at v6.17-rc2 60 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 11#ifndef __ASSEMBLY__ 12#ifdef CONFIG_MMU 13 14#include <linux/mm_types.h> 15#include <linux/bug.h> 16#include <linux/errno.h> 17#include <asm-generic/pgtable_uffd.h> 18#include <linux/page_table_check.h> 19 20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23#endif 24 25/* 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 31#ifndef USER_PGTABLES_CEILING 32#define USER_PGTABLES_CEILING 0UL 33#endif 34 35/* 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h>. 39 */ 40#ifndef FIRST_USER_ADDRESS 41#define FIRST_USER_ADDRESS 0UL 42#endif 43 44/* 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 48 */ 49#ifndef pmd_pgtable 50#define pmd_pgtable(pmd) pmd_page(pmd) 51#endif 52 53#define pmd_folio(pmd) page_folio(pmd_page(pmd)) 54 55/* 56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 57 * 58 * The pXx_index() functions return the index of the entry in the page 59 * table page which would control the given virtual address 60 * 61 * As these functions may be used by the same code for different levels of 62 * the page table folding, they are always available, regardless of 63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 64 * because in such cases PTRS_PER_PxD equals 1. 65 */ 66 67static inline unsigned long pte_index(unsigned long address) 68{ 69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 70} 71 72#ifndef pmd_index 73static inline unsigned long pmd_index(unsigned long address) 74{ 75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 76} 77#define pmd_index pmd_index 78#endif 79 80#ifndef pud_index 81static inline unsigned long pud_index(unsigned long address) 82{ 83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 84} 85#define pud_index pud_index 86#endif 87 88#ifndef pgd_index 89/* Must be a compile-time constant, so implement it as a macro */ 90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 91#endif 92 93#ifndef kernel_pte_init 94static inline void kernel_pte_init(void *addr) 95{ 96} 97#define kernel_pte_init kernel_pte_init 98#endif 99 100#ifndef pmd_init 101static inline void pmd_init(void *addr) 102{ 103} 104#define pmd_init pmd_init 105#endif 106 107#ifndef pud_init 108static inline void pud_init(void *addr) 109{ 110} 111#define pud_init pud_init 112#endif 113 114#ifndef pte_offset_kernel 115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 116{ 117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 118} 119#define pte_offset_kernel pte_offset_kernel 120#endif 121 122#ifdef CONFIG_HIGHPTE 123#define __pte_map(pmd, address) \ 124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 125#define pte_unmap(pte) do { \ 126 kunmap_local((pte)); \ 127 rcu_read_unlock(); \ 128} while (0) 129#else 130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 131{ 132 return pte_offset_kernel(pmd, address); 133} 134static inline void pte_unmap(pte_t *pte) 135{ 136 rcu_read_unlock(); 137} 138#endif 139 140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 141 142/* Find an entry in the second-level page table.. */ 143#ifndef pmd_offset 144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 145{ 146 return pud_pgtable(*pud) + pmd_index(address); 147} 148#define pmd_offset pmd_offset 149#endif 150 151#ifndef pud_offset 152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 153{ 154 return p4d_pgtable(*p4d) + pud_index(address); 155} 156#define pud_offset pud_offset 157#endif 158 159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 160{ 161 return (pgd + pgd_index(address)); 162}; 163 164/* 165 * a shortcut to get a pgd_t in a given mm 166 */ 167#ifndef pgd_offset 168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 169#endif 170 171/* 172 * a shortcut which implies the use of the kernel's pgd, instead 173 * of a process's 174 */ 175#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 176 177/* 178 * In many cases it is known that a virtual address is mapped at PMD or PTE 179 * level, so instead of traversing all the page table levels, we can get a 180 * pointer to the PMD entry in user or kernel page table or translate a virtual 181 * address to the pointer in the PTE in the kernel page tables with simple 182 * helpers. 183 */ 184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 185{ 186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 187} 188 189static inline pmd_t *pmd_off_k(unsigned long va) 190{ 191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 192} 193 194static inline pte_t *virt_to_kpte(unsigned long vaddr) 195{ 196 pmd_t *pmd = pmd_off_k(vaddr); 197 198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 199} 200 201#ifndef pmd_young 202static inline int pmd_young(pmd_t pmd) 203{ 204 return 0; 205} 206#endif 207 208#ifndef pmd_dirty 209static inline int pmd_dirty(pmd_t pmd) 210{ 211 return 0; 212} 213#endif 214 215/* 216 * A facility to provide lazy MMU batching. This allows PTE updates and 217 * page invalidations to be delayed until a call to leave lazy MMU mode 218 * is issued. Some architectures may benefit from doing this, and it is 219 * beneficial for both shadow and direct mode hypervisors, which may batch 220 * the PTE updates which happen during this window. Note that using this 221 * interface requires that read hazards be removed from the code. A read 222 * hazard could result in the direct mode hypervisor case, since the actual 223 * write to the page tables may not yet have taken place, so reads though 224 * a raw PTE pointer after it has been modified are not guaranteed to be 225 * up to date. 226 * 227 * In the general case, no lock is guaranteed to be held between entry and exit 228 * of the lazy mode. So the implementation must assume preemption may be enabled 229 * and cpu migration is possible; it must take steps to be robust against this. 230 * (In practice, for user PTE updates, the appropriate page table lock(s) are 231 * held, but for kernel PTE updates, no lock is held). Nesting is not permitted 232 * and the mode cannot be used in interrupt context. 233 */ 234#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 235#define arch_enter_lazy_mmu_mode() do {} while (0) 236#define arch_leave_lazy_mmu_mode() do {} while (0) 237#define arch_flush_lazy_mmu_mode() do {} while (0) 238#endif 239 240#ifndef pte_batch_hint 241/** 242 * pte_batch_hint - Number of pages that can be added to batch without scanning. 243 * @ptep: Page table pointer for the entry. 244 * @pte: Page table entry. 245 * 246 * Some architectures know that a set of contiguous ptes all map the same 247 * contiguous memory with the same permissions. In this case, it can provide a 248 * hint to aid pte batching without the core code needing to scan every pte. 249 * 250 * An architecture implementation may ignore the PTE accessed state. Further, 251 * the dirty state must apply atomically to all the PTEs described by the hint. 252 * 253 * May be overridden by the architecture, else pte_batch_hint is always 1. 254 */ 255static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 256{ 257 return 1; 258} 259#endif 260 261#ifndef pte_advance_pfn 262static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 263{ 264 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 265} 266#endif 267 268#define pte_next_pfn(pte) pte_advance_pfn(pte, 1) 269 270#ifndef set_ptes 271/** 272 * set_ptes - Map consecutive pages to a contiguous range of addresses. 273 * @mm: Address space to map the pages into. 274 * @addr: Address to map the first page at. 275 * @ptep: Page table pointer for the first entry. 276 * @pte: Page table entry for the first page. 277 * @nr: Number of pages to map. 278 * 279 * When nr==1, initial state of pte may be present or not present, and new state 280 * may be present or not present. When nr>1, initial state of all ptes must be 281 * not present, and new state must be present. 282 * 283 * May be overridden by the architecture, or the architecture can define 284 * set_pte() and PFN_PTE_SHIFT. 