at v6.17-rc1 35 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13#ifndef _LINUX_FSCRYPT_H 14#define _LINUX_FSCRYPT_H 15 16#include <linux/fs.h> 17#include <linux/mm.h> 18#include <linux/slab.h> 19#include <uapi/linux/fscrypt.h> 20 21/* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31#define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33union fscrypt_policy; 34struct fscrypt_inode_info; 35struct fs_parameter; 36struct seq_file; 37 38struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41}; 42 43struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50}; 51 52#define FSTR_INIT(n, l) { .name = n, .len = l } 53#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54#define fname_name(p) ((p)->disk_name.name) 55#define fname_len(p) ((p)->disk_name.len) 56 57/* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58#define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60#ifdef CONFIG_FS_ENCRYPTION 61 62/* Crypto operations for filesystems */ 63struct fscrypt_operations { 64 65 /* 66 * If set, then fs/crypto/ will allocate a global bounce page pool the 67 * first time an encryption key is set up for a file. The bounce page 68 * pool is required by the following functions: 69 * 70 * - fscrypt_encrypt_pagecache_blocks() 71 * - fscrypt_zeroout_range() for files not using inline crypto 72 * 73 * If the filesystem doesn't use those, it doesn't need to set this. 74 */ 75 unsigned int needs_bounce_pages : 1; 76 77 /* 78 * If set, then fs/crypto/ will allow the use of encryption settings 79 * that assume inode numbers fit in 32 bits (i.e. 80 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other 81 * prerequisites for these settings are also met. This is only useful 82 * if the filesystem wants to support inline encryption hardware that is 83 * limited to 32-bit or 64-bit data unit numbers and where programming 84 * keyslots is very slow. 85 */ 86 unsigned int has_32bit_inodes : 1; 87 88 /* 89 * If set, then fs/crypto/ will allow users to select a crypto data unit 90 * size that is less than the filesystem block size. This is done via 91 * the log2_data_unit_size field of the fscrypt policy. This flag is 92 * not compatible with filesystems that encrypt variable-length blocks 93 * (i.e. blocks that aren't all equal to filesystem's block size), for 94 * example as a result of compression. It's also not compatible with 95 * the fscrypt_encrypt_block_inplace() and 96 * fscrypt_decrypt_block_inplace() functions. 97 */ 98 unsigned int supports_subblock_data_units : 1; 99 100 /* 101 * This field exists only for backwards compatibility reasons and should 102 * only be set by the filesystems that are setting it already. It 103 * contains the filesystem-specific key description prefix that is 104 * accepted for "logon" keys for v1 fscrypt policies. This 105 * functionality is deprecated in favor of the generic prefix 106 * "fscrypt:", which itself is deprecated in favor of the filesystem 107 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that 108 * are newly adding fscrypt support should not set this field. 109 */ 110 const char *legacy_key_prefix; 111 112 /* 113 * Get the fscrypt context of the given inode. 114 * 115 * @inode: the inode whose context to get 116 * @ctx: the buffer into which to get the context 117 * @len: length of the @ctx buffer in bytes 118 * 119 * Return: On success, returns the length of the context in bytes; this 120 * may be less than @len. On failure, returns -ENODATA if the 121 * inode doesn't have a context, -ERANGE if the context is 122 * longer than @len, or another -errno code. 123 */ 124 int (*get_context)(struct inode *inode, void *ctx, size_t len); 125 126 /* 127 * Set an fscrypt context on the given inode. 128 * 129 * @inode: the inode whose context to set. The inode won't already have 130 * an fscrypt context. 131 * @ctx: the context to set 132 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 133 * @fs_data: If called from fscrypt_set_context(), this will be the 134 * value the filesystem passed to fscrypt_set_context(). 135 * Otherwise (i.e. when called from 136 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 137 * 138 * i_rwsem will be held for write. 139 * 140 * Return: 0 on success, -errno on failure. 141 */ 142 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 143 void *fs_data); 144 145 /* 146 * Get the dummy fscrypt policy in use on the filesystem (if any). 