Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7#ifndef __MM_INTERNAL_H
8#define __MM_INTERNAL_H
9
10#include <linux/fs.h>
11#include <linux/khugepaged.h>
12#include <linux/mm.h>
13#include <linux/mm_inline.h>
14#include <linux/pagemap.h>
15#include <linux/pagewalk.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/swap_cgroup.h>
20#include <linux/tracepoint-defs.h>
21
22/* Internal core VMA manipulation functions. */
23#include "vma.h"
24
25struct folio_batch;
26
27/*
28 * Maintains state across a page table move. The operation assumes both source
29 * and destination VMAs already exist and are specified by the user.
30 *
31 * Partial moves are permitted, but the old and new ranges must both reside
32 * within a VMA.
33 *
34 * mmap lock must be held in write and VMA write locks must be held on any VMA
35 * that is visible.
36 *
37 * Use the PAGETABLE_MOVE() macro to initialise this struct.
38 *
39 * The old_addr and new_addr fields are updated as the page table move is
40 * executed.
41 *
42 * NOTE: The page table move is affected by reading from [old_addr, old_end),
43 * and old_addr may be updated for better page table alignment, so len_in
44 * represents the length of the range being copied as specified by the user.
45 */
46struct pagetable_move_control {
47 struct vm_area_struct *old; /* Source VMA. */
48 struct vm_area_struct *new; /* Destination VMA. */
49 unsigned long old_addr; /* Address from which the move begins. */
50 unsigned long old_end; /* Exclusive address at which old range ends. */
51 unsigned long new_addr; /* Address to move page tables to. */
52 unsigned long len_in; /* Bytes to remap specified by user. */
53
54 bool need_rmap_locks; /* Do rmap locks need to be taken? */
55 bool for_stack; /* Is this an early temp stack being moved? */
56};
57
58#define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \
59 struct pagetable_move_control name = { \
60 .old = old_, \
61 .new = new_, \
62 .old_addr = old_addr_, \
63 .old_end = (old_addr_) + (len_), \
64 .new_addr = new_addr_, \
65 .len_in = len_, \
66 }
67
68/*
69 * The set of flags that only affect watermark checking and reclaim
70 * behaviour. This is used by the MM to obey the caller constraints
71 * about IO, FS and watermark checking while ignoring placement
72 * hints such as HIGHMEM usage.
73 */
74#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
75 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
76 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
77 __GFP_NOLOCKDEP)
78
79/* The GFP flags allowed during early boot */
80#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
81
82/* Control allocation cpuset and node placement constraints */
83#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
84
85/* Do not use these with a slab allocator */
86#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
87
88/*
89 * Different from WARN_ON_ONCE(), no warning will be issued
90 * when we specify __GFP_NOWARN.
91 */
92#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
93 static bool __section(".data..once") __warned; \
94 int __ret_warn_once = !!(cond); \
95 \
96 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
97 __warned = true; \
98 WARN_ON(1); \
99 } \
100 unlikely(__ret_warn_once); \
101})
102
103void page_writeback_init(void);
104
105/*
106 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
107 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
108 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
109 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
110 */
111#define ENTIRELY_MAPPED 0x800000
112#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
113
114/*
115 * Flags passed to __show_mem() and show_free_areas() to suppress output in
116 * various contexts.
117 */
118#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
119
120/*
121 * How many individual pages have an elevated _mapcount. Excludes
122 * the folio's entire_mapcount.
123 *
124 * Don't use this function outside of debugging code.
125 */
126static inline int folio_nr_pages_mapped(const struct folio *folio)
127{
128 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
129 return -1;
130 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
131}
132
133/*
134 * Retrieve the first entry of a folio based on a provided entry within the
135 * folio. We cannot rely on folio->swap as there is no guarantee that it has
136 * been initialized. Used for calling arch_swap_restore()
137 */
138static inline swp_entry_t folio_swap(swp_entry_t entry,
139 const struct folio *folio)
140{
141 swp_entry_t swap = {
142 .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
143 };
144
145 return swap;
146}
147
148static inline void *folio_raw_mapping(const struct folio *folio)
149{
150 unsigned long mapping = (unsigned long)folio->mapping;
151
152 return (void *)(mapping & ~FOLIO_MAPPING_FLAGS);
153}
154
155/*
156 * This is a file-backed mapping, and is about to be memory mapped - invoke its
157 * mmap hook and safely handle error conditions. On error, VMA hooks will be
158 * mutated.
159 *
160 * @file: File which backs the mapping.
161 * @vma: VMA which we are mapping.
162 *
163 * Returns: 0 if success, error otherwise.
164 */
165static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
166{
167 int err = vfs_mmap(file, vma);
168
169 if (likely(!err))
170 return 0;
171
172 /*
173 * OK, we tried to call the file hook for mmap(), but an error
174 * arose. The mapping is in an inconsistent state and we most not invoke
175 * any further hooks on it.
176 */
177 vma->vm_ops = &vma_dummy_vm_ops;
178
179 return err;
180}
181
182/*
183 * If the VMA has a close hook then close it, and since closing it might leave
184 * it in an inconsistent state which makes the use of any hooks suspect, clear
185 * them down by installing dummy empty hooks.
186 */
187static inline void vma_close(struct vm_area_struct *vma)
188{
189 if (vma->vm_ops && vma->vm_ops->close) {
190 vma->vm_ops->close(vma);
191
192 /*
193 * The mapping is in an inconsistent state, and no further hooks
194 * may be invoked upon it.
195 */
196 vma->vm_ops = &vma_dummy_vm_ops;
197 }
198}
199
200#ifdef CONFIG_MMU
201
202/* Flags for folio_pte_batch(). */
203typedef int __bitwise fpb_t;
204
205/* Compare PTEs respecting the dirty bit. */
206#define FPB_RESPECT_DIRTY ((__force fpb_t)BIT(0))
207
208/* Compare PTEs respecting the soft-dirty bit. */
209#define FPB_RESPECT_SOFT_DIRTY ((__force fpb_t)BIT(1))
210
211/* Compare PTEs respecting the writable bit. */
212#define FPB_RESPECT_WRITE ((__force fpb_t)BIT(2))
213
214/*
215 * Merge PTE write bits: if any PTE in the batch is writable, modify the
216 * PTE at @ptentp to be writable.
217 */
218#define FPB_MERGE_WRITE ((__force fpb_t)BIT(3))
219
220/*
221 * Merge PTE young and dirty bits: if any PTE in the batch is young or dirty,
222 * modify the PTE at @ptentp to be young or dirty, respectively.
