at v6.16 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2018, Google LLC. 4 */ 5 6#ifndef SELFTEST_KVM_PROCESSOR_H 7#define SELFTEST_KVM_PROCESSOR_H 8 9#include <assert.h> 10#include <stdint.h> 11#include <syscall.h> 12 13#include <asm/msr-index.h> 14#include <asm/prctl.h> 15 16#include <linux/kvm_para.h> 17#include <linux/stringify.h> 18 19#include "kvm_util.h" 20#include "ucall_common.h" 21 22extern bool host_cpu_is_intel; 23extern bool host_cpu_is_amd; 24extern uint64_t guest_tsc_khz; 25 26#ifndef MAX_NR_CPUID_ENTRIES 27#define MAX_NR_CPUID_ENTRIES 100 28#endif 29 30#define NONCANONICAL 0xaaaaaaaaaaaaaaaaull 31 32/* Forced emulation prefix, used to invoke the emulator unconditionally. */ 33#define KVM_FEP "ud2; .byte 'k', 'v', 'm';" 34 35#define NMI_VECTOR 0x02 36 37#define X86_EFLAGS_FIXED (1u << 1) 38 39#define X86_CR4_VME (1ul << 0) 40#define X86_CR4_PVI (1ul << 1) 41#define X86_CR4_TSD (1ul << 2) 42#define X86_CR4_DE (1ul << 3) 43#define X86_CR4_PSE (1ul << 4) 44#define X86_CR4_PAE (1ul << 5) 45#define X86_CR4_MCE (1ul << 6) 46#define X86_CR4_PGE (1ul << 7) 47#define X86_CR4_PCE (1ul << 8) 48#define X86_CR4_OSFXSR (1ul << 9) 49#define X86_CR4_OSXMMEXCPT (1ul << 10) 50#define X86_CR4_UMIP (1ul << 11) 51#define X86_CR4_LA57 (1ul << 12) 52#define X86_CR4_VMXE (1ul << 13) 53#define X86_CR4_SMXE (1ul << 14) 54#define X86_CR4_FSGSBASE (1ul << 16) 55#define X86_CR4_PCIDE (1ul << 17) 56#define X86_CR4_OSXSAVE (1ul << 18) 57#define X86_CR4_SMEP (1ul << 20) 58#define X86_CR4_SMAP (1ul << 21) 59#define X86_CR4_PKE (1ul << 22) 60 61struct xstate_header { 62 u64 xstate_bv; 63 u64 xcomp_bv; 64 u64 reserved[6]; 65} __attribute__((packed)); 66 67struct xstate { 68 u8 i387[512]; 69 struct xstate_header header; 70 u8 extended_state_area[0]; 71} __attribute__ ((packed, aligned (64))); 72 73#define XFEATURE_MASK_FP BIT_ULL(0) 74#define XFEATURE_MASK_SSE BIT_ULL(1) 75#define XFEATURE_MASK_YMM BIT_ULL(2) 76#define XFEATURE_MASK_BNDREGS BIT_ULL(3) 77#define XFEATURE_MASK_BNDCSR BIT_ULL(4) 78#define XFEATURE_MASK_OPMASK BIT_ULL(5) 79#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) 80#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) 81#define XFEATURE_MASK_PT BIT_ULL(8) 82#define XFEATURE_MASK_PKRU BIT_ULL(9) 83#define XFEATURE_MASK_PASID BIT_ULL(10) 84#define XFEATURE_MASK_CET_USER BIT_ULL(11) 85#define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) 86#define XFEATURE_MASK_LBR BIT_ULL(15) 87#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) 88#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) 89 90#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ 91 XFEATURE_MASK_ZMM_Hi256 | \ 92 XFEATURE_MASK_Hi16_ZMM) 93#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ 94 XFEATURE_MASK_XTILE_CFG) 95 96/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ 97enum cpuid_output_regs { 98 KVM_CPUID_EAX, 99 KVM_CPUID_EBX, 100 KVM_CPUID_ECX, 101 KVM_CPUID_EDX 102}; 103 104/* 105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be 106 * passed by value with no overhead. 107 */ 108struct kvm_x86_cpu_feature { 109 u32 function; 110 u16 index; 111 u8 reg; 112 u8 bit; 113}; 114#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ 115({ \ 116 struct kvm_x86_cpu_feature feature = { \ 117 .function = fn, \ 118 .index = idx, \ 119 .reg = KVM_CPUID_##gpr, \ 120 .bit = __bit, \ 121 }; \ 122 \ 123 kvm_static_assert((fn & 0xc0000000) == 0 || \ 124 (fn & 0xc0000000) == 0x40000000 || \ 125 (fn & 0xc0000000) == 0x80000000 || \ 126 (fn & 0xc0000000) == 0xc0000000); \ 127 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ 128 feature; \ 129}) 130 131/* 132 * Basic Leafs, a.k.a. Intel defined 133 */ 134#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) 135#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) 136#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) 137#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) 138#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) 139#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) 140#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) 141#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) 142#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) 143#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) 144#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) 145#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) 146#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) 147#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) 148#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) 149#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) 150#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) 151#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) 152#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) 153#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) 154#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) 155#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) 156#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) 157#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) 158#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) 159#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) 160#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) 161#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) 162#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) 163#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) 164#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) 165#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) 166#define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4) 