snp_initialized = true;
1206 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1207
1208 dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1209 sev->api_minor, sev->build);
1210
1211 atomic_notifier_chain_register(&panic_notifier_list,
1212 &snp_panic_notifier);
1213
1214 sev_es_tmr_size = SNP_TMR_SIZE;
1215
1216 return 0;
1217}
1218
1219static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1220{
1221 if (sev_es_tmr)
1222 return;
1223
1224 /* Obtain the TMR memory area for SEV-ES use */
1225 sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1226 if (sev_es_tmr) {
1227 /* Must flush the cache before giving it to the firmware */
1228 if (!sev->snp_initialized)
1229 clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1230 } else {
1231 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1232 }
1233}
1234
1235/*
1236 * If an init_ex_path is provided allocate a buffer for the file and
1237 * read in the contents. Additionally, if SNP is initialized, convert
1238 * the buffer pages to firmware pages.
1239 */
1240static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1241{
1242 struct page *page;
1243 int rc;
1244
1245 if (!init_ex_path)
1246 return 0;
1247
1248 if (sev_init_ex_buffer)
1249 return 0;
1250
1251 page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1252 if (!page) {
1253 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1254 return -ENOMEM;
1255 }
1256
1257 sev_init_ex_buffer = page_address(page);
1258
1259 rc = sev_read_init_ex_file();
1260 if (rc)
1261 return rc;
1262
1263 /* If SEV-SNP is initialized, transition to firmware page. */
1264 if (sev->snp_initialized) {
1265 unsigned long npages;
1266
1267 npages = 1UL << get_order(NV_LENGTH);
1268 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1269 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1270 return -ENOMEM;
1271 }
1272 }
1273
1274 return 0;
1275}
1276
1277static int __sev_platform_init_locked(int *error)
1278{
1279 int rc, psp_ret, dfflush_error;
1280 struct sev_device *sev;
1281
1282 psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1283
1284 if (!psp_master || !psp_master->sev_data)
1285 return -ENODEV;
1286
1287 sev = psp_master->sev_data;
1288
1289 if (sev->state == SEV_STATE_INIT)
1290 return 0;
1291
1292 __sev_platform_init_handle_tmr(sev);
1293
1294 rc = __sev_platform_init_handle_init_ex_path(sev);
1295 if (rc)
1296 return rc;
1297
1298 rc = __sev_do_init_locked(&psp_ret);
1299 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1300 /*
1301 * Initialization command returned an integrity check failure
1302 * status code, meaning that firmware load and validation of SEV
1303 * related persistent data has failed. Retrying the
1304 * initialization function should succeed by replacing the state
1305 * with a reset state.
1306 */
1307 dev_err(sev->dev,
1308"SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1309 rc = __sev_do_init_locked(&psp_ret);
1310 }
1311
1312 if (error)
1313 *error = psp_ret;
1314
1315 if (rc) {
1316 dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1317 sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1318 return rc;
1319 }
1320
1321 sev->state = SEV_STATE_INIT;
1322
1323 /* Prepare for first SEV guest launch after INIT */
1324 wbinvd_on_all_cpus();
1325 rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1326 if (rc) {
1327 dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1328 dfflush_error, rc);
1329 return rc;
1330 }
1331
1332 dev_dbg(sev->dev, "SEV firmware initialized\n");
1333
1334 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1335 sev->api_minor, sev->build);
1336
1337 return 0;
1338}
1339
1340static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1341{
1342 struct sev_device *sev;
1343 int rc;
1344
1345 if (!psp_master || !psp_master->sev_data)
1346 return -ENODEV;
1347
1348 sev = psp_master->sev_data;
1349
1350 if (sev->state == SEV_STATE_INIT)
1351 return 0;
1352
1353 rc = __sev_snp_init_locked(&args->error);
1354 if (rc && rc != -ENODEV)
1355 return rc;
1356
1357 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1358 if (args->probe && !psp_init_on_probe)
1359 return 0;
1360
1361 return __sev_platform_init_locked(&args->error);
1362}
1363
1364int sev_platform_init(struct sev_platform_init_args *args)
1365{
1366 int rc;
1367
1368 mutex_lock(&sev_cmd_mutex);
1369 rc = _sev_platform_init_locked(args);
1370 mutex_unlock(&sev_cmd_mutex);
1371
1372 return rc;
1373}
1374EXPORT_SYMBOL_GPL(sev_platform_init);
1375
1376static int __sev_platform_shutdown_locked(int *error)
1377{
1378 struct psp_device *psp = psp_master;
1379 struct sev_device *sev;
1380 int ret;
1381
1382 if (!psp || !psp->sev_data)
