at v6.16 81 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 54 * @eusb2_isoc_ep_comp: eUSB2 isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct usb_eusb2_isoc_ep_comp_descriptor eusb2_isoc_ep_comp; 72 struct list_head urb_list; 73 void *hcpriv; 74 struct ep_device *ep_dev; /* For sysfs info */ 75 76 unsigned char *extra; /* Extra descriptors */ 77 int extralen; 78 int enabled; 79 int streams; 80}; 81 82/* host-side wrapper for one interface setting's parsed descriptors */ 83struct usb_host_interface { 84 struct usb_interface_descriptor desc; 85 86 int extralen; 87 unsigned char *extra; /* Extra descriptors */ 88 89 /* array of desc.bNumEndpoints endpoints associated with this 90 * interface setting. these will be in no particular order. 91 */ 92 struct usb_host_endpoint *endpoint; 93 94 char *string; /* iInterface string, if present */ 95}; 96 97enum usb_interface_condition { 98 USB_INTERFACE_UNBOUND = 0, 99 USB_INTERFACE_BINDING, 100 USB_INTERFACE_BOUND, 101 USB_INTERFACE_UNBINDING, 102}; 103 104int __must_check 105usb_find_common_endpoints(struct usb_host_interface *alt, 106 struct usb_endpoint_descriptor **bulk_in, 107 struct usb_endpoint_descriptor **bulk_out, 108 struct usb_endpoint_descriptor **int_in, 109 struct usb_endpoint_descriptor **int_out); 110 111int __must_check 112usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 113 struct usb_endpoint_descriptor **bulk_in, 114 struct usb_endpoint_descriptor **bulk_out, 115 struct usb_endpoint_descriptor **int_in, 116 struct usb_endpoint_descriptor **int_out); 117 118static inline int __must_check 119usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 120 struct usb_endpoint_descriptor **bulk_in) 121{ 122 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 123} 124 125static inline int __must_check 126usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 127 struct usb_endpoint_descriptor **bulk_out) 128{ 129 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 130} 131 132static inline int __must_check 133usb_find_int_in_endpoint(struct usb_host_interface *alt, 134 struct usb_endpoint_descriptor **int_in) 135{ 136 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 137} 138 139static inline int __must_check 140usb_find_int_out_endpoint(struct usb_host_interface *alt, 141 struct usb_endpoint_descriptor **int_out) 142{ 143 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 144} 145 146static inline int __must_check 147usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 148 struct usb_endpoint_descriptor **bulk_in) 149{ 150 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 151} 152 153static inline int __must_check 154usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 155 struct usb_endpoint_descriptor **bulk_out) 156{ 157 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 158} 159 160static inline int __must_check 161usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 162 struct usb_endpoint_descriptor **int_in) 163{ 164 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 165} 166 167static inline int __must_check 168usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 169 struct usb_endpoint_descriptor **int_out) 170{ 171 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 172} 173 174enum usb_wireless_status { 175 USB_WIRELESS_STATUS_NA = 0, 176 USB_WIRELESS_STATUS_DISCONNECTED, 177 USB_WIRELESS_STATUS_CONNECTED, 178}; 179 180/** 181 * struct usb_interface - what usb device drivers talk to 182 * @altsetting: array of interface structures, one for each alternate 183 * setting that may be selected. Each one includes a set of 184 * endpoint configurations. They will be in no particular order. 185 * @cur_altsetting: the current altsetting. 186 * @num_altsetting: number of altsettings defined. 187 * @intf_assoc: interface association descriptor 188 * @minor: the minor number assigned to this interface, if this 189 * interface is bound to a driver that uses the USB major number. 190 * If this interface does not use the USB major, this field should 191 * be unused. The driver should set this value in the probe() 192 * function of the driver, after it has been assigned a minor 193 * number from the USB core by calling usb_register_dev(). 194 * @condition: binding state of the interface: not bound, binding 195 * (in probe()), bound to a driver, or unbinding (in disconnect()) 196 * @sysfs_files_created: sysfs attributes exist 197 * @ep_devs_created: endpoint child pseudo-devices exist 198 * @unregistering: flag set when the interface is being unregistered 199 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 200 * capability during autosuspend. 201 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 202 * has been deferred. 203 * @needs_binding: flag set when the driver should be re-probed or unbound 204 * following a reset or suspend operation it doesn't support. 205 * @authorized: This allows to (de)authorize individual interfaces instead 206 * a whole device in contrast to the device authorization. 207 * @wireless_status: if the USB device uses a receiver/emitter combo, whether 208 * the emitter is connected. 209 * @wireless_status_work: Used for scheduling wireless status changes 210 * from atomic context. 211 * @dev: driver model's view of this device 212 * @usb_dev: if an interface is bound to the USB major, this will point 213 * to the sysfs representation for that device. 214 * @reset_ws: Used for scheduling resets from atomic context. 215 * @resetting_device: USB core reset the device, so use alt setting 0 as 216 * current; needs bandwidth alloc after reset. 217 * 218 * USB device drivers attach to interfaces on a physical device. Each 219 * interface encapsulates a single high level function, such as feeding 220 * an audio stream to a speaker or reporting a change in a volume control. 221 * Many USB devices only have one interface. The protocol used to talk to 222 * an interface's endpoints can be defined in a usb "class" specification, 223 * or by a product's vendor. The (default) control endpoint is part of 224 * every interface, but is never listed among the interface's descriptors. 225 * 226 * The driver that is bound to the interface can use standard driver model 227 * calls such as dev_get_drvdata() on the dev member of this structure. 228 * 229 * Each interface may have alternate settings. The initial configuration 230 * of a device sets altsetting 0, but the device driver can change 231 * that setting using usb_set_interface(). Alternate settings are often 232 * used to control the use of periodic endpoints, such as by having 233 * different endpoints use different amounts of reserved USB bandwidth. 234 * All standards-conformant USB devices that use isochronous endpoints 235 * will use them in non-default settings. 236 * 237 * The USB specification says that alternate setting numbers must run from 238 * 0 to one less than the total number of alternate settings. But some 239 * devices manage to mess this up, and the structures aren't necessarily 240 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 241 * look up an alternate setting in the altsetting array based on its number. 