Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55/*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
67static inline unsigned long pte_index(unsigned long address)
68{
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70}
71
72#ifndef pmd_index
73static inline unsigned long pmd_index(unsigned long address)
74{
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76}
77#define pmd_index pmd_index
78#endif
79
80#ifndef pud_index
81static inline unsigned long pud_index(unsigned long address)
82{
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84}
85#define pud_index pud_index
86#endif
87
88#ifndef pgd_index
89/* Must be a compile-time constant, so implement it as a macro */
90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91#endif
92
93#ifndef kernel_pte_init
94static inline void kernel_pte_init(void *addr)
95{
96}
97#define kernel_pte_init kernel_pte_init
98#endif
99
100#ifndef pmd_init
101static inline void pmd_init(void *addr)
102{
103}
104#define pmd_init pmd_init
105#endif
106
107#ifndef pud_init
108static inline void pud_init(void *addr)
109{
110}
111#define pud_init pud_init
112#endif
113
114#ifndef pte_offset_kernel
115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116{
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118}
119#define pte_offset_kernel pte_offset_kernel
120#endif
121
122#ifdef CONFIG_HIGHPTE
123#define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125#define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128} while (0)
129#else
130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131{
132 return pte_offset_kernel(pmd, address);
133}
134static inline void pte_unmap(pte_t *pte)
135{
136 rcu_read_unlock();
137}
138#endif
139
140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141
142/* Find an entry in the second-level page table.. */
143#ifndef pmd_offset
144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145{
146 return pud_pgtable(*pud) + pmd_index(address);
147}
148#define pmd_offset pmd_offset
149#endif
150
151#ifndef pud_offset
152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153{
154 return p4d_pgtable(*p4d) + pud_index(address);
155}
156#define pud_offset pud_offset
157#endif
158
159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160{
161 return (pgd + pgd_index(address));
162};
163
164/*
165 * a shortcut to get a pgd_t in a given mm
166 */
167#ifndef pgd_offset
168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169#endif
170
171/*
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
174 */
175#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
176
177/*
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
183 */
184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185{
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187}
188
189static inline pmd_t *pmd_off_k(unsigned long va)
190{
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192}
193
194static inline pte_t *virt_to_kpte(unsigned long vaddr)
195{
196 pmd_t *pmd = pmd_off_k(vaddr);
197
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199}
200
201#ifndef pmd_young
202static inline int pmd_young(pmd_t pmd)
203{
204 return 0;
205}
206#endif
207
208#ifndef pmd_dirty
209static inline int pmd_dirty(pmd_t pmd)
210{
211 return 0;
212}
213#endif
214
215/*
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date.
226 *
227 * In the general case, no lock is guaranteed to be held between entry and exit
228 * of the lazy mode. So the implementation must assume preemption may be enabled
229 * and cpu migration is possible; it must take steps to be robust against this.
230 * (In practice, for user PTE updates, the appropriate page table lock(s) are
231 * held, but for kernel PTE updates, no lock is held). Nesting is not permitted
232 * and the mode cannot be used in interrupt context.
233 */
234#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
235#define arch_enter_lazy_mmu_mode() do {} while (0)
236#define arch_leave_lazy_mmu_mode() do {} while (0)
237#define arch_flush_lazy_mmu_mode() do {} while (0)
238#endif
239
240#ifndef pte_batch_hint
241/**
242 * pte_batch_hint - Number of pages that can be added to batch without scanning.
243 * @ptep: Page table pointer for the entry.
244 * @pte: Page table entry.
245 *
246 * Some architectures know that a set of contiguous ptes all map the same
247 * contiguous memory with the same permissions. In this case, it can provide a
248 * hint to aid pte batching without the core code needing to scan every pte.
249 *
250 * An architecture implementation may ignore the PTE accessed state. Further,
251 * the dirty state must apply atomically to all the PTEs described by the hint.
252 *
253 * May be overridden by the architecture, else pte_batch_hint is always 1.
254 */
255static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
256{
257 return 1;
258}
259#endif
260
261#ifndef pte_advance_pfn
262static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
263{
264 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
265}
266#endif
267
268#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
269
270#ifndef set_ptes
271/**
272 * set_ptes - Map consecutive pages to a contiguous range of addresses.
273 * @mm: Address space to map the pages into.
274 * @addr: Address to map the first page at.
275 * @ptep: Page table pointer for the first entry.
276 * @pte: Page table entry for the first page.
277 * @nr: Number of pages to map.
278 *
279 * When nr==1, initial state of pte may be present or not present, and new state
280 * may be present or not present. When nr>1, initial state of all ptes must be
281 * not present, and new state must be present.
282 *
283 * May be overridden by the architecture, or the architecture can define
284 * set_pte() and PFN_PTE_SHIFT.
285 *
286 * Context: The caller holds the page table lock. The pages all belong
287 * to the same folio. The PTEs are all in the same PMD.
288 */
289static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
290 pte_t *ptep, pte_t pte, unsigned int nr)
291{
292 page_table_check_ptes_set(mm, ptep, pte, nr);
293
294 for (;;) {
295 set_pte(ptep, pte);
296 if (--nr == 0)
297 break;
298 ptep++;
299 pte = pte_next_pfn(pte);
300 }
301}
302#endif
303#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
304
305#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
306extern int ptep_set_access_flags(struct vm_area_struct *vma,
307 unsigned long address, pte_t *ptep,
308 pte_t entry, int dirty);
309#endif
310
311#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
313extern int pmdp_set_access_flags(struct vm_area_struct *vma,
314 unsigned long address, pmd_t *pmdp,
315 pmd_t entry, int dirty);
316extern int pudp_set_access_flags(struct vm_area_struct *vma,
317 unsigned long address, pud_t *pudp,
318 pud_t entry, int dirty);
319#else
320static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
321 unsigned long address, pmd_t *pmdp,
322 pmd_t entry, int dirty)
323{
324 BUILD_BUG();
325 return 0;
326}
327static inline int pudp_set_access_flags(struct vm_area_struct *vma,
328 unsigned long address, pud_t *pudp,
329 pud_t entry, int dirty)
330{
331 BUILD_BUG();
332 return 0;
333}
334#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
335#endif
336
337#ifndef ptep_get
338static inline pte_t ptep_get(pte_t *ptep)
339{
340 return READ_ONCE(*ptep);
341}
342#endif
343
344#ifndef pmdp_get
345static inline pmd_t pmdp_get(pmd_t *pmdp)
346{
347 return READ_ONCE(*pmdp);
348}
349#endif
350
351#ifndef pudp_get
352static inline pud_t pudp_get(pud_t *pudp)
353{
354 return READ_ONCE(*pudp);
355}
356#endif
357
358#ifndef p4dp_get
359static inline p4d_t p4dp_get(p4d_t *p4dp)
360{
361 return READ_ONCE(*p4dp);
362}
363#endif
364
365#ifndef pgdp_get
366static inline pgd_t pgdp_get(pgd_t *pgdp)
367{
368 return READ_ONCE(*pgdp);
369}
370#endif
371
372#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
373static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
374 unsigned long address,
375 pte_t *ptep)
376{
377 pte_t pte = ptep_get(ptep);
378 int r = 1;
379 if (!pte_young(pte))
380 r = 0;
381 else
382 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
383 return r;
384}
385#endif
386
387#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
388#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
389static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
390 unsigned long address,
391 pmd_t *pmdp)
392{
393 pmd_t pmd = *pmdp;
394 int r = 1;
395 if (!pmd_young(pmd))
396 r = 0;
397 else
398 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
399 return r;
400}
401#else
402static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
403 unsigned long address,
404 pmd_t *pmdp)
405{
406 BUILD_BUG();
407 return 0;
408}
409#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
410#endif
411
412#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
413int ptep_clear_flush_young(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep);
415#endif
416
417#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
419extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
420 unsigned long address, pmd_t *pmdp);
421#else
422/*
423 * Despite relevant to THP only, this API is called from generic rmap code
424 * under PageTransHuge(), hence needs a dummy implementation for !THP
425 */
426static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
427 unsigned long address, pmd_t *pmdp)
428{
429 BUILD_BUG();
430 return 0;
431}
432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
433#endif
434
435#ifndef arch_has_hw_nonleaf_pmd_young
436/*
437 * Return whether the accessed bit in non-leaf PMD entries is supported on the
438 * local CPU.