1383 return 0;
1384
1385 sev = psp->sev_data;
1386
1387 if (sev->state == SEV_STATE_UNINIT)
1388 return 0;
1389
1390 ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1391 if (ret) {
1392 dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1393 *error, ret);
1394 return ret;
1395 }
1396
1397 sev->state = SEV_STATE_UNINIT;
1398 dev_dbg(sev->dev, "SEV firmware shutdown\n");
1399
1400 return ret;
1401}
1402
1403static int sev_get_platform_state(int *state, int *error)
1404{
1405 struct sev_user_data_status data;
1406 int rc;
1407
1408 rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1409 if (rc)
1410 return rc;
1411
1412 *state = data.state;
1413 return rc;
1414}
1415
1416static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1417{
1418 struct sev_platform_init_args init_args = {0};
1419 int rc;
1420
1421 rc = _sev_platform_init_locked(&init_args);
1422 if (rc) {
1423 argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1424 return rc;
1425 }
1426
1427 *shutdown_required = true;
1428
1429 return 0;
1430}
1431
1432static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1433{
1434 int error, rc;
1435
1436 rc = __sev_snp_init_locked(&error);
1437 if (rc) {
1438 argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1439 return rc;
1440 }
1441
1442 *shutdown_required = true;
1443
1444 return 0;
1445}
1446
1447static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1448{
1449 int state, rc;
1450
1451 if (!writable)
1452 return -EPERM;
1453
1454 /*
1455 * The SEV spec requires that FACTORY_RESET must be issued in
1456 * UNINIT state. Before we go further lets check if any guest is
1457 * active.
1458 *
1459 * If FW is in WORKING state then deny the request otherwise issue
1460 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1461 *
1462 */
1463 rc = sev_get_platform_state(&state, &argp->error);
1464 if (rc)
1465 return rc;
1466
1467 if (state == SEV_STATE_WORKING)
1468 return -EBUSY;
1469
1470 if (state == SEV_STATE_INIT) {
1471 rc = __sev_platform_shutdown_locked(&argp->error);
1472 if (rc)
1473 return rc;
1474 }
1475
1476 return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1477}
1478
1479static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1480{
1481 struct sev_user_data_status data;
1482 int ret;
1483
1484 memset(&data, 0, sizeof(data));
1485
1486 ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1487 if (ret)
1488 return ret;
1489
1490 if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1491 ret = -EFAULT;
1492
1493 return ret;
1494}
1495
1496static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1497{
1498 struct sev_device *sev = psp_master->sev_data;
1499 bool shutdown_required = false;
1500 int rc;
1501
1502 if (!writable)
1503 return -EPERM;
1504
1505 if (sev->state == SEV_STATE_UNINIT) {
1506 rc = sev_move_to_init_state(argp, &shutdown_required);
1507 if (rc)
1508 return rc;
1509 }
1510
1511 rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1512
1513 if (shutdown_required)
1514 __sev_firmware_shutdown(sev, false);
1515
1516 return rc;
1517}
1518
1519static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1520{
1521 struct sev_device *sev = psp_master->sev_data;
1522 struct sev_user_data_pek_csr input;
1523 bool shutdown_required = false;
1524 struct sev_data_pek_csr data;
1525 void __user *input_address;
1526 void *blob = NULL;
1527 int ret;
1528
1529 if (!writable)
1530 return -EPERM;
1531
1532 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1533 return -EFAULT;
1534
1535 memset(&data, 0, sizeof(data));
1536
1537 /* userspace wants to query CSR length */
1538 if (!input.address || !input.length)
1539 goto cmd;
1540
1541 /* allocate a physically contiguous buffer to store the CSR blob */
1542 input_address = (void __user *)input.address;
1543 if (input.length > SEV_FW_BLOB_MAX_SIZE)
1544 return -EFAULT;
1545
1546 blob = kzalloc(input.length, GFP_KERNEL);
1547 if (!blob)
1548 return -ENOMEM;
1549
1550 data.address = __psp_pa(blob);
1551 data.len = input.length;
1552
1553cmd:
1554 if (sev->state == SEV_STATE_UNINIT) {
1555 ret = sev_move_to_init_state(argp, &shutdown_required);
1556 if (ret)
1557 goto e_free_blob;
1558 }
1559
1560 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1561
1562 /* If we query the CSR length, FW responded with expected data. */
1563 input.length = data.len;
1564
1565 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1566 ret = -EFAULT;
1567 goto e_free_blob;
1568 }
1569
1570 if (blob) {
1571 if (copy_to_user(input_address, blob, input.length))
1572 ret = -EFAULT;
1573 }
1574
1575e_free_blob:
1576 if (shutdown_required)
1577 __sev_firmware_shutdown(sev, false);