223 */
224#define FPB_MERGE_YOUNG_DIRTY ((__force fpb_t)BIT(4))
225
226static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
227{
228 if (!(flags & FPB_RESPECT_DIRTY))
229 pte = pte_mkclean(pte);
230 if (likely(!(flags & FPB_RESPECT_SOFT_DIRTY)))
231 pte = pte_clear_soft_dirty(pte);
232 if (likely(!(flags & FPB_RESPECT_WRITE)))
233 pte = pte_wrprotect(pte);
234 return pte_mkold(pte);
235}
236
237/**
238 * folio_pte_batch_flags - detect a PTE batch for a large folio
239 * @folio: The large folio to detect a PTE batch for.
240 * @vma: The VMA. Only relevant with FPB_MERGE_WRITE, otherwise can be NULL.
241 * @ptep: Page table pointer for the first entry.
242 * @ptentp: Pointer to a COPY of the first page table entry whose flags this
243 * function updates based on @flags if appropriate.
244 * @max_nr: The maximum number of table entries to consider.
245 * @flags: Flags to modify the PTE batch semantics.
246 *
247 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
248 * pages of the same large folio in a single VMA and a single page table.
249 *
250 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
251 * the accessed bit, writable bit, dirty bit (unless FPB_RESPECT_DIRTY is set)
252 * and soft-dirty bit (unless FPB_RESPECT_SOFT_DIRTY is set).
253 *
254 * @ptep must map any page of the folio. max_nr must be at least one and
255 * must be limited by the caller so scanning cannot exceed a single VMA and
256 * a single page table.
257 *
258 * Depending on the FPB_MERGE_* flags, the pte stored at @ptentp will
259 * be updated: it's crucial that a pointer to a COPY of the first
260 * page table entry, obtained through ptep_get(), is provided as @ptentp.
261 *
262 * This function will be inlined to optimize based on the input parameters;
263 * consider using folio_pte_batch() instead if applicable.
264 *
265 * Return: the number of table entries in the batch.
266 */
267static inline unsigned int folio_pte_batch_flags(struct folio *folio,
268 struct vm_area_struct *vma, pte_t *ptep, pte_t *ptentp,
269 unsigned int max_nr, fpb_t flags)
270{
271 bool any_writable = false, any_young = false, any_dirty = false;
272 pte_t expected_pte, pte = *ptentp;
273 unsigned int nr, cur_nr;
274
275 VM_WARN_ON_FOLIO(!pte_present(pte), folio);
276 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
277 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
278 /*
279 * Ensure this is a pointer to a copy not a pointer into a page table.
280 * If this is a stack value, it won't be a valid virtual address, but
281 * that's fine because it also cannot be pointing into the page table.
282 */
283 VM_WARN_ON(virt_addr_valid(ptentp) && PageTable(virt_to_page(ptentp)));
284
285 /* Limit max_nr to the actual remaining PFNs in the folio we could batch. */
286 max_nr = min_t(unsigned long, max_nr,
287 folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte));
288
289 nr = pte_batch_hint(ptep, pte);
290 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
291 ptep = ptep + nr;
292
293 while (nr < max_nr) {
294 pte = ptep_get(ptep);
295
296 if (!pte_same(__pte_batch_clear_ignored(pte, flags), expected_pte))
297 break;
298
299 if (flags & FPB_MERGE_WRITE)
300 any_writable |= pte_write(pte);
301 if (flags & FPB_MERGE_YOUNG_DIRTY) {
302 any_young |= pte_young(pte);
303 any_dirty |= pte_dirty(pte);
304 }
305
306 cur_nr = pte_batch_hint(ptep, pte);
307 expected_pte = pte_advance_pfn(expected_pte, cur_nr);
308 ptep += cur_nr;
309 nr += cur_nr;
310 }
311
312 if (any_writable)
313 *ptentp = pte_mkwrite(*ptentp, vma);
314 if (any_young)
315 *ptentp = pte_mkyoung(*ptentp);
316 if (any_dirty)
317 *ptentp = pte_mkdirty(*ptentp);
318
319 return min(nr, max_nr);
320}
321
322unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte,
323 unsigned int max_nr);
324
325/**
326 * pte_move_swp_offset - Move the swap entry offset field of a swap pte
327 * forward or backward by delta
328 * @pte: The initial pte state; is_swap_pte(pte) must be true and
329 * non_swap_entry() must be false.
330 * @delta: The direction and the offset we are moving; forward if delta
331 * is positive; backward if delta is negative
332 *
333 * Moves the swap offset, while maintaining all other fields, including
334 * swap type, and any swp pte bits. The resulting pte is returned.
335 */
336static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
337{
338 swp_entry_t entry = pte_to_swp_entry(pte);
339 pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
340 (swp_offset(entry) + delta)));
341
342 if (pte_swp_soft_dirty(pte))
343 new = pte_swp_mksoft_dirty(new);
344 if (pte_swp_exclusive(pte))
345 new = pte_swp_mkexclusive(new);
346 if (pte_swp_uffd_wp(pte))
347 new = pte_swp_mkuffd_wp(new);
348
349 return new;
350}
351
352
353/**
354 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
355 * @pte: The initial pte state; is_swap_pte(pte) must be true and
356 * non_swap_entry() must be false.
357 *
358 * Increments the swap offset, while maintaining all other fields, including
359 * swap type, and any swp pte bits. The resulting pte is returned.
360 */
361static inline pte_t pte_next_swp_offset(pte_t pte)
362{
363 return pte_move_swp_offset(pte, 1);
364}
365
366/**
367 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
368 * @start_ptep: Page table pointer for the first entry.
369 * @max_nr: The maximum number of table entries to consider.
370 * @pte: Page table entry for the first entry.
371 *
372 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
373 * containing swap entries all with consecutive offsets and targeting the same
374 * swap type, all with matching swp pte bits.
375 *
376 * max_nr must be at least one and must be limited by the caller so scanning
377 * cannot exceed a single page table.
378 *
379 * Return: the number of table entries in the batch.
