Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5#include <linux/module.h>
6#include <linux/moduleparam.h>
7#include <linux/sched.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/file.h>
11#include <linux/stat.h>
12#include <linux/errno.h>
13#include <linux/major.h>
14#include <linux/wait.h>
15#include <linux/blkpg.h>
16#include <linux/init.h>
17#include <linux/swap.h>
18#include <linux/slab.h>
19#include <linux/compat.h>
20#include <linux/suspend.h>
21#include <linux/freezer.h>
22#include <linux/mutex.h>
23#include <linux/writeback.h>
24#include <linux/completion.h>
25#include <linux/highmem.h>
26#include <linux/splice.h>
27#include <linux/sysfs.h>
28#include <linux/miscdevice.h>
29#include <linux/falloc.h>
30#include <linux/uio.h>
31#include <linux/ioprio.h>
32#include <linux/blk-cgroup.h>
33#include <linux/sched/mm.h>
34#include <linux/statfs.h>
35#include <linux/uaccess.h>
36#include <linux/blk-mq.h>
37#include <linux/spinlock.h>
38#include <uapi/linux/loop.h>
39
40/* Possible states of device */
41enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46};
47
48struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77};
78
79struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88};
89
90#define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91#define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93static DEFINE_IDR(loop_index_idr);
94static DEFINE_MUTEX(loop_ctl_mutex);
95static DEFINE_MUTEX(loop_validate_mutex);
96
97/**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
109static int loop_global_lock_killable(struct loop_device *lo, bool global)
110{
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122}
123
124/**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
130static void loop_global_unlock(struct loop_device *lo, bool global)
131{
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135}
136
137static int max_part;
138static int part_shift;
139
140static loff_t lo_calculate_size(struct loop_device *lo, struct file *file)
141{
142 struct kstat stat;
143 loff_t loopsize;
144 int ret;
145
146 /*
147 * Get the accurate file size. This provides better results than
148 * cached inode data, particularly for network filesystems where
149 * metadata may be stale.
150 */
151 ret = vfs_getattr_nosec(&file->f_path, &stat, STATX_SIZE, 0);
152 if (ret)
153 return 0;
154
155 loopsize = stat.size;
156 if (lo->lo_offset > 0)
157 loopsize -= lo->lo_offset;
158 /* offset is beyond i_size, weird but possible */
159 if (loopsize < 0)
160 return 0;
161 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
162 loopsize = lo->lo_sizelimit;
163 /*
164 * Unfortunately, if we want to do I/O on the device,
165 * the number of 512-byte sectors has to fit into a sector_t.
166 */
167 return loopsize >> 9;
168}
169
170/*
171 * We support direct I/O only if lo_offset is aligned with the logical I/O size
172 * of backing device, and the logical block size of loop is bigger than that of
173 * the backing device.
174 */
175static bool lo_can_use_dio(struct loop_device *lo)
176{
177 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
178 return false;
179 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
180 return false;
181 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
182 return false;
183 return true;
184}
185
186/*
187 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
188 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
189 * disabled when the device block size is too small or the offset is unaligned.
190 *
191 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
192 * not the originally passed in one.
193 */
194static inline void loop_update_dio(struct loop_device *lo)
195{
196 lockdep_assert_held(&lo->lo_mutex);
197 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
198 lo->lo_queue->mq_freeze_depth == 0);
199
200 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
201 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
202}
203
204/**
205 * loop_set_size() - sets device size and notifies userspace
206 * @lo: struct loop_device to set the size for
207 * @size: new size of the loop device
208 *
209 * Callers must validate that the size passed into this function fits into
210 * a sector_t, eg using loop_validate_size()
211 */
212static void loop_set_size(struct loop_device *lo, loff_t size)
213{
214 if (!set_capacity_and_notify(lo->lo_disk, size))
215 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
216}
217
218static void loop_clear_limits(struct loop_device *lo, int mode)
219{
220 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
221
222 if (mode & FALLOC_FL_ZERO_RANGE)
223 lim.max_write_zeroes_sectors = 0;
224
225 if (mode & FALLOC_FL_PUNCH_HOLE) {
226 lim.max_hw_discard_sectors = 0;
227 lim.discard_granularity = 0;
228 }
229
230 /*
231 * XXX: this updates the queue limits without freezing the queue, which
232 * is against the locking protocol and dangerous. But we can't just
233 * freeze the queue as we're inside the ->queue_rq method here. So this
234 * should move out into a workqueue unless we get the file operations to
235 * advertise if they support specific fallocate operations.
236 */
237 queue_limits_commit_update(lo->lo_queue, &lim);
238}
239
240static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
241 int mode)
242{
243 /*
244 * We use fallocate to manipulate the space mappings used by the image
245 * a.k.a. discard/zerorange.
246 */
247 struct file *file = lo->lo_backing_file;
248 int ret;
249
250 mode |= FALLOC_FL_KEEP_SIZE;
251
252 if (!bdev_max_discard_sectors(lo->lo_device))
253 return -EOPNOTSUPP;
254
255 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
256 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
257 return -EIO;
258
259 /*
260 * We initially configure the limits in a hope that fallocate is
261 * supported and clear them here if that turns out not to be true.
262 */
263 if (unlikely(ret == -EOPNOTSUPP))
264 loop_clear_limits(lo, mode);
265
266 return ret;
267}
268
269static int lo_req_flush(struct loop_device *lo, struct request *rq)
270{
271 int ret = vfs_fsync(lo->lo_backing_file, 0);
272 if (unlikely(ret && ret != -EINVAL))
273 ret = -EIO;
274
275 return ret;
276}
277
278static void lo_complete_rq(struct request *rq)
279{
280 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
281 blk_status_t ret = BLK_STS_OK;
282
283 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
284 req_op(rq) != REQ_OP_READ) {
285 if (cmd->ret < 0)
286 ret = errno_to_blk_status(cmd->ret);
287 goto end_io;
288 }
289
290 /*
291 * Short READ - if we got some data, advance our request and
292 * retry it. If we got no data, end the rest with EIO.
293 */
294 if (cmd->ret) {
295 blk_update_request(rq, BLK_STS_OK, cmd->ret);
296 cmd->ret = 0;
297 blk_mq_requeue_request(rq, true);
298 } else {
299 struct bio *bio = rq->bio;
300
301 while (bio) {
302 zero_fill_bio(bio);
303 bio = bio->bi_next;
304 }
305
306 ret = BLK_STS_IOERR;
307end_io:
308 blk_mq_end_request(rq, ret);
309 }
310}
311
312static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
313{
314 struct request *rq = blk_mq_rq_from_pdu(cmd);
315
316 if (!atomic_dec_and_test(&cmd->ref))
317 return;
318 kfree(cmd->bvec);
319 cmd->bvec = NULL;
320 if (req_op(rq) == REQ_OP_WRITE)
321 kiocb_end_write(&cmd->iocb);
322 if (likely(!blk_should_fake_timeout(rq->q)))
323 blk_mq_complete_request(rq);
324}
325
326static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
327{
328 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
329
330 cmd->ret = ret;
331 lo_rw_aio_do_completion(cmd);
332}
333
334static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
335 loff_t pos, int rw)
336{
337 struct iov_iter iter;
338 struct req_iterator rq_iter;
339 struct bio_vec *bvec;
340 struct request *rq = blk_mq_rq_from_pdu(cmd);
341 struct bio *bio = rq->bio;
342 struct file *file = lo->lo_backing_file;
343 struct bio_vec tmp;
344 unsigned int offset;
345 int nr_bvec = 0;
346 int ret;
347
348 rq_for_each_bvec(tmp, rq, rq_iter)
349 nr_bvec++;
350
351 if (rq->bio != rq->biotail) {
352
353 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
354 GFP_NOIO);
355 if (!bvec)
356 return -EIO;
357 cmd->bvec = bvec;
358
359 /*
360 * The bios of the request may be started from the middle of
361 * the 'bvec' because of bio splitting, so we can't directly
362 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
363 * API will take care of all details for us.
