Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fscrypt.h: declarations for per-file encryption
4 *
5 * Filesystems that implement per-file encryption must include this header
6 * file.
7 *
8 * Copyright (C) 2015, Google, Inc.
9 *
10 * Written by Michael Halcrow, 2015.
11 * Modified by Jaegeuk Kim, 2015.
12 */
13#ifndef _LINUX_FSCRYPT_H
14#define _LINUX_FSCRYPT_H
15
16#include <linux/fs.h>
17#include <linux/mm.h>
18#include <linux/slab.h>
19#include <uapi/linux/fscrypt.h>
20
21/*
22 * The lengths of all file contents blocks must be divisible by this value.
23 * This is needed to ensure that all contents encryption modes will work, as
24 * some of the supported modes don't support arbitrarily byte-aligned messages.
25 *
26 * Since the needed alignment is 16 bytes, most filesystems will meet this
27 * requirement naturally, as typical block sizes are powers of 2. However, if a
28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29 * compression), then it will need to pad to this alignment before encryption.
30 */
31#define FSCRYPT_CONTENTS_ALIGNMENT 16
32
33union fscrypt_policy;
34struct fscrypt_inode_info;
35struct fs_parameter;
36struct seq_file;
37
38struct fscrypt_str {
39 unsigned char *name;
40 u32 len;
41};
42
43struct fscrypt_name {
44 const struct qstr *usr_fname;
45 struct fscrypt_str disk_name;
46 u32 hash;
47 u32 minor_hash;
48 struct fscrypt_str crypto_buf;
49 bool is_nokey_name;
50};
51
52#define FSTR_INIT(n, l) { .name = n, .len = l }
53#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
54#define fname_name(p) ((p)->disk_name.name)
55#define fname_len(p) ((p)->disk_name.len)
56
57/* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58#define FSCRYPT_SET_CONTEXT_MAX_SIZE 40
59
60#ifdef CONFIG_FS_ENCRYPTION
61
62/* Crypto operations for filesystems */
63struct fscrypt_operations {
64
65 /*
66 * If set, then fs/crypto/ will allocate a global bounce page pool the
67 * first time an encryption key is set up for a file. The bounce page
68 * pool is required by the following functions:
69 *
70 * - fscrypt_encrypt_pagecache_blocks()
71 * - fscrypt_zeroout_range() for files not using inline crypto
72 *
73 * If the filesystem doesn't use those, it doesn't need to set this.
74 */
75 unsigned int needs_bounce_pages : 1;
76
77 /*
78 * If set, then fs/crypto/ will allow the use of encryption settings
79 * that assume inode numbers fit in 32 bits (i.e.
80 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
81 * prerequisites for these settings are also met. This is only useful
82 * if the filesystem wants to support inline encryption hardware that is
83 * limited to 32-bit or 64-bit data unit numbers and where programming
84 * keyslots is very slow.
85 */
86 unsigned int has_32bit_inodes : 1;
87
88 /*
89 * If set, then fs/crypto/ will allow users to select a crypto data unit
90 * size that is less than the filesystem block size. This is done via
91 * the log2_data_unit_size field of the fscrypt policy. This flag is
92 * not compatible with filesystems that encrypt variable-length blocks
93 * (i.e. blocks that aren't all equal to filesystem's block size), for
94 * example as a result of compression. It's also not compatible with
95 * the fscrypt_encrypt_block_inplace() and
96 * fscrypt_decrypt_block_inplace() functions.
97 */
98 unsigned int supports_subblock_data_units : 1;
99
100 /*
101 * This field exists only for backwards compatibility reasons and should
102 * only be set by the filesystems that are setting it already. It
103 * contains the filesystem-specific key description prefix that is
104 * accepted for "logon" keys for v1 fscrypt policies. This
105 * functionality is deprecated in favor of the generic prefix
106 * "fscrypt:", which itself is deprecated in favor of the filesystem
107 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that
108 * are newly adding fscrypt support should not set this field.
109 */
110 const char *legacy_key_prefix;
111
112 /*
113 * Get the fscrypt context of the given inode.