167#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) 168#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) 169#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) 170#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) 171#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) 172#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) 173#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) 174#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) 175#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) 176#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) 177#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) 178#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) 179#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) 180#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) 181 182/* 183 * Extended Leafs, a.k.a. AMD defined 184 */ 185#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) 186#define X86_FEATURE_PERFCTR_CORE KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 23) 187#define X86_FEATURE_PERFCTR_NB KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 24) 188#define X86_FEATURE_PERFCTR_LLC KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 28) 189#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) 190#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) 191#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) 192#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) 193#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) 194#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) 195#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) 196#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) 197#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) 198#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) 199#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) 200#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) 201#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) 202#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) 203#define X86_FEATURE_IDLE_HLT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 30) 204#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) 205#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) 206#define X86_FEATURE_SEV_SNP KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 4) 207#define X86_FEATURE_PERFMON_V2 KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 0) 208#define X86_FEATURE_LBR_PMC_FREEZE KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 2) 209 210/* 211 * KVM defined paravirt features. 212 */ 213#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) 214#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) 215#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) 216#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) 217#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) 218#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) 219#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) 220#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) 221/* Bit 8 apparently isn't used?!?! */ 222#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) 223#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) 224#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) 225#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) 226#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) 227#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) 228#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) 229#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) 230#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) 231 232/* 233 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit 234 * value/property as opposed to a single-bit feature. Again, pack the info 235 * into a 64-bit value to pass by value with no overhead. 236 */ 237struct kvm_x86_cpu_property { 238 u32 function; 239 u8 index; 240 u8 reg; 241 u8 lo_bit; 242 u8 hi_bit; 243}; 244#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ 245({ \ 246 struct kvm_x86_cpu_property property = { \ 247 .function = fn, \ 248 .index = idx, \ 249 .reg = KVM_CPUID_##gpr, \ 250 .lo_bit = low_bit, \ 251 .hi_bit = high_bit, \ 252 }; \ 253 \ 254 kvm_static_assert(low_bit < high_bit); \ 255 kvm_static_assert((fn & 0xc0000000) == 0 || \ 256 (fn & 0xc0000000) == 0x40000000 || \ 257 (fn & 0xc0000000) == 0x80000000 || \ 258 (fn & 0xc0000000) == 0xc0000000); \ 259 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ 260 property; \ 261}) 262 263#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) 264#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) 265#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) 266#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) 267#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) 268#define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) 269#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) 270#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) 271#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) 272 273#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) 274#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) 275#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) 276#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) 277 278#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) 279#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) 280#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) 281#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) 282#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) 