439 */
440static inline bool arch_has_hw_nonleaf_pmd_young(void)
441{
442 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
443}
444#endif
445
446#ifndef arch_has_hw_pte_young
447/*
448 * Return whether the accessed bit is supported on the local CPU.
449 *
450 * This stub assumes accessing through an old PTE triggers a page fault.
451 * Architectures that automatically set the access bit should overwrite it.
452 */
453static inline bool arch_has_hw_pte_young(void)
454{
455 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
456}
457#endif
458
459#ifndef exec_folio_order
460/*
461 * Returns preferred minimum folio order for executable file-backed memory. Must
462 * be in range [0, PMD_ORDER). Default to order-0.
463 */
464static inline unsigned int exec_folio_order(void)
465{
466 return 0;
467}
468#endif
469
470#ifndef arch_check_zapped_pte
471static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
472 pte_t pte)
473{
474}
475#endif
476
477#ifndef arch_check_zapped_pmd
478static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
479 pmd_t pmd)
480{
481}
482#endif
483
484#ifndef arch_check_zapped_pud
485static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
486{
487}
488#endif
489
490#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
491static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
492 unsigned long address,
493 pte_t *ptep)
494{
495 pte_t pte = ptep_get(ptep);
496 pte_clear(mm, address, ptep);
497 page_table_check_pte_clear(mm, pte);
498 return pte;
499}
500#endif
501
502#ifndef clear_young_dirty_ptes
503/**
504 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
505 * same folio as old/clean.
506 * @mm: Address space the pages are mapped into.
507 * @addr: Address the first page is mapped at.
508 * @ptep: Page table pointer for the first entry.
509 * @nr: Number of entries to mark old/clean.
510 * @flags: Flags to modify the PTE batch semantics.
511 *
512 * May be overridden by the architecture; otherwise, implemented by
513 * get_and_clear/modify/set for each pte in the range.
514 *
515 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
516 * some PTEs might be write-protected.
517 *
518 * Context: The caller holds the page table lock. The PTEs map consecutive
519 * pages that belong to the same folio. The PTEs are all in the same PMD.
520 */
521static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
522 unsigned long addr, pte_t *ptep,
523 unsigned int nr, cydp_t flags)
524{
525 pte_t pte;
526
527 for (;;) {
528 if (flags == CYDP_CLEAR_YOUNG)
529 ptep_test_and_clear_young(vma, addr, ptep);
530 else {
531 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
532 if (flags & CYDP_CLEAR_YOUNG)
533 pte = pte_mkold(pte);
534 if (flags & CYDP_CLEAR_DIRTY)
535 pte = pte_mkclean(pte);
536 set_pte_at(vma->vm_mm, addr, ptep, pte);
537 }
538 if (--nr == 0)
539 break;
540 ptep++;
541 addr += PAGE_SIZE;
542 }
543}
544#endif
545
546static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
547 pte_t *ptep)
548{
549 pte_t pte = ptep_get(ptep);
550
551 pte_clear(mm, addr, ptep);
552 /*
553 * No need for ptep_get_and_clear(): page table check doesn't care about
554 * any bits that could have been set by HW concurrently.
555 */
556 page_table_check_pte_clear(mm, pte);
557}
558
559#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
560/*
561 * For walking the pagetables without holding any locks. Some architectures
562 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
563 * instructions. We are guaranteed that a PTE will only either go from not
564 * present to present, or present to not present -- it will not switch to a
565 * completely different present page without a TLB flush inbetween; which we
566 * are blocking by holding interrupts off.
567 *
568 * Setting ptes from not present to present goes:
569 *
570 * ptep->pte_high = h;
571 * smp_wmb();
572 * ptep->pte_low = l;
573 *
574 * And present to not present goes:
575 *
576 * ptep->pte_low = 0;
577 * smp_wmb();
578 * ptep->pte_high = 0;
579 *
580 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
581 * We load pte_high *after* loading pte_low, which ensures we don't see an older
582 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
583 * picked up a changed pte high. We might have gotten rubbish values from
584 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
585 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
586 * operates on present ptes we're safe.
587 */
588static inline pte_t ptep_get_lockless(pte_t *ptep)
589{
590 pte_t pte;
591
592 do {
593 pte.pte_low = ptep->pte_low;
594 smp_rmb();
595 pte.pte_high = ptep->pte_high;
596 smp_rmb();
597 } while (unlikely(pte.pte_low != ptep->pte_low));
598
599 return pte;
600}
601#define ptep_get_lockless ptep_get_lockless
602
603#if CONFIG_PGTABLE_LEVELS > 2
604static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
605{
606 pmd_t pmd;
607
608 do {
609 pmd.pmd_low = pmdp->pmd_low;
610 smp_rmb();
611 pmd.pmd_high = pmdp->pmd_high;
612 smp_rmb();
613 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
614
615 return pmd;
616}
617#define pmdp_get_lockless pmdp_get_lockless
618#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
619#endif /* CONFIG_PGTABLE_LEVELS > 2 */
620#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
621
622/*
623 * We require that the PTE can be read atomically.
624 */
625#ifndef ptep_get_lockless
626static inline pte_t ptep_get_lockless(pte_t *ptep)
627{
628 return ptep_get(ptep);
629}
630#endif
631
632#ifndef pmdp_get_lockless
633static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
634{
635 return pmdp_get(pmdp);
636}
637static inline void pmdp_get_lockless_sync(void)
638{
639}
640#endif
641
642#ifdef CONFIG_TRANSPARENT_HUGEPAGE
643#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
644static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
645 unsigned long address,
646 pmd_t *pmdp)
647{
648 pmd_t pmd = *pmdp;
649
650 pmd_clear(pmdp);
651 page_table_check_pmd_clear(mm, pmd);
652
653 return pmd;
654}
655#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
656#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
657static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
658 unsigned long address,
659 pud_t *pudp)
660{
661 pud_t pud = *pudp;
662
663 pud_clear(pudp);
664 page_table_check_pud_clear(mm, pud);
665
666 return pud;
667}
668#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
669#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
670
671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
672#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
673static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
674 unsigned long address, pmd_t *pmdp,
675 int full)
676{
677 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
678}
679#endif
680
681#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
682static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
683 unsigned long address, pud_t *pudp,
684 int full)
685{
686 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
687}
688#endif
689#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
690
691#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
692static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
693 unsigned long address, pte_t *ptep,
694 int full)
695{
696 return ptep_get_and_clear(mm, address, ptep);
697}
698#endif
699
700#ifndef get_and_clear_full_ptes
701/**
702 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
703 * the same folio, collecting dirty/accessed bits.
