Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2018, Google LLC.
4 */
5
6#ifndef SELFTEST_KVM_PROCESSOR_H
7#define SELFTEST_KVM_PROCESSOR_H
8
9#include <assert.h>
10#include <stdint.h>
11#include <syscall.h>
12
13#include <asm/msr-index.h>
14#include <asm/prctl.h>
15
16#include <linux/kvm_para.h>
17#include <linux/stringify.h>
18
19#include "kvm_util.h"
20#include "ucall_common.h"
21
22extern bool host_cpu_is_intel;
23extern bool host_cpu_is_amd;
24extern uint64_t guest_tsc_khz;
25
26#ifndef MAX_NR_CPUID_ENTRIES
27#define MAX_NR_CPUID_ENTRIES 100
28#endif
29
30#define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
31
32/* Forced emulation prefix, used to invoke the emulator unconditionally. */
33#define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34
35#define NMI_VECTOR 0x02
36
37#define X86_EFLAGS_FIXED (1u << 1)
38
39#define X86_CR4_VME (1ul << 0)
40#define X86_CR4_PVI (1ul << 1)
41#define X86_CR4_TSD (1ul << 2)
42#define X86_CR4_DE (1ul << 3)
43#define X86_CR4_PSE (1ul << 4)
44#define X86_CR4_PAE (1ul << 5)
45#define X86_CR4_MCE (1ul << 6)
46#define X86_CR4_PGE (1ul << 7)
47#define X86_CR4_PCE (1ul << 8)
48#define X86_CR4_OSFXSR (1ul << 9)
49#define X86_CR4_OSXMMEXCPT (1ul << 10)
50#define X86_CR4_UMIP (1ul << 11)
51#define X86_CR4_LA57 (1ul << 12)
52#define X86_CR4_VMXE (1ul << 13)
53#define X86_CR4_SMXE (1ul << 14)
54#define X86_CR4_FSGSBASE (1ul << 16)
55#define X86_CR4_PCIDE (1ul << 17)
56#define X86_CR4_OSXSAVE (1ul << 18)
57#define X86_CR4_SMEP (1ul << 20)
58#define X86_CR4_SMAP (1ul << 21)
59#define X86_CR4_PKE (1ul << 22)
60
61struct xstate_header {
62 u64 xstate_bv;
63 u64 xcomp_bv;
64 u64 reserved[6];
65} __attribute__((packed));
66
67struct xstate {
68 u8 i387[512];
69 struct xstate_header header;
70 u8 extended_state_area[0];
71} __attribute__ ((packed, aligned (64)));
72
73#define XFEATURE_MASK_FP BIT_ULL(0)
74#define XFEATURE_MASK_SSE BIT_ULL(1)
75#define XFEATURE_MASK_YMM BIT_ULL(2)
76#define XFEATURE_MASK_BNDREGS BIT_ULL(3)
77#define XFEATURE_MASK_BNDCSR BIT_ULL(4)
78#define XFEATURE_MASK_OPMASK BIT_ULL(5)
79#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
80#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
81#define XFEATURE_MASK_PT BIT_ULL(8)
82#define XFEATURE_MASK_PKRU BIT_ULL(9)
83#define XFEATURE_MASK_PASID BIT_ULL(10)
84#define XFEATURE_MASK_CET_USER BIT_ULL(11)
85#define XFEATURE_MASK_CET_KERNEL BIT_ULL(12)
86#define XFEATURE_MASK_LBR BIT_ULL(15)
87#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
88#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
89
90#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
91 XFEATURE_MASK_ZMM_Hi256 | \
92 XFEATURE_MASK_Hi16_ZMM)
93#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
94 XFEATURE_MASK_XTILE_CFG)
95
96/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
97enum cpuid_output_regs {
98 KVM_CPUID_EAX,
99 KVM_CPUID_EBX,
100 KVM_CPUID_ECX,
101 KVM_CPUID_EDX
102};
103
104/*
105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106 * passed by value with no overhead.