283#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) 284#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) 285#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) 286 287#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) 288 289#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) 290#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) 291#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) 292#define X86_PROPERTY_GUEST_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23) 293#define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5) 294#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) 295#define X86_PROPERTY_NR_PERFCTR_CORE KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 0, 3) 296#define X86_PROPERTY_NR_PERFCTR_NB KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 10, 15) 297 298#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) 299 300/* 301 * Intel's architectural PMU events are bizarre. They have a "feature" bit 302 * that indicates the feature is _not_ supported, and a property that states 303 * the length of the bit mask of unsupported features. A feature is supported 304 * if the size of the bit mask is larger than the "unavailable" bit, and said 305 * bit is not set. Fixed counters also bizarre enumeration, but inverted from 306 * arch events for general purpose counters. Fixed counters are supported if a 307 * feature flag is set **OR** the total number of fixed counters is greater 308 * than index of the counter. 309 * 310 * Wrap the events for general purpose and fixed counters to simplify checking 311 * whether or not a given architectural event is supported. 312 */ 313struct kvm_x86_pmu_feature { 314 struct kvm_x86_cpu_feature f; 315}; 316#define KVM_X86_PMU_FEATURE(__reg, __bit) \ 317({ \ 318 struct kvm_x86_pmu_feature feature = { \ 319 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \ 320 }; \ 321 \ 322 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \ 323 KVM_CPUID_##__reg == KVM_CPUID_ECX); \ 324 feature; \ 325}) 326 327#define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0) 328#define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1) 329#define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2) 330#define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3) 331#define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4) 332#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5) 333#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6) 334#define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7) 335 336#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0) 337#define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1) 338#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2) 339#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3) 340 341static inline unsigned int x86_family(unsigned int eax) 342{ 343 unsigned int x86; 344 345 x86 = (eax >> 8) & 0xf; 346 347 if (x86 == 0xf) 348 x86 += (eax >> 20) & 0xff; 349 350 return x86; 351} 352 353static inline unsigned int x86_model(unsigned int eax) 354{ 355 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); 356} 357 358/* Page table bitfield declarations */ 359#define PTE_PRESENT_MASK BIT_ULL(0) 360#define PTE_WRITABLE_MASK BIT_ULL(1) 361#define PTE_USER_MASK BIT_ULL(2) 362#define PTE_ACCESSED_MASK BIT_ULL(5) 363#define PTE_DIRTY_MASK BIT_ULL(6) 364#define PTE_LARGE_MASK BIT_ULL(7) 365#define PTE_GLOBAL_MASK BIT_ULL(8) 366#define PTE_NX_MASK BIT_ULL(63) 367 368#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) 369 370#define PAGE_SHIFT 12 371#define PAGE_SIZE (1ULL << PAGE_SHIFT) 372#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) 373 374#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) 375#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) 376#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) 377 378#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) 379#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) 380 381/* General Registers in 64-Bit Mode */ 382struct gpr64_regs { 383 u64 rax; 384 u64 rcx; 385 u64 rdx; 386 u64 rbx; 387 u64 rsp; 388 u64 rbp; 389 u64 rsi; 390 u64 rdi; 391 u64 r8; 392 u64 r9; 393 u64 r10; 394 u64 r11; 395 u64 r12; 396 u64 r13; 397 u64 r14; 398 u64 r15; 399}; 400 401struct desc64 { 402 uint16_t limit0; 403 uint16_t base0; 404 unsigned base1:8, type:4, s:1, dpl:2, p:1; 405 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; 406 uint32_t base3; 407 uint32_t zero1; 408} __attribute__((packed)); 409 410struct desc_ptr { 411 uint16_t size; 412 uint64_t address; 413} __attribute__((packed)); 414 415struct kvm_x86_state { 416 struct kvm_xsave *xsave; 417 struct kvm_vcpu_events events; 418 struct kvm_mp_state mp_state; 419 struct kvm_regs regs; 420 struct kvm_xcrs xcrs; 421 struct kvm_sregs sregs; 422 struct kvm_debugregs debugregs; 423 union { 424 struct kvm_nested_state nested; 425 char nested_[16384]; 426 }; 427 struct kvm_msrs msrs; 428}; 429 430static inline uint64_t get_desc64_base(const struct desc64 *desc) 431{ 432 return ((uint64_t)desc->base3 << 32) | 433 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); 434} 435 436static inline uint64_t rdtsc(void) 437{ 438 uint32_t eax, edx; 439 uint64_t tsc_val; 440 /* 441 * The lfence is to wait (on Intel CPUs) until all previous 442 * instructions have been executed. If software requires RDTSC to be 443 * executed prior to execution of any subsequent instruction, it can 444 * execute LFENCE immediately after RDTSC 445 */ 446 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 447 tsc_val = ((uint64_t)edx) << 32 | eax; 448 return