114 *
115 * @inode: the inode whose context to get
116 * @ctx: the buffer into which to get the context
117 * @len: length of the @ctx buffer in bytes
118 *
119 * Return: On success, returns the length of the context in bytes; this
120 * may be less than @len. On failure, returns -ENODATA if the
121 * inode doesn't have a context, -ERANGE if the context is
122 * longer than @len, or another -errno code.
123 */
124 int (*get_context)(struct inode *inode, void *ctx, size_t len);
125
126 /*
127 * Set an fscrypt context on the given inode.
128 *
129 * @inode: the inode whose context to set. The inode won't already have
130 * an fscrypt context.
131 * @ctx: the context to set
132 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
133 * @fs_data: If called from fscrypt_set_context(), this will be the
134 * value the filesystem passed to fscrypt_set_context().
135 * Otherwise (i.e. when called from
136 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
137 *
138 * i_rwsem will be held for write.
139 *
140 * Return: 0 on success, -errno on failure.
141 */
142 int (*set_context)(struct inode *inode, const void *ctx, size_t len,
143 void *fs_data);
144
145 /*
146 * Get the dummy fscrypt policy in use on the filesystem (if any).
147 *
148 * Filesystems only need to implement this function if they support the
149 * test_dummy_encryption mount option.
150 *
151 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
152 * mounted with test_dummy_encryption; otherwise NULL.
153 */
154 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
155
156 /*
157 * Check whether a directory is empty. i_rwsem will be held for write.
158 */
159 bool (*empty_dir)(struct inode *inode);
160
161 /*
162 * Check whether the filesystem's inode numbers and UUID are stable,
163 * meaning that they will never be changed even by offline operations
164 * such as filesystem shrinking and therefore can be used in the
165 * encryption without the possibility of files becoming unreadable.
166 *
167 * Filesystems only need to implement this function if they want to
168 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These
169 * flags are designed to work around the limitations of UFS and eMMC
170 * inline crypto hardware, and they shouldn't be used in scenarios where
171 * such hardware isn't being used.
172 *
173 * Leaving this NULL is equivalent to always returning false.
174 */
175 bool (*has_stable_inodes)(struct super_block *sb);
176
177 /*
178 * Return an array of pointers to the block devices to which the
179 * filesystem may write encrypted file contents, NULL if the filesystem
180 * only has a single such block device, or an ERR_PTR() on error.
181 *
182 * On successful non-NULL return, *num_devs is set to the number of
183 * devices in the returned array. The caller must free the returned
184 * array using kfree().
185 *
186 * If the filesystem can use multiple block devices (other than block
187 * devices that aren't used for encrypted file contents, such as
188 * external journal devices), and wants to support inline encryption,
189 * then it must implement this function. Otherwise it's not needed.
190 */
191 struct block_device **(*get_devices)(struct super_block *sb,
192 unsigned int *num_devs);
193};
194
195int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name,
196 struct dentry *dentry, unsigned int flags);
197
198static inline struct fscrypt_inode_info *
199fscrypt_get_inode_info(const struct inode *inode)
200{
201 /*
202 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
203 * I.e., another task may publish ->i_crypt_info concurrently, executing
204 * a RELEASE barrier. We need to use smp_load_acquire() here to safely
205 * ACQUIRE the memory the other task published.
206 */
207 return smp_load_acquire(&inode->i_crypt_info);
208}
209
210/**
211 * fscrypt_needs_contents_encryption() - check whether an inode needs
212 * contents encryption
213 * @inode: the inode to check
214 *
215 * Return: %true iff the inode is an encrypted regular file and the kernel was
216 * built with fscrypt support.
217 *
218 * If you need to know whether the encrypt bit is set even when the kernel was
219 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
220 */
221static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
222{
223 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
224}
225
226/*
227 * When d_splice_alias() moves a directory's no-key alias to its
228 * plaintext alias as a result of the encryption key being added,
229 * DCACHE_NOKEY_NAME must be cleared and there might be an opportunity
230 * to disable d_revalidate. Note that we don't have to support the
231 * inverse operation because fscrypt doesn't allow no-key names to be
232 * the source or target of a rename().