107 */
108struct kvm_x86_cpu_feature {
109 u32 function;
110 u16 index;
111 u8 reg;
112 u8 bit;
113};
114#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
115({ \
116 struct kvm_x86_cpu_feature feature = { \
117 .function = fn, \
118 .index = idx, \
119 .reg = KVM_CPUID_##gpr, \
120 .bit = __bit, \
121 }; \
122 \
123 kvm_static_assert((fn & 0xc0000000) == 0 || \
124 (fn & 0xc0000000) == 0x40000000 || \
125 (fn & 0xc0000000) == 0x80000000 || \
126 (fn & 0xc0000000) == 0xc0000000); \
127 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
128 feature; \
129})
130
131/*
132 * Basic Leafs, a.k.a. Intel defined
133 */
134#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166#define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181
182/*
183 * Extended Leafs, a.k.a. AMD defined
184 */
185#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186#define X86_FEATURE_PERFCTR_CORE KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 23)
187#define X86_FEATURE_PERFCTR_NB KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 24)
188#define X86_FEATURE_PERFCTR_LLC KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 28)
189#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
190#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
191#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
192#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
193#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
194#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
195#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
196#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
197#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
198#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
199#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
200#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
201#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
202#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
203#define X86_FEATURE_IDLE_HLT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 30)
204#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
205#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
206#define X86_FEATURE_SEV_SNP KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 4)
207#define X86_FEATURE_PERFMON_V2 KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 0)
208#define X86_FEATURE_LBR_PMC_FREEZE KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 2)
209
210/*
211 * KVM defined paravirt features.
212 */
213#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
214#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
215#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
216#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
217#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
218#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
219#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
220#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
221/* Bit 8 apparently isn't used?!?! */
222#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
223#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
224#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
225#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
226#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
227#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
228#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
229#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
230#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
231
232/*
233 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
234 * value/property as opposed to a single-bit feature. Again, pack the info
235 * into a 64-bit value to pass by value with no overhead.
236 */
237struct kvm_x86_cpu_property {
238 u32 function;
239 u8 index;
240 u8 reg;
241 u8 lo_bit;
242 u8 hi_bit;
243};
244#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
245({ \
246 struct kvm_x86_cpu_property property = { \
247 .function = fn, \
248 .index = idx, \
249 .reg = KVM_CPUID_##gpr, \
250 .lo_bit = low_bit, \
251 .hi_bit = high_bit, \
252 }; \
253 \
254 kvm_static_assert(low_bit < high_bit); \
255 kvm_static_assert((fn & 0xc0000000) == 0 || \
256 (fn & 0xc0000000) == 0x40000000 || \
257 (fn & 0xc0000000) == 0x80000000 || \
258 (fn & 0xc0000000) == 0xc0000000); \
259 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
260 property; \
261})
262
263#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
264#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
265#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
266#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
267#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
268#define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
269#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
270#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
271#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
272
273#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
274#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
275#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
276#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
277
278#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
279#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
280#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
281#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
282#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
283#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
284#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
285#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
286
287#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
288
289#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
290#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
291#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
292#define X86_PROPERTY_GUEST_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
293#define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
294#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
295#define X86_PROPERTY_NR_PERFCTR_CORE KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 0, 3)
296#define X86_PROPERTY_NR_PERFCTR_NB KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 10, 15)
297
298#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
299
300/*
301 * Intel's architectural PMU events are bizarre. They have a "feature" bit
302 * that indicates the feature is _not_ supported, and a property that states
303 * the length of the bit mask of unsupported features. A feature is supported
304 * if the size of the bit mask is larger than the "unavailable" bit, and said
305 * bit is not set. Fixed counters also bizarre enumeration, but inverted from
306 * arch events for general purpose counters. Fixed counters are supported if a
307 * feature flag is set **OR** the total number of fixed counters is greater
308 * than index of the counter.
309 *
310 * Wrap the events for general purpose and fixed counters to simplify checking
311 * whether or not a given architectural event is supported.