242 */ 243struct usb_interface { 244 /* array of alternate settings for this interface, 245 * stored in no particular order */ 246 struct usb_host_interface *altsetting; 247 248 struct usb_host_interface *cur_altsetting; /* the currently 249 * active alternate setting */ 250 unsigned num_altsetting; /* number of alternate settings */ 251 252 /* If there is an interface association descriptor then it will list 253 * the associated interfaces */ 254 struct usb_interface_assoc_descriptor *intf_assoc; 255 256 int minor; /* minor number this interface is 257 * bound to */ 258 enum usb_interface_condition condition; /* state of binding */ 259 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 260 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 261 unsigned unregistering:1; /* unregistration is in progress */ 262 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 263 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 264 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 265 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 266 unsigned authorized:1; /* used for interface authorization */ 267 enum usb_wireless_status wireless_status; 268 struct work_struct wireless_status_work; 269 270 struct device dev; /* interface specific device info */ 271 struct device *usb_dev; 272 struct work_struct reset_ws; /* for resets in atomic context */ 273}; 274 275#define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 276 277static inline void *usb_get_intfdata(struct usb_interface *intf) 278{ 279 return dev_get_drvdata(&intf->dev); 280} 281 282/** 283 * usb_set_intfdata() - associate driver-specific data with an interface 284 * @intf: USB interface 285 * @data: driver data 286 * 287 * Drivers can use this function in their probe() callbacks to associate 288 * driver-specific data with an interface. 289 * 290 * Note that there is generally no need to clear the driver-data pointer even 291 * if some drivers do so for historical or implementation-specific reasons. 292 */ 293static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 294{ 295 dev_set_drvdata(&intf->dev, data); 296} 297 298struct usb_interface *usb_get_intf(struct usb_interface *intf); 299void usb_put_intf(struct usb_interface *intf); 300 301/* Hard limit */ 302#define USB_MAXENDPOINTS 30 303/* this maximum is arbitrary */ 304#define USB_MAXINTERFACES 32 305#define USB_MAXIADS (USB_MAXINTERFACES/2) 306 307bool usb_check_bulk_endpoints( 308 const struct usb_interface *intf, const u8 *ep_addrs); 309bool usb_check_int_endpoints( 310 const struct usb_interface *intf, const u8 *ep_addrs); 311 312/* 313 * USB Resume Timer: Every Host controller driver should drive the resume 314 * signalling on the bus for the amount of time defined by this macro. 315 * 316 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 317 * 318 * Note that the USB Specification states we should drive resume for *at least* 319 * 20 ms, but it doesn't give an upper bound. This creates two possible 320 * situations which we want to avoid: 321 * 322 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 323 * us to fail USB Electrical Tests, thus failing Certification 324 * 325 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 326 * and while we can argue that's against the USB Specification, we don't have 327 * control over which devices a certification laboratory will be using for 328 * certification. If CertLab uses a device which was tested against Windows and 329 * that happens to have relaxed resume signalling rules, we might fall into 330 * situations where we fail interoperability and electrical tests. 331 * 332 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 333 * should cope with both LPJ calibration errors and devices not following every 334 * detail of the USB Specification. 335 */ 336#define USB_RESUME_TIMEOUT 40 /* ms */ 337 338/** 339 * struct usb_interface_cache - long-term representation of a device interface 340 * @num_altsetting: number of altsettings defined. 341 * @ref: reference counter. 342 * @altsetting: variable-length array of interface structures, one for 343 * each alternate setting that may be selected. Each one includes a 344 * set of endpoint configurations. They will be in no particular order. 345 * 346 * These structures persist for the lifetime of a usb_device, unlike 347 * struct usb_interface (which persists only as long as its configuration 348 * is installed). The altsetting arrays can be accessed through these 349 * structures at any time, permitting comparison of configurations and 350 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 351 */ 352struct usb_interface_cache { 353 unsigned num_altsetting; /* number of alternate settings */ 354 struct kref ref; /* reference counter */ 355 356 /* variable-length array of alternate settings for this interface, 357 * stored in no particular order */ 358 struct usb_host_interface altsetting[]; 359}; 360#define ref_to_usb_interface_cache(r) \ 361 container_of(r, struct usb_interface_cache, ref) 362#define altsetting_to_usb_interface_cache(a) \ 363 container_of(a, struct usb_interface_cache, altsetting[0]) 364 365/** 366 * struct usb_host_config - representation of a device's configuration 367 * @desc: the device's configuration descriptor. 368 * @string: pointer to the cached version of the iConfiguration string, if 369 * present for this configuration. 370 * @intf_assoc: list of any interface association descriptors in this config 371 * @interface: array of pointers to usb_interface structures, one for each 372 * interface in the configuration. The number of interfaces is stored 373 * in desc.bNumInterfaces. These pointers are valid only while the 374 * configuration is active. 375 * @intf_cache: array of pointers to usb_interface_cache structures, one 376 * for each interface in the configuration. These structures exist 377 * for the entire life of the device. 378 * @extra: pointer to buffer containing all extra descriptors associated 379 * with this configuration (those preceding the first interface 380 * descriptor). 381 * @extralen: length of the extra descriptors buffer. 382 * 383 * USB devices may have multiple configurations, but only one can be active 384 * at any time. Each encapsulates a different operational environment; 385 * for example, a dual-speed device would have separate configurations for 386 * full-speed and high-speed operation. The number of configurations 387 * available is stored in the device descriptor as bNumConfigurations. 388 * 389 * A configuration can contain multiple interfaces. Each corresponds to 390 * a different function of the USB device, and all are available whenever 391 * the configuration is active. The USB standard says that interfaces 392 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 393 * of devices get this wrong. In addition, the interface array is not 394 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 395 * look up an interface entry based on its number. 396 * 397 * Device drivers should not attempt to activate configurations. The choice 398 * of which configuration to install is a policy decision based on such 399 * considerations as available power, functionality provided, and the user's 400 * desires (expressed through userspace tools). However, drivers can call 401 * usb_reset_configuration() to reinitialize the current configuration and 402 * all its interfaces. 403 */ 404struct usb_host_config { 405 struct usb_config_descriptor desc; 406 407 char *string; /* iConfiguration string, if present */ 408 409 /* List of any Interface Association Descriptors in this 410 * configuration. */ 411 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 412 413 /* the interfaces associated with this configuration, 414 * stored in no particular order */ 415 struct usb_interface *interface[USB_MAXINTERFACES]; 416 417 /* Interface information available even when this is not the 418 * active configuration */ 419 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 420 421 unsigned char *extra; /* Extra descriptors */ 422 int extralen; 423}; 424 425/* USB2.0 and USB3.0 device BOS descriptor set */ 426struct usb_host_bos { 427 struct usb_bos_descriptor *desc; 428 429 struct usb_ext_cap_descriptor *ext_cap; 430 struct usb_ss_cap_descriptor *ss_cap; 431 struct usb_ssp_cap_descriptor *ssp_cap; 432 struct usb_ss_container_id_descriptor *ss_id; 433 struct usb_ptm_cap_descriptor *ptm_cap; 434}; 435 436int __usb_get_extra_descriptor(char *buffer, unsigned size, 437 unsigned char type, void **ptr, size_t min); 438#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 439 __usb_get_extra_descriptor((ifpoint)->extra, \ 440 (ifpoint)->extralen, \ 441 type, (void **)ptr, sizeof(**(ptr))) 442 443/* ----------------------------------------------------------------------- */ 444 445/* 446 * Allocated per bus (tree of devices) we have: 447 */ 448struct usb_bus { 449 struct device *controller; /* host side hardware */ 450 struct device *sysdev; /* as seen from firmware or bus */ 451 int busnum; /* Bus number (in order of reg) */ 452 const char *bus_name; /* stable id (PCI slot_name etc) */ 453 u8 uses_pio_for_control; /* 454 * Does the host controller use PIO 455 * for control transfers? 