233 */
234static inline void fscrypt_handle_d_move(struct dentry *dentry)
235{
236 /*
237 * VFS calls fscrypt_handle_d_move even for non-fscrypt
238 * filesystems.
239 */
240 if (dentry->d_flags & DCACHE_NOKEY_NAME) {
241 dentry->d_flags &= ~DCACHE_NOKEY_NAME;
242
243 /*
244 * Other filesystem features might be handling dentry
245 * revalidation, in which case it cannot be disabled.
246 */
247 if (dentry->d_op->d_revalidate == fscrypt_d_revalidate)
248 dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
249 }
250}
251
252/**
253 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
254 * @dentry: the dentry to check
255 *
256 * This returns true if the dentry is a no-key dentry. A no-key dentry is a
257 * dentry that was created in an encrypted directory that hasn't had its
258 * encryption key added yet. Such dentries may be either positive or negative.
259 *
260 * When a filesystem is asked to create a new filename in an encrypted directory
261 * and the new filename's dentry is a no-key dentry, it must fail the operation
262 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
263 * ->rename(), and ->link(). (However, ->rename() and ->link() are already
264 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
265 *
266 * This is necessary because creating a filename requires the directory's
267 * encryption key, but just checking for the key on the directory inode during
268 * the final filesystem operation doesn't guarantee that the key was available
269 * during the preceding dentry lookup. And the key must have already been
270 * available during the dentry lookup in order for it to have been checked
271 * whether the filename already exists in the directory and for the new file's
272 * dentry not to be invalidated due to it incorrectly having the no-key flag.
273 *
274 * Return: %true if the dentry is a no-key name
275 */
276static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
277{
278 return dentry->d_flags & DCACHE_NOKEY_NAME;
279}
280
281static inline void fscrypt_prepare_dentry(struct dentry *dentry,
282 bool is_nokey_name)
283{
284 /*
285 * This code tries to only take ->d_lock when necessary to write
286 * to ->d_flags. We shouldn't be peeking on d_flags for
287 * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case
288 * there is a race, the worst it can happen is that we fail to
289 * unset DCACHE_OP_REVALIDATE and pay the cost of an extra
290 * d_revalidate.
291 */
292 if (is_nokey_name) {
293 spin_lock(&dentry->d_lock);
294 dentry->d_flags |= DCACHE_NOKEY_NAME;
295 spin_unlock(&dentry->d_lock);
296 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE &&
297 dentry->d_op->d_revalidate == fscrypt_d_revalidate) {
298 /*
299 * Unencrypted dentries and encrypted dentries where the
300 * key is available are always valid from fscrypt
301 * perspective. Avoid the cost of calling
302 * fscrypt_d_revalidate unnecessarily.
303 */
304 spin_lock(&dentry->d_lock);
305 dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
306 spin_unlock(&dentry->d_lock);
307 }
308}
309
310/* crypto.c */
311void fscrypt_enqueue_decrypt_work(struct work_struct *);
312
313struct page *fscrypt_encrypt_pagecache_blocks(struct folio *folio,
314 size_t len, size_t offs, gfp_t gfp_flags);
315int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
316 unsigned int len, unsigned int offs,
317 u64 lblk_num);
318
319int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
320 size_t offs);
321int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
322 unsigned int len, unsigned int offs,
323 u64 lblk_num);
324
325static inline bool fscrypt_is_bounce_page(struct page *page)
326{
327 return page->mapping == NULL;
328}
329
330static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
331{
332 return (struct page *)page_private(bounce_page);
333}
334
335static inline bool fscrypt_is_bounce_folio(const struct folio *folio)
336{
337 return folio->mapping == NULL;
338}
339
340static inline
341struct folio *fscrypt_pagecache_folio(const struct folio *bounce_folio)
342{
343 return bounce_folio->private;
344}
345
346void fscrypt_free_bounce_page(struct page *bounce_page);
347
348/* policy.c */
349int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
350int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
351int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
352int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
353int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
354int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
355int fscrypt_set_context(struct inode *inode, void *fs_data);
356