312 */
313struct kvm_x86_pmu_feature {
314 struct kvm_x86_cpu_feature f;
315};
316#define KVM_X86_PMU_FEATURE(__reg, __bit) \
317({ \
318 struct kvm_x86_pmu_feature feature = { \
319 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \
320 }; \
321 \
322 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \
323 KVM_CPUID_##__reg == KVM_CPUID_ECX); \
324 feature; \
325})
326
327#define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0)
328#define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1)
329#define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2)
330#define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3)
331#define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4)
332#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5)
333#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6)
334#define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7)
335
336#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0)
337#define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1)
338#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2)
339#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3)
340
341static inline unsigned int x86_family(unsigned int eax)
342{
343 unsigned int x86;
344
345 x86 = (eax >> 8) & 0xf;
346
347 if (x86 == 0xf)
348 x86 += (eax >> 20) & 0xff;
349
350 return x86;
351}
352
353static inline unsigned int x86_model(unsigned int eax)
354{
355 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
356}
357
358/* Page table bitfield declarations */
359#define PTE_PRESENT_MASK BIT_ULL(0)
360#define PTE_WRITABLE_MASK BIT_ULL(1)
361#define PTE_USER_MASK BIT_ULL(2)
362#define PTE_ACCESSED_MASK BIT_ULL(5)
363#define PTE_DIRTY_MASK BIT_ULL(6)
364#define PTE_LARGE_MASK BIT_ULL(7)
365#define PTE_GLOBAL_MASK BIT_ULL(8)
366#define PTE_NX_MASK BIT_ULL(63)
367
368#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
369
370#define PAGE_SHIFT 12
371#define PAGE_SIZE (1ULL << PAGE_SHIFT)
372#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
373
374#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
375#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
376#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
377
378#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
379#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
380
381/* General Registers in 64-Bit Mode */
382struct gpr64_regs {
383 u64 rax;
384 u64 rcx;
385 u64 rdx;
386 u64 rbx;
387 u64 rsp;
388 u64 rbp;
389 u64 rsi;
390 u64 rdi;
391 u64 r8;
392 u64 r9;
393 u64 r10;
394 u64 r11;
395 u64 r12;
396 u64 r13;
397 u64 r14;
398 u64 r15;
399};
400
401struct desc64 {
402 uint16_t limit0;
403 uint16_t base0;
404 unsigned base1:8, type:4, s:1, dpl:2, p:1;
405 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
406 uint32_t base3;
407 uint32_t zero1;
408} __attribute__((packed));
409
410struct desc_ptr {
411 uint16_t size;
412 uint64_t address;
413} __attribute__((packed));
414
415struct kvm_x86_state {
416 struct kvm_xsave *xsave;
417 struct kvm_vcpu_events events;
418 struct kvm_mp_state mp_state;
419 struct kvm_regs regs;
420 struct kvm_xcrs xcrs;
421 struct kvm_sregs sregs;
422 struct kvm_debugregs debugregs;
423 union {
424 struct kvm_nested_state nested;
425 char nested_[16384];
426 };
427 struct kvm_msrs msrs;
428};
429
430static inline uint64_t get_desc64_base(const struct desc64 *desc)
431{
432 return ((uint64_t)desc->base3 << 32) |
433 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
434}
435
436static inline uint64_t rdtsc(void)
437{
438 uint32_t eax, edx;
439 uint64_t tsc_val;
440 /*
441 * The lfence is to wait (on Intel CPUs) until all previous
442 * instructions have been executed. If software requires RDTSC to be
443 * executed prior to execution of any subsequent instruction, it can
444 * execute LFENCE immediately after RDTSC
445 */
446 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
447 tsc_val = ((uint64_t)edx) << 32 | eax;
448 return tsc_val;
449}
450
451static inline uint64_t rdtscp(uint32_t *aux)
452{
453 uint32_t eax, edx;
454
455 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
456 return ((uint64_t)edx) << 32 | eax;
457}
458
459static inline uint64_t rdmsr(uint32_t msr)
460{
461 uint32_t a, d;
462
463 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
464
465 return a | ((uint64_t) d << 32);
466}
467
468static inline void wrmsr(uint32_t msr, uint64_t value)
469{
470 uint32_t a = value;
471 uint32_t d = value >> 32;
472
473 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
474}
475
476
477static inline uint16_t inw(uint16_t port)
478{
479 uint16_t tmp;
480
481 __asm__ __volatile__("in %%dx, %%ax"
482 : /* output */ "=a" (tmp)
483 : /* input */ "d" (port));
484
485 return tmp;
486}
487
488static inline uint16_t get_es(void)
489{
490 uint16_t es;
491
492 __asm__ __volatile__("mov %%es, %[es]"
493 : /* output */ [es]"=rm"(es));
494 return es;
495}
496
497static inline uint16_t get_cs(void)
498{
499 uint16_t cs;
500
501 __asm__ __volatile__("mov %%cs, %[cs]"
502 : /* output */ [cs]"=rm"(cs));
503 return cs;
504}
505
506static inline uint16_t get_ss(void)
507{
508 uint16_t ss;
509
510 __asm__ __volatile__("mov %%ss, %[ss]"
511 : /* output */ [ss]"=rm"(ss));
512 return ss;
513}
514
515static inline uint16_t get_ds(void)
516{
517 uint16_t ds;
518
519 __asm__ __volatile__("mov %%ds, %[ds]"
520 : /* output */ [ds]"=rm"(ds));
521 return ds;
522}
523
524static inline uint16_t get_fs(void)