147 * 148 * Filesystems only need to implement this function if they support the 149 * test_dummy_encryption mount option. 150 * 151 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 152 * mounted with test_dummy_encryption; otherwise NULL. 153 */ 154 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 155 156 /* 157 * Check whether a directory is empty. i_rwsem will be held for write. 158 */ 159 bool (*empty_dir)(struct inode *inode); 160 161 /* 162 * Check whether the filesystem's inode numbers and UUID are stable, 163 * meaning that they will never be changed even by offline operations 164 * such as filesystem shrinking and therefore can be used in the 165 * encryption without the possibility of files becoming unreadable. 166 * 167 * Filesystems only need to implement this function if they want to 168 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 169 * flags are designed to work around the limitations of UFS and eMMC 170 * inline crypto hardware, and they shouldn't be used in scenarios where 171 * such hardware isn't being used. 172 * 173 * Leaving this NULL is equivalent to always returning false. 174 */ 175 bool (*has_stable_inodes)(struct super_block *sb); 176 177 /* 178 * Return an array of pointers to the block devices to which the 179 * filesystem may write encrypted file contents, NULL if the filesystem 180 * only has a single such block device, or an ERR_PTR() on error. 181 * 182 * On successful non-NULL return, *num_devs is set to the number of 183 * devices in the returned array. The caller must free the returned 184 * array using kfree(). 185 * 186 * If the filesystem can use multiple block devices (other than block 187 * devices that aren't used for encrypted file contents, such as 188 * external journal devices), and wants to support inline encryption, 189 * then it must implement this function. Otherwise it's not needed. 190 */ 191 struct block_device **(*get_devices)(struct super_block *sb, 192 unsigned int *num_devs); 193}; 194 195int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name, 196 struct dentry *dentry, unsigned int flags); 197 198static inline struct fscrypt_inode_info * 199fscrypt_get_inode_info(const struct inode *inode) 200{ 201 /* 202 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 203 * I.e., another task may publish ->i_crypt_info concurrently, executing 204 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 205 * ACQUIRE the memory the other task published. 206 */ 207 return smp_load_acquire(&inode->i_crypt_info); 208} 209 210/** 211 * fscrypt_needs_contents_encryption() - check whether an inode needs 212 * contents encryption 213 * @inode: the inode to check 214 * 215 * Return: %true iff the inode is an encrypted regular file and the kernel was 216 * built with fscrypt support. 217 * 218 * If you need to know whether the encrypt bit is set even when the kernel was 219 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 220 */ 221static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 222{ 223 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 224} 225 226/* 227 * When d_splice_alias() moves a directory's no-key alias to its 228 * plaintext alias as a result of the encryption key being added, 229 * DCACHE_NOKEY_NAME must be cleared and there might be an opportunity 230 * to disable d_revalidate. Note that we don't have to support the 231 * inverse operation because fscrypt doesn't allow no-key names to be 232 * the source or target of a rename(). 233 */ 234static inline void fscrypt_handle_d_move(struct dentry *dentry) 235{ 236 /* 237 * VFS calls fscrypt_handle_d_move even for non-fscrypt 238 * filesystems. 239 */ 240 if (dentry->d_flags & DCACHE_NOKEY_NAME) { 241 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 242 243 /* 244 * Other filesystem features might be handling dentry 245 * revalidation, in which case it cannot be disabled. 246 */ 247 if (dentry->d_op->d_revalidate == fscrypt_d_revalidate) 248 dentry->d_flags &= ~DCACHE_OP_REVALIDATE; 249 } 250} 251 252/** 253 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 254 * @dentry: the dentry to check 255 * 256 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 257 * dentry that was created in an encrypted directory that hasn't had its 258 * encryption key added yet. Such dentries may be either positive or negative. 