Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Resource Director Technology(RDT)
4 * - Monitoring code
5 *
6 * Copyright (C) 2017 Intel Corporation
7 *
8 * Author:
9 * Vikas Shivappa <vikas.shivappa@intel.com>
10 *
11 * This replaces the cqm.c based on perf but we reuse a lot of
12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13 *
14 * More information about RDT be found in the Intel (R) x86 Architecture
15 * Software Developer Manual June 2016, volume 3, section 17.17.
16 */
17
18#define pr_fmt(fmt) "resctrl: " fmt
19
20#include <linux/cpu.h>
21#include <linux/resctrl.h>
22#include <linux/sizes.h>
23#include <linux/slab.h>
24
25#include "internal.h"
26
27#define CREATE_TRACE_POINTS
28
29#include "monitor_trace.h"
30
31/**
32 * struct rmid_entry - dirty tracking for all RMID.
33 * @closid: The CLOSID for this entry.
34 * @rmid: The RMID for this entry.
35 * @busy: The number of domains with cached data using this RMID.
36 * @list: Member of the rmid_free_lru list when busy == 0.
37 *
38 * Depending on the architecture the correct monitor is accessed using
39 * both @closid and @rmid, or @rmid only.
40 *
41 * Take the rdtgroup_mutex when accessing.
42 */
43struct rmid_entry {
44 u32 closid;
45 u32 rmid;
46 int busy;
47 struct list_head list;
48};
49
50/*
51 * @rmid_free_lru - A least recently used list of free RMIDs
52 * These RMIDs are guaranteed to have an occupancy less than the
53 * threshold occupancy
54 */
55static LIST_HEAD(rmid_free_lru);
56
57/*
58 * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
59 * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
60 * Indexed by CLOSID. Protected by rdtgroup_mutex.
61 */
62static u32 *closid_num_dirty_rmid;
63
64/*
65 * @rmid_limbo_count - count of currently unused but (potentially)
66 * dirty RMIDs.
67 * This counts RMIDs that no one is currently using but that
68 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can
69 * change the threshold occupancy value.
70 */
71static unsigned int rmid_limbo_count;
72
73/*
74 * @rmid_entry - The entry in the limbo and free lists.
75 */
76static struct rmid_entry *rmid_ptrs;
77
78/*
79 * This is the threshold cache occupancy in bytes at which we will consider an
80 * RMID available for re-allocation.
81 */
82unsigned int resctrl_rmid_realloc_threshold;
83
84/*
85 * This is the maximum value for the reallocation threshold, in bytes.
86 */
87unsigned int resctrl_rmid_realloc_limit;
88
89/*
90 * x86 and arm64 differ in their handling of monitoring.
91 * x86's RMID are independent numbers, there is only one source of traffic
92 * with an RMID value of '1'.
93 * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
94 * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
95 * value is no longer unique.
96 * To account for this, resctrl uses an index. On x86 this is just the RMID,
97 * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
98 *
99 * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
100 * must accept an attempt to read every index.
101 */
102static inline struct rmid_entry *__rmid_entry(u32 idx)
103{
104 struct rmid_entry *entry;
105 u32 closid, rmid;
106
107 entry = &rmid_ptrs[idx];
108 resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
109
110 WARN_ON_ONCE(entry->closid != closid);
111 WARN_ON_ONCE(entry->rmid != rmid);
112
113 return entry;
114}
115
116static void limbo_release_entry(struct rmid_entry *entry)
117{
118 lockdep_assert_held(&rdtgroup_mutex);
119
120 rmid_limbo_count--;
121 list_add_tail(&entry->list, &rmid_free_lru);
122
123 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
124 closid_num_dirty_rmid[entry->closid]--;
125}
126
127/*
128 * Check the RMIDs that are marked as busy for this domain. If the
129 * reported LLC occupancy is below the threshold clear the busy bit and
130 * decrement the count. If the busy count gets to zero on an RMID, we
131 * free the RMID
132 */
133void __check_limbo(struct rdt_mon_domain *d, bool force_free)
134{
135 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
136 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
137 struct rmid_entry *entry;
138 u32 idx, cur_idx = 1;
139 void *arch_mon_ctx;
140 bool rmid_dirty;
141 u64 val = 0;
142
143 arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
144 if (IS_ERR(arch_mon_ctx)) {
145 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
146 PTR_ERR(arch_mon_ctx));
147 return;
148 }
149
150 /*
151 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
152 * are marked as busy for occupancy < threshold. If the occupancy
153 * is less than the threshold decrement the busy counter of the
154 * RMID and move it to the free list when the counter reaches 0.