456 */ 457 u8 otg_port; /* 0, or number of OTG/HNP port */ 458 unsigned is_b_host:1; /* true during some HNP roleswitches */ 459 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 460 unsigned no_stop_on_short:1; /* 461 * Quirk: some controllers don't stop 462 * the ep queue on a short transfer 463 * with the URB_SHORT_NOT_OK flag set. 464 */ 465 unsigned no_sg_constraint:1; /* no sg constraint */ 466 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 467 468 int devnum_next; /* Next open device number in 469 * round-robin allocation */ 470 struct mutex devnum_next_mutex; /* devnum_next mutex */ 471 472 DECLARE_BITMAP(devmap, 128); /* USB device number allocation bitmap */ 473 struct usb_device *root_hub; /* Root hub */ 474 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 475 476 int bandwidth_allocated; /* on this bus: how much of the time 477 * reserved for periodic (intr/iso) 478 * requests is used, on average? 479 * Units: microseconds/frame. 480 * Limits: Full/low speed reserve 90%, 481 * while high speed reserves 80%. 482 */ 483 int bandwidth_int_reqs; /* number of Interrupt requests */ 484 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 485 486 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 487 488#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 489 struct mon_bus *mon_bus; /* non-null when associated */ 490 int monitored; /* non-zero when monitored */ 491#endif 492}; 493 494struct usb_dev_state; 495 496/* ----------------------------------------------------------------------- */ 497 498struct usb_tt; 499 500enum usb_link_tunnel_mode { 501 USB_LINK_UNKNOWN = 0, 502 USB_LINK_NATIVE, 503 USB_LINK_TUNNELED, 504}; 505 506enum usb_port_connect_type { 507 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 508 USB_PORT_CONNECT_TYPE_HOT_PLUG, 509 USB_PORT_CONNECT_TYPE_HARD_WIRED, 510 USB_PORT_NOT_USED, 511}; 512 513/* 514 * USB port quirks. 515 */ 516 517/* For the given port, prefer the old (faster) enumeration scheme. */ 518#define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 519 520/* Decrease TRSTRCY to 10ms during device enumeration. */ 521#define USB_PORT_QUIRK_FAST_ENUM BIT(1) 522 523/* 524 * USB 2.0 Link Power Management (LPM) parameters. 525 */ 526struct usb2_lpm_parameters { 527 /* Best effort service latency indicate how long the host will drive 528 * resume on an exit from L1. 529 */ 530 unsigned int besl; 531 532 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 533 * When the timer counts to zero, the parent hub will initiate a LPM 534 * transition to L1. 535 */ 536 int timeout; 537}; 538 539/* 540 * USB 3.0 Link Power Management (LPM) parameters. 541 * 542 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 543 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 544 * All three are stored in nanoseconds. 545 */ 546struct usb3_lpm_parameters { 547 /* 548 * Maximum exit latency (MEL) for the host to send a packet to the 549 * device (either a Ping for isoc endpoints, or a data packet for 550 * interrupt endpoints), the hubs to decode the packet, and for all hubs 551 * in the path to transition the links to U0. 552 */ 553 unsigned int mel; 554 /* 555 * Maximum exit latency for a device-initiated LPM transition to bring 556 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 557 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 558 */ 559 unsigned int pel; 560 561 /* 562 * The System Exit Latency (SEL) includes PEL, and three other 563 * latencies. After a device initiates a U0 transition, it will take 564 * some time from when the device sends the ERDY to when it will finally 565 * receive the data packet. Basically, SEL should be the worse-case 566 * latency from when a device starts initiating a U0 transition to when 567 * it will get data. 568 */ 569 unsigned int sel; 570 /* 571 * The idle timeout value that is currently programmed into the parent 572 * hub for this device. When the timer counts to zero, the parent hub 573 * will initiate an LPM transition to either U1 or U2. 574 */ 575 int timeout; 576}; 577 578/** 579 * struct usb_device - kernel's representation of a USB device 580 * @devnum: device number; address on a USB bus 581 * @devpath: device ID string for use in messages (e.g., /port/...) 582 * @route: tree topology hex string for use with xHCI 583 * @state: device state: configured, not attached, etc. 584 * @speed: device speed: high/full/low (or error) 585 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 586 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 587 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 588 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 589 * @ttport: device port on that tt hub 590 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 591 * @parent: our hub, unless we're the root 592 * @bus: bus we're part of 593 * @ep0: endpoint 0 data (default control pipe) 594 * @dev: generic device interface 595 * @descriptor: USB device descriptor 596 * @bos: USB device BOS descriptor set 597 * @config: all of the device's configs 598 * @actconfig: the active configuration 599 * @ep_in: array of IN endpoints 600 * @ep_out: array of OUT endpoints 601 * @rawdescriptors: raw descriptors for each config 602 * @bus_mA: Current available from the bus 603 * @portnum: parent port number (origin 1) 604 * @level: number of USB hub ancestors 605 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 606 * @can_submit: URBs may be submitted 607 * @persist_enabled: USB_PERSIST enabled for this device 608 * @reset_in_progress: the device is being reset 609 * @have_langid: whether string_langid is valid 610 * @authorized: policy has said we can use it; 611 * (user space) policy determines if we authorize this device to be 612 * used or not. By default, wired USB devices are authorized. 613 * WUSB devices are not, until we authorize them from user space. 614 * FIXME -- complete doc 615 * @authenticated: Crypto authentication passed 616 * @tunnel_mode: Connection native or tunneled over USB4 617 * @usb4_link: device link to the USB4 host interface 618 * @lpm_capable: device supports LPM 619 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 620 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 621 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 622 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 623 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 624 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 625 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 626 * @string_langid: language ID for strings 627 * @product: iProduct string, if present (static) 628 * @manufacturer: iManufacturer string, if present (static) 629 * @serial: iSerialNumber string, if present (static) 630 * @filelist: usbfs files that are open to this device 631 * @maxchild: number of ports if hub 632 * @quirks: quirks of the whole device 633 * @urbnum: number of URBs submitted for the whole device 634 * @active_duration: total time device is not suspended 635 * @connect_time: time device was first connected 636 * @do_remote_wakeup: remote wakeup should be enabled 637 * @reset_resume: needs reset instead of resume 638 * @port_is_suspended: the upstream port is suspended (L2 or U3) 639 * @slot_id: Slot ID assigned by xHCI 640 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 641 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 642 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 643 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 644 * to keep track of the number of functions that require USB 3.0 Link Power 645 * Management to be disabled for this usb_device. This count should only 646 * be manipulated by those functions, with the bandwidth_mutex is held. 647 * @hub_delay: cached value consisting of: 648 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 649 * Will be used as wValue for SetIsochDelay requests. 