285 * 286 * Context: The caller holds the page table lock. The pages all belong 287 * to the same folio. The PTEs are all in the same PMD. 288 */ 289static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 290 pte_t *ptep, pte_t pte, unsigned int nr) 291{ 292 page_table_check_ptes_set(mm, ptep, pte, nr); 293 294 for (;;) { 295 set_pte(ptep, pte); 296 if (--nr == 0) 297 break; 298 ptep++; 299 pte = pte_next_pfn(pte); 300 } 301} 302#endif 303#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 304 305#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 306extern int ptep_set_access_flags(struct vm_area_struct *vma, 307 unsigned long address, pte_t *ptep, 308 pte_t entry, int dirty); 309#endif 310 311#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE 313extern int pmdp_set_access_flags(struct vm_area_struct *vma, 314 unsigned long address, pmd_t *pmdp, 315 pmd_t entry, int dirty); 316extern int pudp_set_access_flags(struct vm_area_struct *vma, 317 unsigned long address, pud_t *pudp, 318 pud_t entry, int dirty); 319#else 320static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 321 unsigned long address, pmd_t *pmdp, 322 pmd_t entry, int dirty) 323{ 324 BUILD_BUG(); 325 return 0; 326} 327static inline int pudp_set_access_flags(struct vm_area_struct *vma, 328 unsigned long address, pud_t *pudp, 329 pud_t entry, int dirty) 330{ 331 BUILD_BUG(); 332 return 0; 333} 334#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 335#endif 336 337#ifndef ptep_get 338static inline pte_t ptep_get(pte_t *ptep) 339{ 340 return READ_ONCE(*ptep); 341} 342#endif 343 344#ifndef pmdp_get 345static inline pmd_t pmdp_get(pmd_t *pmdp) 346{ 347 return READ_ONCE(*pmdp); 348} 349#endif 350 351#ifndef pudp_get 352static inline pud_t pudp_get(pud_t *pudp) 353{ 354 return READ_ONCE(*pudp); 355} 356#endif 357 358#ifndef p4dp_get 359static inline p4d_t p4dp_get(p4d_t *p4dp) 360{ 361 return READ_ONCE(*p4dp); 362} 363#endif 364 365#ifndef pgdp_get 366static inline pgd_t pgdp_get(pgd_t *pgdp) 367{ 368 return READ_ONCE(*pgdp); 369} 370#endif 371 372#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 373static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 374 unsigned long address, 375 pte_t *ptep) 376{ 377 pte_t pte = ptep_get(ptep); 378 int r = 1; 379 if (!pte_young(pte)) 380 r = 0; 381 else 382 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 383 return r; 384} 385#endif 386 387#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 388#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 389static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 390 unsigned long address, 391 pmd_t *pmdp) 392{ 393 pmd_t pmd = *pmdp; 394 int r = 1; 395 if (!pmd_young(pmd)) 396 r = 0; 397 else 398 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 399 return r; 400} 401#else 402static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 403 unsigned long address, 404 pmd_t *pmdp) 405{ 406 BUILD_BUG(); 407 return 0; 408} 409#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 410#endif 411 412#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 413int ptep_clear_flush_young(struct vm_area_struct *vma, 414 unsigned long address, pte_t *ptep); 415#endif 416 417#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 418#ifdef CONFIG_TRANSPARENT_HUGEPAGE 419extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 420 unsigned long address, pmd_t *pmdp); 421#else 422/* 423 * Despite relevant to THP only, this API is called from generic rmap code 424 * under PageTransHuge(), hence needs a dummy implementation for !THP 425 */ 426static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 427 unsigned long address, pmd_t *pmdp) 428{ 429 BUILD_BUG(); 430 return 0; 431} 432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 433#endif 434 435#ifndef arch_has_hw_nonleaf_pmd_young 436/* 437 * Return whether the accessed bit in non-leaf PMD entries is supported on the 438 * local CPU. 439 */ 440static inline bool arch_has_hw_nonleaf_pmd_young(void) 441{ 442 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 443} 444#endif 445 446#ifndef arch_has_hw_pte_young 447/* 448 * Return whether the accessed bit is supported on the local CPU. 449 * 450 * This stub assumes accessing through an old PTE triggers a page fault. 451 * Architectures that automatically set the access bit should overwrite it. 452 */ 453static inline bool arch_has_hw_pte_young(void) 454{ 455 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); 456} 457#endif 458 459#ifndef exec_folio_order 460/* 461 * Returns preferred minimum folio order for executable file-backed memory. Must 462 * be in range [0, PMD_ORDER). Default to order-0. 463 */ 464static inline unsigned int exec_folio_order(void) 465{ 466 return 0; 467} 468#endif 469 470#ifndef arch_check_zapped_pte 471static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 472 pte_t pte) 473{ 474} 475#endif 476 477#ifndef arch_check_zapped_pmd 478static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 479 pmd_t pmd) 480{ 481} 482#endif 483 484#ifndef arch_check_zapped_pud 485static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud) 486{ 487} 488#endif 489 490#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 491static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 492 unsigned long address, 493 pte_t *ptep) 494{ 495 pte_t pte = ptep_get(ptep); 496 pte_clear(mm, address, ptep); 497 page_table_check_pte_clear(mm, pte); 498 return pte; 499} 500#endif 501 502#ifndef clear_young_dirty_ptes 503/** 504 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the 505 * same folio as old/clean. 506 * @mm: Address space the pages are mapped into. 507 * @addr: Address the first page is mapped at. 508 * @ptep: Page table pointer for the first entry. 509 * @nr: Number of entries to mark old/clean. 510 * @flags: Flags to modify the PTE batch semantics. 511 * 512 * May be overridden by the architecture; otherwise, implemented by 513 * get_and_clear/modify/set for each pte in the range. 514 * 515 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 516 * some PTEs might be write-protected. 517 * 518 * Context: The caller holds the page table lock. The PTEs map consecutive 519 * pages that belong to the same folio. The PTEs are all in the same PMD. 520 */ 521static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 522 unsigned long addr, pte_t *ptep, 523 unsigned int nr, cydp_t flags) 524{ 525 pte_t pte; 526 527 for (;;) { 528 if (flags == CYDP_CLEAR_YOUNG) 529 ptep_test_and_clear_young(vma, addr, ptep); 530 else { 531 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); 532 if (flags & CYDP_CLEAR_YOUNG) 533 pte = pte_mkold(pte); 534 if (flags & CYDP_CLEAR_DIRTY) 535 pte = pte_mkclean(pte); 536 set_pte_at(vma->vm_mm, addr, ptep, pte); 537 } 538 if (--nr == 0) 539 break; 540 ptep++; 541 addr += PAGE_SIZE; 542 } 543} 544#endif 545 546static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 547 pte_t *ptep) 548{ 549 pte_t pte = ptep_get(ptep); 550 551 pte_clear(mm, addr, ptep); 552 /* 553 * No need for ptep_get_and_clear(): page table check doesn't care about 554 * any bits that could have been set by HW concurrently. 