155 */
156 for (;;) {
157 idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
158 if (idx >= idx_limit)
159 break;
160
161 entry = __rmid_entry(idx);
162 if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
163 QOS_L3_OCCUP_EVENT_ID, &val,
164 arch_mon_ctx)) {
165 rmid_dirty = true;
166 } else {
167 rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
168
169 /*
170 * x86's CLOSID and RMID are independent numbers, so the entry's
171 * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
172 * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
173 * used to select the configuration. It is thus necessary to track both
174 * CLOSID and RMID because there may be dependencies between them
175 * on some architectures.
176 */
177 trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
178 }
179
180 if (force_free || !rmid_dirty) {
181 clear_bit(idx, d->rmid_busy_llc);
182 if (!--entry->busy)
183 limbo_release_entry(entry);
184 }
185 cur_idx = idx + 1;
186 }
187
188 resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
189}
190
191bool has_busy_rmid(struct rdt_mon_domain *d)
192{
193 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
194
195 return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
196}
197
198static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
199{
200 struct rmid_entry *itr;
201 u32 itr_idx, cmp_idx;
202
203 if (list_empty(&rmid_free_lru))
204 return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
205
206 list_for_each_entry(itr, &rmid_free_lru, list) {
207 /*
208 * Get the index of this free RMID, and the index it would need
209 * to be if it were used with this CLOSID.
210 * If the CLOSID is irrelevant on this architecture, the two
211 * index values are always the same on every entry and thus the
212 * very first entry will be returned.
213 */
214 itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
215 cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
216
217 if (itr_idx == cmp_idx)
218 return itr;
219 }
220
221 return ERR_PTR(-ENOSPC);
222}
223
224/**
225 * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
226 * RMID are clean, or the CLOSID that has
227 * the most clean RMID.
228 *
229 * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
230 * may not be able to allocate clean RMID. To avoid this the allocator will
231 * choose the CLOSID with the most clean RMID.
232 *
233 * When the CLOSID and RMID are independent numbers, the first free CLOSID will
234 * be returned.
235 */
236int resctrl_find_cleanest_closid(void)
237{
238 u32 cleanest_closid = ~0;
239 int i = 0;
240
241 lockdep_assert_held(&rdtgroup_mutex);
242
243 if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
244 return -EIO;
245
246 for (i = 0; i < closids_supported(); i++) {
247 int num_dirty;
248
249 if (closid_allocated(i))
250 continue;
251
252 num_dirty = closid_num_dirty_rmid[i];
253 if (num_dirty == 0)
254 return i;
255
256 if (cleanest_closid == ~0)
257 cleanest_closid = i;
258
259 if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
260 cleanest_closid = i;
261 }
262
263 if (cleanest_closid == ~0)
264 return -ENOSPC;
265
266 return cleanest_closid;
267}
268
269/*
270 * For MPAM the RMID value is not unique, and has to be considered with
271 * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
272 * allows all domains to be managed by a single free list.
273 * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
274 */
275int alloc_rmid(u32 closid)
276{
277 struct rmid_entry *entry;
278
279 lockdep_assert_held(&rdtgroup_mutex);
280
281 entry = resctrl_find_free_rmid(closid);
282 if (IS_ERR(entry))
283 return PTR_ERR(entry);
284
285 list_del(&entry->list);
286 return entry->rmid;
287}
288
289static void add_rmid_to_limbo(struct rmid_entry *entry)
290{
291 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
292 struct rdt_mon_domain *d;
293 u32 idx;
294
295 lockdep_assert_held(&rdtgroup_mutex);
296
297 /* Walking r->domains, ensure it can't race with cpuhp */
298 lockdep_assert_cpus_held();
299
300 idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
301
302 entry->busy = 0;
303 list_for_each_entry(d, &r->mon_domains, hdr.list) {
304 /*
305 * For the first limbo RMID in the domain,
306 * setup up the limbo worker.