525{
526 uint16_t fs;
527
528 __asm__ __volatile__("mov %%fs, %[fs]"
529 : /* output */ [fs]"=rm"(fs));
530 return fs;
531}
532
533static inline uint16_t get_gs(void)
534{
535 uint16_t gs;
536
537 __asm__ __volatile__("mov %%gs, %[gs]"
538 : /* output */ [gs]"=rm"(gs));
539 return gs;
540}
541
542static inline uint16_t get_tr(void)
543{
544 uint16_t tr;
545
546 __asm__ __volatile__("str %[tr]"
547 : /* output */ [tr]"=rm"(tr));
548 return tr;
549}
550
551static inline uint64_t get_cr0(void)
552{
553 uint64_t cr0;
554
555 __asm__ __volatile__("mov %%cr0, %[cr0]"
556 : /* output */ [cr0]"=r"(cr0));
557 return cr0;
558}
559
560static inline uint64_t get_cr3(void)
561{
562 uint64_t cr3;
563
564 __asm__ __volatile__("mov %%cr3, %[cr3]"
565 : /* output */ [cr3]"=r"(cr3));
566 return cr3;
567}
568
569static inline uint64_t get_cr4(void)
570{
571 uint64_t cr4;
572
573 __asm__ __volatile__("mov %%cr4, %[cr4]"
574 : /* output */ [cr4]"=r"(cr4));
575 return cr4;
576}
577
578static inline void set_cr4(uint64_t val)
579{
580 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
581}
582
583static inline void set_idt(const struct desc_ptr *idt_desc)
584{
585 __asm__ __volatile__("lidt %0"::"m"(*idt_desc));
586}
587
588static inline u64 xgetbv(u32 index)
589{
590 u32 eax, edx;
591
592 __asm__ __volatile__("xgetbv;"
593 : "=a" (eax), "=d" (edx)
594 : "c" (index));
595 return eax | ((u64)edx << 32);
596}
597
598static inline void xsetbv(u32 index, u64 value)
599{
600 u32 eax = value;
601 u32 edx = value >> 32;
602
603 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
604}
605
606static inline void wrpkru(u32 pkru)
607{
608 /* Note, ECX and EDX are architecturally required to be '0'. */
609 asm volatile(".byte 0x0f,0x01,0xef\n\t"
610 : : "a" (pkru), "c"(0), "d"(0));
611}
612
613static inline struct desc_ptr get_gdt(void)
614{
615 struct desc_ptr gdt;
616 __asm__ __volatile__("sgdt %[gdt]"
617 : /* output */ [gdt]"=m"(gdt));
618 return gdt;
619}
620
621static inline struct desc_ptr get_idt(void)
622{
623 struct desc_ptr idt;
624 __asm__ __volatile__("sidt %[idt]"
625 : /* output */ [idt]"=m"(idt));
626 return idt;
627}
628
629static inline void outl(uint16_t port, uint32_t value)
630{
631 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
632}
633
634static inline void __cpuid(uint32_t function, uint32_t index,
635 uint32_t *eax, uint32_t *ebx,
636 uint32_t *ecx, uint32_t *edx)
637{
638 *eax = function;
639 *ecx = index;
640
641 asm volatile("cpuid"
642 : "=a" (*eax),
643 "=b" (*ebx),
644 "=c" (*ecx),
645 "=d" (*edx)
646 : "0" (*eax), "2" (*ecx)
647 : "memory");
648}
649
650static inline void cpuid(uint32_t function,
651 uint32_t *eax, uint32_t *ebx,
652 uint32_t *ecx, uint32_t *edx)
653{
654 return __cpuid(function, 0, eax, ebx, ecx, edx);
655}
656
657static inline uint32_t this_cpu_fms(void)
658{
659 uint32_t eax, ebx, ecx, edx;
660
661 cpuid(1, &eax, &ebx, &ecx, &edx);
662 return eax;
663}
664
665static inline uint32_t this_cpu_family(void)
666{
667 return x86_family(this_cpu_fms());
668}
669
670static inline uint32_t this_cpu_model(void)
671{
672 return x86_model(this_cpu_fms());
673}
674
675static inline bool this_cpu_vendor_string_is(const char *vendor)
676{
677 const uint32_t *chunk = (const uint32_t *)vendor;
678 uint32_t eax, ebx, ecx, edx;
679
680 cpuid(0, &eax, &ebx, &ecx, &edx);
681 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
682}
683
684static inline bool this_cpu_is_intel(void)
685{
686 return this_cpu_vendor_string_is("GenuineIntel");
687}
688
689/*
690 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
691 */
692static inline bool this_cpu_is_amd(void)
693{
694 return this_cpu_vendor_string_is("AuthenticAMD");
695}
696
697static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
698 uint8_t reg, uint8_t lo, uint8_t hi)
699{
700 uint32_t gprs[4];
701
702 __cpuid(function, index,
703 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
704 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
705
706 return (gprs[reg] & GENMASK(hi, lo)) >> lo;
707}
708
709static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
710{
711 return __this_cpu_has(feature.function, feature.index,
712 feature.reg, feature.bit, feature.bit);
713}
714
715static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
716{
717 return __this_cpu_has(property.function, property.index,
718 property.reg, property.lo_bit, property.hi_bit);
719}
720
721static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
722{
723 uint32_t max_leaf;
724
725 switch (property.function & 0xc0000000) {
726 case 0:
727 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
728 break;
729 case 0x40000000:
730 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
731 break;
732 case 0x80000000:
733 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
734 break;
735 case 0xc0000000:
736 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
737 }
738 return max_leaf >= property.function;
739}
740
741static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
742{
743 uint32_t nr_bits;
744
745 if (feature.f.reg == KVM_CPUID_EBX) {
746 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
747 return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
748 }
749
750 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
751 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
752 return nr_bits > feature.f.bit || this_cpu_has(feature.f);