259 * 260 * When a filesystem is asked to create a new filename in an encrypted directory 261 * and the new filename's dentry is a no-key dentry, it must fail the operation 262 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 263 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 264 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 265 * 266 * This is necessary because creating a filename requires the directory's 267 * encryption key, but just checking for the key on the directory inode during 268 * the final filesystem operation doesn't guarantee that the key was available 269 * during the preceding dentry lookup. And the key must have already been 270 * available during the dentry lookup in order for it to have been checked 271 * whether the filename already exists in the directory and for the new file's 272 * dentry not to be invalidated due to it incorrectly having the no-key flag. 273 * 274 * Return: %true if the dentry is a no-key name 275 */ 276static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 277{ 278 return dentry->d_flags & DCACHE_NOKEY_NAME; 279} 280 281static inline void fscrypt_prepare_dentry(struct dentry *dentry, 282 bool is_nokey_name) 283{ 284 /* 285 * This code tries to only take ->d_lock when necessary to write 286 * to ->d_flags. We shouldn't be peeking on d_flags for 287 * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case 288 * there is a race, the worst it can happen is that we fail to 289 * unset DCACHE_OP_REVALIDATE and pay the cost of an extra 290 * d_revalidate. 291 */ 292 if (is_nokey_name) { 293 spin_lock(&dentry->d_lock); 294 dentry->d_flags |= DCACHE_NOKEY_NAME; 295 spin_unlock(&dentry->d_lock); 296 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE && 297 dentry->d_op->d_revalidate == fscrypt_d_revalidate) { 298 /* 299 * Unencrypted dentries and encrypted dentries where the 300 * key is available are always valid from fscrypt 301 * perspective. Avoid the cost of calling 302 * fscrypt_d_revalidate unnecessarily. 303 */ 304 spin_lock(&dentry->d_lock); 305 dentry->d_flags &= ~DCACHE_OP_REVALIDATE; 306 spin_unlock(&dentry->d_lock); 307 } 308} 309 310/* crypto.c */ 311void fscrypt_enqueue_decrypt_work(struct work_struct *); 312 313struct page *fscrypt_encrypt_pagecache_blocks(struct folio *folio, 314 size_t len, size_t offs, gfp_t gfp_flags); 315int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 316 unsigned int len, unsigned int offs, 317 u64 lblk_num); 318 319int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, 320 size_t offs); 321int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 322 unsigned int len, unsigned int offs, 323 u64 lblk_num); 324 325static inline bool fscrypt_is_bounce_page(struct page *page) 326{ 327 return page->mapping == NULL; 328} 329 330static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 331{ 332 return (struct page *)page_private(bounce_page); 333} 334 335static inline bool fscrypt_is_bounce_folio(const struct folio *folio) 336{ 337 return folio->mapping == NULL; 338} 339 340static inline 341struct folio *fscrypt_pagecache_folio(const struct folio *bounce_folio) 342{ 343 return bounce_folio->private; 344} 345 346void fscrypt_free_bounce_page(struct page *bounce_page); 347 348/* policy.c */ 349int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 350int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 351int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 352int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 353int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 354int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); 355int fscrypt_set_context(struct inode *inode, void *fs_data); 356 357struct fscrypt_dummy_policy { 358 const union fscrypt_policy *policy; 359}; 360 361int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 362 struct fscrypt_dummy_policy *dummy_policy); 363bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 364 const struct fscrypt_dummy_policy *p2); 365void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 366 struct super_block *sb); 367static inline bool 368fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 369{ 370 return dummy_policy->policy != NULL; 371} 372static inline void 373fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 374{ 375 kfree(dummy_policy->policy); 376 