650 * @use_generic_driver: ask driver core to reprobe using the generic driver. 651 * 652 * Notes: 653 * Usbcore drivers should not set usbdev->state directly. Instead use 654 * usb_set_device_state(). 655 */ 656struct usb_device { 657 int devnum; 658 char devpath[16]; 659 u32 route; 660 enum usb_device_state state; 661 enum usb_device_speed speed; 662 unsigned int rx_lanes; 663 unsigned int tx_lanes; 664 enum usb_ssp_rate ssp_rate; 665 666 struct usb_tt *tt; 667 int ttport; 668 669 unsigned int toggle[2]; 670 671 struct usb_device *parent; 672 struct usb_bus *bus; 673 struct usb_host_endpoint ep0; 674 675 struct device dev; 676 677 struct usb_device_descriptor descriptor; 678 struct usb_host_bos *bos; 679 struct usb_host_config *config; 680 681 struct usb_host_config *actconfig; 682 struct usb_host_endpoint *ep_in[16]; 683 struct usb_host_endpoint *ep_out[16]; 684 685 char **rawdescriptors; 686 687 unsigned short bus_mA; 688 u8 portnum; 689 u8 level; 690 u8 devaddr; 691 692 unsigned can_submit:1; 693 unsigned persist_enabled:1; 694 unsigned reset_in_progress:1; 695 unsigned have_langid:1; 696 unsigned authorized:1; 697 unsigned authenticated:1; 698 unsigned lpm_capable:1; 699 unsigned lpm_devinit_allow:1; 700 unsigned usb2_hw_lpm_capable:1; 701 unsigned usb2_hw_lpm_besl_capable:1; 702 unsigned usb2_hw_lpm_enabled:1; 703 unsigned usb2_hw_lpm_allowed:1; 704 unsigned usb3_lpm_u1_enabled:1; 705 unsigned usb3_lpm_u2_enabled:1; 706 int string_langid; 707 708 /* static strings from the device */ 709 char *product; 710 char *manufacturer; 711 char *serial; 712 713 struct list_head filelist; 714 715 int maxchild; 716 717 u32 quirks; 718 atomic_t urbnum; 719 720 unsigned long active_duration; 721 722 unsigned long connect_time; 723 724 unsigned do_remote_wakeup:1; 725 unsigned reset_resume:1; 726 unsigned port_is_suspended:1; 727 enum usb_link_tunnel_mode tunnel_mode; 728 struct device_link *usb4_link; 729 730 int slot_id; 731 struct usb2_lpm_parameters l1_params; 732 struct usb3_lpm_parameters u1_params; 733 struct usb3_lpm_parameters u2_params; 734 unsigned lpm_disable_count; 735 736 u16 hub_delay; 737 unsigned use_generic_driver:1; 738}; 739 740#define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 741 742static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 743{ 744 return to_usb_device(intf->dev.parent); 745} 746static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 747{ 748 return to_usb_device((const struct device *)intf->dev.parent); 749} 750 751#define interface_to_usbdev(intf) \ 752 _Generic((intf), \ 753 const struct usb_interface *: __intf_to_usbdev_const, \ 754 struct usb_interface *: __intf_to_usbdev)(intf) 755 756extern struct usb_device *usb_get_dev(struct usb_device *dev); 757extern void usb_put_dev(struct usb_device *dev); 758extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 759 int port1); 760 761/** 762 * usb_hub_for_each_child - iterate over all child devices on the hub 763 * @hdev: USB device belonging to the usb hub 764 * @port1: portnum associated with child device 765 * @child: child device pointer 766 */ 767#define usb_hub_for_each_child(hdev, port1, child) \ 768 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 769 port1 <= hdev->maxchild; \ 770 child = usb_hub_find_child(hdev, ++port1)) \ 771 if (!child) continue; else 772 773/* USB device locking */ 774#define usb_lock_device(udev) device_lock(&(udev)->dev) 775#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 776#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 777#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 778extern int usb_lock_device_for_reset(struct usb_device *udev, 779 const struct usb_interface *iface); 780 781/* USB port reset for device reinitialization */ 782extern int usb_reset_device(struct usb_device *dev); 783extern void usb_queue_reset_device(struct usb_interface *dev); 784 785extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 786 787#ifdef CONFIG_ACPI 788extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 789 bool enable); 790extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 791extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index); 792#else 793static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 794 bool enable) { return 0; } 795static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 796 { return true; } 797static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) 798 { return 0; } 799#endif 800 801/* USB autosuspend and autoresume */ 802#ifdef CONFIG_PM 803extern void usb_enable_autosuspend(struct usb_device *udev); 804extern void usb_disable_autosuspend(struct usb_device *udev); 805 806extern int usb_autopm_get_interface(struct usb_interface *intf); 807extern void usb_autopm_put_interface(struct usb_interface *intf); 808extern int usb_autopm_get_interface_async(struct usb_interface *intf); 809extern void usb_autopm_put_interface_async(struct usb_interface *intf); 810extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 811extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 812 813static inline void usb_mark_last_busy(struct usb_device *udev) 814{ 815 pm_runtime_mark_last_busy(&udev->dev); 816} 817 818#else 819 820static inline void usb_enable_autosuspend(struct usb_device *udev) 821{ } 822static inline void usb_disable_autosuspend(struct usb_device *udev) 823{ } 824 825static inline int usb_autopm_get_interface(struct usb_interface *intf) 826{ return 0; } 827static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 828{ return 0; } 829 830static inline void usb_autopm_put_interface(struct usb_interface *intf) 831{ } 832static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 833{ } 834static inline void usb_autopm_get_interface_no_resume( 835 struct usb_interface *intf) 836{ } 837static inline void usb_autopm_put_interface_no_suspend( 838 struct usb_interface *intf) 839{ } 840static inline void usb_mark_last_busy(struct usb_device *udev) 841{ } 842#endif 843 844extern int usb_disable_lpm(struct usb_device *udev); 845extern void usb_enable_lpm(struct usb_device *udev); 846/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 847extern int usb_unlocked_disable_lpm(struct usb_device *udev); 848extern void usb_unlocked_enable_lpm(struct usb_device *udev); 849 850extern int usb_disable_ltm(struct usb_device *udev); 851extern void usb_enable_ltm(struct usb_device *udev); 852 853static inline bool usb_device_supports_ltm(struct usb_device *udev) 854{ 855 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 856 return false; 857 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 858} 859 860static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 861{ 862 return udev && udev->bus && udev->bus->no_sg_constraint; 863} 864 865 866/*-------------------------------------------------------------------------*/ 867 868/* for drivers using iso endpoints */ 869extern int usb_get_current_frame_number(struct usb_device *usb_dev); 870 871/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 872extern int usb_alloc_streams(struct usb_interface *interface, 873 struct usb_host_endpoint **eps, unsigned int num_eps, 874 unsigned int num_streams, gfp_t mem_flags); 875 876/* Reverts a group of bulk endpoints back to not using stream IDs. */ 877extern int usb_free_streams(struct usb_interface *interface, 878 struct usb_host_endpoint **eps, unsigned int num_eps, 879 gfp_t mem_flags); 880 881/* used these for multi-interface device registration */ 882extern int usb_driver_claim_interface(struct usb_driver *driver, 883 struct usb_interface *iface, void *data); 884 885/** 886 * usb_interface_claimed - returns true iff an interface is claimed 887 * @iface: the interface being checked 888 * 889 * Return: %true (nonzero) iff the interface is claimed, else %false 890 * (zero). 