tsc_val; 449} 450 451static inline uint64_t rdtscp(uint32_t *aux) 452{ 453 uint32_t eax, edx; 454 455 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); 456 return ((uint64_t)edx) << 32 | eax; 457} 458 459static inline uint64_t rdmsr(uint32_t msr) 460{ 461 uint32_t a, d; 462 463 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); 464 465 return a | ((uint64_t) d << 32); 466} 467 468static inline void wrmsr(uint32_t msr, uint64_t value) 469{ 470 uint32_t a = value; 471 uint32_t d = value >> 32; 472 473 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); 474} 475 476 477static inline uint16_t inw(uint16_t port) 478{ 479 uint16_t tmp; 480 481 __asm__ __volatile__("in %%dx, %%ax" 482 : /* output */ "=a" (tmp) 483 : /* input */ "d" (port)); 484 485 return tmp; 486} 487 488static inline uint16_t get_es(void) 489{ 490 uint16_t es; 491 492 __asm__ __volatile__("mov %%es, %[es]" 493 : /* output */ [es]"=rm"(es)); 494 return es; 495} 496 497static inline uint16_t get_cs(void) 498{ 499 uint16_t cs; 500 501 __asm__ __volatile__("mov %%cs, %[cs]" 502 : /* output */ [cs]"=rm"(cs)); 503 return cs; 504} 505 506static inline uint16_t get_ss(void) 507{ 508 uint16_t ss; 509 510 __asm__ __volatile__("mov %%ss, %[ss]" 511 : /* output */ [ss]"=rm"(ss)); 512 return ss; 513} 514 515static inline uint16_t get_ds(void) 516{ 517 uint16_t ds; 518 519 __asm__ __volatile__("mov %%ds, %[ds]" 520 : /* output */ [ds]"=rm"(ds)); 521 return ds; 522} 523 524static inline uint16_t get_fs(void) 525{ 526 uint16_t fs; 527 528 __asm__ __volatile__("mov %%fs, %[fs]" 529 : /* output */ [fs]"=rm"(fs)); 530 return fs; 531} 532 533static inline uint16_t get_gs(void) 534{ 535 uint16_t gs; 536 537 __asm__ __volatile__("mov %%gs, %[gs]" 538 : /* output */ [gs]"=rm"(gs)); 539 return gs; 540} 541 542static inline uint16_t get_tr(void) 543{ 544 uint16_t tr; 545 546 __asm__ __volatile__("str %[tr]" 547 : /* output */ [tr]"=rm"(tr)); 548 return tr; 549} 550 551static inline uint64_t get_cr0(void) 552{ 553 uint64_t cr0; 554 555 __asm__ __volatile__("mov %%cr0, %[cr0]" 556 : /* output */ [cr0]"=r"(cr0)); 557 return cr0; 558} 559 560static inline uint64_t get_cr3(void) 561{ 562 uint64_t cr3; 563 564 __asm__ __volatile__("mov %%cr3, %[cr3]" 565 : /* output */ [cr3]"=r"(cr3)); 566 return cr3; 567} 568 569static inline uint64_t get_cr4(void) 570{ 571 uint64_t cr4; 572 573 __asm__ __volatile__("mov %%cr4, %[cr4]" 574 : /* output */ [cr4]"=r"(cr4)); 575 return cr4; 576} 577 578static inline void set_cr4(uint64_t val) 579{ 580 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); 581} 582 583static inline void set_idt(const struct desc_ptr *idt_desc) 584{ 585 __asm__ __volatile__("lidt %0"::"m"(*idt_desc)); 586} 587 588static inline u64 xgetbv(u32 index) 589{ 590 u32 eax, edx; 591 592 __asm__ __volatile__("xgetbv;" 593 : "=a" (eax), "=d" (edx) 594 : "c" (index)); 595 return eax | ((u64)edx << 32); 596} 597 598static inline void xsetbv(u32 index, u64 value) 599{ 600 u32 eax = value; 601 u32 edx = value >> 32; 602 603 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); 604} 605 606static inline void wrpkru(u32 pkru) 607{ 608 /* Note, ECX and EDX are architecturally required to be '0'. */ 609 asm volatile(".byte 0x0f,0x01,0xef\n\t" 610 : : "a" (pkru), "c"(0), "d"(0)); 611} 612 613static inline struct desc_ptr get_gdt(void) 614{ 615 struct desc_ptr gdt; 616 __asm__ __volatile__("sgdt %[gdt]" 617 : /* output */ [gdt]"=m"(gdt)); 618 return gdt; 619} 620 621static inline struct desc_ptr get_idt(void) 622{ 623 struct desc_ptr idt; 624 __asm__ __volatile__("sidt %[idt]" 625 : /* output */ [idt]"=m"(idt)); 626 return idt; 627} 628 629static inline void outl(uint16_t port, uint32_t value) 630{ 631 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); 632} 633 634static inline void __cpuid(uint32_t function, uint32_t index, 635 uint32_t *eax, uint32_t *ebx, 636 uint32_t *ecx, uint32_t *edx) 637{ 638 *eax = function; 639 *ecx = index; 640 641 asm volatile("cpuid" 642 : "=a" (*eax), 643 "=b" (*ebx), 644 "=c" (*ecx), 645 "=d" (*edx) 646 : "0" (*eax), "2" (*ecx) 647 : "memory"); 648} 649 650static inline void cpuid(uint32_t function, 651 uint32_t *eax, uint32_t *ebx, 652 uint32_t *ecx, uint32_t *edx) 653{ 654 return __cpuid(function, 0, eax, ebx, ecx, edx); 655} 656 657static inline uint32_t this_cpu_fms(void) 658{ 659 uint32_t eax, ebx, ecx, edx; 660 661 cpuid(1, &eax, &ebx, &ecx, &edx); 662 return eax; 663} 664 665static inline uint32_t this_cpu_family(void) 666{ 667 return x86_family(this_cpu_fms()); 668} 669 670static inline uint32_t this_cpu_model(void) 671{ 672 return x86_model(this_cpu_fms()); 673} 674 675static inline bool this_cpu_vendor_string_is(const char *vendor) 676{ 677 const uint32_t *chunk = (const uint32_t *)vendor; 678 uint32_t eax, ebx, ecx, edx; 679 680 cpuid(0, &eax, &ebx, &ecx, &edx); 681 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 682} 683 684static inline bool this_cpu_is_intel(void) 685{ 686 return this_cpu_vendor_string_is("GenuineIntel"); 687} 688 689/* 690 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 691 */ 692static inline bool this_cpu_is_amd(void) 693{ 694 return this_cpu_vendor_string_is("AuthenticAMD"); 695} 696 697static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, 698 uint8_t reg, uint8_t lo, uint8_t hi) 699{ 700 uint32_t gprs[4]; 701 702 __cpuid(function, index, 703 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], 704 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); 705 706 return (gprs[reg] & GENMASK(hi, lo)) >> lo; 707} 708 709static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) 