dummy_policy->policy = NULL; 377} 378 379/* keyring.c */ 380void fscrypt_destroy_keyring(struct super_block *sb); 381int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 382int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 383int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 384int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 385 386/* keysetup.c */ 387int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 388 bool *encrypt_ret); 389void fscrypt_put_encryption_info(struct inode *inode); 390void fscrypt_free_inode(struct inode *inode); 391int fscrypt_drop_inode(struct inode *inode); 392 393/* fname.c */ 394int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 395 u8 *out, unsigned int olen); 396bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 397 u32 max_len, u32 *encrypted_len_ret); 398int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 399 int lookup, struct fscrypt_name *fname); 400 401static inline void fscrypt_free_filename(struct fscrypt_name *fname) 402{ 403 kfree(fname->crypto_buf.name); 404} 405 406int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 407 struct fscrypt_str *crypto_str); 408void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 409int fscrypt_fname_disk_to_usr(const struct inode *inode, 410 u32 hash, u32 minor_hash, 411 const struct fscrypt_str *iname, 412 struct fscrypt_str *oname); 413bool fscrypt_match_name(const struct fscrypt_name *fname, 414 const u8 *de_name, u32 de_name_len); 415u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 416 417/* bio.c */ 418bool fscrypt_decrypt_bio(struct bio *bio); 419int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 420 sector_t pblk, unsigned int len); 421 422/* hooks.c */ 423int fscrypt_file_open(struct inode *inode, struct file *filp); 424int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 425 struct dentry *dentry); 426int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 427 struct inode *new_dir, struct dentry *new_dentry, 428 unsigned int flags); 429int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 430 struct fscrypt_name *fname); 431int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry); 432int __fscrypt_prepare_readdir(struct inode *dir); 433int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 434int fscrypt_prepare_setflags(struct inode *inode, 435 unsigned int oldflags, unsigned int flags); 436int fscrypt_prepare_symlink(struct inode *dir, const char *target, 437 unsigned int len, unsigned int max_len, 438 struct fscrypt_str *disk_link); 439int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 440 unsigned int len, struct fscrypt_str *disk_link); 441const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 442 unsigned int max_size, 443 struct delayed_call *done); 444int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 445static inline void fscrypt_set_ops(struct super_block *sb, 446 const struct fscrypt_operations *s_cop) 447{ 448 sb->s_cop = s_cop; 449} 450#else /* !CONFIG_FS_ENCRYPTION */ 451 452static inline struct fscrypt_inode_info * 453fscrypt_get_inode_info(const struct inode *inode) 454{ 455 return NULL; 456} 457 458static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 459{ 460 return false; 461} 462 463static inline void fscrypt_handle_d_move(struct dentry *dentry) 464{ 465} 466 467static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 468{ 469 return false; 470} 471 472static inline void fscrypt_prepare_dentry(struct dentry *dentry, 473 bool is_nokey_name) 474{ 475} 476 477/* crypto.c */ 478static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 479{ 480} 481 482static inline struct page *fscrypt_encrypt_pagecache_blocks(struct folio *folio, 483 size_t len, size_t offs, gfp_t gfp_flags) 484{ 485 return ERR_PTR(-EOPNOTSUPP); 486} 487 488static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 489 struct page *page, 490 unsigned int len, 491 unsigned int offs, u64 lblk_num) 492{ 493 return -EOPNOTSUPP; 494} 495 496static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio, 497 size_t len, size_t offs) 498{ 499 return -EOPNOTSUPP; 500} 501 502static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 503 struct page *page, 504 unsigned int len, 505 unsigned int offs, u64 lblk_num) 506{ 507 return -EOPNOTSUPP; 508} 509 510static inline bool fscrypt_is_bounce_page(struct page *page) 511{ 512 return