364 */
365 rq_for_each_bvec(tmp, rq, rq_iter) {
366 *bvec = tmp;
367 bvec++;
368 }
369 bvec = cmd->bvec;
370 offset = 0;
371 } else {
372 /*
373 * Same here, this bio may be started from the middle of the
374 * 'bvec' because of bio splitting, so offset from the bvec
375 * must be passed to iov iterator
376 */
377 offset = bio->bi_iter.bi_bvec_done;
378 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
379 }
380 atomic_set(&cmd->ref, 2);
381
382 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
383 iter.iov_offset = offset;
384
385 cmd->iocb.ki_pos = pos;
386 cmd->iocb.ki_filp = file;
387 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
388 if (cmd->use_aio) {
389 cmd->iocb.ki_complete = lo_rw_aio_complete;
390 cmd->iocb.ki_flags = IOCB_DIRECT;
391 } else {
392 cmd->iocb.ki_complete = NULL;
393 cmd->iocb.ki_flags = 0;
394 }
395
396 if (rw == ITER_SOURCE) {
397 kiocb_start_write(&cmd->iocb);
398 ret = file->f_op->write_iter(&cmd->iocb, &iter);
399 } else
400 ret = file->f_op->read_iter(&cmd->iocb, &iter);
401
402 lo_rw_aio_do_completion(cmd);
403
404 if (ret != -EIOCBQUEUED)
405 lo_rw_aio_complete(&cmd->iocb, ret);
406 return -EIOCBQUEUED;
407}
408
409static int do_req_filebacked(struct loop_device *lo, struct request *rq)
410{
411 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
412 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
413
414 switch (req_op(rq)) {
415 case REQ_OP_FLUSH:
416 return lo_req_flush(lo, rq);
417 case REQ_OP_WRITE_ZEROES:
418 /*
419 * If the caller doesn't want deallocation, call zeroout to
420 * write zeroes the range. Otherwise, punch them out.
421 */
422 return lo_fallocate(lo, rq, pos,
423 (rq->cmd_flags & REQ_NOUNMAP) ?
424 FALLOC_FL_ZERO_RANGE :
425 FALLOC_FL_PUNCH_HOLE);
426 case REQ_OP_DISCARD:
427 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
428 case REQ_OP_WRITE:
429 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
430 case REQ_OP_READ:
431 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
432 default:
433 WARN_ON_ONCE(1);
434 return -EIO;
435 }
436}
437
438static void loop_reread_partitions(struct loop_device *lo)
439{
440 int rc;
441
442 mutex_lock(&lo->lo_disk->open_mutex);
443 rc = bdev_disk_changed(lo->lo_disk, false);
444 mutex_unlock(&lo->lo_disk->open_mutex);
445 if (rc)
446 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
447 __func__, lo->lo_number, lo->lo_file_name, rc);
448}
449
450static unsigned int loop_query_min_dio_size(struct loop_device *lo)
451{
452 struct file *file = lo->lo_backing_file;
453 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
454 struct kstat st;
455
456 /*
457 * Use the minimal dio alignment of the file system if provided.
458 */
459 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
460 (st.result_mask & STATX_DIOALIGN))
461 return st.dio_offset_align;
462
463 /*
464 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
465 * a handful of file systems support the STATX_DIOALIGN flag.
466 */
467 if (sb_bdev)
468 return bdev_logical_block_size(sb_bdev);
469 return SECTOR_SIZE;
470}
471
472static inline int is_loop_device(struct file *file)
473{
474 struct inode *i = file->f_mapping->host;
475
476 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
477}
478
479static int loop_validate_file(struct file *file, struct block_device *bdev)
480{
481 struct inode *inode = file->f_mapping->host;
482 struct file *f = file;
483
484 /* Avoid recursion */
485 while (is_loop_device(f)) {
486 struct loop_device *l;
487
488 lockdep_assert_held(&loop_validate_mutex);
489 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
490 return -EBADF;
491
492 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
493 if (l->lo_state != Lo_bound)
494 return -EINVAL;
495 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
496 rmb();
497 f = l->lo_backing_file;
498 }
499 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
500 return -EINVAL;
501 return 0;
502}
503
504static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
505{
506 lo->lo_backing_file = file;
507 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
508 mapping_set_gfp_mask(file->f_mapping,
509 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
510 if (lo->lo_backing_file->f_flags & O_DIRECT)
511 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
512 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
513}
514
515static int loop_check_backing_file(struct file *file)
516{
517 if (!file->f_op->read_iter)
518 return -EINVAL;
519
520 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
521 return -EINVAL;
522
523 return 0;
524}
525
526/*
527 * loop_change_fd switched the backing store of a loopback device to
528 * a new file. This is useful for operating system installers to free up
529 * the original file and in High Availability environments to switch to
530 * an alternative location for the content in case of server meltdown.
531 * This can only work if the loop device is used read-only, and if the
532 * new backing store is the same size and type as the old backing store.
533 */
534static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
535 unsigned int arg)
536{
537 struct file *file = fget(arg);
538 struct file *old_file;
539 unsigned int memflags;
540 int error;
541 bool partscan;
542 bool is_loop;
543
544 if (!file)
545 return -EBADF;
546
547 error = loop_check_backing_file(file);
548 if (error)
549 return error;
550
551 /* suppress uevents while reconfiguring the device */
552 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
553
554 is_loop = is_loop_device(file);
555 error = loop_global_lock_killable(lo, is_loop);
556 if (error)
557 goto out_putf;
558 error = -ENXIO;
559 if (lo->lo_state != Lo_bound)
560 goto out_err;
561
562 /* the loop device has to be read-only */
563 error = -EINVAL;
564 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
565 goto out_err;
566
567 error = loop_validate_file(file, bdev);
568 if (error)
569 goto out_err;
570
571 old_file = lo->lo_backing_file;
572
573 error = -EINVAL;
574
575 /* size of the new backing store needs to be the same */
576 if (lo_calculate_size(lo, file) != lo_calculate_size(lo, old_file))
577 goto out_err;
578
579 /*
580 * We might switch to direct I/O mode for the loop device, write back
581 * all dirty data the page cache now that so that the individual I/O
582 * operations don't have to do that.
583 */
584 vfs_fsync(file, 0);
585
586 /* and ... switch */
587 disk_force_media_change(lo->lo_disk);
588 memflags = blk_mq_freeze_queue(lo->lo_queue);
589 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
590 loop_assign_backing_file(lo, file);
591 loop_update_dio(lo);
592 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
593 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
594 loop_global_unlock(lo, is_loop);
595
596 /*
597 * Flush loop_validate_file() before fput(), for l->lo_backing_file
598 * might be pointing at old_file which might be the last reference.
599 */
600 if (!is_loop) {
601 mutex_lock(&loop_validate_mutex);
602 mutex_unlock(&loop_validate_mutex);
603 }
604 /*
605 * We must drop file reference outside of lo_mutex as dropping
606 * the file ref can take open_mutex which creates circular locking
607 * dependency.