555 */ 556 page_table_check_pte_clear(mm, pte); 557} 558 559#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 560/* 561 * For walking the pagetables without holding any locks. Some architectures 562 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 563 * instructions. We are guaranteed that a PTE will only either go from not 564 * present to present, or present to not present -- it will not switch to a 565 * completely different present page without a TLB flush inbetween; which we 566 * are blocking by holding interrupts off. 567 * 568 * Setting ptes from not present to present goes: 569 * 570 * ptep->pte_high = h; 571 * smp_wmb(); 572 * ptep->pte_low = l; 573 * 574 * And present to not present goes: 575 * 576 * ptep->pte_low = 0; 577 * smp_wmb(); 578 * ptep->pte_high = 0; 579 * 580 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 581 * We load pte_high *after* loading pte_low, which ensures we don't see an older 582 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 583 * picked up a changed pte high. We might have gotten rubbish values from 584 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 585 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 586 * operates on present ptes we're safe. 587 */ 588static inline pte_t ptep_get_lockless(pte_t *ptep) 589{ 590 pte_t pte; 591 592 do { 593 pte.pte_low = ptep->pte_low; 594 smp_rmb(); 595 pte.pte_high = ptep->pte_high; 596 smp_rmb(); 597 } while (unlikely(pte.pte_low != ptep->pte_low)); 598 599 return pte; 600} 601#define ptep_get_lockless ptep_get_lockless 602 603#if CONFIG_PGTABLE_LEVELS > 2 604static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 605{ 606 pmd_t pmd; 607 608 do { 609 pmd.pmd_low = pmdp->pmd_low; 610 smp_rmb(); 611 pmd.pmd_high = pmdp->pmd_high; 612 smp_rmb(); 613 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 614 615 return pmd; 616} 617#define pmdp_get_lockless pmdp_get_lockless 618#define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 619#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 620#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 621 622/* 623 * We require that the PTE can be read atomically. 624 */ 625#ifndef ptep_get_lockless 626static inline pte_t ptep_get_lockless(pte_t *ptep) 627{ 628 return ptep_get(ptep); 629} 630#endif 631 632#ifndef pmdp_get_lockless 633static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 634{ 635 return pmdp_get(pmdp); 636} 637static inline void pmdp_get_lockless_sync(void) 638{ 639} 640#endif 641 642#ifdef CONFIG_TRANSPARENT_HUGEPAGE 643#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 644static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 645 unsigned long address, 646 pmd_t *pmdp) 647{ 648 pmd_t pmd = *pmdp; 649 650 pmd_clear(pmdp); 651 page_table_check_pmd_clear(mm, pmd); 652 653 return pmd; 654} 655#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 656#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 657static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 658 unsigned long address, 659 pud_t *pudp) 660{ 661 pud_t pud = *pudp; 662 663 pud_clear(pudp); 664 page_table_check_pud_clear(mm, pud); 665 666 return pud; 667} 668#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 669#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 670 671#ifdef CONFIG_TRANSPARENT_HUGEPAGE 672#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 673static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 674 unsigned long address, pmd_t *pmdp, 675 int full) 676{ 677 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 678} 679#endif 680 681#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 682static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 683 unsigned long address, pud_t *pudp, 684 int full) 685{ 686 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 687} 688#endif 689#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 690 691#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 692static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 693 unsigned long address, pte_t *ptep, 694 int full) 695{ 696 return ptep_get_and_clear(mm, address, ptep); 697} 698#endif 699 700#ifndef get_and_clear_full_ptes 701/** 702 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of 703 * the same folio, collecting dirty/accessed bits. 704 * @mm: Address space the pages are mapped into. 705 * @addr: Address the first page is mapped at. 706 * @ptep: Page table pointer for the first entry. 707 * @nr: Number of entries to clear. 708 * @full: Whether we are clearing a full mm. 709 * 710 * May be overridden by the architecture; otherwise, implemented as a simple 711 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the 712 * returned PTE. 713 * 714 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 715 * some PTEs might be write-protected. 716 * 717 * Context: The caller holds the page table lock. The PTEs map consecutive 718 * pages that belong to the same folio. The PTEs are all in the same PMD. 719 */ 720static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 721 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 722{ 723 pte_t pte, tmp_pte; 724 725 pte = ptep_get_and_clear_full(mm, addr, ptep, full); 726 while (--nr) { 727 ptep++; 728 addr += PAGE_SIZE; 729 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); 730 if (pte_dirty(tmp_pte)) 731 pte = pte_mkdirty(pte); 732 if (pte_young(tmp_pte)) 733 pte = pte_mkyoung(pte); 734 } 735 return pte; 736} 737#endif 738 739/** 740 * get_and_clear_ptes - Clear present PTEs that map consecutive pages of 741 * the same folio, collecting dirty/accessed bits. 742 * @mm: Address space the pages are mapped into. 743 * @addr: Address the first page is mapped at. 744 * @ptep: Page table pointer for the first entry. 745 * @nr: Number of entries to clear. 746 * 747 * Use this instead of get_and_clear_full_ptes() if it is known that we don't 748 * need to clear the full mm, which is mostly the case. 749 * 750 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 751 * some PTEs might be write-protected. 752 * 753 * Context: The caller holds the page table lock. The PTEs map consecutive 754 * pages that belong to the same folio. The PTEs are all in the same PMD. 755 */ 756static inline pte_t get_and_clear_ptes(struct mm_struct *mm, unsigned long addr, 757 pte_t *ptep, unsigned int nr) 758{ 759 return get_and_clear_full_ptes(mm, addr, ptep, nr, 0); 760} 761 762#ifndef clear_full_ptes 763/** 764 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same 765 * folio. 766 * @mm: Address space the pages are mapped into. 767 * @addr: Address the first page is mapped at. 768 * @ptep: Page table pointer for the first entry. 769 * @nr: Number of entries to clear. 770 * @full: Whether we are clearing a full mm. 771 * 772 * May be overridden by the architecture; otherwise, implemented as a simple 773 * loop over ptep_get_and_clear_full(). 774 * 775 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 776 * some PTEs might be write-protected. 777 * 778 * Context: The caller holds the page table lock. The PTEs map consecutive 779 * pages that belong to the same folio. The PTEs are all in the same PMD. 780 */ 781static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 782 pte_t *ptep, unsigned int nr, int full) 783{ 784 for (;;) { 785 ptep_get_and_clear_full(mm, addr, ptep, full); 786 if (--nr == 0) 787 break; 788 ptep++; 789 addr += PAGE_SIZE; 790 } 791} 792#endif 793 794/** 795 * clear_ptes - Clear present PTEs that map consecutive pages of the same folio. 796 * @mm: Address space the pages are mapped into. 797 * @addr: Address the first page is mapped at. 798 * @ptep: Page table pointer for the first entry. 799 * @nr: Number of entries to clear. 800 * 801 * Use this instead of clear_full_ptes() if it is known that we don't need to 802 * clear the full mm, which is mostly the case. 803 * 804 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 805 * some PTEs might be write-protected. 806 * 807 * Context: The caller holds the page table lock. The PTEs map consecutive 808 * pages that belong to the same folio. The PTEs are all in the same PMD. 809 */ 810static inline void clear_ptes(struct mm_struct *mm, unsigned long addr, 811 pte_t *ptep, unsigned int nr) 812{ 813 clear_full_ptes(mm, addr, ptep, nr, 0); 814} 815 816/* 817 * If two threads concurrently fault at the same page, the thread that 818 * won the race updates the PTE and its local TLB/Cache. The other thread 819 * gives up, simply does nothing, and continues; on architectures where 820 * software can update TLB, local TLB can be updated here to avoid next page 821 * fault. This function updates TLB only, do nothing with cache or others. 822 * It is the difference with function update_mmu_cache. 823 */ 824#ifndef update_mmu_tlb_range 825static inline void update_mmu_tlb_range(struct vm_area_struct *vma, 826 unsigned long address, pte_t *ptep, unsigned int nr) 827{ 828} 829#endif 830 831static inline void update_mmu_tlb(struct vm_area_struct *vma, 832 unsigned long address, pte_t *ptep) 833{ 834 update_mmu_tlb_range(vma, address, ptep, 1); 835} 836 837/* 838 * Some architectures may be able to avoid expensive synchronization 839 * primitives when modifications are made to PTE's which are already 840 * not present, or in the process of an address space destruction. 