false; 513} 514 515static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 516{ 517 WARN_ON_ONCE(1); 518 return ERR_PTR(-EINVAL); 519} 520 521static inline bool fscrypt_is_bounce_folio(const struct folio *folio) 522{ 523 return false; 524} 525 526static inline 527struct folio *fscrypt_pagecache_folio(const struct folio *bounce_folio) 528{ 529 WARN_ON_ONCE(1); 530 return ERR_PTR(-EINVAL); 531} 532 533static inline void fscrypt_free_bounce_page(struct page *bounce_page) 534{ 535} 536 537/* policy.c */ 538static inline int fscrypt_ioctl_set_policy(struct file *filp, 539 const void __user *arg) 540{ 541 return -EOPNOTSUPP; 542} 543 544static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 545{ 546 return -EOPNOTSUPP; 547} 548 549static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 550 void __user *arg) 551{ 552 return -EOPNOTSUPP; 553} 554 555static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 556{ 557 return -EOPNOTSUPP; 558} 559 560static inline int fscrypt_has_permitted_context(struct inode *parent, 561 struct inode *child) 562{ 563 return 0; 564} 565 566static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 567{ 568 return -EOPNOTSUPP; 569} 570 571struct fscrypt_dummy_policy { 572}; 573 574static inline int 575fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 576 struct fscrypt_dummy_policy *dummy_policy) 577{ 578 return -EINVAL; 579} 580 581static inline bool 582fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 583 const struct fscrypt_dummy_policy *p2) 584{ 585 return true; 586} 587 588static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 589 char sep, 590 struct super_block *sb) 591{ 592} 593 594static inline bool 595fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 596{ 597 return false; 598} 599 600static inline void 601fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 602{ 603} 604 605/* keyring.c */ 606static inline void fscrypt_destroy_keyring(struct super_block *sb) 607{ 608} 609 610static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 611{ 612 return -EOPNOTSUPP; 613} 614 615static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 616{ 617 return -EOPNOTSUPP; 618} 619 620static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 621 void __user *arg) 622{ 623 return -EOPNOTSUPP; 624} 625 626static inline int fscrypt_ioctl_get_key_status(struct file *filp, 627 void __user *arg) 628{ 629 return -EOPNOTSUPP; 630} 631 632/* keysetup.c */ 633 634static inline int fscrypt_prepare_new_inode(struct inode *dir, 635 struct inode *inode, 636 bool *encrypt_ret) 637{ 638 if (IS_ENCRYPTED(dir)) 639 return -EOPNOTSUPP; 640 return 0; 641} 642 643static inline void fscrypt_put_encryption_info(struct inode *inode) 644{ 645 return; 646} 647 648static inline void fscrypt_free_inode(struct inode *inode) 649{ 650} 651 652static inline int fscrypt_drop_inode(struct inode *inode) 653{ 654 return 0; 655} 656 657 /* fname.c */ 658static inline int fscrypt_setup_filename(struct inode *dir, 659 const struct qstr *iname, 660 int lookup, struct fscrypt_name *fname) 661{ 662 if (IS_ENCRYPTED(dir)) 663 return -EOPNOTSUPP; 664 665 memset(fname, 0, sizeof(*fname)); 666 fname->usr_fname = iname; 667 fname->disk_name.name = (unsigned char *)iname->name; 668 fname->disk_name.len = iname->len; 669 return 0; 670} 671 672static inline void fscrypt_free_filename(struct fscrypt_name *fname) 673{ 674 return; 675} 676 677static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 678 struct fscrypt_str *crypto_str) 679{ 680 return -EOPNOTSUPP; 681} 682 683static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 684{ 685 return; 686} 687 688static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 689 u32 hash, u32 minor_hash, 690 const struct fscrypt_str *iname, 691 struct fscrypt_str *oname) 692{ 693 return -EOPNOTSUPP; 694} 695 696static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 697 const u8 *de_name, u32 de_name_len) 698{ 699 /* Encryption support disabled; use standard comparison */ 700 if (de_name_len != fname->disk_name.len) 701 return false; 702 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 703} 704 705static inline u64 fscrypt_fname_siphash(const struct inode *dir, 706 const struct qstr *name) 707{ 708 WARN_ON_ONCE(1); 709 return 0; 710} 711 712static inline int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name, 