357struct fscrypt_dummy_policy {
358 const union fscrypt_policy *policy;
359};
360
361int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
362 struct fscrypt_dummy_policy *dummy_policy);
363bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
364 const struct fscrypt_dummy_policy *p2);
365void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
366 struct super_block *sb);
367static inline bool
368fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
369{
370 return dummy_policy->policy != NULL;
371}
372static inline void
373fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
374{
375 kfree(dummy_policy->policy);
376 dummy_policy->policy = NULL;
377}
378
379/* keyring.c */
380void fscrypt_destroy_keyring(struct super_block *sb);
381int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
382int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
383int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
384int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
385
386/* keysetup.c */
387int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
388 bool *encrypt_ret);
389void fscrypt_put_encryption_info(struct inode *inode);
390void fscrypt_free_inode(struct inode *inode);
391int fscrypt_drop_inode(struct inode *inode);
392
393/* fname.c */
394int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
395 u8 *out, unsigned int olen);
396bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
397 u32 max_len, u32 *encrypted_len_ret);
398int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
399 int lookup, struct fscrypt_name *fname);
400
401static inline void fscrypt_free_filename(struct fscrypt_name *fname)
402{
403 kfree(fname->crypto_buf.name);
404}
405
406int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
407 struct fscrypt_str *crypto_str);
408void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
409int fscrypt_fname_disk_to_usr(const struct inode *inode,
410 u32 hash, u32 minor_hash,
411 const struct fscrypt_str *iname,
412 struct fscrypt_str *oname);
413bool fscrypt_match_name(const struct fscrypt_name *fname,
414 const u8 *de_name, u32 de_name_len);
415u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
416
417/* bio.c */
418bool fscrypt_decrypt_bio(struct bio *bio);
419int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
420 sector_t pblk, unsigned int len);
421
422/* hooks.c */
423int fscrypt_file_open(struct inode *inode, struct file *filp);
424int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
425 struct dentry *dentry);
426int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
427 struct inode *new_dir, struct dentry *new_dentry,
428 unsigned int flags);
429int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
430 struct fscrypt_name *fname);
431int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
432int __fscrypt_prepare_readdir(struct inode *dir);
433int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
434int fscrypt_prepare_setflags(struct inode *inode,
435 unsigned int oldflags, unsigned int flags);
436int fscrypt_prepare_symlink(struct inode *dir, const char *target,
437 unsigned int len, unsigned int max_len,
438 struct fscrypt_str *disk_link);
439int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
440 unsigned int len, struct fscrypt_str *disk_link);
441const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
442 unsigned int max_size,
443 struct delayed_call *done);
444int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
445static inline void fscrypt_set_ops(struct super_block *sb,
446 const struct fscrypt_operations *s_cop)
447{
448 sb->s_cop = s_cop;
449}
450#else /* !CONFIG_FS_ENCRYPTION */
451
452static inline struct fscrypt_inode_info *
453fscrypt_get_inode_info(const struct inode *inode)
454{
455 return NULL;
456}
457
458static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
459{
460 return false;
461}
462
463static inline void fscrypt_handle_d_move(struct dentry *dentry)
464{
465}
466
467static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
468{
469 return false;
470}
471
472static inline void fscrypt_prepare_dentry(struct dentry *dentry,
473 bool is_nokey_name)
474{
475}
476
477/* crypto.c */
478static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
479{
480}
481
482static inline struct page *fscrypt_encrypt_pagecache_blocks(struct folio *folio,
483 size_t len, size_t offs, gfp_t gfp_flags)
484{
485 return ERR_PTR(-EOPNOTSUPP);
486}
487
488static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
489 struct page *page,
490 unsigned int len,
491 unsigned int offs, u64 lblk_num)
492{
493 return -EOPNOTSUPP;