753}
754
755static __always_inline uint64_t this_cpu_supported_xcr0(void)
756{
757 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
758 return 0;
759
760 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
761 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
762}
763
764typedef u32 __attribute__((vector_size(16))) sse128_t;
765#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
766#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
767#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
768
769static inline void read_sse_reg(int reg, sse128_t *data)
770{
771 switch (reg) {
772 case 0:
773 asm("movdqa %%xmm0, %0" : "=m"(*data));
774 break;
775 case 1:
776 asm("movdqa %%xmm1, %0" : "=m"(*data));
777 break;
778 case 2:
779 asm("movdqa %%xmm2, %0" : "=m"(*data));
780 break;
781 case 3:
782 asm("movdqa %%xmm3, %0" : "=m"(*data));
783 break;
784 case 4:
785 asm("movdqa %%xmm4, %0" : "=m"(*data));
786 break;
787 case 5:
788 asm("movdqa %%xmm5, %0" : "=m"(*data));
789 break;
790 case 6:
791 asm("movdqa %%xmm6, %0" : "=m"(*data));
792 break;
793 case 7:
794 asm("movdqa %%xmm7, %0" : "=m"(*data));
795 break;
796 default:
797 BUG();
798 }
799}
800
801static inline void write_sse_reg(int reg, const sse128_t *data)
802{
803 switch (reg) {
804 case 0:
805 asm("movdqa %0, %%xmm0" : : "m"(*data));
806 break;
807 case 1:
808 asm("movdqa %0, %%xmm1" : : "m"(*data));
809 break;
810 case 2:
811 asm("movdqa %0, %%xmm2" : : "m"(*data));
812 break;
813 case 3:
814 asm("movdqa %0, %%xmm3" : : "m"(*data));
815 break;
816 case 4:
817 asm("movdqa %0, %%xmm4" : : "m"(*data));
818 break;
819 case 5:
820 asm("movdqa %0, %%xmm5" : : "m"(*data));
821 break;
822 case 6:
823 asm("movdqa %0, %%xmm6" : : "m"(*data));
824 break;
825 case 7:
826 asm("movdqa %0, %%xmm7" : : "m"(*data));
827 break;
828 default:
829 BUG();
830 }
831}
832
833static inline void cpu_relax(void)
834{
835 asm volatile("rep; nop" ::: "memory");
836}
837
838static inline void udelay(unsigned long usec)
839{
840 uint64_t start, now, cycles;
841
842 GUEST_ASSERT(guest_tsc_khz);
843 cycles = guest_tsc_khz / 1000 * usec;
844
845 /*
846 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
847 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
848 */
849 start = rdtsc();
850 do {
851 now = rdtsc();
852 } while (now - start < cycles);
853}
854
855#define ud2() \
856 __asm__ __volatile__( \
857 "ud2\n" \
858 )
859
860#define hlt() \
861 __asm__ __volatile__( \
862 "hlt\n" \
863 )
864
865struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
866void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
867void kvm_x86_state_cleanup(struct kvm_x86_state *state);
868
869const struct kvm_msr_list *kvm_get_msr_index_list(void);
870const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
871bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
872uint64_t kvm_get_feature_msr(uint64_t msr_index);
873
874static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
875 struct kvm_msrs *msrs)
876{
877 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
878
879 TEST_ASSERT(r == msrs->nmsrs,
880 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
881 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
882}
883static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
884{
885 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
886
887 TEST_ASSERT(r == msrs->nmsrs,
888 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
889 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
890}
891static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
892 struct kvm_debugregs *debugregs)
893{
894 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
895}
896static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
897 struct kvm_debugregs *debugregs)
898{
899 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
900}
901static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
902 struct kvm_xsave *xsave)
903{
904 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
905}
906static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
907 struct kvm_xsave *xsave)
908{
909 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
910}
911static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
912 struct kvm_xsave *xsave)
913{
914 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
915}
916static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
917 struct kvm_xcrs *xcrs)
918{
919 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
920}
921static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
922{
923 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
924}
925
926const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
927 uint32_t function, uint32_t index);
928const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
929
930static inline uint32_t kvm_cpu_fms(void)
931{
932 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
933}
934
935static inline uint32_t kvm_cpu_family(void)
936{
937 return x86_family(kvm_cpu_fms());
938}
939
940static inline uint32_t kvm_cpu_model(void)
941{
942 return x86_model(kvm_cpu_fms());
943}
944
945bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
946 struct kvm_x86_cpu_feature feature);
947
948static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
949{
950 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
951}
952
953uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
954 struct kvm_x86_cpu_property property);