710{ 711 return __this_cpu_has(feature.function, feature.index, 712 feature.reg, feature.bit, feature.bit); 713} 714 715static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) 716{ 717 return __this_cpu_has(property.function, property.index, 718 property.reg, property.lo_bit, property.hi_bit); 719} 720 721static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) 722{ 723 uint32_t max_leaf; 724 725 switch (property.function & 0xc0000000) { 726 case 0: 727 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 728 break; 729 case 0x40000000: 730 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 731 break; 732 case 0x80000000: 733 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 734 break; 735 case 0xc0000000: 736 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 737 } 738 return max_leaf >= property.function; 739} 740 741static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) 742{ 743 uint32_t nr_bits; 744 745 if (feature.f.reg == KVM_CPUID_EBX) { 746 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 747 return nr_bits > feature.f.bit && !this_cpu_has(feature.f); 748 } 749 750 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX); 751 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 752 return nr_bits > feature.f.bit || this_cpu_has(feature.f); 753} 754 755static __always_inline uint64_t this_cpu_supported_xcr0(void) 756{ 757 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 758 return 0; 759 760 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 761 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 762} 763 764typedef u32 __attribute__((vector_size(16))) sse128_t; 765#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } 766#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) 767#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) 768 769static inline void read_sse_reg(int reg, sse128_t *data) 770{ 771 switch (reg) { 772 case 0: 773 asm("movdqa %%xmm0, %0" : "=m"(*data)); 774 break; 775 case 1: 776 asm("movdqa %%xmm1, %0" : "=m"(*data)); 777 break; 778 case 2: 779 asm("movdqa %%xmm2, %0" : "=m"(*data)); 780 break; 781 case 3: 782 asm("movdqa %%xmm3, %0" : "=m"(*data)); 783 break; 784 case 4: 785 asm("movdqa %%xmm4, %0" : "=m"(*data)); 786 break; 787 case 5: 788 asm("movdqa %%xmm5, %0" : "=m"(*data)); 789 break; 790 case 6: 791 asm("movdqa %%xmm6, %0" : "=m"(*data)); 792 break; 793 case 7: 794 asm("movdqa %%xmm7, %0" : "=m"(*data)); 795 break; 796 default: 797 BUG(); 798 } 799} 800 801static inline void write_sse_reg(int reg, const sse128_t *data) 802{ 803 switch (reg) { 804 case 0: 805 asm("movdqa %0, %%xmm0" : : "m"(*data)); 806 break; 807 case 1: 808 asm("movdqa %0, %%xmm1" : : "m"(*data)); 809 break; 810 case 2: 811 asm("movdqa %0, %%xmm2" : : "m"(*data)); 812 break; 813 case 3: 814 asm("movdqa %0, %%xmm3" : : "m"(*data)); 815 break; 816 case 4: 817 asm("movdqa %0, %%xmm4" : : "m"(*data)); 818 break; 819 case 5: 820 asm("movdqa %0, %%xmm5" : : "m"(*data)); 821 break; 822 case 6: 823 asm("movdqa %0, %%xmm6" : : "m"(*data)); 824 break; 825 case 7: 826 asm("movdqa %0, %%xmm7" : : "m"(*data)); 827 break; 828 default: 829 BUG(); 830 } 831} 832 833static inline void cpu_relax(void) 834{ 835 asm volatile("rep; nop" ::: "memory"); 836} 837 838static inline void udelay(unsigned long usec) 839{ 840 uint64_t start, now, cycles; 841 842 GUEST_ASSERT(guest_tsc_khz); 843 cycles = guest_tsc_khz / 1000 * usec; 844 845 /* 846 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is 847 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits. 848 */ 849 start = rdtsc(); 850 do { 851 now = rdtsc(); 852 } while (now - start < cycles); 853} 854 855#define ud2() \ 856 __asm__ __volatile__( \ 857 "ud2\n" \ 858 ) 859 860#define hlt() \ 861 __asm__ __volatile__( \ 862 "hlt\n" \ 863 ) 864 865struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); 866void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); 867void kvm_x86_state_cleanup(struct kvm_x86_state *state); 868 869const struct kvm_msr_list *kvm_get_msr_index_list(void); 870const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); 871bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); 872uint64_t kvm_get_feature_msr(uint64_t msr_index); 873 874static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, 875 struct kvm_msrs *msrs) 876{ 877 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); 878 879 TEST_ASSERT(r == msrs->nmsrs, 880 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", 881 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 882} 883static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) 884{ 885 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); 886 887 TEST_ASSERT(r == msrs->nmsrs, 888 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", 889 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 890} 891static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, 892 struct kvm_debugregs *debugregs) 893{ 894 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); 895} 896static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, 897 struct kvm_debugregs *debugregs) 898{ 899 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); 900} 901static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, 902 struct kvm_xsave *xsave) 903{ 904 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); 905} 906static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, 907 struct kvm_xsave *xsave) 908{ 909 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); 910} 911static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, 912 struct kvm_xsave *xsave) 913{ 914 