1578
1579 kfree(blob);
1580 return ret;
1581}
1582
1583void *psp_copy_user_blob(u64 uaddr, u32 len)
1584{
1585 if (!uaddr || !len)
1586 return ERR_PTR(-EINVAL);
1587
1588 /* verify that blob length does not exceed our limit */
1589 if (len > SEV_FW_BLOB_MAX_SIZE)
1590 return ERR_PTR(-EINVAL);
1591
1592 return memdup_user((void __user *)uaddr, len);
1593}
1594EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1595
1596static int sev_get_api_version(void)
1597{
1598 struct sev_device *sev = psp_master->sev_data;
1599 struct sev_user_data_status status;
1600 int error = 0, ret;
1601
1602 ret = sev_platform_status(&status, &error);
1603 if (ret) {
1604 dev_err(sev->dev,
1605 "SEV: failed to get status. Error: %#x\n", error);
1606 return 1;
1607 }
1608
1609 sev->api_major = status.api_major;
1610 sev->api_minor = status.api_minor;
1611 sev->build = status.build;
1612 sev->state = status.state;
1613
1614 return 0;
1615}
1616
1617static int sev_get_firmware(struct device *dev,
1618 const struct firmware **firmware)
1619{
1620 char fw_name_specific[SEV_FW_NAME_SIZE];
1621 char fw_name_subset[SEV_FW_NAME_SIZE];
1622
1623 snprintf(fw_name_specific, sizeof(fw_name_specific),
1624 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1625 boot_cpu_data.x86, boot_cpu_data.x86_model);
1626
1627 snprintf(fw_name_subset, sizeof(fw_name_subset),
1628 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1629 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1630
1631 /* Check for SEV FW for a particular model.
1632 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1633 *
1634 * or
1635 *
1636 * Check for SEV FW common to a subset of models.
1637 * Ex. amd_sev_fam17h_model0xh.sbin for
1638 * Family 17h Model 00h -- Family 17h Model 0Fh
1639 *
1640 * or
1641 *
1642 * Fall-back to using generic name: sev.fw
1643 */
1644 if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1645 (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1646 (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1647 return 0;
1648
1649 return -ENOENT;
1650}
1651
1652/* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1653static int sev_update_firmware(struct device *dev)
1654{
1655 struct sev_data_download_firmware *data;
1656 const struct firmware *firmware;
1657 int ret, error, order;
1658 struct page *p;
1659 u64 data_size;
1660
1661 if (!sev_version_greater_or_equal(0, 15)) {
1662 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1663 return -1;
1664 }
1665
1666 if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1667 dev_dbg(dev, "No SEV firmware file present\n");
1668 return -1;
1669 }
1670
1671 /*
1672 * SEV FW expects the physical address given to it to be 32
1673 * byte aligned. Memory allocated has structure placed at the
1674 * beginning followed by the firmware being passed to the SEV
1675 * FW. Allocate enough memory for data structure + alignment
1676 * padding + SEV FW.
1677 */
1678 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1679
1680 order = get_order(firmware->size + data_size);
1681 p = alloc_pages(GFP_KERNEL, order);
1682 if (!p) {
1683 ret = -1;
1684 goto fw_err;
1685 }
1686
1687 /*
1688 * Copy firmware data to a kernel allocated contiguous
1689 * memory region.
1690 */
1691 data = page_address(p);
1692 memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1693
1694 data->address = __psp_pa(page_address(p) + data_size);
1695 data->len = firmware->size;
1696
1697 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1698
1699 /*
1700 * A quirk for fixing the committed TCB version, when upgrading from
1701 * earlier firmware version than 1.50.
1702 */
1703 if (!ret && !sev_version_greater_or_equal(1, 50))
1704 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1705
1706 if (ret)
1707 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1708
1709 __free_pages(p, order);
1710
1711fw_err:
1712 release_firmware(firmware);
1713
1714 return ret;
1715}
1716
1717static int __sev_snp_shutdown_locked(int *error, bool panic)
1718{
1719 struct psp_device *psp = psp_master;
1720 struct sev_device *sev;
1721 struct sev_data_snp_shutdown_ex data;
1722 int ret;
1723
1724 if (!psp || !psp->sev_data)
1725 return 0;
1726
1727 sev = psp->sev_data;
1728
1729 if (!sev->snp_initialized)
1730 return 0;
1731
1732 memset(&data, 0, sizeof(data));
1733 data.len = sizeof(data);
1734 data.iommu_snp_shutdown = 1;
1735
1736 /*
1737 * If invoked during panic handling, local interrupts are disabled
1738 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1739 * In that case, a wbinvd() is done on remote CPUs via the NMI
1740 * callback, so only a local wbinvd() is needed here.