380 */
381static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
382{
383 pte_t expected_pte = pte_next_swp_offset(pte);
384 const pte_t *end_ptep = start_ptep + max_nr;
385 swp_entry_t entry = pte_to_swp_entry(pte);
386 pte_t *ptep = start_ptep + 1;
387 unsigned short cgroup_id;
388
389 VM_WARN_ON(max_nr < 1);
390 VM_WARN_ON(!is_swap_pte(pte));
391 VM_WARN_ON(non_swap_entry(entry));
392
393 cgroup_id = lookup_swap_cgroup_id(entry);
394 while (ptep < end_ptep) {
395 pte = ptep_get(ptep);
396
397 if (!pte_same(pte, expected_pte))
398 break;
399 if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
400 break;
401 expected_pte = pte_next_swp_offset(expected_pte);
402 ptep++;
403 }
404
405 return ptep - start_ptep;
406}
407#endif /* CONFIG_MMU */
408
409void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
410 int nr_throttled);
411static inline void acct_reclaim_writeback(struct folio *folio)
412{
413 pg_data_t *pgdat = folio_pgdat(folio);
414 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
415
416 if (nr_throttled)
417 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
418}
419
420static inline void wake_throttle_isolated(pg_data_t *pgdat)
421{
422 wait_queue_head_t *wqh;
423
424 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
425 if (waitqueue_active(wqh))
426 wake_up(wqh);
427}
428
429vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
430static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
431{
432 vm_fault_t ret = __vmf_anon_prepare(vmf);
433
434 if (unlikely(ret & VM_FAULT_RETRY))
435 vma_end_read(vmf->vma);
436 return ret;
437}
438
439vm_fault_t do_swap_page(struct vm_fault *vmf);
440void folio_rotate_reclaimable(struct folio *folio);
441bool __folio_end_writeback(struct folio *folio);
442void deactivate_file_folio(struct folio *folio);
443void folio_activate(struct folio *folio);
444
445void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
446 struct vm_area_struct *start_vma, unsigned long floor,
447 unsigned long ceiling, bool mm_wr_locked);
448void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
449
450struct zap_details;
451void unmap_page_range(struct mmu_gather *tlb,
452 struct vm_area_struct *vma,
453 unsigned long addr, unsigned long end,
454 struct zap_details *details);
455void zap_page_range_single_batched(struct mmu_gather *tlb,
456 struct vm_area_struct *vma, unsigned long addr,
457 unsigned long size, struct zap_details *details);
458int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
459 gfp_t gfp);
460
461void page_cache_ra_order(struct readahead_control *, struct file_ra_state *);
462void force_page_cache_ra(struct readahead_control *, unsigned long nr);
463static inline void force_page_cache_readahead(struct address_space *mapping,
464 struct file *file, pgoff_t index, unsigned long nr_to_read)
465{
466 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
467 force_page_cache_ra(&ractl, nr_to_read);
468}
469
470unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
471 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
472unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
473 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
474void filemap_free_folio(struct address_space *mapping, struct folio *folio);
475int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
476bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
477 loff_t end);
478long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
479unsigned long mapping_try_invalidate(struct address_space *mapping,
480 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
481
482/**
483 * folio_evictable - Test whether a folio is evictable.
484 * @folio: The folio to test.
485 *
486 * Test whether @folio is evictable -- i.e., should be placed on
487 * active/inactive lists vs unevictable list.
488 *
489 * Reasons folio might not be evictable:
490 * 1. folio's mapping marked unevictable
491 * 2. One of the pages in the folio is part of an mlocked VMA
492 */
493static inline bool folio_evictable(struct folio *folio)
494{
495 bool ret;
496
497 /* Prevent address_space of inode and swap cache from being freed */
498 rcu_read_lock();
499 ret = !mapping_unevictable(folio_mapping(folio)) &&
500 !folio_test_mlocked(folio);
501 rcu_read_unlock();
502 return ret;
503}
504
505/*
506 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
507 * a count of one.
508 */
509static inline void set_page_refcounted(struct page *page)
510{
511 VM_BUG_ON_PAGE(PageTail(page), page);
512 VM_BUG_ON_PAGE(page_ref_count(page), page);
513 set_page_count(page, 1);
514}
515
516/*
517 * Return true if a folio needs ->release_folio() calling upon it.
518 */
519static inline bool folio_needs_release(struct folio *folio)
520{
521 struct address_space *mapping = folio_mapping(folio);
522
523 return folio_has_private(folio) ||
524 (mapping && mapping_release_always(mapping));
525}
526
527extern unsigned long highest_memmap_pfn;
528
529/*
530 * Maximum number of reclaim retries without progress before the OOM
531 * killer is consider the only way forward.
532 */
533#define MAX_RECLAIM_RETRIES 16
534
535/*
536 * in mm/vmscan.c:
537 */
538bool folio_isolate_lru(struct folio *folio);
539void folio_putback_lru(struct folio *folio);
540extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
541#ifdef CONFIG_NUMA
542int user_proactive_reclaim(char *buf,
543 struct mem_cgroup *memcg, pg_data_t *pgdat);
544#else
545static inline int user_proactive_reclaim(char *buf,
546 struct mem_cgroup *memcg, pg_data_t *pgdat)
547{
548 return 0;
549}
550#endif
551
552/*
553 * in mm/rmap.c:
554 */
555pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
556
557/*
558 * in mm/page_alloc.c
559 */
560#define K(x) ((x) << (PAGE_SHIFT-10))
561
562extern char * const zone_names[MAX_NR_ZONES];
563
564/* perform sanity checks on struct pages being allocated or freed */
565DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
566
567extern int min_free_kbytes;
568extern int defrag_mode;
569
570void setup_per_zone_wmarks(void);
571void calculate_min_free_kbytes(void);
572int __meminit init_per_zone_wmark_min(void);
573void page_alloc_sysctl_init(void);
574
575/*
576 * Structure for holding the mostly immutable allocation parameters passed
577 * between functions involved in allocations, including the alloc_pages*
578 * family of functions.
579 *
580 * nodemask, migratetype and highest_zoneidx are initialized only once in
581 * __alloc_pages() and then never change.
582 *
583 * zonelist, preferred_zone and highest_zoneidx are set first in
584 * __alloc_pages() for the fast path, and might be later changed
585 * in __alloc_pages_slowpath(). All other functions pass the whole structure
586 * by a const pointer.
587 */
588struct alloc_context {
589 struct zonelist *zonelist;
590 nodemask_t *nodemask;
591 struct zoneref *preferred_zoneref;
592 int migratetype;
593
594 /*
595 * highest_zoneidx represents highest usable zone index of
596 * the allocation request. Due to the nature of the zone,
597 * memory on lower zone than the highest_zoneidx will be
598 * protected by lowmem_reserve[highest_zoneidx].
599 *
600 * highest_zoneidx is also used by reclaim/compaction to limit
601 * the target zone since higher zone than this index cannot be
602 * usable for this allocation request.