608 */
609 fput(old_file);
610 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
611 if (partscan)
612 loop_reread_partitions(lo);
613
614 error = 0;
615done:
616 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
617 return error;
618
619out_err:
620 loop_global_unlock(lo, is_loop);
621out_putf:
622 fput(file);
623 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
624 goto done;
625}
626
627/* loop sysfs attributes */
628
629static ssize_t loop_attr_show(struct device *dev, char *page,
630 ssize_t (*callback)(struct loop_device *, char *))
631{
632 struct gendisk *disk = dev_to_disk(dev);
633 struct loop_device *lo = disk->private_data;
634
635 return callback(lo, page);
636}
637
638#define LOOP_ATTR_RO(_name) \
639static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
640static ssize_t loop_attr_do_show_##_name(struct device *d, \
641 struct device_attribute *attr, char *b) \
642{ \
643 return loop_attr_show(d, b, loop_attr_##_name##_show); \
644} \
645static struct device_attribute loop_attr_##_name = \
646 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
647
648static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
649{
650 ssize_t ret;
651 char *p = NULL;
652
653 spin_lock_irq(&lo->lo_lock);
654 if (lo->lo_backing_file)
655 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
656 spin_unlock_irq(&lo->lo_lock);
657
658 if (IS_ERR_OR_NULL(p))
659 ret = PTR_ERR(p);
660 else {
661 ret = strlen(p);
662 memmove(buf, p, ret);
663 buf[ret++] = '\n';
664 buf[ret] = 0;
665 }
666
667 return ret;
668}
669
670static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
671{
672 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
673}
674
675static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
676{
677 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
678}
679
680static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
681{
682 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
683
684 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
685}
686
687static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
688{
689 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
690
691 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
692}
693
694static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
695{
696 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
697
698 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
699}
700
701LOOP_ATTR_RO(backing_file);
702LOOP_ATTR_RO(offset);
703LOOP_ATTR_RO(sizelimit);
704LOOP_ATTR_RO(autoclear);
705LOOP_ATTR_RO(partscan);
706LOOP_ATTR_RO(dio);
707
708static struct attribute *loop_attrs[] = {
709 &loop_attr_backing_file.attr,
710 &loop_attr_offset.attr,
711 &loop_attr_sizelimit.attr,
712 &loop_attr_autoclear.attr,
713 &loop_attr_partscan.attr,
714 &loop_attr_dio.attr,
715 NULL,
716};
717
718static struct attribute_group loop_attribute_group = {
719 .name = "loop",
720 .attrs= loop_attrs,
721};
722
723static void loop_sysfs_init(struct loop_device *lo)
724{
725 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
726 &loop_attribute_group);
727}
728
729static void loop_sysfs_exit(struct loop_device *lo)
730{
731 if (lo->sysfs_inited)
732 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
733 &loop_attribute_group);
734}
735
736static void loop_get_discard_config(struct loop_device *lo,
737 u32 *granularity, u32 *max_discard_sectors)
738{
739 struct file *file = lo->lo_backing_file;
740 struct inode *inode = file->f_mapping->host;
741 struct kstatfs sbuf;
742
743 /*
744 * If the backing device is a block device, mirror its zeroing
745 * capability. Set the discard sectors to the block device's zeroing
746 * capabilities because loop discards result in blkdev_issue_zeroout(),
747 * not blkdev_issue_discard(). This maintains consistent behavior with
748 * file-backed loop devices: discarded regions read back as zero.
749 */
750 if (S_ISBLK(inode->i_mode)) {
751 struct block_device *bdev = I_BDEV(inode);
752
753 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
754 *granularity = bdev_discard_granularity(bdev);
755
756 /*
757 * We use punch hole to reclaim the free space used by the
758 * image a.k.a. discard.
759 */
760 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
761 *max_discard_sectors = UINT_MAX >> 9;
762 *granularity = sbuf.f_bsize;
763 }
764}
765
766struct loop_worker {
767 struct rb_node rb_node;
768 struct work_struct work;
769 struct list_head cmd_list;
770 struct list_head idle_list;
771 struct loop_device *lo;
772 struct cgroup_subsys_state *blkcg_css;
773 unsigned long last_ran_at;
774};
775
776static void loop_workfn(struct work_struct *work);
777
778#ifdef CONFIG_BLK_CGROUP
779static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
780{
781 return !css || css == blkcg_root_css;
782}
783#else
784static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
785{
786 return !css;
787}
788#endif
789
790static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
791{
792 struct rb_node **node, *parent = NULL;
793 struct loop_worker *cur_worker, *worker = NULL;
794 struct work_struct *work;
795 struct list_head *cmd_list;
796
797 spin_lock_irq(&lo->lo_work_lock);
798
799 if (queue_on_root_worker(cmd->blkcg_css))
800 goto queue_work;
801
802 node = &lo->worker_tree.rb_node;
803
804 while (*node) {
805 parent = *node;
806 cur_worker = container_of(*node, struct loop_worker, rb_node);
807 if (cur_worker->blkcg_css == cmd->blkcg_css) {
808 worker = cur_worker;
809 break;
810 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
811 node = &(*node)->rb_left;
812 } else {
813 node = &(*node)->rb_right;
814 }
815 }
816 if (worker)
817 goto queue_work;
818
819 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
820 /*
821 * In the event we cannot allocate a worker, just queue on the
822 * rootcg worker and issue the I/O as the rootcg
823 */
824 if (!worker) {
825 cmd->blkcg_css = NULL;
826 if (cmd->memcg_css)
827 css_put(cmd->memcg_css);
828 cmd->memcg_css = NULL;
829 goto queue_work;
830 }
831
832 worker->blkcg_css = cmd->blkcg_css;
833 css_get(worker->blkcg_css);
834 INIT_WORK(&worker->work, loop_workfn);
835 INIT_LIST_HEAD(&worker->cmd_list);
836 INIT_LIST_HEAD(&worker->idle_list);
837 worker->lo = lo;
838 rb_link_node(&worker->rb_node, parent, node);
839 rb_insert_color(&worker->rb_node, &lo->worker_tree);
840queue_work:
841 if (worker) {
842 /*
843 * We need to remove from the idle list here while
844 * holding the lock so that the idle timer doesn't
845 * free the worker
846 */
847 if (!list_empty(&worker->idle_list))
848 list_del_init(&worker->idle_list);
849 work = &worker->work;
850 cmd_list = &worker->cmd_list;
851 } else {
852 work = &lo->rootcg_work;
853 cmd_list = &lo->rootcg_cmd_list;
854 }
855 list_add_tail(&cmd->list_entry, cmd_list);
856 queue_work(lo->workqueue, work);
857 spin_unlock_irq(&lo->lo_work_lock);
858}
859
860static void loop_set_timer(struct loop_device *lo)
861{
862 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
863}
864
865static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
866{
867 struct loop_worker *pos, *worker;
868
869 spin_lock_irq(&lo->lo_work_lock);
870 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
871 idle_list) {
872 if (!delete_all &&
873 time_is_after_jiffies(worker->last_ran_at +
874 LOOP_IDLE_WORKER_TIMEOUT))
875 break;
876 list_del(&worker->idle_list);
877 rb_erase(&worker->rb_node, &lo->worker_tree);
878 css_put(worker->blkcg_css);
879 kfree(worker);
880 }
881 if (!list_empty(&lo->idle_worker_list))
882 loop_set_timer(lo);
883 spin_unlock_irq(&lo->lo_work_lock);
884}
885
886static void loop_free_idle_workers_timer(struct timer_list *timer)
887{
888 struct loop_device *lo = container_of(timer, struct loop_device, timer);
889
890 return loop_free_idle_workers(lo, false);
891}
892
893/**
894 * loop_set_status_from_info - configure device from loop_info
895 * @lo: struct loop_device to configure
896 * @info: struct loop_info64 to configure the device with
897 *
898 * Configures the loop device parameters according to the passed
899 * in loop_info64 configuration.
900 */
901static int
902loop_set_status_from_info(struct loop_device *lo,
903 const struct loop_info64 *info)
904{
905 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
906 return -EINVAL;
907
908 switch (info->lo_encrypt_type) {
909 case LO_CRYPT_NONE:
910 break;
911 case LO_CRYPT_XOR:
912 pr_warn("support for the xor transformation has been removed.\n");
913 return -EINVAL;
914 case LO_CRYPT_CRYPTOAPI:
915 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
916 return -EINVAL;
917 default:
918 return -EINVAL;
919 }
920
921 /* Avoid assigning overflow values */
922 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
923 return -EOVERFLOW;
924
925 lo->lo_offset = info->lo_offset;
926 lo->lo_sizelimit = info->lo_sizelimit;
927
928 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
929 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
930 return 0;
931}
932
933static unsigned int loop_default_blocksize(struct loop_device *lo)
934{
935 /* In case of direct I/O, match underlying minimum I/O size */
936 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
937 return lo->lo_min_dio_size;
938 return SECTOR_SIZE;
939}
940
941static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
942 unsigned int bsize)
943{
944 struct file *file = lo->lo_backing_file;
945 struct inode *inode = file->f_mapping->host;
946 struct block_device *backing_bdev = NULL;
947 u32 granularity = 0, max_discard_sectors = 0;
948
949 if (S_ISBLK(inode->i_mode))
950 backing_bdev = I_BDEV(inode);
951 else if (inode->i_sb->s_bdev)
952 backing_bdev = inode->i_sb->s_bdev;
953
954 if (!bsize)
955 bsize = loop_default_blocksize(lo);
956
957 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
958
959 lim->logical_block_size = bsize;
960 lim->physical_block_size = bsize;
961 lim->io_min = bsize;
962 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
963 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
964 lim->features |= BLK_FEAT_WRITE_CACHE;
965 if (backing_bdev && !bdev_nonrot(backing_bdev))
966 lim->features |= BLK_FEAT_ROTATIONAL;
967 lim->max_hw_discard_sectors = max_discard_sectors;
968 lim->max_write_zeroes_sectors = max_discard_sectors;
969 if (max_discard_sectors)
970 lim->discard_granularity = granularity;
971 else
972 lim->discard_granularity = 0;
973}
974
975static int loop_configure(struct loop_device *lo, blk_mode_t mode,
976 struct block_device *bdev,
977 const struct loop_config *config)
978{
979 struct file *file = fget(config->fd);
980 struct queue_limits lim;
981 int error;
982 loff_t size;
983 bool partscan;
984 bool is_loop;
985
986 if (!file)
987 return -EBADF;
988
989 error = loop_check_backing_file(file);
990 if (error)
991 return error;
992
993 is_loop = is_loop_device(file);
994
995 /* This is safe, since we have a reference from open(). */
996 __module_get(THIS_MODULE);
997
998 /*
999 * If we don't hold exclusive handle for the device, upgrade to it
1000 * here to avoid changing device under exclusive owner.