1741 */
1742 if (!panic)
1743 wbinvd_on_all_cpus();
1744 else
1745 wbinvd();
1746
1747 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1748 /* SHUTDOWN may require DF_FLUSH */
1749 if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1750 int dfflush_error = SEV_RET_NO_FW_CALL;
1751
1752 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
1753 if (ret) {
1754 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
1755 ret, dfflush_error);
1756 return ret;
1757 }
1758 /* reissue the shutdown command */
1759 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1760 error);
1761 }
1762 if (ret) {
1763 dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
1764 ret, *error);
1765 return ret;
1766 }
1767
1768 /*
1769 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1770 * enforcement by the IOMMU and also transitions all pages
1771 * associated with the IOMMU to the Reclaim state.
1772 * Firmware was transitioning the IOMMU pages to Hypervisor state
1773 * before version 1.53. But, accounting for the number of assigned
1774 * 4kB pages in a 2M page was done incorrectly by not transitioning
1775 * to the Reclaim state. This resulted in RMP #PF when later accessing
1776 * the 2M page containing those pages during kexec boot. Hence, the
1777 * firmware now transitions these pages to Reclaim state and hypervisor
1778 * needs to transition these pages to shared state. SNP Firmware
1779 * version 1.53 and above are needed for kexec boot.
1780 */
1781 ret = amd_iommu_snp_disable();
1782 if (ret) {
1783 dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1784 return ret;
1785 }
1786
1787 sev->snp_initialized = false;
1788 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1789
1790 /*
1791 * __sev_snp_shutdown_locked() deadlocks when it tries to unregister
1792 * itself during panic as the panic notifier is called with RCU read
1793 * lock held and notifier unregistration does RCU synchronization.
1794 */
1795 if (!panic)
1796 atomic_notifier_chain_unregister(&panic_notifier_list,
1797 &snp_panic_notifier);
1798
1799 /* Reset TMR size back to default */
1800 sev_es_tmr_size = SEV_TMR_SIZE;
1801
1802 return ret;
1803}
1804
1805static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1806{
1807 struct sev_device *sev = psp_master->sev_data;
1808 struct sev_user_data_pek_cert_import input;
1809 struct sev_data_pek_cert_import data;
1810 bool shutdown_required = false;
1811 void *pek_blob, *oca_blob;
1812 int ret;
1813
1814 if (!writable)
1815 return -EPERM;
1816
1817 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1818 return -EFAULT;
1819
1820 /* copy PEK certificate blobs from userspace */
1821 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1822 if (IS_ERR(pek_blob))
1823 return PTR_ERR(pek_blob);
1824
1825 data.reserved = 0;
1826 data.pek_cert_address = __psp_pa(pek_blob);
1827 data.pek_cert_len = input.pek_cert_len;
1828
1829 /* copy PEK certificate blobs from userspace */
1830 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1831 if (IS_ERR(oca_blob)) {
1832 ret = PTR_ERR(oca_blob);
1833 goto e_free_pek;
1834 }
1835
1836 data.oca_cert_address = __psp_pa(oca_blob);
1837 data.oca_cert_len = input.oca_cert_len;
1838
1839 /* If platform is not in INIT state then transition it to INIT */
1840 if (sev->state != SEV_STATE_INIT) {
1841 ret = sev_move_to_init_state(argp, &shutdown_required);
1842 if (ret)
1843 goto e_free_oca;
1844 }
1845
1846 ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1847
1848e_free_oca:
1849 if (shutdown_required)
1850 __sev_firmware_shutdown(sev, false);
1851
1852 kfree(oca_blob);
1853e_free_pek:
1854 kfree(pek_blob);
1855 return ret;
1856}
1857
1858static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1859{
1860 struct sev_user_data_get_id2 input;
1861 struct sev_data_get_id data;
1862 void __user *input_address;
1863 void *id_blob = NULL;
1864 int ret;
1865
1866 /* SEV GET_ID is available from SEV API v0.16 and up */
1867 if (!sev_version_greater_or_equal(0, 16))
1868 return -ENOTSUPP;
1869
1870 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1871 return -EFAULT;
1872
1873 input_address = (void __user *)input.address;
1874
1875 if (input.address && input.length) {
1876 /*
1877 * The length of the ID shouldn't be assumed by software since
1878 * it may change in the future. The allocation size is limited
1879 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1880 * If the allocation fails, simply return ENOMEM rather than
1881 * warning in the kernel log.
1882 */
1883 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1884 if (!id_blob)
1885 return -ENOMEM;
1886
1887 data.address = __psp_pa(id_blob);
1888 data.len = input.length;
1889 } else {
1890 data.address = 0;
1891 data.len = 0;
1892 }
1893
1894 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1895
1896 /*
1897 * Firmware will return the length of the ID value (either the minimum
1898 * required length or the actual length written), return it to the user.