841 */ 842#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 843static inline void pte_clear_not_present_full(struct mm_struct *mm, 844 unsigned long address, 845 pte_t *ptep, 846 int full) 847{ 848 pte_clear(mm, address, ptep); 849} 850#endif 851 852#ifndef clear_not_present_full_ptes 853/** 854 * clear_not_present_full_ptes - Clear multiple not present PTEs which are 855 * consecutive in the pgtable. 856 * @mm: Address space the ptes represent. 857 * @addr: Address of the first pte. 858 * @ptep: Page table pointer for the first entry. 859 * @nr: Number of entries to clear. 860 * @full: Whether we are clearing a full mm. 861 * 862 * May be overridden by the architecture; otherwise, implemented as a simple 863 * loop over pte_clear_not_present_full(). 864 * 865 * Context: The caller holds the page table lock. The PTEs are all not present. 866 * The PTEs are all in the same PMD. 867 */ 868static inline void clear_not_present_full_ptes(struct mm_struct *mm, 869 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 870{ 871 for (;;) { 872 pte_clear_not_present_full(mm, addr, ptep, full); 873 if (--nr == 0) 874 break; 875 ptep++; 876 addr += PAGE_SIZE; 877 } 878} 879#endif 880 881#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 882extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 883 unsigned long address, 884 pte_t *ptep); 885#endif 886 887#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 888extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 889 unsigned long address, 890 pmd_t *pmdp); 891extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 892 unsigned long address, 893 pud_t *pudp); 894#endif 895 896#ifndef pte_mkwrite 897static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 898{ 899 return pte_mkwrite_novma(pte); 900} 901#endif 902 903#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 904static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 905{ 906 return pmd_mkwrite_novma(pmd); 907} 908#endif 909 910#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 911struct mm_struct; 912static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 913{ 914 pte_t old_pte = ptep_get(ptep); 915 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 916} 917#endif 918 919#ifndef wrprotect_ptes 920/** 921 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same 922 * folio. 923 * @mm: Address space the pages are mapped into. 924 * @addr: Address the first page is mapped at. 925 * @ptep: Page table pointer for the first entry. 926 * @nr: Number of entries to write-protect. 927 * 928 * May be overridden by the architecture; otherwise, implemented as a simple 929 * loop over ptep_set_wrprotect(). 930 * 931 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 932 * some PTEs might be write-protected. 933 * 934 * Context: The caller holds the page table lock. The PTEs map consecutive 935 * pages that belong to the same folio. The PTEs are all in the same PMD. 936 */ 937static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 938 pte_t *ptep, unsigned int nr) 939{ 940 for (;;) { 941 ptep_set_wrprotect(mm, addr, ptep); 942 if (--nr == 0) 943 break; 944 ptep++; 945 addr += PAGE_SIZE; 946 } 947} 948#endif 949 950/* 951 * On some architectures hardware does not set page access bit when accessing 952 * memory page, it is responsibility of software setting this bit. It brings 953 * out extra page fault penalty to track page access bit. For optimization page 954 * access bit can be set during all page fault flow on these arches. 955 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 956 * where software maintains page access bit. 957 */ 958#ifndef pte_sw_mkyoung 959static inline pte_t pte_sw_mkyoung(pte_t pte) 960{ 961 return pte; 962} 963#define pte_sw_mkyoung pte_sw_mkyoung 964#endif 965 966#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 967#ifdef CONFIG_TRANSPARENT_HUGEPAGE 968static inline void pmdp_set_wrprotect(struct mm_struct *mm, 969 unsigned long address, pmd_t *pmdp) 970{ 971 pmd_t old_pmd = *pmdp; 972 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 973} 974#else 975static inline void pmdp_set_wrprotect(struct mm_struct *mm, 976 unsigned long address, pmd_t *pmdp) 977{ 978 BUILD_BUG(); 979} 980#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 981#endif 982#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 983#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 984#ifdef CONFIG_TRANSPARENT_HUGEPAGE 985static inline void pudp_set_wrprotect(struct mm_struct *mm, 986 unsigned long address, pud_t *pudp) 987{ 988 pud_t old_pud = *pudp; 989 990 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 991} 992#else 993static inline void pudp_set_wrprotect(struct mm_struct *mm, 994 unsigned long address, pud_t *pudp) 995{ 996 BUILD_BUG(); 997} 998#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 999#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1000#endif 1001 1002#ifndef pmdp_collapse_flush 1003#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1004extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1005 unsigned long address, pmd_t *pmdp); 1006#else 1007static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1008 unsigned long address, 1009 pmd_t *pmdp) 1010{ 1011 BUILD_BUG(); 1012 return *pmdp; 1013} 1014#define pmdp_collapse_flush pmdp_collapse_flush 1015#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1016#endif 1017 1018#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 1019extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1020 pgtable_t pgtable); 1021#endif 1022 1023#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 1024extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1025#endif 1026 1027#ifndef arch_needs_pgtable_deposit 1028#define arch_needs_pgtable_deposit() (false) 1029#endif 1030 1031#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1032/* 1033 * This is an implementation of pmdp_establish() that is only suitable for an 1034 * architecture that doesn't have hardware dirty/accessed bits. In this case we 1035 * can't race with CPU which sets these bits and non-atomic approach is fine. 1036 */ 1037static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 1038 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1039{ 1040 pmd_t old_pmd = *pmdp; 1041 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 1042 return old_pmd; 1043} 1044#endif 1045 1046#ifndef __HAVE_ARCH_PMDP_INVALIDATE 1047extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 1048 pmd_t *pmdp); 1049#endif 1050 1051#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 1052 1053/* 1054 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 1055 * hugepage mapping in the page tables. This function is similar to 1056 * pmdp_invalidate(), but should only be used if the access and dirty bits would 1057 * not be cleared by the software in the new PMD value. The function ensures 1058 * that hardware changes of the access and dirty bits updates would not be lost. 1059 * 1060 * Doing so can allow in certain architectures to avoid a TLB flush in most 1061 * cases. Yet, another TLB flush might be necessary later if the PMD update 1062 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 1063 * even when a TLB flush is needed because of the update, the caller may be able 1064 * to batch these TLB flushing operations, so fewer TLB flush operations are 1065 * needed. 1066 */ 1067extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 1068 unsigned long address, pmd_t *pmdp); 1069#endif 1070 1071#ifndef __HAVE_ARCH_PTE_SAME 1072static inline int pte_same(pte_t pte_a, pte_t pte_b) 1073{ 1074 return pte_val(pte_a) == pte_val(pte_b); 1075} 1076#endif 1077 1078#ifndef __HAVE_ARCH_PTE_UNUSED 1079/* 1080 * Some architectures provide facilities to virtualization guests 1081 * so that they can flag allocated pages as unused. This allows the 1082 * host to transparently reclaim unused pages. This function returns 1083 * whether the pte's page is unused. 