at v6.17 407 lines 11 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Page table support for the Hexagon architecture 4 * 5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 6 */ 7 8#ifndef _ASM_PGTABLE_H 9#define _ASM_PGTABLE_H 10 11/* 12 * Page table definitions for Qualcomm Hexagon processor. 13 */ 14#include <asm/page.h> 15#include <asm-generic/pgtable-nopmd.h> 16 17/* A handy thing to have if one has the RAM. Declared in head.S */ 18extern unsigned long empty_zero_page; 19 20/* 21 * The PTE model described here is that of the Hexagon Virtual Machine, 22 * which autonomously walks 2-level page tables. At a lower level, we 23 * also describe the RISCish software-loaded TLB entry structure of 24 * the underlying Hexagon processor. A kernel built to run on the 25 * virtual machine has no need to know about the underlying hardware. 26 */ 27#include <asm/vm_mmu.h> 28 29/* 30 * To maximize the comfort level for the PTE manipulation macros, 31 * define the "well known" architecture-specific bits. 32 */ 33#define _PAGE_READ __HVM_PTE_R 34#define _PAGE_WRITE __HVM_PTE_W 35#define _PAGE_EXECUTE __HVM_PTE_X 36#define _PAGE_USER __HVM_PTE_U 37 38/* 39 * We have a total of 4 "soft" bits available in the abstract PTE. 40 * The two mandatory software bits are Dirty and Accessed. 41 * To make nonlinear swap work according to the more recent 42 * model, we want a low order "Present" bit to indicate whether 43 * the PTE describes MMU programming or swap space. 44 */ 45#define _PAGE_PRESENT (1<<0) 46#define _PAGE_DIRTY (1<<1) 47#define _PAGE_ACCESSED (1<<2) 48 49/* 50 * For now, let's say that Valid and Present are the same thing. 51 * Alternatively, we could say that it's the "or" of R, W, and X 52 * permissions. 53 */ 54#define _PAGE_VALID _PAGE_PRESENT 55 56/* 57 * We're not defining _PAGE_GLOBAL here, since there's no concept 58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 59 * and we want to use the same page table structures and macros in 60 * the native kernel as we do in the virtual machine kernel. 61 * So we'll put up with a bit of inefficiency for now... 62 */ 63 64/* We borrow bit 6 to store the exclusive marker in swap PTEs. */ 65#define _PAGE_SWP_EXCLUSIVE (1<<6) 66 67/* 68 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 69 * only the second from the bottom, pgd and pud both being collapsed. 70 * Each entry represents 4MB of virtual address space, 4K of table 71 * thus maps the full 4GB. 72 */ 73#define PGDIR_SHIFT 22 74#define PTRS_PER_PGD 1024 75 76#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 77#define PGDIR_MASK (~(PGDIR_SIZE-1)) 78 79#ifdef CONFIG_PAGE_SIZE_4KB 80#define PTRS_PER_PTE 1024 81#endif 82 83#ifdef CONFIG_PAGE_SIZE_16KB 84#define PTRS_PER_PTE 256 85#endif 86 87#ifdef CONFIG_PAGE_SIZE_64KB 88#define PTRS_PER_PTE 64 89#endif 90 91#ifdef CONFIG_PAGE_SIZE_256KB 92#define PTRS_PER_PTE 16 93#endif 94 95#ifdef CONFIG_PAGE_SIZE_1MB 96#define PTRS_PER_PTE 4 97#endif 98 99/* Any bigger and the PTE disappears. */ 100#define pgd_ERROR(e) \ 101 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 102 pgd_val(e)) 103 104/* 105 * Page Protection Constants. Includes (in this variant) cache attributes. 106 */ 107extern unsigned long _dflt_cache_att; 108 109#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 110 _dflt_cache_att) 111#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 112 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 113#define PAGE_COPY PAGE_READONLY 114#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 115 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 116#define PAGE_COPY_EXEC PAGE_EXEC 117#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 118 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 119#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 120 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 121 122 123/* 124 * Aliases for mapping mmap() protection bits to page protections. 