713 struct dentry *dentry, unsigned int flags) 714{ 715 return 1; 716} 717 718/* bio.c */ 719static inline bool fscrypt_decrypt_bio(struct bio *bio) 720{ 721 return true; 722} 723 724static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 725 sector_t pblk, unsigned int len) 726{ 727 return -EOPNOTSUPP; 728} 729 730/* hooks.c */ 731 732static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 733{ 734 if (IS_ENCRYPTED(inode)) 735 return -EOPNOTSUPP; 736 return 0; 737} 738 739static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 740 struct dentry *dentry) 741{ 742 return -EOPNOTSUPP; 743} 744 745static inline int __fscrypt_prepare_rename(struct inode *old_dir, 746 struct dentry *old_dentry, 747 struct inode *new_dir, 748 struct dentry *new_dentry, 749 unsigned int flags) 750{ 751 return -EOPNOTSUPP; 752} 753 754static inline int __fscrypt_prepare_lookup(struct inode *dir, 755 struct dentry *dentry, 756 struct fscrypt_name *fname) 757{ 758 return -EOPNOTSUPP; 759} 760 761static inline int fscrypt_prepare_lookup_partial(struct inode *dir, 762 struct dentry *dentry) 763{ 764 return -EOPNOTSUPP; 765} 766 767static inline int __fscrypt_prepare_readdir(struct inode *dir) 768{ 769 return -EOPNOTSUPP; 770} 771 772static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 773 struct iattr *attr) 774{ 775 return -EOPNOTSUPP; 776} 777 778static inline int fscrypt_prepare_setflags(struct inode *inode, 779 unsigned int oldflags, 780 unsigned int flags) 781{ 782 return 0; 783} 784 785static inline int fscrypt_prepare_symlink(struct inode *dir, 786 const char *target, 787 unsigned int len, 788 unsigned int max_len, 789 struct fscrypt_str *disk_link) 790{ 791 if (IS_ENCRYPTED(dir)) 792 return -EOPNOTSUPP; 793 disk_link->name = (unsigned char *)target; 794 disk_link->len = len + 1; 795 if (disk_link->len > max_len) 796 return -ENAMETOOLONG; 797 return 0; 798} 799 800static inline int __fscrypt_encrypt_symlink(struct inode *inode, 801 const char *target, 802 unsigned int len, 803 struct fscrypt_str *disk_link) 804{ 805 return -EOPNOTSUPP; 806} 807 808static inline const char *fscrypt_get_symlink(struct inode *inode, 809 const void *caddr, 810 unsigned int max_size, 811 struct delayed_call *done) 812{ 813 return ERR_PTR(-EOPNOTSUPP); 814} 815 816static inline int fscrypt_symlink_getattr(const struct path *path, 817 struct kstat *stat) 818{ 819 return -EOPNOTSUPP; 820} 821 822static inline void fscrypt_set_ops(struct super_block *sb, 823 const struct fscrypt_operations *s_cop) 824{ 825} 826 827#endif /* !CONFIG_FS_ENCRYPTION */ 828 829/* inline_crypt.c */ 830#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 831 832bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 833 834void fscrypt_set_bio_crypt_ctx(struct bio *bio, 835 const struct inode *inode, u64 first_lblk, 836 gfp_t gfp_mask); 837 838void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 839 const struct buffer_head *first_bh, 840 gfp_t gfp_mask); 841 842bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 843 u64 next_lblk); 844 845bool fscrypt_mergeable_bio_bh(struct bio *bio, 846 const struct buffer_head *next_bh); 847 848bool fscrypt_dio_supported(struct inode *inode); 849 850u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 851 852#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 853 854static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 855{ 856 return false; 857} 858 859static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 860 const struct inode *inode, 861 u64 first_lblk, gfp_t gfp_mask) { } 862 863static inline void fscrypt_set_bio_crypt_ctx_bh( 864 struct bio *bio, 865 const struct buffer_head *first_bh, 866 gfp_t gfp_mask) { } 867 868static inline bool fscrypt_mergeable_bio(struct bio *bio, 869 const struct inode *inode, 870 u64 next_lblk) 871{ 872 return true; 873} 874 875static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 876 const struct buffer_head *next_bh) 877{ 878 return true; 879} 880 881static inline bool fscrypt_dio_supported(struct inode *inode) 882{ 883 return !fscrypt_needs_contents_encryption(inode); 884} 885 886static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 887 u64 nr_blocks) 888{ 889 return nr_blocks; 890} 891#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 892 893/** 894 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 895 * encryption 896 * @inode: an inode. If encrypted, its key must be set up. 897 * 898 * Return: true if the inode requires file contents encryption and if the 899 * encryption should be done in the block layer via blk-crypto rather 900 * than in the filesystem layer. 