1001 */
1002 if (!(mode & BLK_OPEN_EXCL)) {
1003 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1004 if (error)
1005 goto out_putf;
1006 }
1007
1008 error = loop_global_lock_killable(lo, is_loop);
1009 if (error)
1010 goto out_bdev;
1011
1012 error = -EBUSY;
1013 if (lo->lo_state != Lo_unbound)
1014 goto out_unlock;
1015
1016 error = loop_validate_file(file, bdev);
1017 if (error)
1018 goto out_unlock;
1019
1020 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1021 error = -EINVAL;
1022 goto out_unlock;
1023 }
1024
1025 error = loop_set_status_from_info(lo, &config->info);
1026 if (error)
1027 goto out_unlock;
1028 lo->lo_flags = config->info.lo_flags;
1029
1030 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1031 !file->f_op->write_iter)
1032 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1033
1034 if (!lo->workqueue) {
1035 lo->workqueue = alloc_workqueue("loop%d",
1036 WQ_UNBOUND | WQ_FREEZABLE,
1037 0, lo->lo_number);
1038 if (!lo->workqueue) {
1039 error = -ENOMEM;
1040 goto out_unlock;
1041 }
1042 }
1043
1044 /* suppress uevents while reconfiguring the device */
1045 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1046
1047 disk_force_media_change(lo->lo_disk);
1048 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1049
1050 lo->lo_device = bdev;
1051 loop_assign_backing_file(lo, file);
1052
1053 lim = queue_limits_start_update(lo->lo_queue);
1054 loop_update_limits(lo, &lim, config->block_size);
1055 /* No need to freeze the queue as the device isn't bound yet. */
1056 error = queue_limits_commit_update(lo->lo_queue, &lim);
1057 if (error)
1058 goto out_unlock;
1059
1060 /*
1061 * We might switch to direct I/O mode for the loop device, write back
1062 * all dirty data the page cache now that so that the individual I/O
1063 * operations don't have to do that.
1064 */
1065 vfs_fsync(file, 0);
1066
1067 loop_update_dio(lo);
1068 loop_sysfs_init(lo);
1069
1070 size = lo_calculate_size(lo, file);
1071 loop_set_size(lo, size);
1072
1073 /* Order wrt reading lo_state in loop_validate_file(). */
1074 wmb();
1075
1076 lo->lo_state = Lo_bound;
1077 if (part_shift)
1078 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1079 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1080 if (partscan)
1081 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1082
1083 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1084 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1085
1086 loop_global_unlock(lo, is_loop);
1087 if (partscan)
1088 loop_reread_partitions(lo);
1089
1090 if (!(mode & BLK_OPEN_EXCL))
1091 bd_abort_claiming(bdev, loop_configure);
1092
1093 return 0;
1094
1095out_unlock:
1096 loop_global_unlock(lo, is_loop);
1097out_bdev:
1098 if (!(mode & BLK_OPEN_EXCL))
1099 bd_abort_claiming(bdev, loop_configure);
1100out_putf:
1101 fput(file);
1102 /* This is safe: open() is still holding a reference. */
1103 module_put(THIS_MODULE);
1104 return error;
1105}
1106
1107static void __loop_clr_fd(struct loop_device *lo)
1108{
1109 struct queue_limits lim;
1110 struct file *filp;
1111 gfp_t gfp = lo->old_gfp_mask;
1112
1113 spin_lock_irq(&lo->lo_lock);
1114 filp = lo->lo_backing_file;
1115 lo->lo_backing_file = NULL;
1116 spin_unlock_irq(&lo->lo_lock);
1117
1118 lo->lo_device = NULL;
1119 lo->lo_offset = 0;
1120 lo->lo_sizelimit = 0;
1121 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1122
1123 /*
1124 * Reset the block size to the default.
1125 *
1126 * No queue freezing needed because this is called from the final
1127 * ->release call only, so there can't be any outstanding I/O.
1128 */
1129 lim = queue_limits_start_update(lo->lo_queue);
1130 lim.logical_block_size = SECTOR_SIZE;
1131 lim.physical_block_size = SECTOR_SIZE;
1132 lim.io_min = SECTOR_SIZE;
1133 queue_limits_commit_update(lo->lo_queue, &lim);
1134
1135 invalidate_disk(lo->lo_disk);
1136 loop_sysfs_exit(lo);
1137 /* let user-space know about this change */
1138 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1139 mapping_set_gfp_mask(filp->f_mapping, gfp);
1140 /* This is safe: open() is still holding a reference. */
1141 module_put(THIS_MODULE);
1142
1143 disk_force_media_change(lo->lo_disk);
1144
1145 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1146 int err;
1147
1148 /*
1149 * open_mutex has been held already in release path, so don't
1150 * acquire it if this function is called in such case.
1151 *
1152 * If the reread partition isn't from release path, lo_refcnt
1153 * must be at least one and it can only become zero when the
1154 * current holder is released.
1155 */
1156 err = bdev_disk_changed(lo->lo_disk, false);
1157 if (err)
1158 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1159 __func__, lo->lo_number, err);
1160 /* Device is gone, no point in returning error */
1161 }
1162
1163 /*
1164 * lo->lo_state is set to Lo_unbound here after above partscan has
1165 * finished. There cannot be anybody else entering __loop_clr_fd() as
1166 * Lo_rundown state protects us from all the other places trying to
1167 * change the 'lo' device.
1168 */
1169 lo->lo_flags = 0;
1170 if (!part_shift)
1171 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1172 mutex_lock(&lo->lo_mutex);
1173 lo->lo_state = Lo_unbound;
1174 mutex_unlock(&lo->lo_mutex);
1175
1176 /*
1177 * Need not hold lo_mutex to fput backing file. Calling fput holding
1178 * lo_mutex triggers a circular lock dependency possibility warning as
1179 * fput can take open_mutex which is usually taken before lo_mutex.
1180 */
1181 fput(filp);
1182}
1183
1184static int loop_clr_fd(struct loop_device *lo)
1185{
1186 int err;
1187
1188 /*
1189 * Since lo_ioctl() is called without locks held, it is possible that
1190 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1191 *
1192 * Therefore, use global lock when setting Lo_rundown state in order to
1193 * make sure that loop_validate_file() will fail if the "struct file"
1194 * which loop_configure()/loop_change_fd() found via fget() was this
1195 * loop device.
1196 */
1197 err = loop_global_lock_killable(lo, true);
1198 if (err)
1199 return err;
1200 if (lo->lo_state != Lo_bound) {
1201 loop_global_unlock(lo, true);
1202 return -ENXIO;
1203 }
1204 /*
1205 * Mark the device for removing the backing device on last close.
1206 * If we are the only opener, also switch the state to roundown here to
1207 * prevent new openers from coming in.