1899 */
1900 input.length = data.len;
1901
1902 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1903 ret = -EFAULT;
1904 goto e_free;
1905 }
1906
1907 if (id_blob) {
1908 if (copy_to_user(input_address, id_blob, data.len)) {
1909 ret = -EFAULT;
1910 goto e_free;
1911 }
1912 }
1913
1914e_free:
1915 kfree(id_blob);
1916
1917 return ret;
1918}
1919
1920static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1921{
1922 struct sev_data_get_id *data;
1923 u64 data_size, user_size;
1924 void *id_blob, *mem;
1925 int ret;
1926
1927 /* SEV GET_ID available from SEV API v0.16 and up */
1928 if (!sev_version_greater_or_equal(0, 16))
1929 return -ENOTSUPP;
1930
1931 /* SEV FW expects the buffer it fills with the ID to be
1932 * 8-byte aligned. Memory allocated should be enough to
1933 * hold data structure + alignment padding + memory
1934 * where SEV FW writes the ID.
1935 */
1936 data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1937 user_size = sizeof(struct sev_user_data_get_id);
1938
1939 mem = kzalloc(data_size + user_size, GFP_KERNEL);
1940 if (!mem)
1941 return -ENOMEM;
1942
1943 data = mem;
1944 id_blob = mem + data_size;
1945
1946 data->address = __psp_pa(id_blob);
1947 data->len = user_size;
1948
1949 ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1950 if (!ret) {
1951 if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1952 ret = -EFAULT;
1953 }
1954
1955 kfree(mem);
1956
1957 return ret;
1958}
1959
1960static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1961{
1962 struct sev_device *sev = psp_master->sev_data;
1963 struct sev_user_data_pdh_cert_export input;
1964 void *pdh_blob = NULL, *cert_blob = NULL;
1965 struct sev_data_pdh_cert_export data;
1966 void __user *input_cert_chain_address;
1967 void __user *input_pdh_cert_address;
1968 bool shutdown_required = false;
1969 int ret;
1970
1971 if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1972 return -EFAULT;
1973
1974 memset(&data, 0, sizeof(data));
1975
1976 input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1977 input_cert_chain_address = (void __user *)input.cert_chain_address;
1978
1979 /* Userspace wants to query the certificate length. */
1980 if (!input.pdh_cert_address ||
1981 !input.pdh_cert_len ||
1982 !input.cert_chain_address)
1983 goto cmd;
1984
1985 /* Allocate a physically contiguous buffer to store the PDH blob. */
1986 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1987 return -EFAULT;
1988
1989 /* Allocate a physically contiguous buffer to store the cert chain blob. */
1990 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1991 return -EFAULT;
1992
1993 pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1994 if (!pdh_blob)
1995 return -ENOMEM;
1996
1997 data.pdh_cert_address = __psp_pa(pdh_blob);
1998 data.pdh_cert_len = input.pdh_cert_len;
1999
2000 cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2001 if (!cert_blob) {
2002 ret = -ENOMEM;
2003 goto e_free_pdh;
2004 }
2005
2006 data.cert_chain_address = __psp_pa(cert_blob);
2007 data.cert_chain_len = input.cert_chain_len;
2008
2009cmd:
2010 /* If platform is not in INIT state then transition it to INIT. */
2011 if (sev->state != SEV_STATE_INIT) {
2012 if (!writable) {
2013 ret = -EPERM;
2014 goto e_free_cert;
2015 }
2016 ret = sev_move_to_init_state(argp, &shutdown_required);
2017 if (ret)
2018 goto e_free_cert;
2019 }
2020
2021 ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2022
2023 /* If we query the length, FW responded with expected data. */
2024 input.cert_chain_len = data.cert_chain_len;
2025 input.pdh_cert_len = data.pdh_cert_len;
2026
2027 if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2028 ret = -EFAULT;
2029 goto e_free_cert;
2030 }
2031
2032 if (pdh_blob) {
2033 if (copy_to_user(input_pdh_cert_address,
2034 pdh_blob, input.pdh_cert_len)) {
2035 ret = -EFAULT;
2036 goto e_free_cert;
2037 }
2038 }
2039
2040 if (cert_blob) {
2041 if (copy_to_user(input_cert_chain_address,
2042 cert_blob, input.cert_chain_len))
2043 ret = -EFAULT;
2044 }
2045
2046e_free_cert:
2047 if (shutdown_required)
2048 __sev_firmware_shutdown(sev, false);
2049
2050 kfree(cert_blob);
2051e_free_pdh:
2052 kfree(pdh_blob);
2053 return ret;
2054}
2055
2056static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2057{
2058 struct sev_device *sev = psp_master->sev_data;
2059 bool shutdown_required = false;
2060 struct sev_data_snp_addr buf;
2061 struct page *status_page;
2062 int ret, error;
2063 void *data;
2064
2065 if (!argp->data)
2066 return -EINVAL;
2067
2068 status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2069 if (!status_page)
2070 return -ENOMEM;
2071
2072 data = page_address(status_page);
2073
2074 if (!sev->snp_initialized) {
2075 ret = snp_move_to_init_state(argp, &shutdown_required);
2076 if (ret)
2077 goto cleanup;
2078 }
2079
2080 /*
2081 * Firmware expects status page to be in firmware-owned state, otherwise
2082 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
2083 */
2084 if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2085 ret = -EFAULT;
2086 goto cleanup;
2087 }
2088
2089 buf.address = __psp_pa(data);
2090 ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2091
2092 /*
2093 * Status page will be transitioned to Reclaim state upon success, or
2094 * left in Firmware state in failure. Use snp_reclaim_pages() to
2095 * transition either case back to Hypervisor-owned state.