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); 915} 916static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, 917 struct kvm_xcrs *xcrs) 918{ 919 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); 920} 921static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) 922{ 923 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); 924} 925 926const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 927 uint32_t function, uint32_t index); 928const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); 929 930static inline uint32_t kvm_cpu_fms(void) 931{ 932 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; 933} 934 935static inline uint32_t kvm_cpu_family(void) 936{ 937 return x86_family(kvm_cpu_fms()); 938} 939 940static inline uint32_t kvm_cpu_model(void) 941{ 942 return x86_model(kvm_cpu_fms()); 943} 944 945bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 946 struct kvm_x86_cpu_feature feature); 947 948static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) 949{ 950 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); 951} 952 953uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 954 struct kvm_x86_cpu_property property); 955 956static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) 957{ 958 return kvm_cpuid_property(kvm_get_supported_cpuid(), property); 959} 960 961static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) 962{ 963 uint32_t max_leaf; 964 965 switch (property.function & 0xc0000000) { 966 case 0: 967 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 968 break; 969 case 0x40000000: 970 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 971 break; 972 case 0x80000000: 973 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 974 break; 975 case 0xc0000000: 976 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 977 } 978 return max_leaf >= property.function; 979} 980 981static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) 982{ 983 uint32_t nr_bits; 984 985 if (feature.f.reg == KVM_CPUID_EBX) { 986 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 987 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f); 988 } 989 990 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX); 991 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 992 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f); 993} 994 995static __always_inline uint64_t kvm_cpu_supported_xcr0(void) 996{ 997 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 998 return 0; 999 1000 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 1001 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 1002} 1003 1004static inline size_t kvm_cpuid2_size(int nr_entries) 1005{ 1006 return sizeof(struct kvm_cpuid2) + 1007 sizeof(struct kvm_cpuid_entry2) * nr_entries; 1008} 1009 1010/* 1011 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of 1012 * entries sized to hold @nr_entries. The caller is responsible for freeing 1013 * the struct. 1014 */ 1015static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) 1016{ 1017 struct kvm_cpuid2 *cpuid; 1018 1019 cpuid = malloc(kvm_cpuid2_size(nr_entries)); 1020 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); 1021 1022 cpuid->nent = nr_entries; 1023 1024 return cpuid; 1025} 1026 1027void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); 1028 1029static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu) 1030{ 1031 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 1032} 1033 1034static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 1035 uint32_t function, 1036 uint32_t index) 1037{ 1038 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)"); 1039 1040 vcpu_get_cpuid(vcpu); 1041 1042 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, 1043 function, index); 1044} 1045 1046static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 1047 uint32_t function) 1048{ 1049 return __vcpu_get_cpuid_entry(vcpu, function, 0); 1050} 1051 1052static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1053{ 1054 int r; 1055 1056 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1057 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1058 if (r) 1059 return r; 1060 1061 /* On success, refresh the cache to pick up adjustments made by KVM. */ 1062 vcpu_get_cpuid(vcpu); 1063 return 0; 1064} 1065 1066static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1067{ 1068 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1069 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1070 1071 /* Refresh the cache to pick up adjustments made by KVM. */ 1072 vcpu_get_cpuid(vcpu); 1073} 1074 1075void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, 1076 struct kvm_x86_cpu_property property, 1077 uint32_t value); 1078void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); 1079 1080void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); 1081 1082static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu, 1083 struct kvm_x86_cpu_feature feature) 1084{ 1085 struct kvm_cpuid_entry2 *entry; 1086 1087 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 1088 return *((&entry->eax) + feature.reg) & BIT(feature.bit); 1089} 1090 1091void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1092 struct kvm_x86_cpu_feature feature, 1093 bool set); 1094 1095static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, 1096 struct kvm_x86_cpu_feature feature) 1097{ 1098 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); 1099 1100} 1101 1102static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1103 struct kvm_x86_cpu_feature feature) 1104{ 1105 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); 1106} 1107 1108uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); 1109int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); 1110 1111/* 1112 * Assert on an MSR access(es) and pretty print the MSR name when possible. 