307 */
308 if (!has_busy_rmid(d))
309 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
310 RESCTRL_PICK_ANY_CPU);
311 set_bit(idx, d->rmid_busy_llc);
312 entry->busy++;
313 }
314
315 rmid_limbo_count++;
316 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
317 closid_num_dirty_rmid[entry->closid]++;
318}
319
320void free_rmid(u32 closid, u32 rmid)
321{
322 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
323 struct rmid_entry *entry;
324
325 lockdep_assert_held(&rdtgroup_mutex);
326
327 /*
328 * Do not allow the default rmid to be free'd. Comparing by index
329 * allows architectures that ignore the closid parameter to avoid an
330 * unnecessary check.
331 */
332 if (!resctrl_arch_mon_capable() ||
333 idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
334 RESCTRL_RESERVED_RMID))
335 return;
336
337 entry = __rmid_entry(idx);
338
339 if (resctrl_arch_is_llc_occupancy_enabled())
340 add_rmid_to_limbo(entry);
341 else
342 list_add_tail(&entry->list, &rmid_free_lru);
343}
344
345static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
346 u32 rmid, enum resctrl_event_id evtid)
347{
348 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
349
350 switch (evtid) {
351 case QOS_L3_MBM_TOTAL_EVENT_ID:
352 return &d->mbm_total[idx];
353 case QOS_L3_MBM_LOCAL_EVENT_ID:
354 return &d->mbm_local[idx];
355 default:
356 return NULL;
357 }
358}
359
360static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
361{
362 int cpu = smp_processor_id();
363 struct rdt_mon_domain *d;
364 struct mbm_state *m;
365 int err, ret;
366 u64 tval = 0;
367
368 if (rr->first) {
369 resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
370 m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
371 if (m)
372 memset(m, 0, sizeof(struct mbm_state));
373 return 0;
374 }
375
376 if (rr->d) {
377 /* Reading a single domain, must be on a CPU in that domain. */
378 if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
379 return -EINVAL;
380 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
381 rr->evtid, &tval, rr->arch_mon_ctx);
382 if (rr->err)
383 return rr->err;
384
385 rr->val += tval;
386
387 return 0;
388 }
389
390 /* Summing domains that share a cache, must be on a CPU for that cache. */
391 if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
392 return -EINVAL;
393
394 /*
395 * Legacy files must report the sum of an event across all
396 * domains that share the same L3 cache instance.
397 * Report success if a read from any domain succeeds, -EINVAL
398 * (translated to "Unavailable" for user space) if reading from
399 * all domains fail for any reason.
400 */
401 ret = -EINVAL;
402 list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
403 if (d->ci_id != rr->ci->id)
404 continue;
405 err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
406 rr->evtid, &tval, rr->arch_mon_ctx);
407 if (!err) {
408 rr->val += tval;
409 ret = 0;
410 }
411 }
412
413 if (ret)
414 rr->err = ret;
415
416 return ret;
417}
418
419/*
420 * mbm_bw_count() - Update bw count from values previously read by
421 * __mon_event_count().
422 * @closid: The closid used to identify the cached mbm_state.
423 * @rmid: The rmid used to identify the cached mbm_state.
424 * @rr: The struct rmid_read populated by __mon_event_count().
425 *
426 * Supporting function to calculate the memory bandwidth
427 * and delta bandwidth in MBps. The chunks value previously read by
428 * __mon_event_count() is compared with the chunks value from the previous
429 * invocation. This must be called once per second to maintain values in MBps.
430 */
431static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
432{
433 u64 cur_bw, bytes, cur_bytes;
434 struct mbm_state *m;
435
436 m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
437 if (WARN_ON_ONCE(!m))
438 return;
439
440 cur_bytes = rr->val;
441 bytes = cur_bytes - m->prev_bw_bytes;
442 m->prev_bw_bytes = cur_bytes;
443
444 cur_bw = bytes / SZ_1M;
445
446 m->prev_bw = cur_bw;
447}
448
449/*
450 * This is scheduled by mon_event_read() to read the CQM/MBM counters
451 * on a domain.
452 */
453void mon_event_count(void *info)
454{
455 struct rdtgroup *rdtgrp, *entry;
456 struct rmid_read *rr = info;
457 struct list_head *head;
458 int ret;
459
460 rdtgrp = rr->rgrp;
461
462 ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);
463
464 /*
465 * For Ctrl groups read data from child monitor groups and
466 * add them together. Count events which are read successfully.
467 * Discard the rmid_read's reporting errors.