704 * @mm: Address space the pages are mapped into.
705 * @addr: Address the first page is mapped at.
706 * @ptep: Page table pointer for the first entry.
707 * @nr: Number of entries to clear.
708 * @full: Whether we are clearing a full mm.
709 *
710 * May be overridden by the architecture; otherwise, implemented as a simple
711 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
712 * returned PTE.
713 *
714 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
715 * some PTEs might be write-protected.
716 *
717 * Context: The caller holds the page table lock. The PTEs map consecutive
718 * pages that belong to the same folio. The PTEs are all in the same PMD.
719 */
720static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
721 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
722{
723 pte_t pte, tmp_pte;
724
725 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
726 while (--nr) {
727 ptep++;
728 addr += PAGE_SIZE;
729 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
730 if (pte_dirty(tmp_pte))
731 pte = pte_mkdirty(pte);
732 if (pte_young(tmp_pte))
733 pte = pte_mkyoung(pte);
734 }
735 return pte;
736}
737#endif
738
739/**
740 * get_and_clear_ptes - Clear present PTEs that map consecutive pages of
741 * the same folio, collecting dirty/accessed bits.
742 * @mm: Address space the pages are mapped into.
743 * @addr: Address the first page is mapped at.
744 * @ptep: Page table pointer for the first entry.
745 * @nr: Number of entries to clear.
746 *
747 * Use this instead of get_and_clear_full_ptes() if it is known that we don't
748 * need to clear the full mm, which is mostly the case.
749 *
750 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
751 * some PTEs might be write-protected.
752 *
753 * Context: The caller holds the page table lock. The PTEs map consecutive
754 * pages that belong to the same folio. The PTEs are all in the same PMD.
755 */
756static inline pte_t get_and_clear_ptes(struct mm_struct *mm, unsigned long addr,
757 pte_t *ptep, unsigned int nr)
758{
759 return get_and_clear_full_ptes(mm, addr, ptep, nr, 0);
760}
761
762#ifndef clear_full_ptes
763/**
764 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
765 * folio.
766 * @mm: Address space the pages are mapped into.
767 * @addr: Address the first page is mapped at.
768 * @ptep: Page table pointer for the first entry.
769 * @nr: Number of entries to clear.
770 * @full: Whether we are clearing a full mm.
771 *
772 * May be overridden by the architecture; otherwise, implemented as a simple
773 * loop over ptep_get_and_clear_full().
774 *
775 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
776 * some PTEs might be write-protected.
777 *
778 * Context: The caller holds the page table lock. The PTEs map consecutive
779 * pages that belong to the same folio. The PTEs are all in the same PMD.
780 */
781static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
782 pte_t *ptep, unsigned int nr, int full)
783{
784 for (;;) {
785 ptep_get_and_clear_full(mm, addr, ptep, full);
786 if (--nr == 0)
787 break;
788 ptep++;
789 addr += PAGE_SIZE;
790 }
791}
792#endif
793
794/**
795 * clear_ptes - Clear present PTEs that map consecutive pages of the same folio.
796 * @mm: Address space the pages are mapped into.
797 * @addr: Address the first page is mapped at.
798 * @ptep: Page table pointer for the first entry.
799 * @nr: Number of entries to clear.
800 *
801 * Use this instead of clear_full_ptes() if it is known that we don't need to
802 * clear the full mm, which is mostly the case.
803 *
804 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
805 * some PTEs might be write-protected.
806 *
807 * Context: The caller holds the page table lock. The PTEs map consecutive
808 * pages that belong to the same folio. The PTEs are all in the same PMD.
809 */
810static inline void clear_ptes(struct mm_struct *mm, unsigned long addr,
811 pte_t *ptep, unsigned int nr)
812{
813 clear_full_ptes(mm, addr, ptep, nr, 0);
814}
815
816/*
817 * If two threads concurrently fault at the same page, the thread that
818 * won the race updates the PTE and its local TLB/Cache. The other thread
819 * gives up, simply does nothing, and continues; on architectures where
820 * software can update TLB, local TLB can be updated here to avoid next page
821 * fault. This function updates TLB only, do nothing with cache or others.
822 * It is the difference with function update_mmu_cache.
823 */
824#ifndef update_mmu_tlb_range
825static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
826 unsigned long address, pte_t *ptep, unsigned int nr)
827{
828}
829#endif
830
831static inline void update_mmu_tlb(struct vm_area_struct *vma,
832 unsigned long address, pte_t *ptep)
833{
834 update_mmu_tlb_range(vma, address, ptep, 1);
835}
836
837/*
838 * Some architectures may be able to avoid expensive synchronization
839 * primitives when modifications are made to PTE's which are already
840 * not present, or in the process of an address space destruction.
841 */
842#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
843static inline void pte_clear_not_present_full(struct mm_struct *mm,
844 unsigned long address,
845 pte_t *ptep,
846 int full)
847{
848 pte_clear(mm, address, ptep);
849}
850#endif
851
852#ifndef clear_not_present_full_ptes
853/**
854 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
855 * consecutive in the pgtable.
856 * @mm: Address space the ptes represent.
857 * @addr: Address of the first pte.
858 * @ptep: Page table pointer for the first entry.
859 * @nr: Number of entries to clear.
860 * @full: Whether we are clearing a full mm.
861 *
862 * May be overridden by the architecture; otherwise, implemented as a simple
863 * loop over pte_clear_not_present_full().
864 *
865 * Context: The caller holds the page table lock. The PTEs are all not present.
866 * The PTEs are all in the same PMD.
867 */
868static inline void clear_not_present_full_ptes(struct mm_struct *mm,
869 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
870{
871 for (;;) {
872 pte_clear_not_present_full(mm, addr, ptep, full);
873 if (--nr == 0)
874 break;
875 ptep++;
876 addr += PAGE_SIZE;
877 }
878}
879#endif
880
881#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
882extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
883 unsigned long address,
884 pte_t *ptep);
885#endif
886
887#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
888extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
889 unsigned long address,
890 pmd_t *pmdp);
891extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
892 unsigned long address,
893 pud_t *pudp);
894#endif
895
896#ifndef pte_mkwrite
897static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
898{
899 return pte_mkwrite_novma(pte);
900}
901#endif
902
903#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
904static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
905{
906 return pmd_mkwrite_novma(pmd);
907}
908#endif
909
910#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
911struct mm_struct;
912static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
913{
914 pte_t old_pte = ptep_get(ptep);
915 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
916}
917#endif
918
919#ifndef wrprotect_ptes
920/**
921 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
922 * folio.
923 * @mm: Address space the pages are mapped into.
924 * @addr: Address the first page is mapped at.