891 * 892 * Note: 893 * Callers must own the driver model's usb bus readlock. So driver 894 * probe() entries don't need extra locking, but other call contexts 895 * may need to explicitly claim that lock. 896 * 897 */ 898static inline int usb_interface_claimed(struct usb_interface *iface) 899{ 900 return (iface->dev.driver != NULL); 901} 902 903extern void usb_driver_release_interface(struct usb_driver *driver, 904 struct usb_interface *iface); 905 906int usb_set_wireless_status(struct usb_interface *iface, 907 enum usb_wireless_status status); 908 909const struct usb_device_id *usb_match_id(struct usb_interface *interface, 910 const struct usb_device_id *id); 911extern int usb_match_one_id(struct usb_interface *interface, 912 const struct usb_device_id *id); 913 914extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 915extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 916 int minor); 917extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 918 unsigned ifnum); 919extern struct usb_host_interface *usb_altnum_to_altsetting( 920 const struct usb_interface *intf, unsigned int altnum); 921extern struct usb_host_interface *usb_find_alt_setting( 922 struct usb_host_config *config, 923 unsigned int iface_num, 924 unsigned int alt_num); 925 926/* port claiming functions */ 927int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 928 struct usb_dev_state *owner); 929int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 930 struct usb_dev_state *owner); 931 932/** 933 * usb_make_path - returns stable device path in the usb tree 934 * @dev: the device whose path is being constructed 935 * @buf: where to put the string 936 * @size: how big is "buf"? 937 * 938 * Return: Length of the string (> 0) or negative if size was too small. 939 * 940 * Note: 941 * This identifier is intended to be "stable", reflecting physical paths in 942 * hardware such as physical bus addresses for host controllers or ports on 943 * USB hubs. That makes it stay the same until systems are physically 944 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 945 * controllers. Adding and removing devices, including virtual root hubs 946 * in host controller driver modules, does not change these path identifiers; 947 * neither does rebooting or re-enumerating. These are more useful identifiers 948 * than changeable ("unstable") ones like bus numbers or device addresses. 949 * 950 * With a partial exception for devices connected to USB 2.0 root hubs, these 951 * identifiers are also predictable. So long as the device tree isn't changed, 952 * plugging any USB device into a given hub port always gives it the same path. 953 * Because of the use of "companion" controllers, devices connected to ports on 954 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 955 * high speed, and a different one if they are full or low speed. 956 */ 957static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 958{ 959 int actual; 960 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 961 dev->devpath); 962 return (actual >= (int)size) ? -1 : actual; 963} 964 965/*-------------------------------------------------------------------------*/ 966 967#define USB_DEVICE_ID_MATCH_DEVICE \ 968 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 969#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 970 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 971#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 972 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 973#define USB_DEVICE_ID_MATCH_DEV_INFO \ 974 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 975 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 976 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 977#define USB_DEVICE_ID_MATCH_INT_INFO \ 978 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 979 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 980 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 981 982/** 983 * USB_DEVICE - macro used to describe a specific usb device 984 * @vend: the 16 bit USB Vendor ID 985 * @prod: the 16 bit USB Product ID 986 * 987 * This macro is used to create a struct usb_device_id that matches a 988 * specific device. 989 */ 990#define USB_DEVICE(vend, prod) \ 991 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 992 .idVendor = (vend), \ 993 .idProduct = (prod) 994/** 995 * USB_DEVICE_VER - describe a specific usb device with a version range 996 * @vend: the 16 bit USB Vendor ID 997 * @prod: the 16 bit USB Product ID 998 * @lo: the bcdDevice_lo value 999 * @hi: the bcdDevice_hi value 1000 * 1001 * This macro is used to create a struct usb_device_id that matches a 1002 * specific device, with a version range. 1003 */ 1004#define USB_DEVICE_VER(vend, prod, lo, hi) \ 1005 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 1006 .idVendor = (vend), \ 1007 .idProduct = (prod), \ 1008 .bcdDevice_lo = (lo), \ 1009 .bcdDevice_hi = (hi) 1010 1011/** 1012 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 1013 * @vend: the 16 bit USB Vendor ID 1014 * @prod: the 16 bit USB Product ID 1015 * @cl: bInterfaceClass value 1016 * 1017 * This macro is used to create a struct usb_device_id that matches a 1018 * specific interface class of devices. 1019 */ 1020#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1021 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1022 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1023 .idVendor = (vend), \ 1024 .idProduct = (prod), \ 1025 .bInterfaceClass = (cl) 1026 1027/** 1028 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1029 * @vend: the 16 bit USB Vendor ID 1030 * @prod: the 16 bit USB Product ID 1031 * @pr: bInterfaceProtocol value 1032 * 1033 * This macro is used to create a struct usb_device_id that matches a 1034 * specific interface protocol of devices. 1035 */ 1036#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1037 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1038 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1039 .idVendor = (vend), \ 1040 .idProduct = (prod), \ 1041 .bInterfaceProtocol = (pr) 1042 1043/** 1044 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1045 * @vend: the 16 bit USB Vendor ID 1046 * @prod: the 16 bit USB Product ID 1047 * @num: bInterfaceNumber value 1048 * 1049 * This macro is used to create a struct usb_device_id that matches a 1050 * specific interface number of devices. 1051 */ 1052#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1053 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1054 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1055 .idVendor = (vend), \ 1056 .idProduct = (prod), \ 1057 .bInterfaceNumber = (num) 1058 1059/** 1060 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1061 * @cl: bDeviceClass value 1062 * @sc: bDeviceSubClass value 1063 * @pr: bDeviceProtocol value 1064 * 1065 * This macro is used to create a struct usb_device_id that matches a 1066 * specific class of devices. 