468 */
469 head = &rdtgrp->mon.crdtgrp_list;
470
471 if (rdtgrp->type == RDTCTRL_GROUP) {
472 list_for_each_entry(entry, head, mon.crdtgrp_list) {
473 if (__mon_event_count(entry->closid, entry->mon.rmid,
474 rr) == 0)
475 ret = 0;
476 }
477 }
478
479 /*
480 * __mon_event_count() calls for newly created monitor groups may
481 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
482 * Discard error if any of the monitor event reads succeeded.
483 */
484 if (ret == 0)
485 rr->err = 0;
486}
487
488static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu,
489 struct rdt_resource *r)
490{
491 struct rdt_ctrl_domain *d;
492
493 lockdep_assert_cpus_held();
494
495 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
496 /* Find the domain that contains this CPU */
497 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
498 return d;
499 }
500
501 return NULL;
502}
503
504/*
505 * Feedback loop for MBA software controller (mba_sc)
506 *
507 * mba_sc is a feedback loop where we periodically read MBM counters and
508 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
509 * that:
510 *
511 * current bandwidth(cur_bw) < user specified bandwidth(user_bw)
512 *
513 * This uses the MBM counters to measure the bandwidth and MBA throttle
514 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
515 * fact that resctrl rdtgroups have both monitoring and control.
516 *
517 * The frequency of the checks is 1s and we just tag along the MBM overflow
518 * timer. Having 1s interval makes the calculation of bandwidth simpler.
519 *
520 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
521 * be a need to increase the bandwidth to avoid unnecessarily restricting
522 * the L2 <-> L3 traffic.
523 *
524 * Since MBA controls the L2 external bandwidth where as MBM measures the
525 * L3 external bandwidth the following sequence could lead to such a
526 * situation.
527 *
528 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
529 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
530 * after some time rdtgroup has mostly L2 <-> L3 traffic.
531 *
532 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
533 * throttle MSRs already have low percentage values. To avoid
534 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
535 */
536static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
537{
538 u32 closid, rmid, cur_msr_val, new_msr_val;
539 struct mbm_state *pmbm_data, *cmbm_data;
540 struct rdt_ctrl_domain *dom_mba;
541 enum resctrl_event_id evt_id;
542 struct rdt_resource *r_mba;
543 struct list_head *head;
544 struct rdtgroup *entry;
545 u32 cur_bw, user_bw;
546
547 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
548 evt_id = rgrp->mba_mbps_event;
549
550 closid = rgrp->closid;
551 rmid = rgrp->mon.rmid;
552 pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id);
553 if (WARN_ON_ONCE(!pmbm_data))
554 return;
555
556 dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
557 if (!dom_mba) {
558 pr_warn_once("Failure to get domain for MBA update\n");
559 return;
560 }
561
562 cur_bw = pmbm_data->prev_bw;
563 user_bw = dom_mba->mbps_val[closid];
564
565 /* MBA resource doesn't support CDP */
566 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
567
568 /*
569 * For Ctrl groups read data from child monitor groups.
570 */
571 head = &rgrp->mon.crdtgrp_list;
572 list_for_each_entry(entry, head, mon.crdtgrp_list) {
573 cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id);
574 if (WARN_ON_ONCE(!cmbm_data))
575 return;
576 cur_bw += cmbm_data->prev_bw;
577 }
578
579 /*
580 * Scale up/down the bandwidth linearly for the ctrl group. The
581 * bandwidth step is the bandwidth granularity specified by the
582 * hardware.
583 * Always increase throttling if current bandwidth is above the
584 * target set by user.
585 * But avoid thrashing up and down on every poll by checking
586 * whether a decrease in throttling is likely to push the group
587 * back over target. E.g. if currently throttling to 30% of bandwidth
588 * on a system with 10% granularity steps, check whether moving to
589 * 40% would go past the limit by multiplying current bandwidth by
590 * "(30 + 10) / 30".
591 */
592 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
593 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
594 } else if (cur_msr_val < MAX_MBA_BW &&
595 (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
596 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
597 } else {
598 return;
599 }
600
601 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
602}
603
604static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d,
605 u32 closid, u32 rmid, enum resctrl_event_id evtid)
606{
607 struct rmid_read rr = {0};
608
609 rr.r = r;
610 rr.d = d;
611 rr.evtid = evtid;
612 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
613 if (IS_ERR(rr.arch_mon_ctx)) {
614 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
615 PTR_ERR(rr.arch_mon_ctx));
616 return;
617 }
618
619 __mon_event_count(closid, rmid, &rr);
620
621 /*
622 * If the software controller is enabled, compute the
623 * bandwidth for this event id.