925 * @ptep: Page table pointer for the first entry.
926 * @nr: Number of entries to write-protect.
927 *
928 * May be overridden by the architecture; otherwise, implemented as a simple
929 * loop over ptep_set_wrprotect().
930 *
931 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
932 * some PTEs might be write-protected.
933 *
934 * Context: The caller holds the page table lock. The PTEs map consecutive
935 * pages that belong to the same folio. The PTEs are all in the same PMD.
936 */
937static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
938 pte_t *ptep, unsigned int nr)
939{
940 for (;;) {
941 ptep_set_wrprotect(mm, addr, ptep);
942 if (--nr == 0)
943 break;
944 ptep++;
945 addr += PAGE_SIZE;
946 }
947}
948#endif
949
950/*
951 * On some architectures hardware does not set page access bit when accessing
952 * memory page, it is responsibility of software setting this bit. It brings
953 * out extra page fault penalty to track page access bit. For optimization page
954 * access bit can be set during all page fault flow on these arches.
955 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
956 * where software maintains page access bit.
957 */
958#ifndef pte_sw_mkyoung
959static inline pte_t pte_sw_mkyoung(pte_t pte)
960{
961 return pte;
962}
963#define pte_sw_mkyoung pte_sw_mkyoung
964#endif
965
966#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
968static inline void pmdp_set_wrprotect(struct mm_struct *mm,
969 unsigned long address, pmd_t *pmdp)
970{
971 pmd_t old_pmd = *pmdp;
972 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
973}
974#else
975static inline void pmdp_set_wrprotect(struct mm_struct *mm,
976 unsigned long address, pmd_t *pmdp)
977{
978 BUILD_BUG();
979}
980#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
981#endif
982#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
983#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
984#ifdef CONFIG_TRANSPARENT_HUGEPAGE
985static inline void pudp_set_wrprotect(struct mm_struct *mm,
986 unsigned long address, pud_t *pudp)
987{
988 pud_t old_pud = *pudp;
989
990 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
991}
992#else
993static inline void pudp_set_wrprotect(struct mm_struct *mm,
994 unsigned long address, pud_t *pudp)
995{
996 BUILD_BUG();
997}
998#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
999#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1000#endif
1001
1002#ifndef pmdp_collapse_flush
1003#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1004extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1005 unsigned long address, pmd_t *pmdp);
1006#else
1007static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1008 unsigned long address,
1009 pmd_t *pmdp)
1010{
1011 BUILD_BUG();
1012 return *pmdp;
1013}
1014#define pmdp_collapse_flush pmdp_collapse_flush
1015#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1016#endif
1017
1018#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
1019extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1020 pgtable_t pgtable);
1021#endif
1022
1023#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
1024extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1025#endif
1026
1027#ifndef arch_needs_pgtable_deposit
1028#define arch_needs_pgtable_deposit() (false)
1029#endif
1030
1031#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1032/*
1033 * This is an implementation of pmdp_establish() that is only suitable for an
1034 * architecture that doesn't have hardware dirty/accessed bits. In this case we
1035 * can't race with CPU which sets these bits and non-atomic approach is fine.
1036 */
1037static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
1038 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1039{
1040 pmd_t old_pmd = *pmdp;
1041 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
1042 return old_pmd;
1043}
1044#endif
1045
1046#ifndef __HAVE_ARCH_PMDP_INVALIDATE
1047extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1048 pmd_t *pmdp);
1049#endif
1050
1051#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
1052
1053/*
1054 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
1055 * hugepage mapping in the page tables. This function is similar to
1056 * pmdp_invalidate(), but should only be used if the access and dirty bits would
1057 * not be cleared by the software in the new PMD value. The function ensures
1058 * that hardware changes of the access and dirty bits updates would not be lost.
1059 *
1060 * Doing so can allow in certain architectures to avoid a TLB flush in most
1061 * cases. Yet, another TLB flush might be necessary later if the PMD update
1062 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1063 * even when a TLB flush is needed because of the update, the caller may be able
1064 * to batch these TLB flushing operations, so fewer TLB flush operations are
1065 * needed.
1066 */
1067extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1068 unsigned long address, pmd_t *pmdp);
1069#endif
1070
1071#ifndef __HAVE_ARCH_PTE_SAME
1072static inline int pte_same(pte_t pte_a, pte_t pte_b)
1073{
1074 return pte_val(pte_a) == pte_val(pte_b);
1075}
1076#endif
1077
1078#ifndef __HAVE_ARCH_PTE_UNUSED
1079/*
1080 * Some architectures provide facilities to virtualization guests
1081 * so that they can flag allocated pages as unused. This allows the
1082 * host to transparently reclaim unused pages. This function returns
1083 * whether the pte's page is unused.
1084 */
1085static inline int pte_unused(pte_t pte)
1086{
1087 return 0;
1088}
1089#endif
1090
1091#ifndef pte_access_permitted
1092#define pte_access_permitted(pte, write) \
1093 (pte_present(pte) && (!(write) || pte_write(pte)))
1094#endif
1095
1096#ifndef pmd_access_permitted
1097#define pmd_access_permitted(pmd, write) \
1098 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1099#endif
1100
1101#ifndef pud_access_permitted
1102#define pud_access_permitted(pud, write) \
1103 (pud_present(pud) && (!(write) || pud_write(pud)))
1104#endif
1105
1106#ifndef p4d_access_permitted
1107#define p4d_access_permitted(p4d, write) \
1108 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1109#endif
1110
1111#ifndef pgd_access_permitted
1112#define pgd_access_permitted(pgd, write) \
1113 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1114#endif
1115
1116#ifndef __HAVE_ARCH_PMD_SAME
1117static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1118{
1119 return pmd_val(pmd_a) == pmd_val(pmd_b);
1120}
1121#endif
1122
1123#ifndef pud_same
1124static inline int pud_same(pud_t pud_a, pud_t pud_b)
1125{
1126 return pud_val(pud_a) == pud_val(pud_b);
1127}
1128#define pud_same pud_same
1129#endif
1130
1131#ifndef __HAVE_ARCH_P4D_SAME
1132static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1133{
1134 return p4d_val(p4d_a) == p4d_val(p4d_b);
1135}
1136#endif
1137
1138#ifndef __HAVE_ARCH_PGD_SAME
1139static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1140{
1141 return pgd_val(pgd_a) == pgd_val(pgd_b);
1142}
1143#endif
1144
1145#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1146static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1147 struct vm_area_struct *vma,
1148 unsigned long addr,
1149 pte_t pte, pte_t oldpte,
1150 int nr)
1151{
1152
1153}
1154#else
1155/*
1156 * Some architectures support metadata associated with a page. When a
1157 * page is being swapped out, this metadata must be saved so it can be
1158 * restored when the page is swapped back in. SPARC M7 and newer
1159 * processors support an ADI (Application Data Integrity) tag for the
1160 * page as metadata for the page. arch_do_swap_page() can restore this
1161 * metadata when a page is swapped back in.