494}
495
496static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
497 size_t len, size_t offs)
498{
499 return -EOPNOTSUPP;
500}
501
502static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
503 struct page *page,
504 unsigned int len,
505 unsigned int offs, u64 lblk_num)
506{
507 return -EOPNOTSUPP;
508}
509
510static inline bool fscrypt_is_bounce_page(struct page *page)
511{
512 return false;
513}
514
515static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
516{
517 WARN_ON_ONCE(1);
518 return ERR_PTR(-EINVAL);
519}
520
521static inline bool fscrypt_is_bounce_folio(const struct folio *folio)
522{
523 return false;
524}
525
526static inline
527struct folio *fscrypt_pagecache_folio(const struct folio *bounce_folio)
528{
529 WARN_ON_ONCE(1);
530 return ERR_PTR(-EINVAL);
531}
532
533static inline void fscrypt_free_bounce_page(struct page *bounce_page)
534{
535}
536
537/* policy.c */
538static inline int fscrypt_ioctl_set_policy(struct file *filp,
539 const void __user *arg)
540{
541 return -EOPNOTSUPP;
542}
543
544static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
545{
546 return -EOPNOTSUPP;
547}
548
549static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
550 void __user *arg)
551{
552 return -EOPNOTSUPP;
553}
554
555static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
556{
557 return -EOPNOTSUPP;
558}
559
560static inline int fscrypt_has_permitted_context(struct inode *parent,
561 struct inode *child)
562{
563 return 0;
564}
565
566static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
567{
568 return -EOPNOTSUPP;
569}
570
571struct fscrypt_dummy_policy {
572};
573
574static inline int
575fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
576 struct fscrypt_dummy_policy *dummy_policy)
577{
578 return -EINVAL;
579}
580
581static inline bool
582fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
583 const struct fscrypt_dummy_policy *p2)
584{
585 return true;
586}
587
588static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
589 char sep,
590 struct super_block *sb)
591{
592}
593
594static inline bool
595fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
596{
597 return false;
598}
599
600static inline void
601fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
602{
603}
604
605/* keyring.c */
606static inline void fscrypt_destroy_keyring(struct super_block *sb)
607{
608}
609
610static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
611{
612 return -EOPNOTSUPP;
613}
614
615static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
616{
617 return -EOPNOTSUPP;
618}
619
620static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
621 void __user *arg)
622{
623 return -EOPNOTSUPP;
624}
625
626static inline int fscrypt_ioctl_get_key_status(struct file *filp,
627 void __user *arg)
628{
629 return -EOPNOTSUPP;
630}
631
632/* keysetup.c */
633
634static inline int fscrypt_prepare_new_inode(struct inode *dir,
635 struct inode *inode,
636 bool *encrypt_ret)
637{
638 if (IS_ENCRYPTED(dir))
639 return -EOPNOTSUPP;
640 return 0;
641}
642
643static inline void fscrypt_put_encryption_info(struct inode *inode)
644{
645 return;
646}
647
648static inline void fscrypt_free_inode(struct inode *inode)
649{
650}
651
652static inline int fscrypt_drop_inode(struct inode *inode)
653{
654 return 0;
655}
656
657 /* fname.c */
658static inline int fscrypt_setup_filename(struct inode *dir,
659 const struct qstr *iname,
660 int lookup, struct fscrypt_name *fname)
661{
662 if (IS_ENCRYPTED(dir))
663 return -EOPNOTSUPP;
664
665 memset(fname, 0, sizeof(*fname));
666 fname->usr_fname = iname;
667 fname->disk_name.name = (unsigned char *)iname->name;
668 fname->disk_name.len = iname->len;
669 return 0;
670}
671
672static inline void fscrypt_free_filename(struct fscrypt_name *fname)
673{
674 return;
675}
676
677static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
678 struct fscrypt_str *crypto_str)
679{
680 return -EOPNOTSUPP;
681}
682
683static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
684{
685 return;
686}
687
688static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
689 u32 hash, u32 minor_hash,
690 const struct fscrypt_str *iname,
691 struct fscrypt_str *oname)
692{
693 return -EOPNOTSUPP;
694}
695
696static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
697 const u8 *de_name, u32 de_name_len)
698{
699 /* Encryption support disabled; use standard comparison */
700 if (de_name_len != fname->disk_name.len)
701 return false;
702 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
703}
704
705static inline u64 fscrypt_fname_siphash(const struct inode *dir,