1084 */ 1085static inline int pte_unused(pte_t pte) 1086{ 1087 return 0; 1088} 1089#endif 1090 1091#ifndef pte_access_permitted 1092#define pte_access_permitted(pte, write) \ 1093 (pte_present(pte) && (!(write) || pte_write(pte))) 1094#endif 1095 1096#ifndef pmd_access_permitted 1097#define pmd_access_permitted(pmd, write) \ 1098 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 1099#endif 1100 1101#ifndef pud_access_permitted 1102#define pud_access_permitted(pud, write) \ 1103 (pud_present(pud) && (!(write) || pud_write(pud))) 1104#endif 1105 1106#ifndef p4d_access_permitted 1107#define p4d_access_permitted(p4d, write) \ 1108 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 1109#endif 1110 1111#ifndef pgd_access_permitted 1112#define pgd_access_permitted(pgd, write) \ 1113 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 1114#endif 1115 1116#ifndef __HAVE_ARCH_PMD_SAME 1117static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1118{ 1119 return pmd_val(pmd_a) == pmd_val(pmd_b); 1120} 1121#endif 1122 1123#ifndef pud_same 1124static inline int pud_same(pud_t pud_a, pud_t pud_b) 1125{ 1126 return pud_val(pud_a) == pud_val(pud_b); 1127} 1128#define pud_same pud_same 1129#endif 1130 1131#ifndef __HAVE_ARCH_P4D_SAME 1132static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 1133{ 1134 return p4d_val(p4d_a) == p4d_val(p4d_b); 1135} 1136#endif 1137 1138#ifndef __HAVE_ARCH_PGD_SAME 1139static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 1140{ 1141 return pgd_val(pgd_a) == pgd_val(pgd_b); 1142} 1143#endif 1144 1145#ifndef __HAVE_ARCH_DO_SWAP_PAGE 1146static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1147 struct vm_area_struct *vma, 1148 unsigned long addr, 1149 pte_t pte, pte_t oldpte, 1150 int nr) 1151{ 1152 1153} 1154#else 1155/* 1156 * Some architectures support metadata associated with a page. When a 1157 * page is being swapped out, this metadata must be saved so it can be 1158 * restored when the page is swapped back in. SPARC M7 and newer 1159 * processors support an ADI (Application Data Integrity) tag for the 1160 * page as metadata for the page. arch_do_swap_page() can restore this 1161 * metadata when a page is swapped back in. 1162 */ 1163static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1164 struct vm_area_struct *vma, 1165 unsigned long addr, 1166 pte_t pte, pte_t oldpte, 1167 int nr) 1168{ 1169 for (int i = 0; i < nr; i++) { 1170 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, 1171 pte_advance_pfn(pte, i), 1172 pte_advance_pfn(oldpte, i)); 1173 } 1174} 1175#endif 1176 1177#ifndef __HAVE_ARCH_UNMAP_ONE 1178/* 1179 * Some architectures support metadata associated with a page. When a 1180 * page is being swapped out, this metadata must be saved so it can be 1181 * restored when the page is swapped back in. SPARC M7 and newer 1182 * processors support an ADI (Application Data Integrity) tag for the 1183 * page as metadata for the page. arch_unmap_one() can save this 1184 * metadata on a swap-out of a page. 1185 */ 1186static inline int arch_unmap_one(struct mm_struct *mm, 1187 struct vm_area_struct *vma, 1188 unsigned long addr, 1189 pte_t orig_pte) 1190{ 1191 return 0; 1192} 1193#endif 1194 1195/* 1196 * Allow architectures to preserve additional metadata associated with 1197 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 1198 * prototypes must be defined in the arch-specific asm/pgtable.h file. 1199 */ 1200#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 1201static inline int arch_prepare_to_swap(struct folio *folio) 1202{ 1203 return 0; 1204} 1205#endif 1206 1207#ifndef __HAVE_ARCH_SWAP_INVALIDATE 1208static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1209{ 1210} 1211 1212static inline void arch_swap_invalidate_area(int type) 1213{ 1214} 1215#endif 1216 1217#ifndef __HAVE_ARCH_SWAP_RESTORE 1218static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 1219{ 1220} 1221#endif 1222 1223#ifndef __HAVE_ARCH_MOVE_PTE 1224#define move_pte(pte, old_addr, new_addr) (pte) 1225#endif 1226 1227#ifndef pte_accessible 1228# define pte_accessible(mm, pte) ((void)(pte), 1) 1229#endif 1230 1231#ifndef flush_tlb_fix_spurious_fault 1232#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 1233#endif 1234 1235/* 1236 * When walking page tables, get the address of the next boundary, 1237 * or the end address of the range if that comes earlier. Although no 1238 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 1239 */ 1240 1241#define pgd_addr_end(addr, end) \ 1242({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 1243 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1244}) 1245 1246#ifndef p4d_addr_end 1247#define p4d_addr_end(addr, end) \ 1248({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 1249 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1250}) 1251#endif 1252 1253#ifndef pud_addr_end 1254#define pud_addr_end(addr, end) \ 1255({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 1256 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1257}) 1258#endif 1259 1260#ifndef pmd_addr_end 1261#define pmd_addr_end(addr, end) \ 1262({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 1263 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1264}) 1265#endif 1266 1267/* 1268 * When walking page tables, we usually want to skip any p?d_none entries; 1269 * and any p?d_bad entries - reporting the error before resetting to none. 1270 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 1271 */ 1272void pgd_clear_bad(pgd_t *); 1273 1274#ifndef __PAGETABLE_P4D_FOLDED 1275void p4d_clear_bad(p4d_t *); 1276#else 1277#define p4d_clear_bad(p4d) do { } while (0) 1278#endif 1279 1280#ifndef __PAGETABLE_PUD_FOLDED 1281void pud_clear_bad(pud_t *); 1282#else 1283#define pud_clear_bad(p4d) do { } while (0) 1284#endif 1285 1286void pmd_clear_bad(pmd_t *); 1287 1288static inline int pgd_none_or_clear_bad(pgd_t *pgd) 1289{ 1290 if (pgd_none(*pgd)) 1291 return 1; 1292 if (unlikely(pgd_bad(*pgd))) { 1293 pgd_clear_bad(pgd); 1294 return 1; 1295 } 1296 return 0; 1297} 1298 1299static inline int p4d_none_or_clear_bad(p4d_t *p4d) 1300{ 1301 if (p4d_none(*p4d)) 1302 return 1; 1303 if (unlikely(p4d_bad(*p4d))) { 1304 p4d_clear_bad(p4d); 1305 return 1; 1306 } 1307 return 0; 1308} 1309 1310static inline int pud_none_or_clear_bad(pud_t *pud) 1311{ 1312 if (pud_none(*pud)) 1313 return 1; 1314 if (unlikely(pud_bad(*pud))) { 1315 pud_clear_bad(pud); 1316 return 1; 1317 } 1318 return 0; 1319} 1320 1321static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1322{ 1323 if (pmd_none(*pmd)) 1324 return 1; 1325 if (unlikely(pmd_bad(*pmd))) { 1326 pmd_clear_bad(pmd); 1327 return 1; 1328 } 1329 return 0; 1330} 1331 1332static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1333 unsigned long addr, 1334 pte_t *ptep) 1335{ 1336 /* 1337 * Get the current pte state, but zero it out to make it 1338 * non-present, preventing the hardware from asynchronously 1339 * updating it. 1340 */ 1341 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1342} 1343 1344static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1345 unsigned long addr, 1346 pte_t *ptep, pte_t pte) 1347{ 1348 /* 1349 * The pte is non-present, so there's no hardware state to 1350 * preserve. 1351 */ 1352 set_pte_at(vma->vm_mm, addr, ptep, pte); 1353} 1354 1355#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1356/* 1357 * Start a pte protection read-modify-write transaction, which 1358 * protects against asynchronous hardware modifications to the pte. 1359 * The intention is not to prevent the hardware from making pte 1360 * updates, but to prevent any updates it may make from being lost. 1361 * 1362 * This does not protect against other software modifications of the 1363 * pte; the appropriate pte lock must be held over the transaction. 