1162 */
1163static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1164 struct vm_area_struct *vma,
1165 unsigned long addr,
1166 pte_t pte, pte_t oldpte,
1167 int nr)
1168{
1169 for (int i = 0; i < nr; i++) {
1170 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1171 pte_advance_pfn(pte, i),
1172 pte_advance_pfn(oldpte, i));
1173 }
1174}
1175#endif
1176
1177#ifndef __HAVE_ARCH_UNMAP_ONE
1178/*
1179 * Some architectures support metadata associated with a page. When a
1180 * page is being swapped out, this metadata must be saved so it can be
1181 * restored when the page is swapped back in. SPARC M7 and newer
1182 * processors support an ADI (Application Data Integrity) tag for the
1183 * page as metadata for the page. arch_unmap_one() can save this
1184 * metadata on a swap-out of a page.
1185 */
1186static inline int arch_unmap_one(struct mm_struct *mm,
1187 struct vm_area_struct *vma,
1188 unsigned long addr,
1189 pte_t orig_pte)
1190{
1191 return 0;
1192}
1193#endif
1194
1195/*
1196 * Allow architectures to preserve additional metadata associated with
1197 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1198 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1199 */
1200#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1201static inline int arch_prepare_to_swap(struct folio *folio)
1202{
1203 return 0;
1204}
1205#endif
1206
1207#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1208static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1209{
1210}
1211
1212static inline void arch_swap_invalidate_area(int type)
1213{
1214}
1215#endif
1216
1217#ifndef __HAVE_ARCH_SWAP_RESTORE
1218static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1219{
1220}
1221#endif
1222
1223#ifndef __HAVE_ARCH_MOVE_PTE
1224#define move_pte(pte, old_addr, new_addr) (pte)
1225#endif
1226
1227#ifndef pte_accessible
1228# define pte_accessible(mm, pte) ((void)(pte), 1)
1229#endif
1230
1231#ifndef flush_tlb_fix_spurious_fault
1232#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1233#endif
1234
1235/*
1236 * When walking page tables, get the address of the next boundary,
1237 * or the end address of the range if that comes earlier. Although no
1238 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1239 */
1240
1241#define pgd_addr_end(addr, end) \
1242({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1243 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1244})
1245
1246#ifndef p4d_addr_end
1247#define p4d_addr_end(addr, end) \
1248({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1249 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1250})
1251#endif
1252
1253#ifndef pud_addr_end
1254#define pud_addr_end(addr, end) \
1255({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1256 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1257})
1258#endif
1259
1260#ifndef pmd_addr_end
1261#define pmd_addr_end(addr, end) \
1262({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1263 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1264})
1265#endif
1266
1267/*
1268 * When walking page tables, we usually want to skip any p?d_none entries;
1269 * and any p?d_bad entries - reporting the error before resetting to none.
1270 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1271 */
1272void pgd_clear_bad(pgd_t *);
1273
1274#ifndef __PAGETABLE_P4D_FOLDED
1275void p4d_clear_bad(p4d_t *);
1276#else
1277#define p4d_clear_bad(p4d) do { } while (0)
1278#endif
1279
1280#ifndef __PAGETABLE_PUD_FOLDED
1281void pud_clear_bad(pud_t *);
1282#else
1283#define pud_clear_bad(p4d) do { } while (0)
1284#endif
1285
1286void pmd_clear_bad(pmd_t *);
1287
1288static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1289{
1290 if (pgd_none(*pgd))
1291 return 1;
1292 if (unlikely(pgd_bad(*pgd))) {
1293 pgd_clear_bad(pgd);
1294 return 1;
1295 }
1296 return 0;
1297}
1298
1299static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1300{
1301 if (p4d_none(*p4d))
1302 return 1;
1303 if (unlikely(p4d_bad(*p4d))) {
1304 p4d_clear_bad(p4d);
1305 return 1;
1306 }
1307 return 0;
1308}
1309
1310static inline int pud_none_or_clear_bad(pud_t *pud)
1311{
1312 if (pud_none(*pud))
1313 return 1;
1314 if (unlikely(pud_bad(*pud))) {
1315 pud_clear_bad(pud);
1316 return 1;
1317 }
1318 return 0;
1319}
1320
1321static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1322{
1323 if (pmd_none(*pmd))
1324 return 1;
1325 if (unlikely(pmd_bad(*pmd))) {
1326 pmd_clear_bad(pmd);
1327 return 1;
1328 }
1329 return 0;
1330}
1331
1332static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1333 unsigned long addr,
1334 pte_t *ptep)
1335{
1336 /*
1337 * Get the current pte state, but zero it out to make it
1338 * non-present, preventing the hardware from asynchronously
1339 * updating it.
1340 */
1341 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1342}
1343
1344static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1345 unsigned long addr,
1346 pte_t *ptep, pte_t pte)
1347{
1348 /*
1349 * The pte is non-present, so there's no hardware state to
1350 * preserve.
1351 */
1352 set_pte_at(vma->vm_mm, addr, ptep, pte);
1353}
1354
1355#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1356/*
1357 * Start a pte protection read-modify-write transaction, which
1358 * protects against asynchronous hardware modifications to the pte.
1359 * The intention is not to prevent the hardware from making pte
1360 * updates, but to prevent any updates it may make from being lost.
1361 *
1362 * This does not protect against other software modifications of the
1363 * pte; the appropriate pte lock must be held over the transaction.
1364 *
1365 * Note that this interface is intended to be batchable, meaning that
1366 * ptep_modify_prot_commit may not actually update the pte, but merely
1367 * queue the update to be done at some later time. The update must be
1368 * actually committed before the pte lock is released, however.
1369 */
1370static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1371 unsigned long addr,
1372 pte_t *ptep)
1373{
1374 return __ptep_modify_prot_start(vma, addr, ptep);
1375}
1376
1377/*
1378 * Commit an update to a pte, leaving any hardware-controlled bits in
1379 * the PTE unmodified. The pte returned from ptep_modify_prot_start() may
1380 * additionally have young and/or dirty bits set where previously they were not,
1381 * so the updated pte may have these additional changes.
1382 */
1383static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1384 unsigned long addr,
1385 pte_t *ptep, pte_t old_pte, pte_t pte)
1386{
1387 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1388}
1389#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1390
1391/**
1392 * modify_prot_start_ptes - Start a pte protection read-modify-write transaction
1393 * over a batch of ptes, which protects against asynchronous hardware
1394 * modifications to the ptes. The intention is not to prevent the hardware from
1395 * making pte updates, but to prevent any updates it may make from being lost.
1396 * Please see the comment above ptep_modify_prot_start() for full description.
1397 *
1398 * @vma: The virtual memory area the pages are mapped into.
1399 * @addr: Address the first page is mapped at.
1400 * @ptep: Page table pointer for the first entry.
1401 * @nr: Number of entries.
1402 *
1403 * May be overridden by the architecture; otherwise, implemented as a simple
1404 * loop over ptep_modify_prot_start(), collecting the a/d bits from each pte
1405 * in the batch.
1406 *
1407 * Note that PTE bits in the PTE batch besides the PFN can differ.
1408 *
1409 * Context: The caller holds the page table lock. The PTEs map consecutive
1410 * pages that belong to the same folio. All other PTE bits must be identical for
1411 * all PTEs in the batch except for young and dirty bits. The PTEs are all in
1412 * the same PMD.