624 */
625 if (is_mba_sc(NULL))
626 mbm_bw_count(closid, rmid, &rr);
627
628 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
629}
630
631static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
632 u32 closid, u32 rmid)
633{
634 /*
635 * This is protected from concurrent reads from user as both
636 * the user and overflow handler hold the global mutex.
637 */
638 if (resctrl_arch_is_mbm_total_enabled())
639 mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_TOTAL_EVENT_ID);
640
641 if (resctrl_arch_is_mbm_local_enabled())
642 mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_LOCAL_EVENT_ID);
643}
644
645/*
646 * Handler to scan the limbo list and move the RMIDs
647 * to free list whose occupancy < threshold_occupancy.
648 */
649void cqm_handle_limbo(struct work_struct *work)
650{
651 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
652 struct rdt_mon_domain *d;
653
654 cpus_read_lock();
655 mutex_lock(&rdtgroup_mutex);
656
657 d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
658
659 __check_limbo(d, false);
660
661 if (has_busy_rmid(d)) {
662 d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
663 RESCTRL_PICK_ANY_CPU);
664 schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
665 delay);
666 }
667
668 mutex_unlock(&rdtgroup_mutex);
669 cpus_read_unlock();
670}
671
672/**
673 * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
674 * domain.
675 * @dom: The domain the limbo handler should run for.
676 * @delay_ms: How far in the future the handler should run.
677 * @exclude_cpu: Which CPU the handler should not run on,
678 * RESCTRL_PICK_ANY_CPU to pick any CPU.
679 */
680void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
681 int exclude_cpu)
682{
683 unsigned long delay = msecs_to_jiffies(delay_ms);
684 int cpu;
685
686 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
687 dom->cqm_work_cpu = cpu;
688
689 if (cpu < nr_cpu_ids)
690 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
691}
692
693void mbm_handle_overflow(struct work_struct *work)
694{
695 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
696 struct rdtgroup *prgrp, *crgrp;
697 struct rdt_mon_domain *d;
698 struct list_head *head;
699 struct rdt_resource *r;
700
701 cpus_read_lock();
702 mutex_lock(&rdtgroup_mutex);
703
704 /*
705 * If the filesystem has been unmounted this work no longer needs to
706 * run.
707 */
708 if (!resctrl_mounted || !resctrl_arch_mon_capable())
709 goto out_unlock;
710
711 r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
712 d = container_of(work, struct rdt_mon_domain, mbm_over.work);
713
714 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
715 mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);
716
717 head = &prgrp->mon.crdtgrp_list;
718 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
719 mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);
720
721 if (is_mba_sc(NULL))
722 update_mba_bw(prgrp, d);
723 }
724
725 /*
726 * Re-check for housekeeping CPUs. This allows the overflow handler to
727 * move off a nohz_full CPU quickly.
728 */
729 d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
730 RESCTRL_PICK_ANY_CPU);
731 schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
732
733out_unlock:
734 mutex_unlock(&rdtgroup_mutex);
735 cpus_read_unlock();
736}
737
738/**
739 * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
740 * domain.
741 * @dom: The domain the overflow handler should run for.
742 * @delay_ms: How far in the future the handler should run.
743 * @exclude_cpu: Which CPU the handler should not run on,
744 * RESCTRL_PICK_ANY_CPU to pick any CPU.
745 */
746void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
747 int exclude_cpu)
748{
749 unsigned long delay = msecs_to_jiffies(delay_ms);
750 int cpu;
751
752 /*
753 * When a domain comes online there is no guarantee the filesystem is
754 * mounted. If not, there is no need to catch counter overflow.
755 */
756 if (!resctrl_mounted || !resctrl_arch_mon_capable())
757 return;
758 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
759 dom->mbm_work_cpu = cpu;
760
761 if (cpu < nr_cpu_ids)
762 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
763}
764
765static int dom_data_init(struct rdt_resource *r)
766{
767 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
768 u32 num_closid = resctrl_arch_get_num_closid(r);
769 struct rmid_entry *entry = NULL;
770 int err = 0, i;
771 u32 idx;
772
773 mutex_lock(&rdtgroup_mutex);
774 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
775 u32 *tmp;
776
777 /*
778 * If the architecture hasn't provided a sanitised value here,
779 * this may result in larger arrays than necessary. Resctrl will
780 * use a smaller system wide value based on the resources in
781 * use.