1067 */ 1068#define USB_DEVICE_INFO(cl, sc, pr) \ 1069 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1070 .bDeviceClass = (cl), \ 1071 .bDeviceSubClass = (sc), \ 1072 .bDeviceProtocol = (pr) 1073 1074/** 1075 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1076 * @cl: bInterfaceClass value 1077 * @sc: bInterfaceSubClass value 1078 * @pr: bInterfaceProtocol value 1079 * 1080 * This macro is used to create a struct usb_device_id that matches a 1081 * specific class of interfaces. 1082 */ 1083#define USB_INTERFACE_INFO(cl, sc, pr) \ 1084 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1085 .bInterfaceClass = (cl), \ 1086 .bInterfaceSubClass = (sc), \ 1087 .bInterfaceProtocol = (pr) 1088 1089/** 1090 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1091 * @vend: the 16 bit USB Vendor ID 1092 * @prod: the 16 bit USB Product ID 1093 * @cl: bInterfaceClass value 1094 * @sc: bInterfaceSubClass value 1095 * @pr: bInterfaceProtocol value 1096 * 1097 * This macro is used to create a struct usb_device_id that matches a 1098 * specific device with a specific class of interfaces. 1099 * 1100 * This is especially useful when explicitly matching devices that have 1101 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1102 */ 1103#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1104 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1105 | USB_DEVICE_ID_MATCH_DEVICE, \ 1106 .idVendor = (vend), \ 1107 .idProduct = (prod), \ 1108 .bInterfaceClass = (cl), \ 1109 .bInterfaceSubClass = (sc), \ 1110 .bInterfaceProtocol = (pr) 1111 1112/** 1113 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1114 * @vend: the 16 bit USB Vendor ID 1115 * @cl: bInterfaceClass value 1116 * @sc: bInterfaceSubClass value 1117 * @pr: bInterfaceProtocol value 1118 * 1119 * This macro is used to create a struct usb_device_id that matches a 1120 * specific vendor with a specific class of interfaces. 1121 * 1122 * This is especially useful when explicitly matching devices that have 1123 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1124 */ 1125#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1126 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1127 | USB_DEVICE_ID_MATCH_VENDOR, \ 1128 .idVendor = (vend), \ 1129 .bInterfaceClass = (cl), \ 1130 .bInterfaceSubClass = (sc), \ 1131 .bInterfaceProtocol = (pr) 1132 1133/* ----------------------------------------------------------------------- */ 1134 1135/* Stuff for dynamic usb ids */ 1136extern struct mutex usb_dynids_lock; 1137struct usb_dynids { 1138 struct list_head list; 1139}; 1140 1141struct usb_dynid { 1142 struct list_head node; 1143 struct usb_device_id id; 1144}; 1145 1146extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1147 const struct usb_device_id *id_table, 1148 struct device_driver *driver, 1149 const char *buf, size_t count); 1150 1151extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1152 1153/** 1154 * struct usb_driver - identifies USB interface driver to usbcore 1155 * @name: The driver name should be unique among USB drivers, 1156 * and should normally be the same as the module name. 1157 * @probe: Called to see if the driver is willing to manage a particular 1158 * interface on a device. If it is, probe returns zero and uses 1159 * usb_set_intfdata() to associate driver-specific data with the 1160 * interface. It may also use usb_set_interface() to specify the 1161 * appropriate altsetting. If unwilling to manage the interface, 1162 * return -ENODEV, if genuine IO errors occurred, an appropriate 1163 * negative errno value. 1164 * @disconnect: Called when the interface is no longer accessible, usually 1165 * because its device has been (or is being) disconnected or the 1166 * driver module is being unloaded. 1167 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1168 * the "usbfs" filesystem. This lets devices provide ways to 1169 * expose information to user space regardless of where they 1170 * do (or don't) show up otherwise in the filesystem. 1171 * @suspend: Called when the device is going to be suspended by the 1172 * system either from system sleep or runtime suspend context. The 1173 * return value will be ignored in system sleep context, so do NOT 1174 * try to continue using the device if suspend fails in this case. 1175 * Instead, let the resume or reset-resume routine recover from 1176 * the failure. 1177 * @resume: Called when the device is being resumed by the system. 1178 * @reset_resume: Called when the suspended device has been reset instead 1179 * of being resumed. 1180 * @pre_reset: Called by usb_reset_device() when the device is about to be 1181 * reset. This routine must not return until the driver has no active 1182 * URBs for the device, and no more URBs may be submitted until the 1183 * post_reset method is called. 1184 * @post_reset: Called by usb_reset_device() after the device 1185 * has been reset 1186 * @shutdown: Called at shut-down time to quiesce the device. 1187 * @id_table: USB drivers use ID table to support hotplugging. 1188 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1189 * or your driver's probe function will never get called. 1190 * @dev_groups: Attributes attached to the device that will be created once it 1191 * is bound to the driver. 1192 * @dynids: used internally to hold the list of dynamically added device 1193 * ids for this driver. 1194 * @driver: The driver-model core driver structure. 1195 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1196 * added to this driver by preventing the sysfs file from being created. 1197 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1198 * for interfaces bound to this driver. 1199 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1200 * endpoints before calling the driver's disconnect method. 1201 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1202 * to initiate lower power link state transitions when an idle timeout 1203 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1204 * 1205 * USB interface drivers must provide a name, probe() and disconnect() 1206 * methods, and an id_table. Other driver fields are optional. 1207 * 1208 * The id_table is used in hotplugging. It holds a set of descriptors, 1209 * and specialized data may be associated with each entry. That table 1210 * is used by both user and kernel mode hotplugging support. 1211 * 1212 * The probe() and disconnect() methods are called in a context where 1213 * they can sleep, but they should avoid abusing the privilege. Most 1214 * work to connect to a device should be done when the device is opened, 1215 * and undone at the last close. The disconnect code needs to address 1216 * concurrency issues with respect to open() and close() methods, as 1217 * well as forcing all pending I/O requests to complete (by unlinking 1218 * them as necessary, and blocking until the unlinks complete). 1219 */ 1220struct usb_driver { 1221 const char *name; 1222 1223 int (*probe) (struct usb_interface *intf, 1224 const struct usb_device_id *id); 1225 1226 void (*disconnect) (struct usb_interface *intf); 1227 1228 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1229 void *buf); 1230 1231 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1232 int (*resume) (struct usb_interface *intf); 1233 int (*reset_resume)(struct usb_interface *intf); 1234 1235 int (*pre_reset)(struct usb_interface *intf); 1236 int (*post_reset)(struct usb_interface *intf); 1237 1238 void (*shutdown)(struct usb_interface *intf); 1239 1240 const struct usb_device_id *id_table; 1241 const struct attribute_group **dev_groups; 1242 1243 struct usb_dynids dynids; 1244 struct device_driver driver; 1245 unsigned int no_dynamic_id:1; 1246 unsigned int supports_autosuspend:1; 1247 unsigned int disable_hub_initiated_lpm:1; 1248 unsigned int soft_unbind:1; 1249}; 1250#define to_usb_driver(d) container_of_const(d, struct usb_driver, driver) 1251 1252/** 1253 * struct usb_device_driver - identifies USB device driver to usbcore 1254 * @name: The driver name should be unique among USB drivers, 1255 * and should normally be the same as the module name. 1256 * @match: If set, used for better device/driver matching. 