1413 */
1414#ifndef modify_prot_start_ptes
1415static inline pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1416 unsigned long addr, pte_t *ptep, unsigned int nr)
1417{
1418 pte_t pte, tmp_pte;
1419
1420 pte = ptep_modify_prot_start(vma, addr, ptep);
1421 while (--nr) {
1422 ptep++;
1423 addr += PAGE_SIZE;
1424 tmp_pte = ptep_modify_prot_start(vma, addr, ptep);
1425 if (pte_dirty(tmp_pte))
1426 pte = pte_mkdirty(pte);
1427 if (pte_young(tmp_pte))
1428 pte = pte_mkyoung(pte);
1429 }
1430 return pte;
1431}
1432#endif
1433
1434/**
1435 * modify_prot_commit_ptes - Commit an update to a batch of ptes, leaving any
1436 * hardware-controlled bits in the PTE unmodified.
1437 *
1438 * @vma: The virtual memory area the pages are mapped into.
1439 * @addr: Address the first page is mapped at.
1440 * @ptep: Page table pointer for the first entry.
1441 * @old_pte: Old page table entry (for the first entry) which is now cleared.
1442 * @pte: New page table entry to be set.
1443 * @nr: Number of entries.
1444 *
1445 * May be overridden by the architecture; otherwise, implemented as a simple
1446 * loop over ptep_modify_prot_commit().
1447 *
1448 * Context: The caller holds the page table lock. The PTEs are all in the same
1449 * PMD. On exit, the set ptes in the batch map the same folio. The ptes set by
1450 * ptep_modify_prot_start() may additionally have young and/or dirty bits set
1451 * where previously they were not, so the updated ptes may have these
1452 * additional changes.
1453 */
1454#ifndef modify_prot_commit_ptes
1455static inline void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1456 pte_t *ptep, pte_t old_pte, pte_t pte, unsigned int nr)
1457{
1458 int i;
1459
1460 for (i = 0; i < nr; ++i, ++ptep, addr += PAGE_SIZE) {
1461 ptep_modify_prot_commit(vma, addr, ptep, old_pte, pte);
1462
1463 /* Advance PFN only, set same prot */
1464 old_pte = pte_next_pfn(old_pte);
1465 pte = pte_next_pfn(pte);
1466 }
1467}
1468#endif
1469
1470#endif /* CONFIG_MMU */
1471
1472/*
1473 * No-op macros that just return the current protection value. Defined here
1474 * because these macros can be used even if CONFIG_MMU is not defined.
1475 */
1476
1477#ifndef pgprot_nx
1478#define pgprot_nx(prot) (prot)
1479#endif
1480
1481#ifndef pgprot_noncached
1482#define pgprot_noncached(prot) (prot)
1483#endif
1484
1485#ifndef pgprot_writecombine
1486#define pgprot_writecombine pgprot_noncached
1487#endif
1488
1489#ifndef pgprot_writethrough
1490#define pgprot_writethrough pgprot_noncached
1491#endif
1492
1493#ifndef pgprot_device
1494#define pgprot_device pgprot_noncached
1495#endif
1496
1497#ifndef pgprot_mhp
1498#define pgprot_mhp(prot) (prot)
1499#endif
1500
1501#ifdef CONFIG_MMU
1502#ifndef pgprot_modify
1503#define pgprot_modify pgprot_modify
1504static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1505{
1506 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1507 newprot = pgprot_noncached(newprot);
1508 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1509 newprot = pgprot_writecombine(newprot);
1510 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1511 newprot = pgprot_device(newprot);
1512 return newprot;
1513}
1514#endif
1515#endif /* CONFIG_MMU */
1516
1517#ifndef pgprot_encrypted
1518#define pgprot_encrypted(prot) (prot)
1519#endif
1520
1521#ifndef pgprot_decrypted
1522#define pgprot_decrypted(prot) (prot)
1523#endif
1524
1525/*
1526 * A facility to provide batching of the reload of page tables and
1527 * other process state with the actual context switch code for
1528 * paravirtualized guests. By convention, only one of the batched
1529 * update (lazy) modes (CPU, MMU) should be active at any given time,
1530 * entry should never be nested, and entry and exits should always be
1531 * paired. This is for sanity of maintaining and reasoning about the
1532 * kernel code. In this case, the exit (end of the context switch) is
1533 * in architecture-specific code, and so doesn't need a generic
1534 * definition.
1535 */
1536#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1537#define arch_start_context_switch(prev) do {} while (0)
1538#endif
1539
1540#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1541#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1542static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1543{
1544 return pmd;
1545}
1546
1547static inline int pmd_swp_soft_dirty(pmd_t pmd)
1548{
1549 return 0;
1550}
1551
1552static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1553{
1554 return pmd;
1555}
1556#endif
1557#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1558static inline int pte_soft_dirty(pte_t pte)
1559{
1560 return 0;
1561}
1562
1563static inline int pmd_soft_dirty(pmd_t pmd)
1564{
1565 return 0;
1566}
1567
1568static inline pte_t pte_mksoft_dirty(pte_t pte)
1569{
1570 return pte;
1571}
1572
1573static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1574{
1575 return pmd;
1576}
1577
1578static inline pte_t pte_clear_soft_dirty(pte_t pte)
1579{
1580 return pte;
1581}
1582
1583static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1584{
1585 return pmd;
1586}
1587
1588static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1589{
1590 return pte;
1591}
1592
1593static inline int pte_swp_soft_dirty(pte_t pte)
1594{
1595 return 0;
1596}
1597
1598static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1599{
1600 return pte;
1601}
1602
1603static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1604{
1605 return pmd;
1606}
1607
1608static inline int pmd_swp_soft_dirty(pmd_t pmd)
1609{
1610 return 0;
1611}
1612
1613static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1614{
1615 return pmd;
1616}
1617#endif
1618
1619#ifndef __HAVE_PFNMAP_TRACKING
1620/*
1621 * Interfaces that can be used by architecture code to keep track of
1622 * memory type of pfn mappings specified by the remap_pfn_range,
1623 * vmf_insert_pfn.
1624 */
1625
1626static inline int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size,
1627 pgprot_t *prot)
1628{
1629 return 0;
1630}
1631
1632static inline int pfnmap_track(unsigned long pfn, unsigned long size,
1633 pgprot_t *prot)
1634{
1635 return 0;
1636}
1637
1638static inline void pfnmap_untrack(unsigned long pfn, unsigned long size)
1639{
1640}
1641#else
1642/**
1643 * pfnmap_setup_cachemode - setup the cachemode in the pgprot for a pfn range
1644 * @pfn: the start of the pfn range
1645 * @size: the size of the pfn range in bytes
1646 * @prot: the pgprot to modify
1647 *
1648 * Lookup the cachemode for the pfn range starting at @pfn with the size
1649 * @size and store it in @prot, leaving other data in @prot unchanged.
1650 *
1651 * This allows for a hardware implementation to have fine-grained control of
1652 * memory cache behavior at page level granularity. Without a hardware
1653 * implementation, this function does nothing.
1654 *
1655 * Currently there is only one implementation for this - x86 Page Attribute
1656 * Table (PAT). See Documentation/arch/x86/pat.rst for more details.