782 */
783 tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
784 if (!tmp) {
785 err = -ENOMEM;
786 goto out_unlock;
787 }
788
789 closid_num_dirty_rmid = tmp;
790 }
791
792 rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
793 if (!rmid_ptrs) {
794 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
795 kfree(closid_num_dirty_rmid);
796 closid_num_dirty_rmid = NULL;
797 }
798 err = -ENOMEM;
799 goto out_unlock;
800 }
801
802 for (i = 0; i < idx_limit; i++) {
803 entry = &rmid_ptrs[i];
804 INIT_LIST_HEAD(&entry->list);
805
806 resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
807 list_add_tail(&entry->list, &rmid_free_lru);
808 }
809
810 /*
811 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
812 * are always allocated. These are used for the rdtgroup_default
813 * control group, which will be setup later in resctrl_init().
814 */
815 idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
816 RESCTRL_RESERVED_RMID);
817 entry = __rmid_entry(idx);
818 list_del(&entry->list);
819
820out_unlock:
821 mutex_unlock(&rdtgroup_mutex);
822
823 return err;
824}
825
826static void dom_data_exit(struct rdt_resource *r)
827{
828 mutex_lock(&rdtgroup_mutex);
829
830 if (!r->mon_capable)
831 goto out_unlock;
832
833 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
834 kfree(closid_num_dirty_rmid);
835 closid_num_dirty_rmid = NULL;
836 }
837
838 kfree(rmid_ptrs);
839 rmid_ptrs = NULL;
840
841out_unlock:
842 mutex_unlock(&rdtgroup_mutex);
843}
844
845static struct mon_evt llc_occupancy_event = {
846 .name = "llc_occupancy",
847 .evtid = QOS_L3_OCCUP_EVENT_ID,
848};
849
850static struct mon_evt mbm_total_event = {
851 .name = "mbm_total_bytes",
852 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
853};
854
855static struct mon_evt mbm_local_event = {
856 .name = "mbm_local_bytes",
857 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
858};
859
860/*
861 * Initialize the event list for the resource.
862 *
863 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
864 * because as per the SDM the total and local memory bandwidth
865 * are enumerated as part of L3 monitoring.
866 */
867static void l3_mon_evt_init(struct rdt_resource *r)
868{
869 INIT_LIST_HEAD(&r->evt_list);
870
871 if (resctrl_arch_is_llc_occupancy_enabled())
872 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
873 if (resctrl_arch_is_mbm_total_enabled())
874 list_add_tail(&mbm_total_event.list, &r->evt_list);
875 if (resctrl_arch_is_mbm_local_enabled())
876 list_add_tail(&mbm_local_event.list, &r->evt_list);
877}
878
879/**
880 * resctrl_mon_resource_init() - Initialise global monitoring structures.
881 *
882 * Allocate and initialise global monitor resources that do not belong to a
883 * specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists.
884 * Called once during boot after the struct rdt_resource's have been configured
885 * but before the filesystem is mounted.
886 * Resctrl's cpuhp callbacks may be called before this point to bring a domain
887 * online.
888 *
889 * Returns 0 for success, or -ENOMEM.
890 */
891int resctrl_mon_resource_init(void)
892{
893 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
894 int ret;
895
896 if (!r->mon_capable)
897 return 0;
898
899 ret = dom_data_init(r);
900 if (ret)
901 return ret;
902
903 l3_mon_evt_init(r);
904
905 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) {
906 mbm_total_event.configurable = true;
907 resctrl_file_fflags_init("mbm_total_bytes_config",
908 RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
909 }
910 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) {
911 mbm_local_event.configurable = true;
912 resctrl_file_fflags_init("mbm_local_bytes_config",
913 RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
914 }
915
916 if (resctrl_arch_is_mbm_local_enabled())
917 mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID;
918 else if (resctrl_arch_is_mbm_total_enabled())
919 mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID;
920
921 return 0;
922}
923
924void resctrl_mon_resource_exit(void)
925{
926 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
927
928 dom_data_exit(r);
929}