1113 * Note, the caller provides the stringified name so that the name of macro is 1114 * printed, not the value the macro resolves to (due to macro expansion). 1115 */ 1116#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ 1117do { \ 1118 if (__builtin_constant_p(msr)) { \ 1119 TEST_ASSERT(cond, fmt, str, args); \ 1120 } else if (!(cond)) { \ 1121 char buf[16]; \ 1122 \ 1123 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ 1124 TEST_ASSERT(cond, fmt, buf, args); \ 1125 } \ 1126} while (0) 1127 1128/* 1129 * Returns true if KVM should return the last written value when reading an MSR 1130 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that 1131 * is changing, etc. This is NOT an exhaustive list! The intent is to filter 1132 * out MSRs that are not durable _and_ that a selftest wants to write. 1133 */ 1134static inline bool is_durable_msr(uint32_t msr) 1135{ 1136 return msr != MSR_IA32_TSC; 1137} 1138 1139#define vcpu_set_msr(vcpu, msr, val) \ 1140do { \ 1141 uint64_t r, v = val; \ 1142 \ 1143 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ 1144 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ 1145 if (!is_durable_msr(msr)) \ 1146 break; \ 1147 r = vcpu_get_msr(vcpu, msr); \ 1148 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ 1149} while (0) 1150 1151void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); 1152void kvm_init_vm_address_properties(struct kvm_vm *vm); 1153bool vm_is_unrestricted_guest(struct kvm_vm *vm); 1154 1155struct ex_regs { 1156 uint64_t rax, rcx, rdx, rbx; 1157 uint64_t rbp, rsi, rdi; 1158 uint64_t r8, r9, r10, r11; 1159 uint64_t r12, r13, r14, r15; 1160 uint64_t vector; 1161 uint64_t error_code; 1162 uint64_t rip; 1163 uint64_t cs; 1164 uint64_t rflags; 1165}; 1166 1167struct idt_entry { 1168 uint16_t offset0; 1169 uint16_t selector; 1170 uint16_t ist : 3; 1171 uint16_t : 5; 1172 uint16_t type : 4; 1173 uint16_t : 1; 1174 uint16_t dpl : 2; 1175 uint16_t p : 1; 1176 uint16_t offset1; 1177 uint32_t offset2; uint32_t reserved; 1178}; 1179 1180void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1181 void (*handler)(struct ex_regs *)); 1182 1183/* If a toddler were to say "abracadabra". */ 1184#define KVM_EXCEPTION_MAGIC 0xabacadabaULL 1185 1186/* 1187 * KVM selftest exception fixup uses registers to coordinate with the exception 1188 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory 1189 * per-CPU data. Using only registers avoids having to map memory into the 1190 * guest, doesn't require a valid, stable GS.base, and reduces the risk of 1191 * for recursive faults when accessing memory in the handler. The downside to 1192 * using registers is that it restricts what registers can be used by the actual 1193 * instruction. But, selftests are 64-bit only, making register* pressure a 1194 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved 1195 * by the callee, and except for r11 are not implicit parameters to any 1196 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit 1197 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V 1198 * is higher priority than testing non-faulting SYSCALL/SYSRET. 1199 * 1200 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector 1201 * is guaranteed to be non-zero on fault. 1202 * 1203 * REGISTER INPUTS: 1204 * r9 = MAGIC 1205 * r10 = RIP 1206 * r11 = new RIP on fault 1207 * 1208 * REGISTER OUTPUTS: 1209 * r9 = exception vector (non-zero) 1210 * r10 = error code 1211 */ 1212#define __KVM_ASM_SAFE(insn, fep) \ 1213 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ 1214 "lea 1f(%%rip), %%r10\n\t" \ 1215 "lea 2f(%%rip), %%r11\n\t" \ 1216 fep "1: " insn "\n\t" \ 1217 "xor %%r9, %%r9\n\t" \ 1218 "2:\n\t" \ 1219 "mov %%r9b, %[vector]\n\t" \ 1220 "mov %%r10, %[error_code]\n\t" 1221 1222#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "") 1223#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP) 1224 1225#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) 1226#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" 1227 1228#define kvm_asm_safe(insn, inputs...) \ 1229({ \ 1230 uint64_t ign_error_code; \ 1231 uint8_t vector; \ 1232 \ 1233 asm volatile(KVM_ASM_SAFE(insn) \ 1234 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1235 : inputs \ 1236 : KVM_ASM_SAFE_CLOBBERS); \ 1237 vector; \ 1238}) 1239 1240#define kvm_asm_safe_ec(insn, error_code, inputs...) \ 1241({ \ 1242 uint8_t vector; \ 1243 \ 1244 asm volatile(KVM_ASM_SAFE(insn) \ 1245 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1246 : inputs \ 1247 : KVM_ASM_SAFE_CLOBBERS); \ 1248 vector; \ 1249}) 1250 1251#define kvm_asm_safe_fep(insn, inputs...) \ 1252({ \ 1253 uint64_t ign_error_code; \ 1254 uint8_t vector; \ 1255 \ 1256 asm volatile(KVM_ASM_SAFE_FEP(insn) \ 1257 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1258 : inputs \ 1259 : KVM_ASM_SAFE_CLOBBERS); \ 1260 vector; \ 1261}) 1262 1263#define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \ 1264({ \ 1265 uint8_t vector; \ 1266 \ 1267 asm volatile(KVM_ASM_SAFE_FEP(insn) \ 1268 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1269 : inputs \ 1270 : KVM_ASM_SAFE_CLOBBERS); \ 1271 vector; \ 1272}) 1273 1274#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1275static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \ 1276{ \ 1277 uint64_t error_code; \ 1278 uint8_t vector; \ 1279 uint32_t a, d; \ 1280 \ 1281 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \ 1282 : "=a"(a), "=d"(d), \ 1283 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1284 : "c"(idx) \ 1285 : KVM_ASM_SAFE_CLOBBERS); \ 1286 \ 1287 *val = (uint64_t)a | ((uint64_t)d << 32); \ 1288 return vector; \ 1289} 1290 1291/* 1292 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that 1293 * use ECX as in input index, and EDX:EAX as a 64-bit output. 