901 */ 902static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 903{ 904 return fscrypt_needs_contents_encryption(inode) && 905 __fscrypt_inode_uses_inline_crypto(inode); 906} 907 908/** 909 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 910 * encryption 911 * @inode: an inode. If encrypted, its key must be set up. 912 * 913 * Return: true if the inode requires file contents encryption and if the 914 * encryption should be done in the filesystem layer rather than in the 915 * block layer via blk-crypto. 916 */ 917static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 918{ 919 return fscrypt_needs_contents_encryption(inode) && 920 !__fscrypt_inode_uses_inline_crypto(inode); 921} 922 923/** 924 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 925 * @inode: the inode to check 926 * 927 * Return: %true if the inode has had its encryption key set up, else %false. 928 * 929 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 930 * set up the key first. 931 */ 932static inline bool fscrypt_has_encryption_key(const struct inode *inode) 933{ 934 return fscrypt_get_inode_info(inode) != NULL; 935} 936 937/** 938 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 939 * directory 940 * @old_dentry: an existing dentry for the inode being linked 941 * @dir: the target directory 942 * @dentry: negative dentry for the target filename 943 * 944 * A new link can only be added to an encrypted directory if the directory's 945 * encryption key is available --- since otherwise we'd have no way to encrypt 946 * the filename. 947 * 948 * We also verify that the link will not violate the constraint that all files 949 * in an encrypted directory tree use the same encryption policy. 950 * 951 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 952 * -EXDEV if the link would result in an inconsistent encryption policy, or 953 * another -errno code. 954 */ 955static inline int fscrypt_prepare_link(struct dentry *old_dentry, 956 struct inode *dir, 957 struct dentry *dentry) 958{ 959 if (IS_ENCRYPTED(dir)) 960 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 961 return 0; 962} 963 964/** 965 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 966 * directories 967 * @old_dir: source directory 968 * @old_dentry: dentry for source file 969 * @new_dir: target directory 970 * @new_dentry: dentry for target location (may be negative unless exchanging) 971 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 972 * 973 * Prepare for ->rename() where the source and/or target directories may be 974 * encrypted. A new link can only be added to an encrypted directory if the 975 * directory's encryption key is available --- since otherwise we'd have no way 976 * to encrypt the filename. A rename to an existing name, on the other hand, 977 * *is* cryptographically possible without the key. However, we take the more 978 * conservative approach and just forbid all no-key renames. 979 * 980 * We also verify that the rename will not violate the constraint that all files 981 * in an encrypted directory tree use the same encryption policy. 982 * 983 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 984 * rename would cause inconsistent encryption policies, or another -errno code. 985 */ 986static inline int fscrypt_prepare_rename(struct inode *old_dir, 987 struct dentry *old_dentry, 988 struct inode *new_dir, 989 struct dentry *new_dentry, 990 unsigned int flags) 991{ 992 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 993 return __fscrypt_prepare_rename(old_dir, old_dentry, 994 new_dir, new_dentry, flags); 995 return 0; 996} 997 998/** 999 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 1000 * directory 1001 * @dir: directory being searched 1002 * @dentry: filename being looked up 1003 * @fname: (output) the name to use to search the on-disk directory 1004 * 1005 * Prepare for ->lookup() in a directory which may be encrypted by determining 1006 * the name that will actually be used to search the directory on-disk. If the 1007 * directory's encryption policy is supported by this kernel and its encryption 1008 * key is available, then the lookup is assumed to be by plaintext name; 1009 * otherwise, it is assumed to be by no-key name. 1010 * 1011 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 1012 * name. In this case the filesystem must assign the dentry a dentry_operations 1013 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 1014 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 1015 * directory's encryption key is later added. 