1364 * 1365 * Note that this interface is intended to be batchable, meaning that 1366 * ptep_modify_prot_commit may not actually update the pte, but merely 1367 * queue the update to be done at some later time. The update must be 1368 * actually committed before the pte lock is released, however. 1369 */ 1370static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1371 unsigned long addr, 1372 pte_t *ptep) 1373{ 1374 return __ptep_modify_prot_start(vma, addr, ptep); 1375} 1376 1377/* 1378 * Commit an update to a pte, leaving any hardware-controlled bits in 1379 * the PTE unmodified. The pte returned from ptep_modify_prot_start() may 1380 * additionally have young and/or dirty bits set where previously they were not, 1381 * so the updated pte may have these additional changes. 1382 */ 1383static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1384 unsigned long addr, 1385 pte_t *ptep, pte_t old_pte, pte_t pte) 1386{ 1387 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1388} 1389#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1390 1391/** 1392 * modify_prot_start_ptes - Start a pte protection read-modify-write transaction 1393 * over a batch of ptes, which protects against asynchronous hardware 1394 * modifications to the ptes. The intention is not to prevent the hardware from 1395 * making pte updates, but to prevent any updates it may make from being lost. 1396 * Please see the comment above ptep_modify_prot_start() for full description. 1397 * 1398 * @vma: The virtual memory area the pages are mapped into. 1399 * @addr: Address the first page is mapped at. 1400 * @ptep: Page table pointer for the first entry. 1401 * @nr: Number of entries. 1402 * 1403 * May be overridden by the architecture; otherwise, implemented as a simple 1404 * loop over ptep_modify_prot_start(), collecting the a/d bits from each pte 1405 * in the batch. 1406 * 1407 * Note that PTE bits in the PTE batch besides the PFN can differ. 1408 * 1409 * Context: The caller holds the page table lock. The PTEs map consecutive 1410 * pages that belong to the same folio. All other PTE bits must be identical for 1411 * all PTEs in the batch except for young and dirty bits. The PTEs are all in 1412 * the same PMD. 1413 */ 1414#ifndef modify_prot_start_ptes 1415static inline pte_t modify_prot_start_ptes(struct vm_area_struct *vma, 1416 unsigned long addr, pte_t *ptep, unsigned int nr) 1417{ 1418 pte_t pte, tmp_pte; 1419 1420 pte = ptep_modify_prot_start(vma, addr, ptep); 1421 while (--nr) { 1422 ptep++; 1423 addr += PAGE_SIZE; 1424 tmp_pte = ptep_modify_prot_start(vma, addr, ptep); 1425 if (pte_dirty(tmp_pte)) 1426 pte = pte_mkdirty(pte); 1427 if (pte_young(tmp_pte)) 1428 pte = pte_mkyoung(pte); 1429 } 1430 return pte; 1431} 1432#endif 1433 1434/** 1435 * modify_prot_commit_ptes - Commit an update to a batch of ptes, leaving any 1436 * hardware-controlled bits in the PTE unmodified. 1437 * 1438 * @vma: The virtual memory area the pages are mapped into. 1439 * @addr: Address the first page is mapped at. 1440 * @ptep: Page table pointer for the first entry. 1441 * @old_pte: Old page table entry (for the first entry) which is now cleared. 1442 * @pte: New page table entry to be set. 1443 * @nr: Number of entries. 1444 * 1445 * May be overridden by the architecture; otherwise, implemented as a simple 1446 * loop over ptep_modify_prot_commit(). 1447 * 1448 * Context: The caller holds the page table lock. The PTEs are all in the same 1449 * PMD. On exit, the set ptes in the batch map the same folio. The ptes set by 1450 * ptep_modify_prot_start() may additionally have young and/or dirty bits set 1451 * where previously they were not, so the updated ptes may have these 1452 * additional changes. 1453 */ 1454#ifndef modify_prot_commit_ptes 1455static inline void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr, 1456 pte_t *ptep, pte_t old_pte, pte_t pte, unsigned int nr) 1457{ 1458 int i; 1459 1460 for (i = 0; i < nr; ++i, ++ptep, addr += PAGE_SIZE) { 1461 ptep_modify_prot_commit(vma, addr, ptep, old_pte, pte); 1462 1463 /* Advance PFN only, set same prot */ 1464 old_pte = pte_next_pfn(old_pte); 1465 pte = pte_next_pfn(pte); 1466 } 1467} 1468#endif 1469 1470#endif /* CONFIG_MMU */ 1471 1472/* 1473 * No-op macros that just return the current protection value. Defined here 1474 * because these macros can be used even if CONFIG_MMU is not defined. 1475 */ 1476 1477#ifndef pgprot_nx 1478#define pgprot_nx(prot) (prot) 1479#endif 1480 1481#ifndef pgprot_noncached 1482#define pgprot_noncached(prot) (prot) 1483#endif 1484 1485#ifndef pgprot_writecombine 1486#define pgprot_writecombine pgprot_noncached 1487#endif 1488 1489#ifndef pgprot_writethrough 1490#define pgprot_writethrough pgprot_noncached 1491#endif 1492 1493#ifndef pgprot_device 1494#define pgprot_device pgprot_noncached 1495#endif 1496 1497#ifndef pgprot_mhp 1498#define pgprot_mhp(prot) (prot) 1499#endif 1500 1501#ifdef CONFIG_MMU 1502#ifndef pgprot_modify 1503#define pgprot_modify pgprot_modify 1504static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1505{ 1506 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1507 newprot = pgprot_noncached(newprot); 1508 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1509 newprot = pgprot_writecombine(newprot); 1510 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1511 newprot = pgprot_device(newprot); 1512 return newprot; 1513} 1514#endif 1515#endif /* CONFIG_MMU */ 1516 1517#ifndef pgprot_encrypted 1518#define pgprot_encrypted(prot) (prot) 1519#endif 1520 1521#ifndef pgprot_decrypted 1522#define pgprot_decrypted(prot) (prot) 1523#endif 1524 1525/* 1526 * A facility to provide batching of the reload of page tables and 1527 * other process state with the actual context switch code for 1528 * paravirtualized guests. By convention, only one of the batched 1529 * update (lazy) modes (CPU, MMU) should be active at any given time, 1530 * entry should never be nested, and entry and exits should always be 1531 * paired. This is for sanity of maintaining and reasoning about the 1532 * kernel code. In this case, the exit (end of the context switch) is 1533 * in architecture-specific code, and so doesn't need a generic 1534 * definition. 1535 */ 1536#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1537#define arch_start_context_switch(prev) do {} while (0) 1538#endif 1539 1540#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1541#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1542static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1543{ 1544 return pmd; 1545} 1546 1547static inline int pmd_swp_soft_dirty(pmd_t pmd) 1548{ 1549 return 0; 1550} 1551 1552static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1553{ 1554 return pmd; 1555} 1556#endif 1557#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1558static inline int pte_soft_dirty(pte_t pte) 1559{ 1560 return 0; 1561} 1562 1563static inline int pmd_soft_dirty(pmd_t pmd) 1564{ 1565 return 0; 1566} 1567 1568static inline pte_t pte_mksoft_dirty(pte_t pte) 1569{ 1570 return pte; 1571} 1572 1573static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1574{ 1575 return pmd; 1576} 1577 1578static inline pte_t pte_clear_soft_dirty(pte_t pte) 1579{ 1580 return pte; 1581} 1582 1583static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1584{ 1585 return pmd; 1586} 1587 1588static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1589{ 1590 return pte; 1591} 1592 1593static inline int pte_swp_soft_dirty(pte_t pte) 1594{ 1595 return 0; 1596} 1597 1598static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1599{ 1600 return pte; 1601} 1602 1603static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1604{ 1605 return pmd; 1606} 1607 1608static inline int pmd_swp_soft_dirty(pmd_t pmd) 1609{ 1610 return 0; 1611} 1612 1613static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1614{ 1615 return pmd; 1616} 1617#endif 1618 1619#ifndef __HAVE_PFNMAP_TRACKING 1620/* 1621 * Interfaces that can be used by architecture code to keep track of 1622 * memory type of pfn mappings specified by the remap_pfn_range, 1623 * vmf_insert_pfn. 1624 */ 1625 1626static inline int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, 1627 pgprot_t *prot) 1628{ 1629 return 0; 1630} 1631 1632static inline int pfnmap_track(unsigned long pfn, unsigned long size, 1633 pgprot_t *prot) 1634{ 1635 return 0; 1636} 1637 1638static inline void pfnmap_untrack(unsigned long pfn, unsigned long size) 1639{ 1640} 1641#else 1642/** 1643 * pfnmap_setup_cachemode - setup the cachemode in the pgprot for a pfn range 1644 * @pfn: the start of the pfn range 1645 * @size: the size of the pfn range in bytes 1646 * @prot: the pgprot to modify 1647 * 1648 * Lookup the cachemode for the pfn range starting at @pfn with the size 1649 * @size and store it in @prot, leaving other data in @prot unchanged. 