1208 */
1209
1210 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1211 if (disk_openers(lo->lo_disk) == 1)
1212 lo->lo_state = Lo_rundown;
1213 loop_global_unlock(lo, true);
1214
1215 return 0;
1216}
1217
1218static int
1219loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1220{
1221 int err;
1222 bool partscan = false;
1223 bool size_changed = false;
1224 unsigned int memflags;
1225
1226 err = mutex_lock_killable(&lo->lo_mutex);
1227 if (err)
1228 return err;
1229 if (lo->lo_state != Lo_bound) {
1230 err = -ENXIO;
1231 goto out_unlock;
1232 }
1233
1234 if (lo->lo_offset != info->lo_offset ||
1235 lo->lo_sizelimit != info->lo_sizelimit) {
1236 size_changed = true;
1237 sync_blockdev(lo->lo_device);
1238 invalidate_bdev(lo->lo_device);
1239 }
1240
1241 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1242 memflags = blk_mq_freeze_queue(lo->lo_queue);
1243
1244 err = loop_set_status_from_info(lo, info);
1245 if (err)
1246 goto out_unfreeze;
1247
1248 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1249 (info->lo_flags & LO_FLAGS_PARTSCAN);
1250
1251 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1252 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1253
1254 /* update the direct I/O flag if lo_offset changed */
1255 loop_update_dio(lo);
1256
1257out_unfreeze:
1258 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1259 if (partscan)
1260 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1261 if (!err && size_changed) {
1262 loff_t new_size = lo_calculate_size(lo, lo->lo_backing_file);
1263 loop_set_size(lo, new_size);
1264 }
1265out_unlock:
1266 mutex_unlock(&lo->lo_mutex);
1267 if (partscan)
1268 loop_reread_partitions(lo);
1269
1270 return err;
1271}
1272
1273static int
1274loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1275{
1276 struct path path;
1277 struct kstat stat;
1278 int ret;
1279
1280 ret = mutex_lock_killable(&lo->lo_mutex);
1281 if (ret)
1282 return ret;
1283 if (lo->lo_state != Lo_bound) {
1284 mutex_unlock(&lo->lo_mutex);
1285 return -ENXIO;
1286 }
1287
1288 memset(info, 0, sizeof(*info));
1289 info->lo_number = lo->lo_number;
1290 info->lo_offset = lo->lo_offset;
1291 info->lo_sizelimit = lo->lo_sizelimit;
1292 info->lo_flags = lo->lo_flags;
1293 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1294
1295 /* Drop lo_mutex while we call into the filesystem. */
1296 path = lo->lo_backing_file->f_path;
1297 path_get(&path);
1298 mutex_unlock(&lo->lo_mutex);
1299 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1300 if (!ret) {
1301 info->lo_device = huge_encode_dev(stat.dev);
1302 info->lo_inode = stat.ino;
1303 info->lo_rdevice = huge_encode_dev(stat.rdev);
1304 }
1305 path_put(&path);
1306 return ret;
1307}
1308
1309static void
1310loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1311{
1312 memset(info64, 0, sizeof(*info64));
1313 info64->lo_number = info->lo_number;
1314 info64->lo_device = info->lo_device;
1315 info64->lo_inode = info->lo_inode;
1316 info64->lo_rdevice = info->lo_rdevice;
1317 info64->lo_offset = info->lo_offset;
1318 info64->lo_sizelimit = 0;
1319 info64->lo_flags = info->lo_flags;
1320 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1321}
1322
1323static int
1324loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1325{
1326 memset(info, 0, sizeof(*info));
1327 info->lo_number = info64->lo_number;
1328 info->lo_device = info64->lo_device;
1329 info->lo_inode = info64->lo_inode;
1330 info->lo_rdevice = info64->lo_rdevice;
1331 info->lo_offset = info64->lo_offset;
1332 info->lo_flags = info64->lo_flags;
1333 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1334
1335 /* error in case values were truncated */
1336 if (info->lo_device != info64->lo_device ||
1337 info->lo_rdevice != info64->lo_rdevice ||
1338 info->lo_inode != info64->lo_inode ||
1339 info->lo_offset != info64->lo_offset)
1340 return -EOVERFLOW;
1341
1342 return 0;
1343}
1344
1345static int
1346loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1347{
1348 struct loop_info info;
1349 struct loop_info64 info64;
1350
1351 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1352 return -EFAULT;
1353 loop_info64_from_old(&info, &info64);
1354 return loop_set_status(lo, &info64);
1355}
1356
1357static int
1358loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1359{
1360 struct loop_info64 info64;
1361
1362 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1363 return -EFAULT;
1364 return loop_set_status(lo, &info64);
1365}
1366
1367static int
1368loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1369 struct loop_info info;
1370 struct loop_info64 info64;
1371 int err;
1372
1373 if (!arg)
1374 return -EINVAL;
1375 err = loop_get_status(lo, &info64);
1376 if (!err)
1377 err = loop_info64_to_old(&info64, &info);
1378 if (!err && copy_to_user(arg, &info, sizeof(info)))
1379 err = -EFAULT;
1380
1381 return err;
1382}
1383
1384static int
1385loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1386 struct loop_info64 info64;
1387 int err;
1388
1389 if (!arg)
1390 return -EINVAL;
1391 err = loop_get_status(lo, &info64);
1392 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1393 err = -EFAULT;
1394
1395 return err;
1396}
1397
1398static int loop_set_capacity(struct loop_device *lo)
1399{
1400 loff_t size;
1401
1402 if (unlikely(lo->lo_state != Lo_bound))
1403 return -ENXIO;
1404
1405 size = lo_calculate_size(lo, lo->lo_backing_file);
1406 loop_set_size(lo, size);
1407
1408 return 0;
1409}
1410
1411static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1412{
1413 bool use_dio = !!arg;
1414 unsigned int memflags;
1415
1416 if (lo->lo_state != Lo_bound)
1417 return -ENXIO;
1418 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1419 return 0;
1420
1421 if (use_dio) {
1422 if (!lo_can_use_dio(lo))
1423 return -EINVAL;
1424 /* flush dirty pages before starting to use direct I/O */
1425 vfs_fsync(lo->lo_backing_file, 0);
1426 }
1427
1428 memflags = blk_mq_freeze_queue(lo->lo_queue);
1429 if (use_dio)
1430 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1431 else
1432 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1433 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1434 return 0;
1435}
1436
1437static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode,
1438 struct block_device *bdev, unsigned long arg)
1439{
1440 struct queue_limits lim;
1441 unsigned int memflags;
1442 int err = 0;
1443
1444 /*
1445 * If we don't hold exclusive handle for the device, upgrade to it
1446 * here to avoid changing device under exclusive owner.
1447 */
1448 if (!(mode & BLK_OPEN_EXCL)) {
1449 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL);
1450 if (err)
1451 return err;
1452 }
1453
1454 err = mutex_lock_killable(&lo->lo_mutex);
1455 if (err)
1456 goto abort_claim;
1457
1458 if (lo->lo_state != Lo_bound) {
1459 err = -ENXIO;
1460 goto unlock;
1461 }
1462
1463 if (lo->lo_queue->limits.logical_block_size == arg)
1464 goto unlock;
1465
1466 sync_blockdev(lo->lo_device);
1467 invalidate_bdev(lo->lo_device);
1468
1469 lim = queue_limits_start_update(lo->lo_queue);
1470 loop_update_limits(lo, &lim, arg);
1471
1472 memflags = blk_mq_freeze_queue(lo->lo_queue);
1473 err = queue_limits_commit_update(lo->lo_queue, &lim);
1474 loop_update_dio(lo);
1475 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1476
1477unlock:
1478 mutex_unlock(&lo->lo_mutex);
1479abort_claim:
1480 if (!(mode & BLK_OPEN_EXCL))
1481 bd_abort_claiming(bdev, loop_set_block_size);
1482 return err;
1483}
1484
1485static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1486 unsigned long arg)
1487{
1488 int err;
1489
1490 err = mutex_lock_killable(&lo->lo_mutex);
1491 if (err)
1492 return err;
1493 switch (cmd) {
1494 case LOOP_SET_CAPACITY:
1495 err = loop_set_capacity(lo);
1496 break;
1497 case LOOP_SET_DIRECT_IO:
1498 err = loop_set_dio(lo, arg);
1499 break;
1500 default:
1501 err = -EINVAL;
1502 }
1503 mutex_unlock(&lo->lo_mutex);
1504 return err;
1505}
1506
1507static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1508 unsigned int cmd, unsigned long arg)
1509{
1510 struct loop_device *lo = bdev->bd_disk->private_data;
1511 void __user *argp = (void __user *) arg;
1512 int err;
1513
1514 switch (cmd) {
1515 case LOOP_SET_FD: {
1516 /*
1517 * Legacy case - pass in a zeroed out struct loop_config with
1518 * only the file descriptor set , which corresponds with the
1519 * default parameters we'd have used otherwise.