603 */
604 enum zone_type highest_zoneidx;
605 bool spread_dirty_pages;
606};
607
608/*
609 * This function returns the order of a free page in the buddy system. In
610 * general, page_zone(page)->lock must be held by the caller to prevent the
611 * page from being allocated in parallel and returning garbage as the order.
612 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
613 * page cannot be allocated or merged in parallel. Alternatively, it must
614 * handle invalid values gracefully, and use buddy_order_unsafe() below.
615 */
616static inline unsigned int buddy_order(struct page *page)
617{
618 /* PageBuddy() must be checked by the caller */
619 return page_private(page);
620}
621
622/*
623 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
624 * PageBuddy() should be checked first by the caller to minimize race window,
625 * and invalid values must be handled gracefully.
626 *
627 * READ_ONCE is used so that if the caller assigns the result into a local
628 * variable and e.g. tests it for valid range before using, the compiler cannot
629 * decide to remove the variable and inline the page_private(page) multiple
630 * times, potentially observing different values in the tests and the actual
631 * use of the result.
632 */
633#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
634
635/*
636 * This function checks whether a page is free && is the buddy
637 * we can coalesce a page and its buddy if
638 * (a) the buddy is not in a hole (check before calling!) &&
639 * (b) the buddy is in the buddy system &&
640 * (c) a page and its buddy have the same order &&
641 * (d) a page and its buddy are in the same zone.
642 *
643 * For recording whether a page is in the buddy system, we set PageBuddy.
644 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
645 *
646 * For recording page's order, we use page_private(page).
647 */
648static inline bool page_is_buddy(struct page *page, struct page *buddy,
649 unsigned int order)
650{
651 if (!page_is_guard(buddy) && !PageBuddy(buddy))
652 return false;
653
654 if (buddy_order(buddy) != order)
655 return false;
656
657 /*
658 * zone check is done late to avoid uselessly calculating
659 * zone/node ids for pages that could never merge.
660 */
661 if (page_zone_id(page) != page_zone_id(buddy))
662 return false;
663
664 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
665
666 return true;
667}
668
669/*
670 * Locate the struct page for both the matching buddy in our
671 * pair (buddy1) and the combined O(n+1) page they form (page).
672 *
673 * 1) Any buddy B1 will have an order O twin B2 which satisfies
674 * the following equation:
675 * B2 = B1 ^ (1 << O)
676 * For example, if the starting buddy (buddy2) is #8 its order
677 * 1 buddy is #10:
678 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
679 *
680 * 2) Any buddy B will have an order O+1 parent P which
681 * satisfies the following equation:
682 * P = B & ~(1 << O)
683 *
684 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
685 */
686static inline unsigned long
687__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
688{
689 return page_pfn ^ (1 << order);
690}
691
692/*
693 * Find the buddy of @page and validate it.
694 * @page: The input page
695 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
696 * function is used in the performance-critical __free_one_page().
697 * @order: The order of the page
698 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
699 * page_to_pfn().
700 *
701 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
702 * not the same as @page. The validation is necessary before use it.
703 *
704 * Return: the found buddy page or NULL if not found.
705 */
706static inline struct page *find_buddy_page_pfn(struct page *page,
707 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
708{
709 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
710 struct page *buddy;
711
712 buddy = page + (__buddy_pfn - pfn);
713 if (buddy_pfn)
714 *buddy_pfn = __buddy_pfn;
715
716 if (page_is_buddy(page, buddy, order))
717 return buddy;
718 return NULL;
719}
720
721extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
722 unsigned long end_pfn, struct zone *zone);
723
724static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
725 unsigned long end_pfn, struct zone *zone)
726{
727 if (zone->contiguous)
728 return pfn_to_page(start_pfn);
729
730 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
731}
732
733void set_zone_contiguous(struct zone *zone);
734bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
735 unsigned long nr_pages);
736
737static inline void clear_zone_contiguous(struct zone *zone)
738{
739 zone->contiguous = false;
740}
741
742extern int __isolate_free_page(struct page *page, unsigned int order);
743extern void __putback_isolated_page(struct page *page, unsigned int order,
744 int mt);
745extern void memblock_free_pages(struct page *page, unsigned long pfn,
746 unsigned int order);
747extern void __free_pages_core(struct page *page, unsigned int order,
748 enum meminit_context context);
749
750/*
751 * This will have no effect, other than possibly generating a warning, if the
752 * caller passes in a non-large folio.
753 */
754static inline void folio_set_order(struct folio *folio, unsigned int order)
755{
756 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
757 return;
758
759 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
760#ifdef NR_PAGES_IN_LARGE_FOLIO
761 folio->_nr_pages = 1U << order;
762#endif
763}
764
765bool __folio_unqueue_deferred_split(struct folio *folio);
766static inline bool folio_unqueue_deferred_split(struct folio *folio)
767{
768 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
769 return false;
770
771 /*
772 * At this point, there is no one trying to add the folio to
773 * deferred_list. If folio is not in deferred_list, it's safe
774 * to check without acquiring the split_queue_lock.