955
956static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
957{
958 return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
959}
960
961static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
962{
963 uint32_t max_leaf;
964
965 switch (property.function & 0xc0000000) {
966 case 0:
967 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
968 break;
969 case 0x40000000:
970 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
971 break;
972 case 0x80000000:
973 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
974 break;
975 case 0xc0000000:
976 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
977 }
978 return max_leaf >= property.function;
979}
980
981static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
982{
983 uint32_t nr_bits;
984
985 if (feature.f.reg == KVM_CPUID_EBX) {
986 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
987 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
988 }
989
990 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
991 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
992 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
993}
994
995static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
996{
997 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
998 return 0;
999
1000 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
1001 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
1002}
1003
1004static inline size_t kvm_cpuid2_size(int nr_entries)
1005{
1006 return sizeof(struct kvm_cpuid2) +
1007 sizeof(struct kvm_cpuid_entry2) * nr_entries;
1008}
1009
1010/*
1011 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
1012 * entries sized to hold @nr_entries. The caller is responsible for freeing
1013 * the struct.
1014 */
1015static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1016{
1017 struct kvm_cpuid2 *cpuid;
1018
1019 cpuid = malloc(kvm_cpuid2_size(nr_entries));
1020 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1021
1022 cpuid->nent = nr_entries;
1023
1024 return cpuid;
1025}
1026
1027void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1028
1029static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu)
1030{
1031 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1032}
1033
1034static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1035 uint32_t function,
1036 uint32_t index)
1037{
1038 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)");
1039
1040 vcpu_get_cpuid(vcpu);
1041
1042 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1043 function, index);
1044}
1045
1046static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1047 uint32_t function)
1048{
1049 return __vcpu_get_cpuid_entry(vcpu, function, 0);
1050}
1051
1052static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1053{
1054 int r;
1055
1056 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1057 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1058 if (r)
1059 return r;
1060
1061 /* On success, refresh the cache to pick up adjustments made by KVM. */
1062 vcpu_get_cpuid(vcpu);
1063 return 0;
1064}
1065
1066static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1067{
1068 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1069 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1070
1071 /* Refresh the cache to pick up adjustments made by KVM. */
1072 vcpu_get_cpuid(vcpu);
1073}
1074
1075void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1076 struct kvm_x86_cpu_property property,
1077 uint32_t value);
1078void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1079
1080void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1081
1082static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1083 struct kvm_x86_cpu_feature feature)
1084{
1085 struct kvm_cpuid_entry2 *entry;
1086
1087 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1088 return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1089}
1090
1091void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1092 struct kvm_x86_cpu_feature feature,
1093 bool set);
1094
1095static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1096 struct kvm_x86_cpu_feature feature)
1097{
1098 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1099
1100}
1101
1102static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1103 struct kvm_x86_cpu_feature feature)
1104{
1105 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1106}
1107
1108uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1109int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1110
1111/*
1112 * Assert on an MSR access(es) and pretty print the MSR name when possible.
1113 * Note, the caller provides the stringified name so that the name of macro is
1114 * printed, not the value the macro resolves to (due to macro expansion).
1115 */
1116#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
1117do { \
1118 if (__builtin_constant_p(msr)) { \
1119 TEST_ASSERT(cond, fmt, str, args); \
1120 } else if (!(cond)) { \
1121 char buf[16]; \
1122 \
1123 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
1124 TEST_ASSERT(cond, fmt, buf, args); \
1125 } \
1126} while (0)
1127
1128/*
1129 * Returns true if KVM should return the last written value when reading an MSR
1130 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1131 * is changing, etc. This is NOT an exhaustive list! The intent is to filter
1132 * out MSRs that are not durable _and_ that a selftest wants to write.