1520 */
1521 struct loop_config config;
1522
1523 memset(&config, 0, sizeof(config));
1524 config.fd = arg;
1525
1526 return loop_configure(lo, mode, bdev, &config);
1527 }
1528 case LOOP_CONFIGURE: {
1529 struct loop_config config;
1530
1531 if (copy_from_user(&config, argp, sizeof(config)))
1532 return -EFAULT;
1533
1534 return loop_configure(lo, mode, bdev, &config);
1535 }
1536 case LOOP_CHANGE_FD:
1537 return loop_change_fd(lo, bdev, arg);
1538 case LOOP_CLR_FD:
1539 return loop_clr_fd(lo);
1540 case LOOP_SET_STATUS:
1541 err = -EPERM;
1542 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1543 err = loop_set_status_old(lo, argp);
1544 break;
1545 case LOOP_GET_STATUS:
1546 return loop_get_status_old(lo, argp);
1547 case LOOP_SET_STATUS64:
1548 err = -EPERM;
1549 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1550 err = loop_set_status64(lo, argp);
1551 break;
1552 case LOOP_GET_STATUS64:
1553 return loop_get_status64(lo, argp);
1554 case LOOP_SET_BLOCK_SIZE:
1555 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1556 return -EPERM;
1557 return loop_set_block_size(lo, mode, bdev, arg);
1558 case LOOP_SET_CAPACITY:
1559 case LOOP_SET_DIRECT_IO:
1560 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1561 return -EPERM;
1562 fallthrough;
1563 default:
1564 err = lo_simple_ioctl(lo, cmd, arg);
1565 break;
1566 }
1567
1568 return err;
1569}
1570
1571#ifdef CONFIG_COMPAT
1572struct compat_loop_info {
1573 compat_int_t lo_number; /* ioctl r/o */
1574 compat_dev_t lo_device; /* ioctl r/o */
1575 compat_ulong_t lo_inode; /* ioctl r/o */
1576 compat_dev_t lo_rdevice; /* ioctl r/o */
1577 compat_int_t lo_offset;
1578 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1579 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1580 compat_int_t lo_flags; /* ioctl r/o */
1581 char lo_name[LO_NAME_SIZE];
1582 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1583 compat_ulong_t lo_init[2];
1584 char reserved[4];
1585};
1586
1587/*
1588 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1589 * - noinlined to reduce stack space usage in main part of driver
1590 */
1591static noinline int
1592loop_info64_from_compat(const struct compat_loop_info __user *arg,
1593 struct loop_info64 *info64)
1594{
1595 struct compat_loop_info info;
1596
1597 if (copy_from_user(&info, arg, sizeof(info)))
1598 return -EFAULT;
1599
1600 memset(info64, 0, sizeof(*info64));
1601 info64->lo_number = info.lo_number;
1602 info64->lo_device = info.lo_device;
1603 info64->lo_inode = info.lo_inode;
1604 info64->lo_rdevice = info.lo_rdevice;
1605 info64->lo_offset = info.lo_offset;
1606 info64->lo_sizelimit = 0;
1607 info64->lo_flags = info.lo_flags;
1608 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1609 return 0;
1610}
1611
1612/*
1613 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1614 * - noinlined to reduce stack space usage in main part of driver
1615 */
1616static noinline int
1617loop_info64_to_compat(const struct loop_info64 *info64,
1618 struct compat_loop_info __user *arg)
1619{
1620 struct compat_loop_info info;
1621
1622 memset(&info, 0, sizeof(info));
1623 info.lo_number = info64->lo_number;
1624 info.lo_device = info64->lo_device;
1625 info.lo_inode = info64->lo_inode;
1626 info.lo_rdevice = info64->lo_rdevice;
1627 info.lo_offset = info64->lo_offset;
1628 info.lo_flags = info64->lo_flags;
1629 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1630
1631 /* error in case values were truncated */
1632 if (info.lo_device != info64->lo_device ||
1633 info.lo_rdevice != info64->lo_rdevice ||
1634 info.lo_inode != info64->lo_inode ||
1635 info.lo_offset != info64->lo_offset)
1636 return -EOVERFLOW;
1637
1638 if (copy_to_user(arg, &info, sizeof(info)))
1639 return -EFAULT;
1640 return 0;
1641}
1642
1643static int
1644loop_set_status_compat(struct loop_device *lo,
1645 const struct compat_loop_info __user *arg)
1646{
1647 struct loop_info64 info64;
1648 int ret;
1649
1650 ret = loop_info64_from_compat(arg, &info64);
1651 if (ret < 0)
1652 return ret;
1653 return loop_set_status(lo, &info64);
1654}
1655
1656static int
1657loop_get_status_compat(struct loop_device *lo,
1658 struct compat_loop_info __user *arg)
1659{
1660 struct loop_info64 info64;
1661 int err;
1662
1663 if (!arg)
1664 return -EINVAL;
1665 err = loop_get_status(lo, &info64);
1666 if (!err)
1667 err = loop_info64_to_compat(&info64, arg);
1668 return err;
1669}
1670
1671static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1672 unsigned int cmd, unsigned long arg)
1673{
1674 struct loop_device *lo = bdev->bd_disk->private_data;
1675 int err;
1676
1677 switch(cmd) {
1678 case LOOP_SET_STATUS:
1679 err = loop_set_status_compat(lo,
1680 (const struct compat_loop_info __user *)arg);
1681 break;
1682 case LOOP_GET_STATUS:
1683 err = loop_get_status_compat(lo,
1684 (struct compat_loop_info __user *)arg);
1685 break;
1686 case LOOP_SET_CAPACITY:
1687 case LOOP_CLR_FD:
1688 case LOOP_GET_STATUS64:
1689 case LOOP_SET_STATUS64:
1690 case LOOP_CONFIGURE:
1691 arg = (unsigned long) compat_ptr(arg);
1692 fallthrough;
1693 case LOOP_SET_FD:
1694 case LOOP_CHANGE_FD:
1695 case LOOP_SET_BLOCK_SIZE:
1696 case LOOP_SET_DIRECT_IO:
1697 err = lo_ioctl(bdev, mode, cmd, arg);
1698 break;
1699 default:
1700 err = -ENOIOCTLCMD;
1701 break;
1702 }
1703 return err;
1704}
1705#endif
1706
1707static int lo_open(struct gendisk *disk, blk_mode_t mode)
1708{
1709 struct loop_device *lo = disk->private_data;
1710 int err;
1711
1712 err = mutex_lock_killable(&lo->lo_mutex);
1713 if (err)
1714 return err;
1715
1716 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1717 err = -ENXIO;
1718 mutex_unlock(&lo->lo_mutex);
1719 return err;
1720}
1721
1722static void lo_release(struct gendisk *disk)
1723{
1724 struct loop_device *lo = disk->private_data;
1725 bool need_clear = false;
1726
1727 if (disk_openers(disk) > 0)
1728 return;
1729 /*
1730 * Clear the backing device information if this is the last close of
1731 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1732 * has been called.
1733 */
1734
1735 mutex_lock(&lo->lo_mutex);
1736 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1737 lo->lo_state = Lo_rundown;
1738
1739 need_clear = (lo->lo_state == Lo_rundown);
1740 mutex_unlock(&lo->lo_mutex);
1741
1742 if (need_clear)
1743 __loop_clr_fd(lo);
1744}
1745
1746static void lo_free_disk(struct gendisk *disk)
1747{
1748 struct loop_device *lo = disk->private_data;
1749
1750 if (lo->workqueue)
1751 destroy_workqueue(lo->workqueue);
1752 loop_free_idle_workers(lo, true);
1753 timer_shutdown_sync(&lo->timer);
1754 mutex_destroy(&lo->lo_mutex);
1755 kfree(lo);
1756}
1757
1758static const struct block_device_operations lo_fops = {
1759 .owner = THIS_MODULE,
1760 .open = lo_open,
1761 .release = lo_release,
1762 .ioctl = lo_ioctl,
1763#ifdef CONFIG_COMPAT
1764 .compat_ioctl = lo_compat_ioctl,
1765#endif
1766 .free_disk = lo_free_disk,
1767};
1768
1769/*
1770 * And now the modules code and kernel interface.
1771 */
1772
1773/*
1774 * If max_loop is specified, create that many devices upfront.