775 */
776 if (data_race(list_empty(&folio->_deferred_list)))
777 return false;
778
779 return __folio_unqueue_deferred_split(folio);
780}
781
782static inline struct folio *page_rmappable_folio(struct page *page)
783{
784 struct folio *folio = (struct folio *)page;
785
786 if (folio && folio_test_large(folio))
787 folio_set_large_rmappable(folio);
788 return folio;
789}
790
791static inline void prep_compound_head(struct page *page, unsigned int order)
792{
793 struct folio *folio = (struct folio *)page;
794
795 folio_set_order(folio, order);
796 atomic_set(&folio->_large_mapcount, -1);
797 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
798 atomic_set(&folio->_nr_pages_mapped, 0);
799 if (IS_ENABLED(CONFIG_MM_ID)) {
800 folio->_mm_ids = 0;
801 folio->_mm_id_mapcount[0] = -1;
802 folio->_mm_id_mapcount[1] = -1;
803 }
804 if (IS_ENABLED(CONFIG_64BIT) || order > 1) {
805 atomic_set(&folio->_pincount, 0);
806 atomic_set(&folio->_entire_mapcount, -1);
807 }
808 if (order > 1)
809 INIT_LIST_HEAD(&folio->_deferred_list);
810}
811
812static inline void prep_compound_tail(struct page *head, int tail_idx)
813{
814 struct page *p = head + tail_idx;
815
816 p->mapping = TAIL_MAPPING;
817 set_compound_head(p, head);
818 set_page_private(p, 0);
819}
820
821void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
822extern bool free_pages_prepare(struct page *page, unsigned int order);
823
824extern int user_min_free_kbytes;
825
826struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
827 nodemask_t *);
828#define __alloc_frozen_pages(...) \
829 alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
830void free_frozen_pages(struct page *page, unsigned int order);
831void free_unref_folios(struct folio_batch *fbatch);
832
833#ifdef CONFIG_NUMA
834struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
835#else
836static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
837{
838 return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
839}
840#endif
841
842#define alloc_frozen_pages(...) \
843 alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
844
845extern void zone_pcp_reset(struct zone *zone);
846extern void zone_pcp_disable(struct zone *zone);
847extern void zone_pcp_enable(struct zone *zone);
848extern void zone_pcp_init(struct zone *zone);
849
850extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
851 phys_addr_t min_addr,
852 int nid, bool exact_nid);
853
854void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
855 unsigned long, enum meminit_context, struct vmem_altmap *, int,
856 bool);
857
858#if defined CONFIG_COMPACTION || defined CONFIG_CMA
859
860/*
861 * in mm/compaction.c
862 */
863/*
864 * compact_control is used to track pages being migrated and the free pages
865 * they are being migrated to during memory compaction. The free_pfn starts
866 * at the end of a zone and migrate_pfn begins at the start. Movable pages
867 * are moved to the end of a zone during a compaction run and the run
868 * completes when free_pfn <= migrate_pfn
869 */
870struct compact_control {
871 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
872 struct list_head migratepages; /* List of pages being migrated */
873 unsigned int nr_freepages; /* Number of isolated free pages */
874 unsigned int nr_migratepages; /* Number of pages to migrate */
875 unsigned long free_pfn; /* isolate_freepages search base */
876 /*
877 * Acts as an in/out parameter to page isolation for migration.
878 * isolate_migratepages uses it as a search base.
879 * isolate_migratepages_block will update the value to the next pfn
880 * after the last isolated one.
881 */
882 unsigned long migrate_pfn;
883 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
884 struct zone *zone;
885 unsigned long total_migrate_scanned;
886 unsigned long total_free_scanned;
887 unsigned short fast_search_fail;/* failures to use free list searches */
888 short search_order; /* order to start a fast search at */
889 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
890 int order; /* order a direct compactor needs */
891 int migratetype; /* migratetype of direct compactor */
892 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
893 const int highest_zoneidx; /* zone index of a direct compactor */
894 enum migrate_mode mode; /* Async or sync migration mode */
895 bool ignore_skip_hint; /* Scan blocks even if marked skip */
896 bool no_set_skip_hint; /* Don't mark blocks for skipping */
897 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
898 bool direct_compaction; /* False from kcompactd or /proc/... */
899 bool proactive_compaction; /* kcompactd proactive compaction */
900 bool whole_zone; /* Whole zone should/has been scanned */
901 bool contended; /* Signal lock contention */
902 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
903 * when there are potentially transient
904 * isolation or migration failures to
905 * ensure forward progress.
906 */
907 bool alloc_contig; /* alloc_contig_range allocation */
908};
909
910/*
911 * Used in direct compaction when a page should be taken from the freelists
912 * immediately when one is created during the free path.
913 */
914struct capture_control {
915 struct compact_control *cc;
916 struct page *page;
917};
918
919unsigned long
920isolate_freepages_range(struct compact_control *cc,
921 unsigned long start_pfn, unsigned long end_pfn);
922int
923isolate_migratepages_range(struct compact_control *cc,
924 unsigned long low_pfn, unsigned long end_pfn);
925
926/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
927void init_cma_reserved_pageblock(struct page *page);
928
929#endif /* CONFIG_COMPACTION || CONFIG_CMA */
930
931struct cma;
932
933#ifdef CONFIG_CMA
934void *cma_reserve_early(struct cma *cma, unsigned long size);
935void init_cma_pageblock(struct page *page);
936#else
937static inline void *cma_reserve_early(struct cma *cma, unsigned long size)
938{
939 return NULL;
940}
941static inline void init_cma_pageblock(struct page *page)
942{
943}
944#endif
945
946
947int find_suitable_fallback(struct free_area *area, unsigned int order,
948 int migratetype, bool claimable);
949
950static inline bool free_area_empty(struct free_area *area, int migratetype)
951{
952 return list_empty(&area->free_list[migratetype]);
953}
954
955/* mm/util.c */
956struct anon_vma *folio_anon_vma(const struct folio *folio);
957
958#ifdef CONFIG_MMU
959void unmap_mapping_folio(struct folio *folio);
960extern long populate_vma_page_range(struct vm_area_struct *vma,
961 unsigned long start, unsigned long end, int *locked);
962extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
963 unsigned long end, bool write, int *locked);
964extern bool mlock_future_ok(struct mm_struct *mm, vm_flags_t vm_flags,
965 unsigned long bytes);
966
967/*
968 * NOTE: This function can't tell whether the folio is "fully mapped" in the
969 * range.
970 * "fully mapped" means all the pages of folio is associated with the page
971 * table of range while this function just check whether the folio range is
972 * within the range [start, end). Function caller needs to do page table
973 * check if it cares about the page table association.
974 *
975 * Typical usage (like mlock or madvise) is:
976 * Caller knows at least 1 page of folio is associated with page table of VMA
977 * and the range [start, end) is intersect with the VMA range. Caller wants
978 * to know whether the folio is fully associated with the range. It calls
979 * this function to check whether the folio is in the range first. Then checks
980 * the page table to know whether the folio is fully mapped to the range.
981 */
982static inline bool
983folio_within_range(struct folio *folio, struct vm_area_struct *vma,
984 unsigned long start, unsigned long end)
985{
986 pgoff_t pgoff, addr;
987 unsigned long vma_pglen = vma_pages(vma);
988
989 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
990 if (start > end)
991 return false;
992
993 if (start < vma->vm_start)
994 start = vma->vm_start;
995
996 if (end > vma->vm_end)
997 end = vma->vm_end;
998
999 pgoff = folio_pgoff(folio);
1000
1001 /* if folio start address is not in vma range */
1002 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
1003 return false;
1004
1005 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1006
1007 return !(addr < start || end - addr < folio_size(folio));
1008}
1009
1010static inline bool
1011folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
1012{
1013 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
1014}
1015
1016/*
1017 * mlock_vma_folio() and munlock_vma_folio():
1018 * should be called with vma's mmap_lock held for read or write,
1019 * under page table lock for the pte/pmd being added or removed.
1020 *
1021 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
1022 * the end of folio_remove_rmap_*(); but new anon folios are managed by
1023 * folio_add_lru_vma() calling mlock_new_folio().