1657 *
1658 * This function can fail if the pfn range spans pfns that require differing
1659 * cachemodes. If the pfn range was previously verified to have a single
1660 * cachemode, it is sufficient to query only a single pfn. The assumption is
1661 * that this is the case for drivers using the vmf_insert_pfn*() interface.
1662 *
1663 * Returns 0 on success and -EINVAL on error.
1664 */
1665int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size,
1666 pgprot_t *prot);
1667
1668/**
1669 * pfnmap_track - track a pfn range
1670 * @pfn: the start of the pfn range
1671 * @size: the size of the pfn range in bytes
1672 * @prot: the pgprot to track
1673 *
1674 * Requested the pfn range to be 'tracked' by a hardware implementation and
1675 * setup the cachemode in @prot similar to pfnmap_setup_cachemode().
1676 *
1677 * This allows for fine-grained control of memory cache behaviour at page
1678 * level granularity. Tracking memory this way is persisted across VMA splits
1679 * (VMA merging does not apply for VM_PFNMAP).
1680 *
1681 * Currently, there is only one implementation for this - x86 Page Attribute
1682 * Table (PAT). See Documentation/arch/x86/pat.rst for more details.
1683 *
1684 * Returns 0 on success and -EINVAL on error.
1685 */
1686int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot);
1687
1688/**
1689 * pfnmap_untrack - untrack a pfn range
1690 * @pfn: the start of the pfn range
1691 * @size: the size of the pfn range in bytes
1692 *
1693 * Untrack a pfn range previously tracked through pfnmap_track().
1694 */
1695void pfnmap_untrack(unsigned long pfn, unsigned long size);
1696#endif
1697
1698/**
1699 * pfnmap_setup_cachemode_pfn - setup the cachemode in the pgprot for a pfn
1700 * @pfn: the pfn
1701 * @prot: the pgprot to modify
1702 *
1703 * Lookup the cachemode for @pfn and store it in @prot, leaving other
1704 * data in @prot unchanged.
1705 *
1706 * See pfnmap_setup_cachemode() for details.
1707 */
1708static inline void pfnmap_setup_cachemode_pfn(unsigned long pfn, pgprot_t *prot)
1709{
1710 pfnmap_setup_cachemode(pfn, PAGE_SIZE, prot);
1711}
1712
1713#ifdef CONFIG_MMU
1714#ifdef __HAVE_COLOR_ZERO_PAGE
1715static inline int is_zero_pfn(unsigned long pfn)
1716{
1717 extern unsigned long zero_pfn;
1718 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1719 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1720}
1721
1722#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1723
1724#else
1725static inline int is_zero_pfn(unsigned long pfn)
1726{
1727 extern unsigned long zero_pfn;
1728 return pfn == zero_pfn;
1729}
1730
1731static inline unsigned long my_zero_pfn(unsigned long addr)
1732{
1733 extern unsigned long zero_pfn;
1734 return zero_pfn;
1735}
1736#endif
1737#else
1738static inline int is_zero_pfn(unsigned long pfn)
1739{
1740 return 0;
1741}
1742
1743static inline unsigned long my_zero_pfn(unsigned long addr)
1744{
1745 return 0;
1746}
1747#endif /* CONFIG_MMU */
1748
1749#ifdef CONFIG_MMU
1750
1751#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1752static inline int pmd_trans_huge(pmd_t pmd)
1753{
1754 return 0;
1755}
1756#ifndef pmd_write
1757static inline int pmd_write(pmd_t pmd)
1758{
1759 BUG();
1760 return 0;
1761}
1762#endif /* pmd_write */
1763#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1764
1765#ifndef pud_write
1766static inline int pud_write(pud_t pud)
1767{
1768 BUG();
1769 return 0;
1770}
1771#endif /* pud_write */
1772
1773#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1774 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1775static inline int pud_trans_huge(pud_t pud)
1776{
1777 return 0;
1778}
1779#endif
1780
1781static inline int pud_trans_unstable(pud_t *pud)
1782{
1783#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1784 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1785 pud_t pudval = READ_ONCE(*pud);
1786
1787 if (pud_none(pudval) || pud_trans_huge(pudval))
1788 return 1;
1789 if (unlikely(pud_bad(pudval))) {
1790 pud_clear_bad(pud);
1791 return 1;
1792 }
1793#endif
1794 return 0;
1795}
1796
1797#ifndef CONFIG_NUMA_BALANCING
1798/*
1799 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1800 * perfectly valid to indicate "no" in that case, which is why our default
1801 * implementation defaults to "always no".
1802 *
1803 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1804 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1805 * accessible VMAs.
1806 *
1807 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1808 * looking at the VMA accessibility is sufficient.
1809 */
1810static inline int pte_protnone(pte_t pte)
1811{
1812 return 0;
1813}
1814
1815static inline int pmd_protnone(pmd_t pmd)
1816{
1817 return 0;
1818}
1819#endif /* CONFIG_NUMA_BALANCING */
1820
1821#endif /* CONFIG_MMU */
1822
1823#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1824
1825#ifndef __PAGETABLE_P4D_FOLDED
1826int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1827void p4d_clear_huge(p4d_t *p4d);
1828#else
1829static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1830{
1831 return 0;
1832}
1833static inline void p4d_clear_huge(p4d_t *p4d) { }
1834#endif /* !__PAGETABLE_P4D_FOLDED */
1835
1836int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1837int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1838int pud_clear_huge(pud_t *pud);
1839int pmd_clear_huge(pmd_t *pmd);
1840int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1841int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1842int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1843#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1844static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1845{
1846 return 0;
1847}
1848static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1849{
1850 return 0;
1851}
1852static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1853{
1854 return 0;
1855}
1856static inline void p4d_clear_huge(p4d_t *p4d) { }
1857static inline int pud_clear_huge(pud_t *pud)
1858{
1859 return 0;
1860}
1861static inline int pmd_clear_huge(pmd_t *pmd)
1862{
1863 return 0;
1864}
1865static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1866{
1867 return 0;
1868}
1869static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1870{
1871 return 0;
1872}
1873static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1874{
1875 return 0;
1876}
1877#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1878
1879#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1880#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1881/*
1882 * ARCHes with special requirements for evicting THP backing TLB entries can
1883 * implement this. Otherwise also, it can help optimize normal TLB flush in
1884 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1885 * entire TLB if flush span is greater than a threshold, which will
1886 * likely be true for a single huge page. Thus a single THP flush will
1887 * invalidate the entire TLB which is not desirable.
1888 * e.g. see arch/arc: flush_pmd_tlb_range
1889 */
1890#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1891#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1892#else
1893#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1894#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1895#endif
1896#endif
1897
1898struct file;
1899int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1900 unsigned long size, pgprot_t *vma_prot);
1901
1902#ifndef CONFIG_X86_ESPFIX64
1903static inline void init_espfix_bsp(void) { }
1904#endif
1905
1906extern void __init pgtable_cache_init(void);
1907
1908#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1909static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1910{
1911 return true;
1912}
1913
1914static inline bool arch_has_pfn_modify_check(void)
1915{
1916 return false;
1917}
1918#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1919
1920/*
1921 * Architecture PAGE_KERNEL_* fallbacks
1922 *
1923 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1924 * because they really don't support them, or the port needs to be updated to
1925 * reflect the required functionality. Below are a set of relatively safe
1926 * fallbacks, as best effort, which we can count on in lieu of the architectures
1927 * not defining them on their own yet.