2096 */
2097 if (snp_reclaim_pages(__pa(data), 1, true))
2098 return -EFAULT;
2099
2100 if (ret)
2101 goto cleanup;
2102
2103 if (copy_to_user((void __user *)argp->data, data,
2104 sizeof(struct sev_user_data_snp_status)))
2105 ret = -EFAULT;
2106
2107cleanup:
2108 if (shutdown_required)
2109 __sev_snp_shutdown_locked(&error, false);
2110
2111 __free_pages(status_page, 0);
2112 return ret;
2113}
2114
2115static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2116{
2117 struct sev_device *sev = psp_master->sev_data;
2118 struct sev_data_snp_commit buf;
2119 bool shutdown_required = false;
2120 int ret, error;
2121
2122 if (!sev->snp_initialized) {
2123 ret = snp_move_to_init_state(argp, &shutdown_required);
2124 if (ret)
2125 return ret;
2126 }
2127
2128 buf.len = sizeof(buf);
2129
2130 ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2131
2132 if (shutdown_required)
2133 __sev_snp_shutdown_locked(&error, false);
2134
2135 return ret;
2136}
2137
2138static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2139{
2140 struct sev_device *sev = psp_master->sev_data;
2141 struct sev_user_data_snp_config config;
2142 bool shutdown_required = false;
2143 int ret, error;
2144
2145 if (!argp->data)
2146 return -EINVAL;
2147
2148 if (!writable)
2149 return -EPERM;
2150
2151 if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2152 return -EFAULT;
2153
2154 if (!sev->snp_initialized) {
2155 ret = snp_move_to_init_state(argp, &shutdown_required);
2156 if (ret)
2157 return ret;
2158 }
2159
2160 ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2161
2162 if (shutdown_required)
2163 __sev_snp_shutdown_locked(&error, false);
2164
2165 return ret;
2166}
2167
2168static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2169{
2170 struct sev_device *sev = psp_master->sev_data;
2171 struct sev_user_data_snp_vlek_load input;
2172 bool shutdown_required = false;
2173 int ret, error;
2174 void *blob;
2175
2176 if (!argp->data)
2177 return -EINVAL;
2178
2179 if (!writable)
2180 return -EPERM;
2181
2182 if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2183 return -EFAULT;
2184
2185 if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2186 return -EINVAL;
2187
2188 blob = psp_copy_user_blob(input.vlek_wrapped_address,
2189 sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2190 if (IS_ERR(blob))
2191 return PTR_ERR(blob);
2192
2193 input.vlek_wrapped_address = __psp_pa(blob);
2194
2195 if (!sev->snp_initialized) {
2196 ret = snp_move_to_init_state(argp, &shutdown_required);
2197 if (ret)
2198 goto cleanup;
2199 }
2200
2201 ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2202
2203 if (shutdown_required)
2204 __sev_snp_shutdown_locked(&error, false);
2205
2206cleanup:
2207 kfree(blob);
2208
2209 return ret;
2210}
2211
2212static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2213{
2214 void __user *argp = (void __user *)arg;
2215 struct sev_issue_cmd input;
2216 int ret = -EFAULT;
2217 bool writable = file->f_mode & FMODE_WRITE;
2218
2219 if (!psp_master || !psp_master->sev_data)
2220 return -ENODEV;
2221
2222 if (ioctl != SEV_ISSUE_CMD)
2223 return -EINVAL;
2224
2225 if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2226 return -EFAULT;
2227
2228 if (input.cmd > SEV_MAX)
2229 return -EINVAL;
2230
2231 mutex_lock(&sev_cmd_mutex);
2232
2233 switch (input.cmd) {
2234
2235 case SEV_FACTORY_RESET:
2236 ret = sev_ioctl_do_reset(&input, writable);
2237 break;
2238 case SEV_PLATFORM_STATUS:
2239 ret = sev_ioctl_do_platform_status(&input);
2240 break;
2241 case SEV_PEK_GEN:
2242 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2243 break;
2244 case SEV_PDH_GEN:
2245 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2246 break;
2247 case SEV_PEK_CSR:
2248 ret = sev_ioctl_do_pek_csr(&input, writable);
2249 break;
2250 case SEV_PEK_CERT_IMPORT:
2251 ret = sev_ioctl_do_pek_import(&input, writable);
2252 break;
2253 case SEV_PDH_CERT_EXPORT:
2254 ret = sev_ioctl_do_pdh_export(&input, writable);
2255 break;
2256 case SEV_GET_ID:
2257 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2258 ret = sev_ioctl_do_get_id(&input);
2259 break;
2260 case SEV_GET_ID2:
2261 ret = sev_ioctl_do_get_id2(&input);
2262 break;
2263 case SNP_PLATFORM_STATUS:
2264 ret = sev_ioctl_do_snp_platform_status(&input);
2265 break;