125 * These get used for static initialization, so using the _dflt_cache_att 126 * variable for the default cache attribute isn't workable. If the 127 * default gets changed at boot time, the boot option code has to 128 * update data structures like the protaction_map[] array. 129 */ 130#define CACHEDEF (CACHE_DEFAULT << 6) 131 132extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 133 134/* HUGETLB not working currently */ 135#ifdef CONFIG_HUGETLB_PAGE 136#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 137#endif 138 139/* 140 * For now, assume that higher-level code will do TLB/MMU invalidations 141 * and don't insert that overhead into this low-level function. 142 */ 143extern void sync_icache_dcache(pte_t pte); 144 145#define pte_present_exec_user(pte) \ 146 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 147 (_PAGE_EXECUTE | _PAGE_USER)) 148 149static inline void set_pte(pte_t *ptep, pte_t pteval) 150{ 151 /* should really be using pte_exec, if it weren't declared later. */ 152 if (pte_present_exec_user(pteval)) 153 sync_icache_dcache(pteval); 154 155 *ptep = pteval; 156} 157 158/* 159 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 160 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 161 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 162 * as a universal null entry, but some of those least significant bits 163 * are interpreted by software. 164 */ 165#define _NULL_PMD 0x7 166#define _NULL_PTE 0x0 167 168static inline void pmd_clear(pmd_t *pmd_entry_ptr) 169{ 170 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 171} 172 173/* 174 * Conveniently, a null PTE value is invalid. 175 */ 176static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 177 pte_t *ptep) 178{ 179 pte_val(*ptep) = _NULL_PTE; 180} 181 182/** 183 * pmd_none - check if pmd_entry is mapped 184 * @pmd_entry: pmd entry 185 * 186 * MIPS checks it against that "invalid pte table" thing. 187 */ 188static inline int pmd_none(pmd_t pmd) 189{ 190 return pmd_val(pmd) == _NULL_PMD; 191} 192 193/** 194 * pmd_present - is there a page table behind this? 195 * Essentially the inverse of pmd_none. We maybe 196 * save an inline instruction by defining it this 197 * way, instead of simply "!pmd_none". 198 */ 199static inline int pmd_present(pmd_t pmd) 200{ 201 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 202} 203 204/** 205 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 206 * As we have no known cause of badness, it's null, as it is for many 207 * architectures. 208 */ 209static inline int pmd_bad(pmd_t pmd) 210{ 211 return 0; 212} 213 214/* 215 * pmd_pfn - converts a PMD entry to a page frame number 216 */ 217#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 218 219/* 220 * pmd_page - converts a PMD entry to a page pointer 221 */ 222#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 223 224/** 225 * pte_none - check if pte is mapped 226 * @pte: pte_t entry 227 */ 228static inline int pte_none(pte_t pte) 229{ 230 return pte_val(pte) == _NULL_PTE; 231}; 232 233/* 234 * pte_present - check if page is present 235 */ 236static inline int pte_present(pte_t pte) 237{ 238 return pte_val(pte) & _PAGE_PRESENT; 239} 240 241/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 242#define pte_page(x) pfn_to_page(pte_pfn(x)) 243 244/* pte_mkold - mark PTE as not recently accessed */ 245static inline pte_t pte_mkold(pte_t pte) 246{ 247 pte_val(pte) &= ~_PAGE_ACCESSED; 248 return pte; 249} 250 251/* pte_mkyoung - mark PTE as recently accessed */ 252static inline pte_t pte_mkyoung(pte_t pte) 253{ 254 pte_val(pte) |= _PAGE_ACCESSED; 255 return pte; 256} 257 258/* pte_mkclean - mark page as in sync with backing store */ 259static inline pte_t pte_mkclean(pte_t pte) 260{ 261 pte_val(pte) &= ~_PAGE_DIRTY; 262 return pte; 263} 264 265/* pte_mkdirty - mark page as modified */ 266static inline pte_t pte_mkdirty(pte_t pte) 267{ 268 pte_val(pte) |= _PAGE_DIRTY; 269 return pte; 270} 271 272/* pte_young - "is PTE marked as accessed"? */ 273static inline int pte_young(pte_t pte) 274{ 275 return