706 const struct qstr *name)
707{
708 WARN_ON_ONCE(1);
709 return 0;
710}
711
712static inline int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name,
713 struct dentry *dentry, unsigned int flags)
714{
715 return 1;
716}
717
718/* bio.c */
719static inline bool fscrypt_decrypt_bio(struct bio *bio)
720{
721 return true;
722}
723
724static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
725 sector_t pblk, unsigned int len)
726{
727 return -EOPNOTSUPP;
728}
729
730/* hooks.c */
731
732static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
733{
734 if (IS_ENCRYPTED(inode))
735 return -EOPNOTSUPP;
736 return 0;
737}
738
739static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
740 struct dentry *dentry)
741{
742 return -EOPNOTSUPP;
743}
744
745static inline int __fscrypt_prepare_rename(struct inode *old_dir,
746 struct dentry *old_dentry,
747 struct inode *new_dir,
748 struct dentry *new_dentry,
749 unsigned int flags)
750{
751 return -EOPNOTSUPP;
752}
753
754static inline int __fscrypt_prepare_lookup(struct inode *dir,
755 struct dentry *dentry,
756 struct fscrypt_name *fname)
757{
758 return -EOPNOTSUPP;
759}
760
761static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
762 struct dentry *dentry)
763{
764 return -EOPNOTSUPP;
765}
766
767static inline int __fscrypt_prepare_readdir(struct inode *dir)
768{
769 return -EOPNOTSUPP;
770}
771
772static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
773 struct iattr *attr)
774{
775 return -EOPNOTSUPP;
776}
777
778static inline int fscrypt_prepare_setflags(struct inode *inode,
779 unsigned int oldflags,
780 unsigned int flags)
781{
782 return 0;
783}
784
785static inline int fscrypt_prepare_symlink(struct inode *dir,
786 const char *target,
787 unsigned int len,
788 unsigned int max_len,
789 struct fscrypt_str *disk_link)
790{
791 if (IS_ENCRYPTED(dir))
792 return -EOPNOTSUPP;
793 disk_link->name = (unsigned char *)target;
794 disk_link->len = len + 1;
795 if (disk_link->len > max_len)
796 return -ENAMETOOLONG;
797 return 0;
798}
799
800static inline int __fscrypt_encrypt_symlink(struct inode *inode,
801 const char *target,
802 unsigned int len,
803 struct fscrypt_str *disk_link)
804{
805 return -EOPNOTSUPP;
806}
807
808static inline const char *fscrypt_get_symlink(struct inode *inode,
809 const void *caddr,
810 unsigned int max_size,
811 struct delayed_call *done)
812{
813 return ERR_PTR(-EOPNOTSUPP);
814}
815
816static inline int fscrypt_symlink_getattr(const struct path *path,
817 struct kstat *stat)
818{
819 return -EOPNOTSUPP;
820}
821
822static inline void fscrypt_set_ops(struct super_block *sb,
823 const struct fscrypt_operations *s_cop)
824{
825}
826
827#endif /* !CONFIG_FS_ENCRYPTION */
828
829/* inline_crypt.c */
830#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
831
832bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
833
834void fscrypt_set_bio_crypt_ctx(struct bio *bio,
835 const struct inode *inode, u64 first_lblk,
836 gfp_t gfp_mask);
837
838void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
839 const struct buffer_head *first_bh,
840 gfp_t gfp_mask);
841
842bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
843 u64 next_lblk);
844
845bool fscrypt_mergeable_bio_bh(struct bio *bio,
846 const struct buffer_head *next_bh);
847
848bool fscrypt_dio_supported(struct inode *inode);
849
850u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
851
852#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
853
854static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
855{
856 return false;
857}
858
859static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
860 const struct inode *inode,
861 u64 first_lblk, gfp_t gfp_mask) { }
862
863static inline void fscrypt_set_bio_crypt_ctx_bh(
864 struct bio *bio,
865 const struct buffer_head *first_bh,
866 gfp_t gfp_mask) { }
867
868static inline bool fscrypt_mergeable_bio(struct bio *bio,
869 const struct inode *inode,
870 u64 next_lblk)
871{
872 return true;
873}
874
875static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
876 const struct buffer_head *next_bh)
877{
878 return true;
879}
880
881static inline bool fscrypt_dio_supported(struct inode *inode)
882{
883 return !fscrypt_needs_contents_encryption(inode);
884}
885
886static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
887 u64 nr_blocks)
888{
889 return nr_blocks;
890}
891#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
892
893/**
894 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
895 * encryption
896 * @inode: an inode. If encrypted, its key must be set up.