2266 case SNP_COMMIT:
2267 ret = sev_ioctl_do_snp_commit(&input);
2268 break;
2269 case SNP_SET_CONFIG:
2270 ret = sev_ioctl_do_snp_set_config(&input, writable);
2271 break;
2272 case SNP_VLEK_LOAD:
2273 ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2274 break;
2275 default:
2276 ret = -EINVAL;
2277 goto out;
2278 }
2279
2280 if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2281 ret = -EFAULT;
2282out:
2283 mutex_unlock(&sev_cmd_mutex);
2284
2285 return ret;
2286}
2287
2288static const struct file_operations sev_fops = {
2289 .owner = THIS_MODULE,
2290 .unlocked_ioctl = sev_ioctl,
2291};
2292
2293int sev_platform_status(struct sev_user_data_status *data, int *error)
2294{
2295 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2296}
2297EXPORT_SYMBOL_GPL(sev_platform_status);
2298
2299int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2300{
2301 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2302}
2303EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2304
2305int sev_guest_activate(struct sev_data_activate *data, int *error)
2306{
2307 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2308}
2309EXPORT_SYMBOL_GPL(sev_guest_activate);
2310
2311int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2312{
2313 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2314}
2315EXPORT_SYMBOL_GPL(sev_guest_decommission);
2316
2317int sev_guest_df_flush(int *error)
2318{
2319 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2320}
2321EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2322
2323static void sev_exit(struct kref *ref)
2324{
2325 misc_deregister(&misc_dev->misc);
2326 kfree(misc_dev);
2327 misc_dev = NULL;
2328}
2329
2330static int sev_misc_init(struct sev_device *sev)
2331{
2332 struct device *dev = sev->dev;
2333 int ret;
2334
2335 /*
2336 * SEV feature support can be detected on multiple devices but the SEV
2337 * FW commands must be issued on the master. During probe, we do not
2338 * know the master hence we create /dev/sev on the first device probe.
2339 * sev_do_cmd() finds the right master device to which to issue the
2340 * command to the firmware.
2341 */
2342 if (!misc_dev) {
2343 struct miscdevice *misc;
2344
2345 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2346 if (!misc_dev)
2347 return -ENOMEM;
2348
2349 misc = &misc_dev->misc;
2350 misc->minor = MISC_DYNAMIC_MINOR;
2351 misc->name = DEVICE_NAME;
2352 misc->fops = &sev_fops;
2353
2354 ret = misc_register(misc);
2355 if (ret)
2356 return ret;
2357
2358 kref_init(&misc_dev->refcount);
2359 } else {
2360 kref_get(&misc_dev->refcount);
2361 }
2362
2363 init_waitqueue_head(&sev->int_queue);
2364 sev->misc = misc_dev;
2365 dev_dbg(dev, "registered SEV device\n");
2366
2367 return 0;
2368}
2369
2370int sev_dev_init(struct psp_device *psp)
2371{
2372 struct device *dev = psp->dev;
2373 struct sev_device *sev;
2374 int ret = -ENOMEM;
2375
2376 if (!boot_cpu_has(X86_FEATURE_SEV)) {
2377 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2378 return 0;
2379 }
2380
2381 sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2382 if (!sev)
2383 goto e_err;
2384
2385 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2386 if (!sev->cmd_buf)
2387 goto e_sev;
2388
2389 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2390
2391 psp->sev_data = sev;
2392
2393 sev->dev = dev;
2394 sev->psp = psp;
2395
2396 sev->io_regs = psp->io_regs;
2397
2398 sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2399 if (!sev->vdata) {
2400 ret = -ENODEV;
2401 dev_err(dev, "sev: missing driver data\n");
2402 goto e_buf;
2403 }
2404
2405 psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2406
2407 ret = sev_misc_init(sev);
2408 if (ret)
2409 goto e_irq;
2410
2411 dev_notice(dev, "sev enabled\n");
2412
2413 return 0;
2414
2415e_irq:
2416 psp_clear_sev_irq_handler(psp);
2417e_buf:
2418 devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2419e_sev:
2420 devm_kfree(dev, sev);
2421e_err:
2422 psp->sev_data = NULL;
2423
2424 dev_notice(dev, "sev initialization failed\n");
2425
2426 return ret;
2427}
2428
2429static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2430{
2431 int error;
2432
2433 __sev_platform_shutdown_locked(&error);
2434
2435 if (sev_es_tmr) {
2436 /*
2437 * The TMR area was encrypted, flush it from the cache.