pte_val(pte) & _PAGE_ACCESSED; 276} 277 278/* pte_dirty - "is PTE dirty?" */ 279static inline int pte_dirty(pte_t pte) 280{ 281 return pte_val(pte) & _PAGE_DIRTY; 282} 283 284/* pte_modify - set protection bits on PTE */ 285static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 286{ 287 pte_val(pte) &= PAGE_MASK; 288 pte_val(pte) |= pgprot_val(prot); 289 return pte; 290} 291 292/* pte_wrprotect - mark page as not writable */ 293static inline pte_t pte_wrprotect(pte_t pte) 294{ 295 pte_val(pte) &= ~_PAGE_WRITE; 296 return pte; 297} 298 299/* pte_mkwrite - mark page as writable */ 300static inline pte_t pte_mkwrite_novma(pte_t pte) 301{ 302 pte_val(pte) |= _PAGE_WRITE; 303 return pte; 304} 305 306/* pte_mkexec - mark PTE as executable */ 307static inline pte_t pte_mkexec(pte_t pte) 308{ 309 pte_val(pte) |= _PAGE_EXECUTE; 310 return pte; 311} 312 313/* pte_read - "is PTE marked as readable?" */ 314static inline int pte_read(pte_t pte) 315{ 316 return pte_val(pte) & _PAGE_READ; 317} 318 319/* pte_write - "is PTE marked as writable?" */ 320static inline int pte_write(pte_t pte) 321{ 322 return pte_val(pte) & _PAGE_WRITE; 323} 324 325 326/* pte_exec - "is PTE marked as executable?" */ 327static inline int pte_exec(pte_t pte) 328{ 329 return pte_val(pte) & _PAGE_EXECUTE; 330} 331 332/* __pte_to_swp_entry - extract swap entry from PTE */ 333#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 334 335/* __swp_entry_to_pte - extract PTE from swap entry */ 336#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 337 338#define PFN_PTE_SHIFT PAGE_SHIFT 339/* pfn_pte - convert page number and protection value to page table entry */ 340#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 341 342/* pte_pfn - convert pte to page frame number */ 343#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 344#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 345 346static inline unsigned long pmd_page_vaddr(pmd_t pmd) 347{ 348 return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK); 349} 350 351/* ZERO_PAGE - returns the globally shared zero page */ 352#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 353 354/* 355 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 356 * are !pte_none() && !pte_present(). 357 * 358 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 359 * interpreted as swap information. The remaining free bits are interpreted as 360 * listed below. Rather than have the TLB fill handler test 361 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 362 * all zeros for swap entries, which speeds up the miss handler at the cost of 363 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 364 * processor architecture and target applications suggest a lot of TLB misses 365 * and not much swap space. 366 * 367 * Format of swap PTE: 368 * bit 0: Present (zero) 369 * bits 1-5: swap type (arch independent layer uses 5 bits max) 370 * bit 6: exclusive marker 371 * bits 7-9: bits 2:0 of offset 372 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 373 * bits 13-31: bits 21:3 of swap offset 374 * 375 * The split offset makes some of the following macros a little gnarly, 376 * but there's plenty of precedent for this sort of thing. 377 */ 378 379/* Used for swap PTEs */ 380#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 381 382#define __swp_offset(swp_pte) \ 383 ((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x3ffff8)) 384 385#define __swp_entry(type, offset) \ 386 ((swp_entry_t) { \ 387 (((type & 0x1f) << 1) | \ 388 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) }) 389 390static inline bool pte_swp_exclusive(pte_t pte) 391{ 392 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 393} 394 395static inline pte_t pte_swp_mkexclusive(pte_t pte) 396{ 397 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; 398 return pte; 399} 400 401static inline pte_t pte_swp_clear_exclusive(pte_t pte) 402{ 403 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; 404 return pte; 405} 406 407#endif