1257 * @probe: Called to see if the driver is willing to manage a particular 1258 * device. If it is, probe returns zero and uses dev_set_drvdata() 1259 * to associate driver-specific data with the device. If unwilling 1260 * to manage the device, return a negative errno value. 1261 * @disconnect: Called when the device is no longer accessible, usually 1262 * because it has been (or is being) disconnected or the driver's 1263 * module is being unloaded. 1264 * @suspend: Called when the device is going to be suspended by the system. 1265 * @resume: Called when the device is being resumed by the system. 1266 * @choose_configuration: If non-NULL, called instead of the default 1267 * usb_choose_configuration(). If this returns an error then we'll go 1268 * on to call the normal usb_choose_configuration(). 1269 * @dev_groups: Attributes attached to the device that will be created once it 1270 * is bound to the driver. 1271 * @driver: The driver-model core driver structure. 1272 * @id_table: used with @match() to select better matching driver at 1273 * probe() time. 1274 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1275 * for devices bound to this driver. 1276 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1277 * resume and suspend functions will be called in addition to the driver's 1278 * own, so this part of the setup does not need to be replicated. 1279 * 1280 * USB drivers must provide all the fields listed above except driver, 1281 * match, and id_table. 1282 */ 1283struct usb_device_driver { 1284 const char *name; 1285 1286 bool (*match) (struct usb_device *udev); 1287 int (*probe) (struct usb_device *udev); 1288 void (*disconnect) (struct usb_device *udev); 1289 1290 int (*suspend) (struct usb_device *udev, pm_message_t message); 1291 int (*resume) (struct usb_device *udev, pm_message_t message); 1292 1293 int (*choose_configuration) (struct usb_device *udev); 1294 1295 const struct attribute_group **dev_groups; 1296 struct device_driver driver; 1297 const struct usb_device_id *id_table; 1298 unsigned int supports_autosuspend:1; 1299 unsigned int generic_subclass:1; 1300}; 1301#define to_usb_device_driver(d) container_of_const(d, struct usb_device_driver, driver) 1302 1303/** 1304 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1305 * @name: the usb class device name for this driver. Will show up in sysfs. 1306 * @devnode: Callback to provide a naming hint for a possible 1307 * device node to create. 1308 * @fops: pointer to the struct file_operations of this driver. 1309 * @minor_base: the start of the minor range for this driver. 1310 * 1311 * This structure is used for the usb_register_dev() and 1312 * usb_deregister_dev() functions, to consolidate a number of the 1313 * parameters used for them. 1314 */ 1315struct usb_class_driver { 1316 char *name; 1317 char *(*devnode)(const struct device *dev, umode_t *mode); 1318 const struct file_operations *fops; 1319 int minor_base; 1320}; 1321 1322/* 1323 * use these in module_init()/module_exit() 1324 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1325 */ 1326extern int usb_register_driver(struct usb_driver *, struct module *, 1327 const char *); 1328 1329/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1330#define usb_register(driver) \ 1331 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1332 1333extern void usb_deregister(struct usb_driver *); 1334 1335/** 1336 * module_usb_driver() - Helper macro for registering a USB driver 1337 * @__usb_driver: usb_driver struct 1338 * 1339 * Helper macro for USB drivers which do not do anything special in module 1340 * init/exit. This eliminates a lot of boilerplate. Each module may only 1341 * use this macro once, and calling it replaces module_init() and module_exit() 1342 */ 1343#define module_usb_driver(__usb_driver) \ 1344 module_driver(__usb_driver, usb_register, \ 1345 usb_deregister) 1346 1347extern int usb_register_device_driver(struct usb_device_driver *, 1348 struct module *); 1349extern void usb_deregister_device_driver(struct usb_device_driver *); 1350 1351extern int usb_register_dev(struct usb_interface *intf, 1352 struct usb_class_driver *class_driver); 1353extern void usb_deregister_dev(struct usb_interface *intf, 1354 struct usb_class_driver *class_driver); 1355 1356extern int usb_disabled(void); 1357 1358/* ----------------------------------------------------------------------- */ 1359 1360/* 1361 * URB support, for asynchronous request completions 1362 */ 1363 1364/* 1365 * urb->transfer_flags: 1366 * 1367 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1368 */ 1369#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1370#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1371 * slot in the schedule */ 1372#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1373#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1374#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1375 * needed */ 1376#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1377 1378/* The following flags are used internally by usbcore and HCDs */ 1379#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1380#define URB_DIR_OUT 0 1381#define URB_DIR_MASK URB_DIR_IN 1382 1383#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1384#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1385#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1386#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1387#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1388#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1389#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1390#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1391 1392struct usb_iso_packet_descriptor { 1393 unsigned int offset; 1394 unsigned int length; /* expected length */ 1395 unsigned int actual_length; 1396 int status; 1397}; 1398 1399struct urb; 1400 1401struct usb_anchor { 1402 struct list_head urb_list; 1403 wait_queue_head_t wait; 1404 spinlock_t lock; 1405 atomic_t suspend_wakeups; 1406 unsigned int poisoned:1; 1407}; 1408 1409static inline void init_usb_anchor(struct usb_anchor *anchor) 1410{ 1411 memset(anchor, 0, sizeof(*anchor)); 1412 INIT_LIST_HEAD(&anchor->urb_list); 1413 init_waitqueue_head(&anchor->wait); 1414 spin_lock_init(&anchor->lock); 1415} 1416 1417typedef void (*usb_complete_t)(struct urb *); 1418 1419/** 1420 * struct urb - USB Request Block 1421 * @urb_list: For use by current owner of the URB. 1422 * @anchor_list: membership in the list of an anchor 1423 * @anchor: to anchor URBs to a common mooring 1424 * @ep: Points to the endpoint's data structure. Will eventually 1425 * replace @pipe. 1426 * @pipe: Holds endpoint number, direction, type, and more. 1427 * Create these values with the eight macros available; 1428 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1429 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1430 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1431 * numbers range from zero to fifteen. Note that "in" endpoint two 1432 * is a different endpoint (and pipe) from "out" endpoint two. 1433 * The current configuration controls the existence, type, and 1434 * maximum packet size of any given endpoint. 1435 * @stream_id: the endpoint's stream ID for bulk streams 1436 * @dev: Identifies the USB device to perform the request. 1437 * @status: This is read in non-iso completion functions to get the 1438 * status of the particular request. ISO requests only use it 1439 * to tell whether the URB was unlinked; detailed status for 1440 * each frame is in the fields of the iso_frame-desc. 1441 * @transfer_flags: A variety of flags may be used to affect how URB 1442 * submission, unlinking, or operation are handled. Different 1443 * kinds of URB can use different flags. 