897 *
898 * Return: true if the inode requires file contents encryption and if the
899 * encryption should be done in the block layer via blk-crypto rather
900 * than in the filesystem layer.
901 */
902static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
903{
904 return fscrypt_needs_contents_encryption(inode) &&
905 __fscrypt_inode_uses_inline_crypto(inode);
906}
907
908/**
909 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
910 * encryption
911 * @inode: an inode. If encrypted, its key must be set up.
912 *
913 * Return: true if the inode requires file contents encryption and if the
914 * encryption should be done in the filesystem layer rather than in the
915 * block layer via blk-crypto.
916 */
917static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
918{
919 return fscrypt_needs_contents_encryption(inode) &&
920 !__fscrypt_inode_uses_inline_crypto(inode);
921}
922
923/**
924 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
925 * @inode: the inode to check
926 *
927 * Return: %true if the inode has had its encryption key set up, else %false.
928 *
929 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
930 * set up the key first.
931 */
932static inline bool fscrypt_has_encryption_key(const struct inode *inode)
933{
934 return fscrypt_get_inode_info(inode) != NULL;
935}
936
937/**
938 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
939 * directory
940 * @old_dentry: an existing dentry for the inode being linked
941 * @dir: the target directory
942 * @dentry: negative dentry for the target filename
943 *
944 * A new link can only be added to an encrypted directory if the directory's
945 * encryption key is available --- since otherwise we'd have no way to encrypt
946 * the filename.
947 *
948 * We also verify that the link will not violate the constraint that all files
949 * in an encrypted directory tree use the same encryption policy.
950 *
951 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
952 * -EXDEV if the link would result in an inconsistent encryption policy, or
953 * another -errno code.
954 */
955static inline int fscrypt_prepare_link(struct dentry *old_dentry,
956 struct inode *dir,
957 struct dentry *dentry)
958{
959 if (IS_ENCRYPTED(dir))
960 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
961 return 0;
962}
963
964/**
965 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
966 * directories
967 * @old_dir: source directory
968 * @old_dentry: dentry for source file
969 * @new_dir: target directory
970 * @new_dentry: dentry for target location (may be negative unless exchanging)
971 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
972 *
973 * Prepare for ->rename() where the source and/or target directories may be
974 * encrypted. A new link can only be added to an encrypted directory if the
975 * directory's encryption key is available --- since otherwise we'd have no way
976 * to encrypt the filename. A rename to an existing name, on the other hand,
977 * *is* cryptographically possible without the key. However, we take the more
978 * conservative approach and just forbid all no-key renames.
979 *
980 * We also verify that the rename will not violate the constraint that all files
981 * in an encrypted directory tree use the same encryption policy.
982 *
983 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
984 * rename would cause inconsistent encryption policies, or another -errno code.
985 */
986static inline int fscrypt_prepare_rename(struct inode *old_dir,
987 struct dentry *old_dentry,
988 struct inode *new_dir,
989 struct dentry *new_dentry,
990 unsigned int flags)
991{
992 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
993 return __fscrypt_prepare_rename(old_dir, old_dentry,
994 new_dir, new_dentry, flags);
995 return 0;
996}
997
998/**
999 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
1000 * directory
1001 * @dir: directory being searched
1002 * @dentry: filename being looked up
1003 * @fname: (output) the name to use to search the on-disk directory
1004 *
1005 * Prepare for ->lookup() in a directory which may be encrypted by determining
1006 * the name that will actually be used to search the directory on-disk. If the
1007 * directory's encryption policy is supported by this kernel and its encryption
1008 * key is available, then the lookup is assumed to be by plaintext name;
1009 * otherwise, it is assumed to be by no-key name.