1133 */
1134static inline bool is_durable_msr(uint32_t msr)
1135{
1136 return msr != MSR_IA32_TSC;
1137}
1138
1139#define vcpu_set_msr(vcpu, msr, val) \
1140do { \
1141 uint64_t r, v = val; \
1142 \
1143 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
1144 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
1145 if (!is_durable_msr(msr)) \
1146 break; \
1147 r = vcpu_get_msr(vcpu, msr); \
1148 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1149} while (0)
1150
1151void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1152void kvm_init_vm_address_properties(struct kvm_vm *vm);
1153bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1154
1155struct ex_regs {
1156 uint64_t rax, rcx, rdx, rbx;
1157 uint64_t rbp, rsi, rdi;
1158 uint64_t r8, r9, r10, r11;
1159 uint64_t r12, r13, r14, r15;
1160 uint64_t vector;
1161 uint64_t error_code;
1162 uint64_t rip;
1163 uint64_t cs;
1164 uint64_t rflags;
1165};
1166
1167struct idt_entry {
1168 uint16_t offset0;
1169 uint16_t selector;
1170 uint16_t ist : 3;
1171 uint16_t : 5;
1172 uint16_t type : 4;
1173 uint16_t : 1;
1174 uint16_t dpl : 2;
1175 uint16_t p : 1;
1176 uint16_t offset1;
1177 uint32_t offset2; uint32_t reserved;
1178};
1179
1180void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1181 void (*handler)(struct ex_regs *));
1182
1183/* If a toddler were to say "abracadabra". */
1184#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1185
1186/*
1187 * KVM selftest exception fixup uses registers to coordinate with the exception
1188 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1189 * per-CPU data. Using only registers avoids having to map memory into the
1190 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1191 * for recursive faults when accessing memory in the handler. The downside to
1192 * using registers is that it restricts what registers can be used by the actual
1193 * instruction. But, selftests are 64-bit only, making register* pressure a
1194 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
1195 * by the callee, and except for r11 are not implicit parameters to any
1196 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
1197 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1198 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1199 *
1200 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1201 * is guaranteed to be non-zero on fault.
1202 *
1203 * REGISTER INPUTS:
1204 * r9 = MAGIC
1205 * r10 = RIP
1206 * r11 = new RIP on fault
1207 *
1208 * REGISTER OUTPUTS:
1209 * r9 = exception vector (non-zero)
1210 * r10 = error code
1211 */
1212#define __KVM_ASM_SAFE(insn, fep) \
1213 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
1214 "lea 1f(%%rip), %%r10\n\t" \
1215 "lea 2f(%%rip), %%r11\n\t" \
1216 fep "1: " insn "\n\t" \
1217 "xor %%r9, %%r9\n\t" \
1218 "2:\n\t" \
1219 "mov %%r9b, %[vector]\n\t" \
1220 "mov %%r10, %[error_code]\n\t"
1221
1222#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1223#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1224
1225#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
1226#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
1227
1228#define kvm_asm_safe(insn, inputs...) \
1229({ \
1230 uint64_t ign_error_code; \
1231 uint8_t vector; \
1232 \
1233 asm volatile(KVM_ASM_SAFE(insn) \
1234 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1235 : inputs \
1236 : KVM_ASM_SAFE_CLOBBERS); \
1237 vector; \
1238})
1239
1240#define kvm_asm_safe_ec(insn, error_code, inputs...) \
1241({ \
1242 uint8_t vector; \
1243 \
1244 asm volatile(KVM_ASM_SAFE(insn) \
1245 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1246 : inputs \
1247 : KVM_ASM_SAFE_CLOBBERS); \
1248 vector; \
1249})
1250
1251#define kvm_asm_safe_fep(insn, inputs...) \
1252({ \
1253 uint64_t ign_error_code; \
1254 uint8_t vector; \
1255 \
1256 asm volatile(KVM_ASM_SAFE_FEP(insn) \
1257 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1258 : inputs \
1259 : KVM_ASM_SAFE_CLOBBERS); \
1260 vector; \
1261})
1262
1263#define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \
1264({ \
1265 uint8_t vector; \
1266 \
1267 asm volatile(KVM_ASM_SAFE_FEP(insn) \
1268 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1269 : inputs \
1270 : KVM_ASM_SAFE_CLOBBERS); \
1271 vector; \
1272})
1273
1274#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1275static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \
1276{ \
1277 uint64_t error_code; \
1278 uint8_t vector; \
1279 uint32_t a, d; \
1280 \
1281 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \
1282 : "=a"(a), "=d"(d), \
1283 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1284 : "c"(idx) \
1285 : KVM_ASM_SAFE_CLOBBERS); \
1286 \
1287 *val = (uint64_t)a | ((uint64_t)d << 32); \
1288 return vector; \
1289}
1290
1291/*
1292 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1293 * use ECX as in input index, and EDX:EAX as a 64-bit output.