1294 */ 1295#define BUILD_READ_U64_SAFE_HELPERS(insn) \ 1296 BUILD_READ_U64_SAFE_HELPER(insn, , ) \ 1297 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1298 1299BUILD_READ_U64_SAFE_HELPERS(rdmsr) 1300BUILD_READ_U64_SAFE_HELPERS(rdpmc) 1301BUILD_READ_U64_SAFE_HELPERS(xgetbv) 1302 1303static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) 1304{ 1305 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); 1306} 1307 1308static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) 1309{ 1310 u32 eax = value; 1311 u32 edx = value >> 32; 1312 1313 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); 1314} 1315 1316bool kvm_is_tdp_enabled(void); 1317 1318static inline bool kvm_is_pmu_enabled(void) 1319{ 1320 return get_kvm_param_bool("enable_pmu"); 1321} 1322 1323static inline bool kvm_is_forced_emulation_enabled(void) 1324{ 1325 return !!get_kvm_param_integer("force_emulation_prefix"); 1326} 1327 1328uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 1329 int *level); 1330uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); 1331 1332uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1333 uint64_t a3); 1334uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1335void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1336 1337static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa, 1338 uint64_t size, uint64_t flags) 1339{ 1340 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0); 1341} 1342 1343static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, 1344 uint64_t flags) 1345{ 1346 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags); 1347 1348 GUEST_ASSERT(!ret); 1349} 1350 1351/* 1352 * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's 1353 * intended to be a wake event arrives *after* HLT is executed. Modern CPUs, 1354 * except for a few oddballs that KVM is unlikely to run on, block IRQs for one 1355 * instruction after STI, *if* RFLAGS.IF=0 before STI. Note, Intel CPUs may 1356 * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too. 1357 */ 1358static inline void safe_halt(void) 1359{ 1360 asm volatile("sti; hlt"); 1361} 1362 1363/* 1364 * Enable interrupts and ensure that interrupts are evaluated upon return from 1365 * this function, i.e. execute a nop to consume the STi interrupt shadow. 1366 */ 1367static inline void sti_nop(void) 1368{ 1369 asm volatile ("sti; nop"); 1370} 1371 1372/* 1373 * Enable interrupts for one instruction (nop), to allow the CPU to process all 1374 * interrupts that are already pending. 1375 */ 1376static inline void sti_nop_cli(void) 1377{ 1378 asm volatile ("sti; nop; cli"); 1379} 1380 1381static inline void sti(void) 1382{ 1383 asm volatile("sti"); 1384} 1385 1386static inline void cli(void) 1387{ 1388 asm volatile ("cli"); 1389} 1390 1391void __vm_xsave_require_permission(uint64_t xfeature, const char *name); 1392 1393#define vm_xsave_require_permission(xfeature) \ 1394 __vm_xsave_require_permission(xfeature, #xfeature) 1395 1396enum pg_level { 1397 PG_LEVEL_NONE, 1398 PG_LEVEL_4K, 1399 PG_LEVEL_2M, 1400 PG_LEVEL_1G, 1401 PG_LEVEL_512G, 1402 PG_LEVEL_NUM 1403}; 1404 1405#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) 1406#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) 1407 1408#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) 1409#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) 1410#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) 1411 1412void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); 1413void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1414 uint64_t nr_bytes, int level); 1415 1416/* 1417 * Basic CPU control in CR0 1418 */ 1419#define X86_CR0_PE (1UL<<0) /* Protection Enable */ 1420#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ 1421#define X86_CR0_EM (1UL<<2) /* Emulation */ 1422#define X86_CR0_TS (1UL<<3) /* Task Switched */ 1423#define X86_CR0_ET (1UL<<4) /* Extension Type */ 1424#define X86_CR0_NE (1UL<<5) /* Numeric Error */ 1425#define X86_CR0_WP (1UL<<16) /* Write Protect */ 1426#define X86_CR0_AM (1UL<<18) /* Alignment Mask */ 1427#define X86_CR0_NW (1UL<<29) /* Not Write-through */ 1428#define X86_CR0_CD (1UL<<30) /* Cache Disable */ 1429#define X86_CR0_PG (1UL<<31) /* Paging */ 1430 1431#define PFERR_PRESENT_BIT 0 1432#define PFERR_WRITE_BIT 1 1433#define PFERR_USER_BIT 2 1434#define PFERR_RSVD_BIT 3 1435#define PFERR_FETCH_BIT 4 1436#define PFERR_PK_BIT 5 1437#define PFERR_SGX_BIT 15 1438#define PFERR_GUEST_FINAL_BIT 32 1439#define PFERR_GUEST_PAGE_BIT 33 1440#define PFERR_IMPLICIT_ACCESS_BIT 48 1441 1442#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 1443#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 1444#define PFERR_USER_MASK BIT(PFERR_USER_BIT) 1445#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 1446#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 1447#define PFERR_PK_MASK BIT(PFERR_PK_BIT) 1448#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 1449#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 1450#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 1451#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 1452 1453bool sys_clocksource_is_based_on_tsc(void); 1454 1455#endif /* SELFTEST_KVM_PROCESSOR_H */