1775 * This also becomes a hard limit. If max_loop is not specified,
1776 * the default isn't a hard limit (as before commit 85c50197716c
1777 * changed the default value from 0 for max_loop=0 reasons), just
1778 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1779 * init time. Loop devices can be requested on-demand with the
1780 * /dev/loop-control interface, or be instantiated by accessing
1781 * a 'dead' device node.
1782 */
1783static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1784
1785#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1786static bool max_loop_specified;
1787
1788static int max_loop_param_set_int(const char *val,
1789 const struct kernel_param *kp)
1790{
1791 int ret;
1792
1793 ret = param_set_int(val, kp);
1794 if (ret < 0)
1795 return ret;
1796
1797 max_loop_specified = true;
1798 return 0;
1799}
1800
1801static const struct kernel_param_ops max_loop_param_ops = {
1802 .set = max_loop_param_set_int,
1803 .get = param_get_int,
1804};
1805
1806module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1807MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1808#else
1809module_param(max_loop, int, 0444);
1810MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1811#endif
1812
1813module_param(max_part, int, 0444);
1814MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1815
1816static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1817
1818static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1819{
1820 int qd, ret;
1821
1822 ret = kstrtoint(s, 0, &qd);
1823 if (ret < 0)
1824 return ret;
1825 if (qd < 1)
1826 return -EINVAL;
1827 hw_queue_depth = qd;
1828 return 0;
1829}
1830
1831static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1832 .set = loop_set_hw_queue_depth,
1833 .get = param_get_int,
1834};
1835
1836device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1837MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1838
1839MODULE_DESCRIPTION("Loopback device support");
1840MODULE_LICENSE("GPL");
1841MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1842
1843static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1844 const struct blk_mq_queue_data *bd)
1845{
1846 struct request *rq = bd->rq;
1847 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1848 struct loop_device *lo = rq->q->queuedata;
1849
1850 blk_mq_start_request(rq);
1851
1852 if (lo->lo_state != Lo_bound)
1853 return BLK_STS_IOERR;
1854
1855 switch (req_op(rq)) {
1856 case REQ_OP_FLUSH:
1857 case REQ_OP_DISCARD:
1858 case REQ_OP_WRITE_ZEROES:
1859 cmd->use_aio = false;
1860 break;
1861 default:
1862 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1863 break;
1864 }
1865
1866 /* always use the first bio's css */
1867 cmd->blkcg_css = NULL;
1868 cmd->memcg_css = NULL;
1869#ifdef CONFIG_BLK_CGROUP
1870 if (rq->bio) {
1871 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1872#ifdef CONFIG_MEMCG
1873 if (cmd->blkcg_css) {
1874 cmd->memcg_css =
1875 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1876 &memory_cgrp_subsys);
1877 }
1878#endif
1879 }
1880#endif
1881 loop_queue_work(lo, cmd);
1882
1883 return BLK_STS_OK;
1884}
1885
1886static void loop_handle_cmd(struct loop_cmd *cmd)
1887{
1888 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1889 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1890 struct request *rq = blk_mq_rq_from_pdu(cmd);
1891 const bool write = op_is_write(req_op(rq));
1892 struct loop_device *lo = rq->q->queuedata;
1893 int ret = 0;
1894 struct mem_cgroup *old_memcg = NULL;
1895
1896 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1897 ret = -EIO;
1898 goto failed;
1899 }
1900
1901 if (cmd_blkcg_css)
1902 kthread_associate_blkcg(cmd_blkcg_css);
1903 if (cmd_memcg_css)
1904 old_memcg = set_active_memcg(
1905 mem_cgroup_from_css(cmd_memcg_css));
1906
1907 /*
1908 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1909 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1910 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1911 * not yet been completed.
1912 */
1913 ret = do_req_filebacked(lo, rq);
1914
1915 if (cmd_blkcg_css)
1916 kthread_associate_blkcg(NULL);
1917
1918 if (cmd_memcg_css) {
1919 set_active_memcg(old_memcg);
1920 css_put(cmd_memcg_css);
1921 }
1922 failed:
1923 /* complete non-aio request */
1924 if (ret != -EIOCBQUEUED) {
1925 if (ret == -EOPNOTSUPP)
1926 cmd->ret = ret;
1927 else
1928 cmd->ret = ret ? -EIO : 0;
1929 if (likely(!blk_should_fake_timeout(rq->q)))
1930 blk_mq_complete_request(rq);
1931 }
1932}
1933
1934static void loop_process_work(struct loop_worker *worker,
1935 struct list_head *cmd_list, struct loop_device *lo)
1936{
1937 int orig_flags = current->flags;
1938 struct loop_cmd *cmd;
1939
1940 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1941 spin_lock_irq(&lo->lo_work_lock);
1942 while (!list_empty(cmd_list)) {
1943 cmd = container_of(
1944 cmd_list->next, struct loop_cmd, list_entry);
1945 list_del(cmd_list->next);
1946 spin_unlock_irq(&lo->lo_work_lock);
1947
1948 loop_handle_cmd(cmd);
1949 cond_resched();
1950
1951 spin_lock_irq(&lo->lo_work_lock);
1952 }
1953
1954 /*
1955 * We only add to the idle list if there are no pending cmds
1956 * *and* the worker will not run again which ensures that it
1957 * is safe to free any worker on the idle list
1958 */
1959 if (worker && !work_pending(&worker->work)) {
1960 worker->last_ran_at = jiffies;
1961 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1962 loop_set_timer(lo);
1963 }
1964 spin_unlock_irq(&lo->lo_work_lock);
1965 current->flags = orig_flags;
1966}
1967
1968static void loop_workfn(struct work_struct *work)
1969{
1970 struct loop_worker *worker =
1971 container_of(work, struct loop_worker, work);
1972 loop_process_work(worker, &worker->cmd_list, worker->lo);
1973}
1974
1975static void loop_rootcg_workfn(struct work_struct *work)
1976{
1977 struct loop_device *lo =
1978 container_of(work, struct loop_device, rootcg_work);
1979 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1980}
1981
1982static const struct blk_mq_ops loop_mq_ops = {
1983 .queue_rq = loop_queue_rq,
1984 .complete = lo_complete_rq,
1985};
1986
1987static int loop_add(int i)
1988{
1989 struct queue_limits lim = {
1990 /*
1991 * Random number picked from the historic block max_sectors cap.
1992 */
1993 .max_hw_sectors = 2560u,
1994 };
1995 struct loop_device *lo;
1996 struct gendisk *disk;
1997 int err;
1998
1999 err = -ENOMEM;
2000 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2001 if (!lo)
2002 goto out;
2003 lo->worker_tree = RB_ROOT;
2004 INIT_LIST_HEAD(&lo->idle_worker_list);
2005 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2006 lo->lo_state = Lo_unbound;
2007
2008 err = mutex_lock_killable(&loop_ctl_mutex);
2009 if (err)
2010 goto out_free_dev;
2011
2012 /* allocate id, if @id >= 0, we're requesting that specific id */
2013 if (i >= 0) {
2014 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2015 if (err == -ENOSPC)
2016 err = -EEXIST;
2017 } else {
2018 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2019 }
2020 mutex_unlock(&loop_ctl_mutex);
2021 if (err < 0)
2022 goto out_free_dev;
2023 i = err;
2024
2025 lo->tag_set.ops = &loop_mq_ops;
2026 lo->tag_set.nr_hw_queues = 1;
2027 lo->tag_set.queue_depth = hw_queue_depth;
2028 lo->tag_set.numa_node = NUMA_NO_NODE;
2029 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2030 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2031 lo->tag_set.driver_data = lo;
2032
2033 err = blk_mq_alloc_tag_set(&lo->tag_set);
2034 if (err)
2035 goto out_free_idr;
2036
2037 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2038 if (IS_ERR(disk)) {
2039 err = PTR_ERR(disk);
2040 goto out_cleanup_tags;
2041 }
2042 lo->lo_queue = lo->lo_disk->queue;
2043
2044 /*
2045 * Disable partition scanning by default. The in-kernel partition
2046 * scanning can be requested individually per-device during its
2047 * setup. Userspace can always add and remove partitions from all
2048 * devices. The needed partition minors are allocated from the
2049 * extended minor space, the main loop device numbers will continue
2050 * to match the loop minors, regardless of the number of partitions
2051 * used.