1024 */
1025void mlock_folio(struct folio *folio);
1026static inline void mlock_vma_folio(struct folio *folio,
1027 struct vm_area_struct *vma)
1028{
1029 /*
1030 * The VM_SPECIAL check here serves two purposes.
1031 * 1) VM_IO check prevents migration from double-counting during mlock.
1032 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
1033 * is never left set on a VM_SPECIAL vma, there is an interval while
1034 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
1035 * still be set while VM_SPECIAL bits are added: so ignore it then.
1036 */
1037 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
1038 mlock_folio(folio);
1039}
1040
1041void munlock_folio(struct folio *folio);
1042static inline void munlock_vma_folio(struct folio *folio,
1043 struct vm_area_struct *vma)
1044{
1045 /*
1046 * munlock if the function is called. Ideally, we should only
1047 * do munlock if any page of folio is unmapped from VMA and
1048 * cause folio not fully mapped to VMA.
1049 *
1050 * But it's not easy to confirm that's the situation. So we
1051 * always munlock the folio and page reclaim will correct it
1052 * if it's wrong.
1053 */
1054 if (unlikely(vma->vm_flags & VM_LOCKED))
1055 munlock_folio(folio);
1056}
1057
1058void mlock_new_folio(struct folio *folio);
1059bool need_mlock_drain(int cpu);
1060void mlock_drain_local(void);
1061void mlock_drain_remote(int cpu);
1062
1063extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
1064
1065/**
1066 * vma_address - Find the virtual address a page range is mapped at
1067 * @vma: The vma which maps this object.
1068 * @pgoff: The page offset within its object.
1069 * @nr_pages: The number of pages to consider.
1070 *
1071 * If any page in this range is mapped by this VMA, return the first address
1072 * where any of these pages appear. Otherwise, return -EFAULT.
1073 */
1074static inline unsigned long vma_address(const struct vm_area_struct *vma,
1075 pgoff_t pgoff, unsigned long nr_pages)
1076{
1077 unsigned long address;
1078
1079 if (pgoff >= vma->vm_pgoff) {
1080 address = vma->vm_start +
1081 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1082 /* Check for address beyond vma (or wrapped through 0?) */
1083 if (address < vma->vm_start || address >= vma->vm_end)
1084 address = -EFAULT;
1085 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
1086 /* Test above avoids possibility of wrap to 0 on 32-bit */
1087 address = vma->vm_start;
1088 } else {
1089 address = -EFAULT;
1090 }
1091 return address;
1092}
1093
1094/*
1095 * Then at what user virtual address will none of the range be found in vma?
1096 * Assumes that vma_address() already returned a good starting address.
1097 */
1098static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1099{
1100 struct vm_area_struct *vma = pvmw->vma;
1101 pgoff_t pgoff;
1102 unsigned long address;
1103
1104 /* Common case, plus ->pgoff is invalid for KSM */
1105 if (pvmw->nr_pages == 1)
1106 return pvmw->address + PAGE_SIZE;
1107
1108 pgoff = pvmw->pgoff + pvmw->nr_pages;
1109 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1110 /* Check for address beyond vma (or wrapped through 0?) */
1111 if (address < vma->vm_start || address > vma->vm_end)
1112 address = vma->vm_end;
1113 return address;
1114}
1115
1116static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1117 struct file *fpin)
1118{
1119 int flags = vmf->flags;
1120
1121 if (fpin)
1122 return fpin;
1123
1124 /*
1125 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1126 * anything, so we only pin the file and drop the mmap_lock if only
1127 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1128 */
1129 if (fault_flag_allow_retry_first(flags) &&
1130 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1131 fpin = get_file(vmf->vma->vm_file);
1132 release_fault_lock(vmf);
1133 }
1134 return fpin;
1135}
1136#else /* !CONFIG_MMU */
1137static inline void unmap_mapping_folio(struct folio *folio) { }
1138static inline void mlock_new_folio(struct folio *folio) { }
1139static inline bool need_mlock_drain(int cpu) { return false; }
1140static inline void mlock_drain_local(void) { }
1141static inline void mlock_drain_remote(int cpu) { }
1142static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1143{
1144}
1145#endif /* !CONFIG_MMU */
1146
1147/* Memory initialisation debug and verification */
1148#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1149DECLARE_STATIC_KEY_TRUE(deferred_pages);
1150
1151bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1152#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1153
1154void init_deferred_page(unsigned long pfn, int nid);
1155
1156enum mminit_level {
1157 MMINIT_WARNING,
1158 MMINIT_VERIFY,
1159 MMINIT_TRACE
1160};
1161
1162#ifdef CONFIG_DEBUG_MEMORY_INIT
1163
1164extern int mminit_loglevel;
1165
1166#define mminit_dprintk(level, prefix, fmt, arg...) \
1167do { \
1168 if (level < mminit_loglevel) { \
1169 if (level <= MMINIT_WARNING) \
1170 pr_warn("mminit::" prefix " " fmt, ##arg); \
1171 else \
1172 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1173 } \
1174} while (0)
1175
1176extern void mminit_verify_pageflags_layout(void);
1177extern void mminit_verify_zonelist(void);
1178#else
1179
1180static inline void mminit_dprintk(enum mminit_level level,
1181 const char *prefix, const char *fmt, ...)