1650 * 1651 * This allows for a hardware implementation to have fine-grained control of 1652 * memory cache behavior at page level granularity. Without a hardware 1653 * implementation, this function does nothing. 1654 * 1655 * Currently there is only one implementation for this - x86 Page Attribute 1656 * Table (PAT). See Documentation/arch/x86/pat.rst for more details. 1657 * 1658 * This function can fail if the pfn range spans pfns that require differing 1659 * cachemodes. If the pfn range was previously verified to have a single 1660 * cachemode, it is sufficient to query only a single pfn. The assumption is 1661 * that this is the case for drivers using the vmf_insert_pfn*() interface. 1662 * 1663 * Returns 0 on success and -EINVAL on error. 1664 */ 1665int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, 1666 pgprot_t *prot); 1667 1668/** 1669 * pfnmap_track - track a pfn range 1670 * @pfn: the start of the pfn range 1671 * @size: the size of the pfn range in bytes 1672 * @prot: the pgprot to track 1673 * 1674 * Requested the pfn range to be 'tracked' by a hardware implementation and 1675 * setup the cachemode in @prot similar to pfnmap_setup_cachemode(). 1676 * 1677 * This allows for fine-grained control of memory cache behaviour at page 1678 * level granularity. Tracking memory this way is persisted across VMA splits 1679 * (VMA merging does not apply for VM_PFNMAP). 1680 * 1681 * Currently, there is only one implementation for this - x86 Page Attribute 1682 * Table (PAT). See Documentation/arch/x86/pat.rst for more details. 1683 * 1684 * Returns 0 on success and -EINVAL on error. 1685 */ 1686int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot); 1687 1688/** 1689 * pfnmap_untrack - untrack a pfn range 1690 * @pfn: the start of the pfn range 1691 * @size: the size of the pfn range in bytes 1692 * 1693 * Untrack a pfn range previously tracked through pfnmap_track(). 1694 */ 1695void pfnmap_untrack(unsigned long pfn, unsigned long size); 1696#endif 1697 1698/** 1699 * pfnmap_setup_cachemode_pfn - setup the cachemode in the pgprot for a pfn 1700 * @pfn: the pfn 1701 * @prot: the pgprot to modify 1702 * 1703 * Lookup the cachemode for @pfn and store it in @prot, leaving other 1704 * data in @prot unchanged. 1705 * 1706 * See pfnmap_setup_cachemode() for details. 1707 */ 1708static inline void pfnmap_setup_cachemode_pfn(unsigned long pfn, pgprot_t *prot) 1709{ 1710 pfnmap_setup_cachemode(pfn, PAGE_SIZE, prot); 1711} 1712 1713#ifdef CONFIG_MMU 1714#ifdef __HAVE_COLOR_ZERO_PAGE 1715static inline int is_zero_pfn(unsigned long pfn) 1716{ 1717 extern unsigned long zero_pfn; 1718 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1719 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1720} 1721 1722#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1723 1724#else 1725static inline int is_zero_pfn(unsigned long pfn) 1726{ 1727 extern unsigned long zero_pfn; 1728 return pfn == zero_pfn; 1729} 1730 1731static inline unsigned long my_zero_pfn(unsigned long addr) 1732{ 1733 extern unsigned long zero_pfn; 1734 return zero_pfn; 1735} 1736#endif 1737#else 1738static inline int is_zero_pfn(unsigned long pfn) 1739{ 1740 return 0; 1741} 1742 1743static inline unsigned long my_zero_pfn(unsigned long addr) 1744{ 1745 return 0; 1746} 1747#endif /* CONFIG_MMU */ 1748 1749#ifdef CONFIG_MMU 1750 1751#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1752static inline int pmd_trans_huge(pmd_t pmd) 1753{ 1754 return 0; 1755} 1756#ifndef pmd_write 1757static inline int pmd_write(pmd_t pmd) 1758{ 1759 BUG(); 1760 return 0; 1761} 1762#endif /* pmd_write */ 1763#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1764 1765#ifndef pud_write 1766static inline int pud_write(pud_t pud) 1767{ 1768 BUG(); 1769 return 0; 1770} 1771#endif /* pud_write */ 1772 1773#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1774 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1775static inline int pud_trans_huge(pud_t pud) 1776{ 1777 return 0; 1778} 1779#endif 1780 1781static inline int pud_trans_unstable(pud_t *pud) 1782{ 1783#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1784 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1785 pud_t pudval = READ_ONCE(*pud); 1786 1787 if (pud_none(pudval) || pud_trans_huge(pudval)) 1788 return 1; 1789 if (unlikely(pud_bad(pudval))) { 1790 pud_clear_bad(pud); 1791 return 1; 1792 } 1793#endif 1794 return 0; 1795} 1796 1797#ifndef CONFIG_NUMA_BALANCING 1798/* 1799 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1800 * perfectly valid to indicate "no" in that case, which is why our default 1801 * implementation defaults to "always no". 1802 * 1803 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1804 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1805 * accessible VMAs. 1806 * 1807 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1808 * looking at the VMA accessibility is sufficient. 1809 */ 1810static inline int pte_protnone(pte_t pte) 1811{ 1812 return 0; 1813} 1814 1815static inline int pmd_protnone(pmd_t pmd) 1816{ 1817 return 0; 1818} 1819#endif /* CONFIG_NUMA_BALANCING */ 1820 1821#endif /* CONFIG_MMU */ 1822 1823#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1824 1825#ifndef __PAGETABLE_P4D_FOLDED 1826int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1827void p4d_clear_huge(p4d_t *p4d); 1828#else 1829static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1830{ 1831 return 0; 1832} 1833static inline void p4d_clear_huge(p4d_t *p4d) { } 1834#endif /* !__PAGETABLE_P4D_FOLDED */ 1835 1836int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1837int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1838int pud_clear_huge(pud_t *pud); 1839int pmd_clear_huge(pmd_t *pmd); 1840int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1841int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1842int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1843#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1844static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1845{ 1846 return 0; 1847} 1848static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1849{ 1850 return 0; 1851} 1852static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1853{ 1854 return 0; 1855} 1856static inline void p4d_clear_huge(p4d_t *p4d) { } 1857static inline int pud_clear_huge(pud_t *pud) 1858{ 1859 return 0; 1860} 1861static inline int pmd_clear_huge(pmd_t *pmd) 1862{ 1863 return 0; 1864} 1865static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1866{ 1867 return 0; 1868} 1869static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1870{ 1871 return 0; 1872} 1873static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1874{ 1875 return 0; 1876} 1877#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1878 1879#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1880#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1881/* 1882 * ARCHes with special requirements for evicting THP backing TLB entries can 1883 * implement this. Otherwise also, it can help optimize normal TLB flush in 1884 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1885 * entire TLB if flush span is greater than a threshold, which will 1886 * likely be true for a single huge page. Thus a single THP flush will 1887 * invalidate the entire TLB which is not desirable. 