1016 * 1017 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 1018 * filename isn't a valid no-key name, so a negative dentry should be created; 1019 * or another -errno code. 1020 */ 1021static inline int fscrypt_prepare_lookup(struct inode *dir, 1022 struct dentry *dentry, 1023 struct fscrypt_name *fname) 1024{ 1025 if (IS_ENCRYPTED(dir)) 1026 return __fscrypt_prepare_lookup(dir, dentry, fname); 1027 1028 memset(fname, 0, sizeof(*fname)); 1029 fname->usr_fname = &dentry->d_name; 1030 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 1031 fname->disk_name.len = dentry->d_name.len; 1032 1033 fscrypt_prepare_dentry(dentry, false); 1034 1035 return 0; 1036} 1037 1038/** 1039 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 1040 * @dir: the directory inode 1041 * 1042 * If the directory is encrypted and it doesn't already have its encryption key 1043 * set up, try to set it up so that the filenames will be listed in plaintext 1044 * form rather than in no-key form. 1045 * 1046 * Return: 0 on success; -errno on error. Note that the encryption key being 1047 * unavailable is not considered an error. It is also not an error if 1048 * the encryption policy is unsupported by this kernel; that is treated 1049 * like the key being unavailable, so that files can still be deleted. 1050 */ 1051static inline int fscrypt_prepare_readdir(struct inode *dir) 1052{ 1053 if (IS_ENCRYPTED(dir)) 1054 return __fscrypt_prepare_readdir(dir); 1055 return 0; 1056} 1057 1058/** 1059 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 1060 * attributes 1061 * @dentry: dentry through which the inode is being changed 1062 * @attr: attributes to change 1063 * 1064 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 1065 * most attribute changes are allowed even without the encryption key. However, 1066 * without the encryption key we do have to forbid truncates. This is needed 1067 * because the size being truncated to may not be a multiple of the filesystem 1068 * block size, and in that case we'd have to decrypt the final block, zero the 1069 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 1070 * filesystem block boundary, but it's simpler to just forbid all truncates --- 1071 * and we already forbid all other contents modifications without the key.) 1072 * 1073 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 1074 * if a problem occurred while setting up the encryption key. 1075 */ 1076static inline int fscrypt_prepare_setattr(struct dentry *dentry, 1077 struct iattr *attr) 1078{ 1079 if (IS_ENCRYPTED(d_inode(dentry))) 1080 return __fscrypt_prepare_setattr(dentry, attr); 1081 return 0; 1082} 1083 1084/** 1085 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 1086 * @inode: symlink inode 1087 * @target: plaintext symlink target 1088 * @len: length of @target excluding null terminator 1089 * @disk_link: (in/out) the on-disk symlink target being prepared 1090 * 1091 * If the symlink target needs to be encrypted, then this function encrypts it 1092 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 1093 * previously to compute @disk_link->len. If the filesystem did not allocate a 1094 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1095 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1096 * 1097 * Return: 0 on success, -errno on failure 1098 */ 1099static inline int fscrypt_encrypt_symlink(struct inode *inode, 1100 const char *target, 1101 unsigned int len, 1102 struct fscrypt_str *disk_link) 1103{ 1104 if (IS_ENCRYPTED(inode)) 1105 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1106 return 0; 1107} 1108 1109/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1110static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1111{ 1112 struct page *page = *pagep; 1113 1114 if (fscrypt_is_bounce_page(page)) { 1115 *pagep = fscrypt_pagecache_page(page); 1116 fscrypt_free_bounce_page(page); 1117 } 1118} 1119 1120#endif /* _LINUX_FSCRYPT_H */