1182{
1183}
1184
1185static inline void mminit_verify_pageflags_layout(void)
1186{
1187}
1188
1189static inline void mminit_verify_zonelist(void)
1190{
1191}
1192#endif /* CONFIG_DEBUG_MEMORY_INIT */
1193
1194#define NODE_RECLAIM_NOSCAN -2
1195#define NODE_RECLAIM_FULL -1
1196#define NODE_RECLAIM_SOME 0
1197#define NODE_RECLAIM_SUCCESS 1
1198
1199#ifdef CONFIG_NUMA
1200extern int node_reclaim_mode;
1201
1202extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1203extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1204#else
1205#define node_reclaim_mode 0
1206
1207static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1208 unsigned int order)
1209{
1210 return NODE_RECLAIM_NOSCAN;
1211}
1212static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1213{
1214 return NUMA_NO_NODE;
1215}
1216#endif
1217
1218static inline bool node_reclaim_enabled(void)
1219{
1220 /* Is any node_reclaim_mode bit set? */
1221 return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
1222}
1223
1224/*
1225 * mm/memory-failure.c
1226 */
1227#ifdef CONFIG_MEMORY_FAILURE
1228int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1229void shake_folio(struct folio *folio);
1230extern int hwpoison_filter(struct page *p);
1231
1232extern u32 hwpoison_filter_dev_major;
1233extern u32 hwpoison_filter_dev_minor;
1234extern u64 hwpoison_filter_flags_mask;
1235extern u64 hwpoison_filter_flags_value;
1236extern u64 hwpoison_filter_memcg;
1237extern u32 hwpoison_filter_enable;
1238#define MAGIC_HWPOISON 0x48575053U /* HWPS */
1239void SetPageHWPoisonTakenOff(struct page *page);
1240void ClearPageHWPoisonTakenOff(struct page *page);
1241bool take_page_off_buddy(struct page *page);
1242bool put_page_back_buddy(struct page *page);
1243struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1244void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1245 struct vm_area_struct *vma, struct list_head *to_kill,
1246 unsigned long ksm_addr);
1247unsigned long page_mapped_in_vma(const struct page *page,
1248 struct vm_area_struct *vma);
1249
1250#else
1251static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1252{
1253 return -EBUSY;
1254}
1255#endif
1256
1257extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
1258 unsigned long, unsigned long,
1259 unsigned long, unsigned long);
1260
1261extern void set_pageblock_order(void);
1262unsigned long reclaim_pages(struct list_head *folio_list);
1263unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1264 struct list_head *folio_list);
1265/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1266#define ALLOC_WMARK_MIN WMARK_MIN
1267#define ALLOC_WMARK_LOW WMARK_LOW
1268#define ALLOC_WMARK_HIGH WMARK_HIGH
1269#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1270
1271/* Mask to get the watermark bits */
1272#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1273
1274/*
1275 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1276 * cannot assume a reduced access to memory reserves is sufficient for
1277 * !MMU
1278 */
1279#ifdef CONFIG_MMU
1280#define ALLOC_OOM 0x08
1281#else
1282#define ALLOC_OOM ALLOC_NO_WATERMARKS
1283#endif
1284
1285#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
1286 * to 25% of the min watermark or
1287 * 62.5% if __GFP_HIGH is set.
1288 */
1289#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
1290 * of the min watermark.
1291 */
1292#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1293#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
1294#ifdef CONFIG_ZONE_DMA32
1295#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
1296#else
1297#define ALLOC_NOFRAGMENT 0x0
1298#endif
1299#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1300#define ALLOC_TRYLOCK 0x400 /* Only use spin_trylock in allocation path */
1301#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1302
1303/* Flags that allow allocations below the min watermark. */
1304#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1305
1306enum ttu_flags;
1307struct tlbflush_unmap_batch;
1308
1309
1310/*
1311 * only for MM internal work items which do not depend on
1312 * any allocations or locks which might depend on allocations
1313 */
1314extern struct workqueue_struct *mm_percpu_wq;
1315
1316#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1317void try_to_unmap_flush(void);
1318void try_to_unmap_flush_dirty(void);
1319void flush_tlb_batched_pending(struct mm_struct *mm);
1320#else
1321static inline void try_to_unmap_flush(void)
1322{
1323}
1324static inline void try_to_unmap_flush_dirty(void)
1325{
1326}
1327static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1328{
1329}
1330#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1331
1332extern const struct trace_print_flags pageflag_names[];
1333extern const struct trace_print_flags vmaflag_names[];
1334extern const struct trace_print_flags gfpflag_names[];
1335
1336static inline bool is_migrate_highatomic(enum migratetype migratetype)
1337{
1338 return migratetype == MIGRATE_HIGHATOMIC;
1339}
1340
1341void setup_zone_pageset(struct zone *zone);
1342
1343struct migration_target_control {
1344 int nid; /* preferred node id */
1345 nodemask_t *nmask;
1346 gfp_t gfp_mask;
1347 enum migrate_reason reason;
1348};
1349
1350/*
1351 * mm/filemap.c
1352 */
1353size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1354 struct folio *folio, loff_t fpos, size_t size);
1355
1356/*
1357 * mm/vmalloc.c
1358 */
1359#ifdef CONFIG_MMU
1360void __init vmalloc_init(void);
1361int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1362 pgprot_t prot, struct page **pages, unsigned int page_shift);
1363unsigned int get_vm_area_page_order(struct vm_struct *vm);
1364#else
1365static inline void vmalloc_init(void)
1366{
1367}
1368
1369static inline
1370int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1371 pgprot_t prot, struct page **pages, unsigned int page_shift)
1372{
1373 return -EINVAL;
1374}
1375#endif
1376
1377int __must_check __vmap_pages_range_noflush(unsigned long addr,
1378 unsigned long end, pgprot_t prot,
1379 struct page **pages, unsigned int page_shift);
1380
1381void vunmap_range_noflush(unsigned long start, unsigned long end);
1382
1383void __vunmap_range_noflush(unsigned long start, unsigned long end);
1384
1385int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1386 unsigned long addr, int *flags, bool writable,
1387 int *last_cpupid);
1388
1389void free_zone_device_folio(struct folio *folio);
1390int migrate_device_coherent_folio(struct folio *folio);
1391
1392struct vm_struct *__get_vm_area_node(unsigned long size,
1393 unsigned long align, unsigned long shift,
1394 unsigned long vm_flags, unsigned long start,
1395 unsigned long end, int node, gfp_t gfp_mask,
1396 const void *caller);
1397
1398/*
1399 * mm/gup.c
1400 */
1401int __must_check try_grab_folio(struct folio *folio, int refs,
1402 unsigned int flags);
1403
1404/*
1405 * mm/huge_memory.c
1406 */
1407void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1408 pud_t *pud, bool write);
1409void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1410 pmd_t *pmd, bool write);
1411
1412/*
1413 * Parses a string with mem suffixes into its order. Useful to parse kernel
1414 * parameters.
1415 */
1416static inline int get_order_from_str(const char *size_str,
1417 unsigned long valid_orders)
1418{
1419 unsigned long size;
1420 char *endptr;
1421 int order;
1422
1423 size = memparse(size_str, &endptr);
1424
1425 if (!is_power_of_2(size))
1426 return -EINVAL;
1427 order = get_order(size);
1428 if (BIT(order) & ~valid_orders)
1429 return -EINVAL;
1430
1431 return order;
1432}
1433
1434enum {
1435 /* mark page accessed */
1436 FOLL_TOUCH = 1 << 16,
1437 /* a retry, previous pass started an IO */
1438 FOLL_TRIED = 1 << 17,
1439 /* we are working on non-current tsk/mm */
1440 FOLL_REMOTE = 1 << 18,
1441 /* pages must be released via unpin_user_page */
1442 FOLL_PIN = 1 << 19,
1443 /* gup_fast: prevent fall-back to slow gup */
1444 FOLL_FAST_ONLY = 1 << 20,
1445 /* allow unlocking the mmap lock */
1446 FOLL_UNLOCKABLE = 1 << 21,
1447 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1448 FOLL_MADV_POPULATE = 1 << 22,
1449};
1450
1451#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1452 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1453 FOLL_MADV_POPULATE)
1454
1455/*
1456 * Indicates for which pages that are write-protected in the page table,
1457 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1458 * GUP pin will remain consistent with the pages mapped into the page tables
1459 * of the MM.