1888 * e.g. see arch/arc: flush_pmd_tlb_range 1889 */ 1890#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1891#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1892#else 1893#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1894#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1895#endif 1896#endif 1897 1898struct file; 1899int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1900 unsigned long size, pgprot_t *vma_prot); 1901 1902#ifndef CONFIG_X86_ESPFIX64 1903static inline void init_espfix_bsp(void) { } 1904#endif 1905 1906extern void __init pgtable_cache_init(void); 1907 1908#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1909static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1910{ 1911 return true; 1912} 1913 1914static inline bool arch_has_pfn_modify_check(void) 1915{ 1916 return false; 1917} 1918#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1919 1920/* 1921 * Architecture PAGE_KERNEL_* fallbacks 1922 * 1923 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1924 * because they really don't support them, or the port needs to be updated to 1925 * reflect the required functionality. Below are a set of relatively safe 1926 * fallbacks, as best effort, which we can count on in lieu of the architectures 1927 * not defining them on their own yet. 1928 */ 1929 1930#ifndef PAGE_KERNEL_RO 1931# define PAGE_KERNEL_RO PAGE_KERNEL 1932#endif 1933 1934#ifndef PAGE_KERNEL_EXEC 1935# define PAGE_KERNEL_EXEC PAGE_KERNEL 1936#endif 1937 1938/* 1939 * Page Table Modification bits for pgtbl_mod_mask. 1940 * 1941 * These are used by the p?d_alloc_track*() set of functions an in the generic 1942 * vmalloc/ioremap code to track at which page-table levels entries have been 1943 * modified. Based on that the code can better decide when vmalloc and ioremap 1944 * mapping changes need to be synchronized to other page-tables in the system. 1945 */ 1946#define __PGTBL_PGD_MODIFIED 0 1947#define __PGTBL_P4D_MODIFIED 1 1948#define __PGTBL_PUD_MODIFIED 2 1949#define __PGTBL_PMD_MODIFIED 3 1950#define __PGTBL_PTE_MODIFIED 4 1951 1952#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1953#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1954#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1955#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1956#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1957 1958/* Page-Table Modification Mask */ 1959typedef unsigned int pgtbl_mod_mask; 1960 1961#endif /* !__ASSEMBLY__ */ 1962 1963#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1964#ifdef CONFIG_PHYS_ADDR_T_64BIT 1965/* 1966 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1967 * with physical address space extension, but falls back to 1968 * BITS_PER_LONG otherwise. 1969 */ 1970#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1971#else 1972#define MAX_POSSIBLE_PHYSMEM_BITS 32 1973#endif 1974#endif 1975 1976#ifndef has_transparent_hugepage 1977#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1978#endif 1979 1980#ifndef has_transparent_pud_hugepage 1981#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1982#endif 1983/* 1984 * On some architectures it depends on the mm if the p4d/pud or pmd 1985 * layer of the page table hierarchy is folded or not. 1986 */ 1987#ifndef mm_p4d_folded 1988#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1989#endif 1990 1991#ifndef mm_pud_folded 1992#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1993#endif 1994 1995#ifndef mm_pmd_folded 1996#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1997#endif 1998 1999#ifndef p4d_offset_lockless 2000#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 2001#endif 2002#ifndef pud_offset_lockless 2003#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 2004#endif 2005#ifndef pmd_offset_lockless 2006#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 2007#endif 2008 2009/* 2010 * pXd_leaf() is the API to check whether a pgtable entry is a huge page 2011 * mapping. It should work globally across all archs, without any 2012 * dependency on CONFIG_* options. For architectures that do not support 2013 * huge mappings on specific levels, below fallbacks will be used. 2014 * 2015 * A leaf pgtable entry should always imply the following: 2016 * 2017 * - It is a "present" entry. IOW, before using this API, please check it 2018 * with pXd_present() first. NOTE: it may not always mean the "present 2019 * bit" is set. For example, PROT_NONE entries are always "present". 2020 * 2021 * - It should _never_ be a swap entry of any type. Above "present" check 2022 * should have guarded this, but let's be crystal clear on this. 2023 * 2024 * - It should contain a huge PFN, which points to a huge page larger than 2025 * PAGE_SIZE of the platform. The PFN format isn't important here. 2026 * 2027 * - It should cover all kinds of huge mappings (i.e. pXd_trans_huge() 2028 * or hugetlb mappings). 2029 */ 2030#ifndef pgd_leaf 2031#define pgd_leaf(x) false 2032#endif 2033#ifndef p4d_leaf 2034#define p4d_leaf(x) false 2035#endif 2036#ifndef pud_leaf 2037#define pud_leaf(x) false 2038#endif 2039#ifndef pmd_leaf 2040#define pmd_leaf(x) false 2041#endif 2042 2043#ifndef pgd_leaf_size 2044#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 2045#endif 2046#ifndef p4d_leaf_size 2047#define p4d_leaf_size(x) P4D_SIZE 2048#endif 2049#ifndef pud_leaf_size 2050#define pud_leaf_size(x) PUD_SIZE 2051#endif 2052#ifndef pmd_leaf_size 2053#define pmd_leaf_size(x) PMD_SIZE 2054#endif 2055#ifndef __pte_leaf_size 2056#ifndef pte_leaf_size 2057#define pte_leaf_size(x) PAGE_SIZE 2058#endif 2059#define __pte_leaf_size(x,y) pte_leaf_size(y) 2060#endif 2061 2062/* 2063 * We always define pmd_pfn for all archs as it's used in lots of generic 2064 * code. Now it happens too for pud_pfn (and can happen for larger 2065 * mappings too in the future; we're not there yet). Instead of defining 2066 * it for all archs (like pmd_pfn), provide a fallback. 2067 * 2068 * Note that returning 0 here means any arch that didn't define this can 2069 * get severely wrong when it hits a real pud leaf. It's arch's 2070 * responsibility to properly define it when a huge pud is possible. 2071 */ 2072#ifndef pud_pfn 2073#define pud_pfn(x) 0 2074#endif 2075 2076/* 2077 * Some architectures have MMUs that are configurable or selectable at boot 2078 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 2079 * helps to have a static maximum value. 2080 */ 2081 2082#ifndef MAX_PTRS_PER_PTE 2083#define MAX_PTRS_PER_PTE PTRS_PER_PTE 2084#endif 2085 2086#ifndef MAX_PTRS_PER_PMD 2087#define MAX_PTRS_PER_PMD PTRS_PER_PMD 2088#endif 2089 2090#ifndef MAX_PTRS_PER_PUD 2091#define MAX_PTRS_PER_PUD PTRS_PER_PUD 2092#endif 2093 2094#ifndef MAX_PTRS_PER_P4D 2095#define MAX_PTRS_PER_P4D PTRS_PER_P4D 2096#endif 2097 2098#ifndef pte_pgprot 2099#define pte_pgprot(x) ((pgprot_t) {0}) 2100#endif 2101 2102#ifndef pmd_pgprot 2103#define pmd_pgprot(x) ((pgprot_t) {0}) 2104#endif 2105 2106#ifndef pud_pgprot 2107#define pud_pgprot(x) ((pgprot_t) {0}) 2108#endif 2109 2110/* description of effects of mapping type and prot in current implementation. 2111 * this is due to the limited x86 page protection hardware. The expected 2112 * behavior is in parens: 2113 * 2114 * map_type prot 2115 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 2116 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 2117 * w: (no) no w: (no) no w: (yes) yes w: (no) no 2118 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 2119 * 2120 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 2121 * w: (no) no w: (no) no w: (copy) copy w: (no) no 2122 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 2123 * 2124 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 2125 * MAP_PRIVATE (with Enhanced PAN supported): 2126 * r: (no) no 2127 * w: (no) no 2128 * x: (yes) yes 2129 */ 2130#define DECLARE_VM_GET_PAGE_PROT \ 2131pgprot_t vm_get_page_prot(vm_flags_t vm_flags) \ 2132{ \ 2133 return protection_map[vm_flags & \ 2134 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 2135} \ 2136EXPORT_SYMBOL(vm_get_page_prot); 2137 2138#endif /* _LINUX_PGTABLE_H */