1010 *
1011 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
1012 * name. In this case the filesystem must assign the dentry a dentry_operations
1013 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
1014 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
1015 * directory's encryption key is later added.
1016 *
1017 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
1018 * filename isn't a valid no-key name, so a negative dentry should be created;
1019 * or another -errno code.
1020 */
1021static inline int fscrypt_prepare_lookup(struct inode *dir,
1022 struct dentry *dentry,
1023 struct fscrypt_name *fname)
1024{
1025 if (IS_ENCRYPTED(dir))
1026 return __fscrypt_prepare_lookup(dir, dentry, fname);
1027
1028 memset(fname, 0, sizeof(*fname));
1029 fname->usr_fname = &dentry->d_name;
1030 fname->disk_name.name = (unsigned char *)dentry->d_name.name;
1031 fname->disk_name.len = dentry->d_name.len;
1032
1033 fscrypt_prepare_dentry(dentry, false);
1034
1035 return 0;
1036}
1037
1038/**
1039 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
1040 * @dir: the directory inode
1041 *
1042 * If the directory is encrypted and it doesn't already have its encryption key
1043 * set up, try to set it up so that the filenames will be listed in plaintext
1044 * form rather than in no-key form.
1045 *
1046 * Return: 0 on success; -errno on error. Note that the encryption key being
1047 * unavailable is not considered an error. It is also not an error if
1048 * the encryption policy is unsupported by this kernel; that is treated
1049 * like the key being unavailable, so that files can still be deleted.
1050 */
1051static inline int fscrypt_prepare_readdir(struct inode *dir)
1052{
1053 if (IS_ENCRYPTED(dir))
1054 return __fscrypt_prepare_readdir(dir);
1055 return 0;
1056}
1057
1058/**
1059 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
1060 * attributes
1061 * @dentry: dentry through which the inode is being changed
1062 * @attr: attributes to change
1063 *
1064 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
1065 * most attribute changes are allowed even without the encryption key. However,
1066 * without the encryption key we do have to forbid truncates. This is needed
1067 * because the size being truncated to may not be a multiple of the filesystem
1068 * block size, and in that case we'd have to decrypt the final block, zero the
1069 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a
1070 * filesystem block boundary, but it's simpler to just forbid all truncates ---
1071 * and we already forbid all other contents modifications without the key.)
1072 *
1073 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
1074 * if a problem occurred while setting up the encryption key.
1075 */
1076static inline int fscrypt_prepare_setattr(struct dentry *dentry,
1077 struct iattr *attr)
1078{
1079 if (IS_ENCRYPTED(d_inode(dentry)))
1080 return __fscrypt_prepare_setattr(dentry, attr);
1081 return 0;
1082}
1083
1084/**
1085 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
1086 * @inode: symlink inode
1087 * @target: plaintext symlink target
1088 * @len: length of @target excluding null terminator
1089 * @disk_link: (in/out) the on-disk symlink target being prepared
1090 *
1091 * If the symlink target needs to be encrypted, then this function encrypts it
1092 * into @disk_link->name. fscrypt_prepare_symlink() must have been called
1093 * previously to compute @disk_link->len. If the filesystem did not allocate a
1094 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1095 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1096 *
1097 * Return: 0 on success, -errno on failure
1098 */
1099static inline int fscrypt_encrypt_symlink(struct inode *inode,
1100 const char *target,
1101 unsigned int len,
1102 struct fscrypt_str *disk_link)
1103{
1104 if (IS_ENCRYPTED(inode))
1105 return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1106 return 0;
1107}
1108
1109/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
1110static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1111{
1112 struct page *page = *pagep;
1113
1114 if (fscrypt_is_bounce_page(page)) {
1115 *pagep = fscrypt_pagecache_page(page);
1116 fscrypt_free_bounce_page(page);
1117 }
1118}
1119
1120#endif /* _LINUX_FSCRYPT_H */