2438 *
2439 * If invoked during panic handling, local interrupts are
2440 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2441 * can't be used. In that case, wbinvd() is done on remote CPUs
2442 * via the NMI callback, and done for this CPU later during
2443 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2444 */
2445 if (!panic)
2446 wbinvd_on_all_cpus();
2447
2448 __snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2449 get_order(sev_es_tmr_size),
2450 true);
2451 sev_es_tmr = NULL;
2452 }
2453
2454 if (sev_init_ex_buffer) {
2455 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2456 get_order(NV_LENGTH),
2457 true);
2458 sev_init_ex_buffer = NULL;
2459 }
2460
2461 if (snp_range_list) {
2462 kfree(snp_range_list);
2463 snp_range_list = NULL;
2464 }
2465
2466 __sev_snp_shutdown_locked(&error, panic);
2467}
2468
2469static void sev_firmware_shutdown(struct sev_device *sev)
2470{
2471 mutex_lock(&sev_cmd_mutex);
2472 __sev_firmware_shutdown(sev, false);
2473 mutex_unlock(&sev_cmd_mutex);
2474}
2475
2476void sev_platform_shutdown(void)
2477{
2478 if (!psp_master || !psp_master->sev_data)
2479 return;
2480
2481 sev_firmware_shutdown(psp_master->sev_data);
2482}
2483EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2484
2485void sev_dev_destroy(struct psp_device *psp)
2486{
2487 struct sev_device *sev = psp->sev_data;
2488
2489 if (!sev)
2490 return;
2491
2492 sev_firmware_shutdown(sev);
2493
2494 if (sev->misc)
2495 kref_put(&misc_dev->refcount, sev_exit);
2496
2497 psp_clear_sev_irq_handler(psp);
2498}
2499
2500static int snp_shutdown_on_panic(struct notifier_block *nb,
2501 unsigned long reason, void *arg)
2502{
2503 struct sev_device *sev = psp_master->sev_data;
2504
2505 /*
2506 * If sev_cmd_mutex is already acquired, then it's likely
2507 * another PSP command is in flight and issuing a shutdown
2508 * would fail in unexpected ways. Rather than create even
2509 * more confusion during a panic, just bail out here.
2510 */
2511 if (mutex_is_locked(&sev_cmd_mutex))
2512 return NOTIFY_DONE;
2513
2514 __sev_firmware_shutdown(sev, true);
2515
2516 return NOTIFY_DONE;
2517}
2518
2519int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2520 void *data, int *error)
2521{
2522 if (!filep || filep->f_op != &sev_fops)
2523 return -EBADF;
2524
2525 return sev_do_cmd(cmd, data, error);
2526}
2527EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2528
2529void sev_pci_init(void)
2530{
2531 struct sev_device *sev = psp_master->sev_data;
2532 u8 api_major, api_minor, build;
2533
2534 if (!sev)
2535 return;
2536
2537 psp_timeout = psp_probe_timeout;
2538
2539 if (sev_get_api_version())
2540 goto err;
2541
2542 api_major = sev->api_major;
2543 api_minor = sev->api_minor;
2544 build = sev->build;
2545
2546 if (sev_update_firmware(sev->dev) == 0)
2547 sev_get_api_version();
2548
2549 if (api_major != sev->api_major || api_minor != sev->api_minor ||
2550 build != sev->build)
2551 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2552 api_major, api_minor, build,
2553 sev->api_major, sev->api_minor, sev->build);
2554
2555 return;
2556
2557err:
2558 sev_dev_destroy(psp_master);
2559
2560 psp_master->sev_data = NULL;
2561}
2562
2563void sev_pci_exit(void)
2564{
2565 struct sev_device *sev = psp_master->sev_data;
2566
2567 if (!sev)
2568 return;
2569
2570 sev_firmware_shutdown(sev);
2571}