1294 */
1295#define BUILD_READ_U64_SAFE_HELPERS(insn) \
1296 BUILD_READ_U64_SAFE_HELPER(insn, , ) \
1297 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1298
1299BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1300BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1301BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1302
1303static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1304{
1305 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1306}
1307
1308static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1309{
1310 u32 eax = value;
1311 u32 edx = value >> 32;
1312
1313 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1314}
1315
1316bool kvm_is_tdp_enabled(void);
1317
1318static inline bool kvm_is_pmu_enabled(void)
1319{
1320 return get_kvm_param_bool("enable_pmu");
1321}
1322
1323static inline bool kvm_is_forced_emulation_enabled(void)
1324{
1325 return !!get_kvm_param_integer("force_emulation_prefix");
1326}
1327
1328uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1329 int *level);
1330uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1331
1332uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1333 uint64_t a3);
1334uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1335void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1336
1337static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1338 uint64_t size, uint64_t flags)
1339{
1340 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1341}
1342
1343static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1344 uint64_t flags)
1345{
1346 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1347
1348 GUEST_ASSERT(!ret);
1349}
1350
1351/*
1352 * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's
1353 * intended to be a wake event arrives *after* HLT is executed. Modern CPUs,
1354 * except for a few oddballs that KVM is unlikely to run on, block IRQs for one
1355 * instruction after STI, *if* RFLAGS.IF=0 before STI. Note, Intel CPUs may
1356 * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too.
1357 */
1358static inline void safe_halt(void)
1359{
1360 asm volatile("sti; hlt");
1361}
1362
1363/*
1364 * Enable interrupts and ensure that interrupts are evaluated upon return from
1365 * this function, i.e. execute a nop to consume the STi interrupt shadow.
1366 */
1367static inline void sti_nop(void)
1368{
1369 asm volatile ("sti; nop");
1370}
1371
1372/*
1373 * Enable interrupts for one instruction (nop), to allow the CPU to process all
1374 * interrupts that are already pending.
1375 */
1376static inline void sti_nop_cli(void)
1377{
1378 asm volatile ("sti; nop; cli");
1379}
1380
1381static inline void sti(void)
1382{
1383 asm volatile("sti");
1384}
1385
1386static inline void cli(void)
1387{
1388 asm volatile ("cli");
1389}
1390
1391void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1392
1393#define vm_xsave_require_permission(xfeature) \
1394 __vm_xsave_require_permission(xfeature, #xfeature)
1395
1396enum pg_level {
1397 PG_LEVEL_NONE,
1398 PG_LEVEL_4K,
1399 PG_LEVEL_2M,
1400 PG_LEVEL_1G,
1401 PG_LEVEL_512G,
1402 PG_LEVEL_NUM
1403};
1404
1405#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1406#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1407
1408#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1409#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1410#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1411
1412void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1413void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1414 uint64_t nr_bytes, int level);
1415
1416/*
1417 * Basic CPU control in CR0
1418 */
1419#define X86_CR0_PE (1UL<<0) /* Protection Enable */
1420#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
1421#define X86_CR0_EM (1UL<<2) /* Emulation */
1422#define X86_CR0_TS (1UL<<3) /* Task Switched */
1423#define X86_CR0_ET (1UL<<4) /* Extension Type */
1424#define X86_CR0_NE (1UL<<5) /* Numeric Error */
1425#define X86_CR0_WP (1UL<<16) /* Write Protect */
1426#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
1427#define X86_CR0_NW (1UL<<29) /* Not Write-through */
1428#define X86_CR0_CD (1UL<<30) /* Cache Disable */
1429#define X86_CR0_PG (1UL<<31) /* Paging */
1430
1431#define PFERR_PRESENT_BIT 0
1432#define PFERR_WRITE_BIT 1
1433#define PFERR_USER_BIT 2
1434#define PFERR_RSVD_BIT 3
1435#define PFERR_FETCH_BIT 4
1436#define PFERR_PK_BIT 5
1437#define PFERR_SGX_BIT 15
1438#define PFERR_GUEST_FINAL_BIT 32
1439#define PFERR_GUEST_PAGE_BIT 33
1440#define PFERR_IMPLICIT_ACCESS_BIT 48
1441
1442#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
1443#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
1444#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
1445#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
1446#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
1447#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
1448#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
1449#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
1450#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
1451#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1452
1453bool sys_clocksource_is_based_on_tsc(void);
1454
1455#endif /* SELFTEST_KVM_PROCESSOR_H */