1928 */
1929
1930#ifndef PAGE_KERNEL_RO
1931# define PAGE_KERNEL_RO PAGE_KERNEL
1932#endif
1933
1934#ifndef PAGE_KERNEL_EXEC
1935# define PAGE_KERNEL_EXEC PAGE_KERNEL
1936#endif
1937
1938/*
1939 * Page Table Modification bits for pgtbl_mod_mask.
1940 *
1941 * These are used by the p?d_alloc_track*() set of functions an in the generic
1942 * vmalloc/ioremap code to track at which page-table levels entries have been
1943 * modified. Based on that the code can better decide when vmalloc and ioremap
1944 * mapping changes need to be synchronized to other page-tables in the system.
1945 */
1946#define __PGTBL_PGD_MODIFIED 0
1947#define __PGTBL_P4D_MODIFIED 1
1948#define __PGTBL_PUD_MODIFIED 2
1949#define __PGTBL_PMD_MODIFIED 3
1950#define __PGTBL_PTE_MODIFIED 4
1951
1952#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1953#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1954#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1955#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1956#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1957
1958/* Page-Table Modification Mask */
1959typedef unsigned int pgtbl_mod_mask;
1960
1961#endif /* !__ASSEMBLY__ */
1962
1963#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1964#ifdef CONFIG_PHYS_ADDR_T_64BIT
1965/*
1966 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1967 * with physical address space extension, but falls back to
1968 * BITS_PER_LONG otherwise.
1969 */
1970#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1971#else
1972#define MAX_POSSIBLE_PHYSMEM_BITS 32
1973#endif
1974#endif
1975
1976#ifndef has_transparent_hugepage
1977#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1978#endif
1979
1980#ifndef has_transparent_pud_hugepage
1981#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1982#endif
1983/*
1984 * On some architectures it depends on the mm if the p4d/pud or pmd
1985 * layer of the page table hierarchy is folded or not.
1986 */
1987#ifndef mm_p4d_folded
1988#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1989#endif
1990
1991#ifndef mm_pud_folded
1992#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1993#endif
1994
1995#ifndef mm_pmd_folded
1996#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1997#endif
1998
1999#ifndef p4d_offset_lockless
2000#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
2001#endif
2002#ifndef pud_offset_lockless
2003#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
2004#endif
2005#ifndef pmd_offset_lockless
2006#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
2007#endif
2008
2009/*
2010 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
2011 * mapping. It should work globally across all archs, without any
2012 * dependency on CONFIG_* options. For architectures that do not support
2013 * huge mappings on specific levels, below fallbacks will be used.
2014 *
2015 * A leaf pgtable entry should always imply the following:
2016 *
2017 * - It is a "present" entry. IOW, before using this API, please check it
2018 * with pXd_present() first. NOTE: it may not always mean the "present
2019 * bit" is set. For example, PROT_NONE entries are always "present".
2020 *
2021 * - It should _never_ be a swap entry of any type. Above "present" check
2022 * should have guarded this, but let's be crystal clear on this.
2023 *
2024 * - It should contain a huge PFN, which points to a huge page larger than
2025 * PAGE_SIZE of the platform. The PFN format isn't important here.
2026 *
2027 * - It should cover all kinds of huge mappings (i.e. pXd_trans_huge()
2028 * or hugetlb mappings).
2029 */
2030#ifndef pgd_leaf
2031#define pgd_leaf(x) false
2032#endif
2033#ifndef p4d_leaf
2034#define p4d_leaf(x) false
2035#endif
2036#ifndef pud_leaf
2037#define pud_leaf(x) false
2038#endif
2039#ifndef pmd_leaf
2040#define pmd_leaf(x) false
2041#endif
2042
2043#ifndef pgd_leaf_size
2044#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
2045#endif
2046#ifndef p4d_leaf_size
2047#define p4d_leaf_size(x) P4D_SIZE
2048#endif
2049#ifndef pud_leaf_size
2050#define pud_leaf_size(x) PUD_SIZE
2051#endif
2052#ifndef pmd_leaf_size
2053#define pmd_leaf_size(x) PMD_SIZE
2054#endif
2055#ifndef __pte_leaf_size
2056#ifndef pte_leaf_size
2057#define pte_leaf_size(x) PAGE_SIZE
2058#endif
2059#define __pte_leaf_size(x,y) pte_leaf_size(y)
2060#endif
2061
2062/*
2063 * We always define pmd_pfn for all archs as it's used in lots of generic
2064 * code. Now it happens too for pud_pfn (and can happen for larger
2065 * mappings too in the future; we're not there yet). Instead of defining
2066 * it for all archs (like pmd_pfn), provide a fallback.
2067 *
2068 * Note that returning 0 here means any arch that didn't define this can
2069 * get severely wrong when it hits a real pud leaf. It's arch's
2070 * responsibility to properly define it when a huge pud is possible.
2071 */
2072#ifndef pud_pfn
2073#define pud_pfn(x) 0
2074#endif
2075
2076/*
2077 * Some architectures have MMUs that are configurable or selectable at boot
2078 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
2079 * helps to have a static maximum value.
2080 */
2081
2082#ifndef MAX_PTRS_PER_PTE
2083#define MAX_PTRS_PER_PTE PTRS_PER_PTE
2084#endif
2085
2086#ifndef MAX_PTRS_PER_PMD
2087#define MAX_PTRS_PER_PMD PTRS_PER_PMD
2088#endif
2089
2090#ifndef MAX_PTRS_PER_PUD
2091#define MAX_PTRS_PER_PUD PTRS_PER_PUD
2092#endif
2093
2094#ifndef MAX_PTRS_PER_P4D
2095#define MAX_PTRS_PER_P4D PTRS_PER_P4D
2096#endif
2097
2098#ifndef pte_pgprot
2099#define pte_pgprot(x) ((pgprot_t) {0})
2100#endif
2101
2102#ifndef pmd_pgprot
2103#define pmd_pgprot(x) ((pgprot_t) {0})
2104#endif
2105
2106#ifndef pud_pgprot
2107#define pud_pgprot(x) ((pgprot_t) {0})
2108#endif
2109
2110/* description of effects of mapping type and prot in current implementation.
2111 * this is due to the limited x86 page protection hardware. The expected
2112 * behavior is in parens:
2113 *
2114 * map_type prot
2115 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
2116 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
2117 * w: (no) no w: (no) no w: (yes) yes w: (no) no
2118 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
2119 *
2120 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
2121 * w: (no) no w: (no) no w: (copy) copy w: (no) no
2122 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
2123 *
2124 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
2125 * MAP_PRIVATE (with Enhanced PAN supported):
2126 * r: (no) no
2127 * w: (no) no
2128 * x: (yes) yes
2129 */
2130#define DECLARE_VM_GET_PAGE_PROT \
2131pgprot_t vm_get_page_prot(vm_flags_t vm_flags) \
2132{ \
2133 return protection_map[vm_flags & \
2134 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
2135} \
2136EXPORT_SYMBOL(vm_get_page_prot);
2137
2138#endif /* _LINUX_PGTABLE_H */