1460 *
1461 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1462 * PageAnonExclusive() has to protect against concurrent GUP:
1463 * * Ordinary GUP: Using the PT lock
1464 * * GUP-fast and fork(): mm->write_protect_seq
1465 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1466 * folio_try_share_anon_rmap_*()
1467 *
1468 * Must be called with the (sub)page that's actually referenced via the
1469 * page table entry, which might not necessarily be the head page for a
1470 * PTE-mapped THP.
1471 *
1472 * If the vma is NULL, we're coming from the GUP-fast path and might have
1473 * to fallback to the slow path just to lookup the vma.
1474 */
1475static inline bool gup_must_unshare(struct vm_area_struct *vma,
1476 unsigned int flags, struct page *page)
1477{
1478 /*
1479 * FOLL_WRITE is implicitly handled correctly as the page table entry
1480 * has to be writable -- and if it references (part of) an anonymous
1481 * folio, that part is required to be marked exclusive.
1482 */
1483 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1484 return false;
1485 /*
1486 * Note: PageAnon(page) is stable until the page is actually getting
1487 * freed.
1488 */
1489 if (!PageAnon(page)) {
1490 /*
1491 * We only care about R/O long-term pining: R/O short-term
1492 * pinning does not have the semantics to observe successive
1493 * changes through the process page tables.
1494 */
1495 if (!(flags & FOLL_LONGTERM))
1496 return false;
1497
1498 /* We really need the vma ... */
1499 if (!vma)
1500 return true;
1501
1502 /*
1503 * ... because we only care about writable private ("COW")
1504 * mappings where we have to break COW early.
1505 */
1506 return is_cow_mapping(vma->vm_flags);
1507 }
1508
1509 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1510 if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1511 smp_rmb();
1512
1513 /*
1514 * Note that KSM pages cannot be exclusive, and consequently,
1515 * cannot get pinned.
1516 */
1517 return !PageAnonExclusive(page);
1518}
1519
1520extern bool mirrored_kernelcore;
1521bool memblock_has_mirror(void);
1522void memblock_free_all(void);
1523
1524static __always_inline void vma_set_range(struct vm_area_struct *vma,
1525 unsigned long start, unsigned long end,
1526 pgoff_t pgoff)
1527{
1528 vma->vm_start = start;
1529 vma->vm_end = end;
1530 vma->vm_pgoff = pgoff;
1531}
1532
1533static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1534{
1535 /*
1536 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1537 * enablements, because when without soft-dirty being compiled in,
1538 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1539 * will be constantly true.
1540 */
1541 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1542 return false;
1543
1544 /*
1545 * Soft-dirty is kind of special: its tracking is enabled when the
1546 * vma flags not set.
1547 */
1548 return !(vma->vm_flags & VM_SOFTDIRTY);
1549}
1550
1551static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1552{
1553 return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1554}
1555
1556static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1557{
1558 return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1559}
1560
1561void __meminit __init_single_page(struct page *page, unsigned long pfn,
1562 unsigned long zone, int nid);
1563void __meminit __init_page_from_nid(unsigned long pfn, int nid);
1564
1565/* shrinker related functions */
1566unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1567 int priority);
1568
1569#ifdef CONFIG_SHRINKER_DEBUG
1570static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1571 struct shrinker *shrinker, const char *fmt, va_list ap)
1572{
1573 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1574
1575 return shrinker->name ? 0 : -ENOMEM;
1576}
1577
1578static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1579{
1580 kfree_const(shrinker->name);
1581 shrinker->name = NULL;
1582}
1583
1584extern int shrinker_debugfs_add(struct shrinker *shrinker);
1585extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1586 int *debugfs_id);
1587extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1588 int debugfs_id);
1589#else /* CONFIG_SHRINKER_DEBUG */
1590static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1591{
1592 return 0;
1593}
1594static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1595 const char *fmt, va_list ap)
1596{
1597 return 0;
1598}
1599static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1600{
1601}
1602static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1603 int *debugfs_id)
1604{
1605 *debugfs_id = -1;
1606 return NULL;
1607}
1608static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1609 int debugfs_id)
1610{
1611}
1612#endif /* CONFIG_SHRINKER_DEBUG */
1613
1614/* Only track the nodes of mappings with shadow entries */
1615void workingset_update_node(struct xa_node *node);
1616extern struct list_lru shadow_nodes;
1617#define mapping_set_update(xas, mapping) do { \
1618 if (!dax_mapping(mapping) && !shmem_mapping(mapping)) { \
1619 xas_set_update(xas, workingset_update_node); \
1620 xas_set_lru(xas, &shadow_nodes); \
1621 } \
1622} while (0)
1623
1624/* mremap.c */
1625unsigned long move_page_tables(struct pagetable_move_control *pmc);
1626
1627#ifdef CONFIG_UNACCEPTED_MEMORY
1628void accept_page(struct page *page);
1629#else /* CONFIG_UNACCEPTED_MEMORY */
1630static inline void accept_page(struct page *page)
1631{
1632}
1633#endif /* CONFIG_UNACCEPTED_MEMORY */
1634
1635/* pagewalk.c */
1636int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
1637 unsigned long end, const struct mm_walk_ops *ops,
1638 void *private);
1639int walk_page_range_debug(struct mm_struct *mm, unsigned long start,
1640 unsigned long end, const struct mm_walk_ops *ops,
1641 pgd_t *pgd, void *private);
1642
1643/* pt_reclaim.c */
1644bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
1645void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
1646 pmd_t pmdval);
1647void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
1648 struct mmu_gather *tlb);
1649
1650#ifdef CONFIG_PT_RECLAIM
1651bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1652 struct zap_details *details);
1653#else
1654static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1655 struct zap_details *details)
1656{
1657 return false;
1658}
1659#endif /* CONFIG_PT_RECLAIM */
1660
1661void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm);
1662int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm);
1663
1664#endif /* __MM_INTERNAL_H */