2052 *
2053 * If max_part is given, partition scanning is globally enabled for
2054 * all loop devices. The minors for the main loop devices will be
2055 * multiples of max_part.
2056 *
2057 * Note: Global-for-all-devices, set-only-at-init, read-only module
2058 * parameteters like 'max_loop' and 'max_part' make things needlessly
2059 * complicated, are too static, inflexible and may surprise
2060 * userspace tools. Parameters like this in general should be avoided.
2061 */
2062 if (!part_shift)
2063 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2064 mutex_init(&lo->lo_mutex);
2065 lo->lo_number = i;
2066 spin_lock_init(&lo->lo_lock);
2067 spin_lock_init(&lo->lo_work_lock);
2068 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2069 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2070 disk->major = LOOP_MAJOR;
2071 disk->first_minor = i << part_shift;
2072 disk->minors = 1 << part_shift;
2073 disk->fops = &lo_fops;
2074 disk->private_data = lo;
2075 disk->queue = lo->lo_queue;
2076 disk->events = DISK_EVENT_MEDIA_CHANGE;
2077 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2078 sprintf(disk->disk_name, "loop%d", i);
2079 /* Make this loop device reachable from pathname. */
2080 err = add_disk(disk);
2081 if (err)
2082 goto out_cleanup_disk;
2083
2084 /* Show this loop device. */
2085 mutex_lock(&loop_ctl_mutex);
2086 lo->idr_visible = true;
2087 mutex_unlock(&loop_ctl_mutex);
2088
2089 return i;
2090
2091out_cleanup_disk:
2092 put_disk(disk);
2093out_cleanup_tags:
2094 blk_mq_free_tag_set(&lo->tag_set);
2095out_free_idr:
2096 mutex_lock(&loop_ctl_mutex);
2097 idr_remove(&loop_index_idr, i);
2098 mutex_unlock(&loop_ctl_mutex);
2099out_free_dev:
2100 kfree(lo);
2101out:
2102 return err;
2103}
2104
2105static void loop_remove(struct loop_device *lo)
2106{
2107 /* Make this loop device unreachable from pathname. */
2108 del_gendisk(lo->lo_disk);
2109 blk_mq_free_tag_set(&lo->tag_set);
2110
2111 mutex_lock(&loop_ctl_mutex);
2112 idr_remove(&loop_index_idr, lo->lo_number);
2113 mutex_unlock(&loop_ctl_mutex);
2114
2115 put_disk(lo->lo_disk);
2116}
2117
2118#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2119static void loop_probe(dev_t dev)
2120{
2121 int idx = MINOR(dev) >> part_shift;
2122
2123 if (max_loop_specified && max_loop && idx >= max_loop)
2124 return;
2125 loop_add(idx);
2126}
2127#else
2128#define loop_probe NULL
2129#endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2130
2131static int loop_control_remove(int idx)
2132{
2133 struct loop_device *lo;
2134 int ret;
2135
2136 if (idx < 0) {
2137 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2138 return -EINVAL;
2139 }
2140
2141 /* Hide this loop device for serialization. */
2142 ret = mutex_lock_killable(&loop_ctl_mutex);
2143 if (ret)
2144 return ret;
2145 lo = idr_find(&loop_index_idr, idx);
2146 if (!lo || !lo->idr_visible)
2147 ret = -ENODEV;
2148 else
2149 lo->idr_visible = false;
2150 mutex_unlock(&loop_ctl_mutex);
2151 if (ret)
2152 return ret;
2153
2154 /* Check whether this loop device can be removed. */
2155 ret = mutex_lock_killable(&lo->lo_mutex);
2156 if (ret)
2157 goto mark_visible;
2158 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2159 mutex_unlock(&lo->lo_mutex);
2160 ret = -EBUSY;
2161 goto mark_visible;
2162 }
2163 /* Mark this loop device as no more bound, but not quite unbound yet */
2164 lo->lo_state = Lo_deleting;
2165 mutex_unlock(&lo->lo_mutex);
2166
2167 loop_remove(lo);
2168 return 0;
2169
2170mark_visible:
2171 /* Show this loop device again. */
2172 mutex_lock(&loop_ctl_mutex);
2173 lo->idr_visible = true;
2174 mutex_unlock(&loop_ctl_mutex);
2175 return ret;
2176}
2177
2178static int loop_control_get_free(int idx)
2179{
2180 struct loop_device *lo;
2181 int id, ret;
2182
2183 ret = mutex_lock_killable(&loop_ctl_mutex);
2184 if (ret)
2185 return ret;
2186 idr_for_each_entry(&loop_index_idr, lo, id) {
2187 /* Hitting a race results in creating a new loop device which is harmless. */
2188 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2189 goto found;
2190 }
2191 mutex_unlock(&loop_ctl_mutex);
2192 return loop_add(-1);
2193found:
2194 mutex_unlock(&loop_ctl_mutex);
2195 return id;
2196}
2197
2198static long loop_control_ioctl(struct file *file, unsigned int cmd,
2199 unsigned long parm)
2200{
2201 switch (cmd) {
2202 case LOOP_CTL_ADD:
2203 return loop_add(parm);
2204 case LOOP_CTL_REMOVE:
2205 return loop_control_remove(parm);
2206 case LOOP_CTL_GET_FREE:
2207 return loop_control_get_free(parm);
2208 default:
2209 return -ENOSYS;
2210 }
2211}
2212
2213static const struct file_operations loop_ctl_fops = {
2214 .open = nonseekable_open,
2215 .unlocked_ioctl = loop_control_ioctl,
2216 .compat_ioctl = loop_control_ioctl,
2217 .owner = THIS_MODULE,
2218 .llseek = noop_llseek,
2219};
2220
2221static struct miscdevice loop_misc = {
2222 .minor = LOOP_CTRL_MINOR,
2223 .name = "loop-control",
2224 .fops = &loop_ctl_fops,
2225};
2226
2227MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2228MODULE_ALIAS("devname:loop-control");
2229
2230static int __init loop_init(void)
2231{
2232 int i;
2233 int err;
2234
2235 part_shift = 0;
2236 if (max_part > 0) {
2237 part_shift = fls(max_part);
2238
2239 /*
2240 * Adjust max_part according to part_shift as it is exported
2241 * to user space so that user can decide correct minor number
2242 * if [s]he want to create more devices.
2243 *
2244 * Note that -1 is required because partition 0 is reserved
2245 * for the whole disk.
2246 */
2247 max_part = (1UL << part_shift) - 1;
2248 }
2249
2250 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2251 err = -EINVAL;
2252 goto err_out;
2253 }
2254
2255 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2256 err = -EINVAL;
2257 goto err_out;
2258 }
2259
2260 err = misc_register(&loop_misc);
2261 if (err < 0)
2262 goto err_out;
2263
2264
2265 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2266 err = -EIO;
2267 goto misc_out;
2268 }
2269
2270 /* pre-create number of devices given by config or max_loop */
2271 for (i = 0; i < max_loop; i++)
2272 loop_add(i);
2273
2274 printk(KERN_INFO "loop: module loaded\n");
2275 return 0;
2276
2277misc_out:
2278 misc_deregister(&loop_misc);
2279err_out:
2280 return err;
2281}
2282
2283static void __exit loop_exit(void)
2284{
2285 struct loop_device *lo;
2286 int id;
2287
2288 unregister_blkdev(LOOP_MAJOR, "loop");
2289 misc_deregister(&loop_misc);
2290
2291 /*
2292 * There is no need to use loop_ctl_mutex here, for nobody else can
2293 * access loop_index_idr when this module is unloading (unless forced
2294 * module unloading is requested). If this is not a clean unloading,
2295 * we have no means to avoid kernel crash.
2296 */
2297 idr_for_each_entry(&loop_index_idr, lo, id)
2298 loop_remove(lo);
2299
2300 idr_destroy(&loop_index_idr);
2301}
2302
2303module_init(loop_init);
2304module_exit(loop_exit);
2305
2306#ifndef MODULE
2307static int __init max_loop_setup(char *str)
2308{
2309 max_loop = simple_strtol(str, NULL, 0);
2310#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2311 max_loop_specified = true;
2312#endif
2313 return 1;
2314}
2315
2316__setup("max_loop=", max_loop_setup);
2317#endif