1444 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1445 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1446 * (however, do not leave garbage in transfer_buffer even then). 1447 * This buffer must be suitable for DMA; allocate it with 1448 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1449 * of this buffer will be modified. This buffer is used for the data 1450 * stage of control transfers. 1451 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1452 * the device driver is saying that it provided this DMA address, 1453 * which the host controller driver should use in preference to the 1454 * transfer_buffer. 1455 * @sg: scatter gather buffer list, the buffer size of each element in 1456 * the list (except the last) must be divisible by the endpoint's 1457 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1458 * @num_mapped_sgs: (internal) number of mapped sg entries 1459 * @num_sgs: number of entries in the sg list 1460 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1461 * be broken up into chunks according to the current maximum packet 1462 * size for the endpoint, which is a function of the configuration 1463 * and is encoded in the pipe. When the length is zero, neither 1464 * transfer_buffer nor transfer_dma is used. 1465 * @actual_length: This is read in non-iso completion functions, and 1466 * it tells how many bytes (out of transfer_buffer_length) were 1467 * transferred. It will normally be the same as requested, unless 1468 * either an error was reported or a short read was performed. 1469 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1470 * short reads be reported as errors. 1471 * @setup_packet: Only used for control transfers, this points to eight bytes 1472 * of setup data. Control transfers always start by sending this data 1473 * to the device. Then transfer_buffer is read or written, if needed. 1474 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1475 * this field; setup_packet must point to a valid buffer. 1476 * @start_frame: Returns the initial frame for isochronous transfers. 1477 * @number_of_packets: Lists the number of ISO transfer buffers. 1478 * @interval: Specifies the polling interval for interrupt or isochronous 1479 * transfers. The units are frames (milliseconds) for full and low 1480 * speed devices, and microframes (1/8 millisecond) for highspeed 1481 * and SuperSpeed devices. 1482 * @error_count: Returns the number of ISO transfers that reported errors. 1483 * @context: For use in completion functions. This normally points to 1484 * request-specific driver context. 1485 * @complete: Completion handler. This URB is passed as the parameter to the 1486 * completion function. The completion function may then do what 1487 * it likes with the URB, including resubmitting or freeing it. 1488 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1489 * collect the transfer status for each buffer. 1490 * 1491 * This structure identifies USB transfer requests. URBs must be allocated by 1492 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1493 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1494 * are submitted using usb_submit_urb(), and pending requests may be canceled 1495 * using usb_unlink_urb() or usb_kill_urb(). 1496 * 1497 * Data Transfer Buffers: 1498 * 1499 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1500 * taken from the general page pool. That is provided by transfer_buffer 1501 * (control requests also use setup_packet), and host controller drivers 1502 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1503 * mapping operations can be expensive on some platforms (perhaps using a dma 1504 * bounce buffer or talking to an IOMMU), 1505 * although they're cheap on commodity x86 and ppc hardware. 1506 * 1507 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1508 * which tells the host controller driver that no such mapping is needed for 1509 * the transfer_buffer since 1510 * the device driver is DMA-aware. For example, a device driver might 1511 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1512 * When this transfer flag is provided, host controller drivers will 1513 * attempt to use the dma address found in the transfer_dma 1514 * field rather than determining a dma address themselves. 1515 * 1516 * Note that transfer_buffer must still be set if the controller 1517 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1518 * to root hub. If you have to transfer between highmem zone and the device 1519 * on such controller, create a bounce buffer or bail out with an error. 1520 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1521 * capable, assign NULL to it, so that usbmon knows not to use the value. 1522 * The setup_packet must always be set, so it cannot be located in highmem. 1523 * 1524 * Initialization: 1525 * 1526 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1527 * zero), and complete fields. All URBs must also initialize 1528 * transfer_buffer and transfer_buffer_length. They may provide the 1529 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1530 * to be treated as errors; that flag is invalid for write requests. 1531 * 1532 * Bulk URBs may 1533 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1534 * should always terminate with a short packet, even if it means adding an 1535 * extra zero length packet. 1536 * 1537 * Control URBs must provide a valid pointer in the setup_packet field. 1538 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1539 * beforehand. 1540 * 1541 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1542 * or, for highspeed devices, 125 microsecond units) 1543 * to poll for transfers. After the URB has been submitted, the interval 1544 * field reflects how the transfer was actually scheduled. 1545 * The polling interval may be more frequent than requested. 1546 * For example, some controllers have a maximum interval of 32 milliseconds, 1547 * while others support intervals of up to 1024 milliseconds. 1548 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1549 * endpoints, as well as high speed interrupt endpoints, the encoding of 1550 * the transfer interval in the endpoint descriptor is logarithmic. 1551 * Device drivers must convert that value to linear units themselves.) 1552 * 1553 * If an isochronous endpoint queue isn't already running, the host 1554 * controller will schedule a new URB to start as soon as bandwidth 1555 * utilization allows. If the queue is running then a new URB will be 1556 * scheduled to start in the first transfer slot following the end of the 1557 * preceding URB, if that slot has not already expired. If the slot has 1558 * expired (which can happen when IRQ delivery is delayed for a long time), 1559 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1560 * is clear then the URB will be scheduled to start in the expired slot, 1561 * implying that some of its packets will not be transferred; if the flag 1562 * is set then the URB will be scheduled in the first unexpired slot, 1563 * breaking the queue's synchronization. Upon URB completion, the 1564 * start_frame field will be set to the (micro)frame number in which the 1565 * transfer was scheduled. Ranges for frame counter values are HC-specific 1566 * and can go from as low as 256 to as high as 65536 frames. 1567 * 1568 * Isochronous URBs have a different data transfer model, in part because 1569 * the quality of service is only "best effort". Callers provide specially 1570 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1571 * at the end. Each such packet is an individual ISO transfer. Isochronous 1572 * URBs are normally queued, submitted by drivers to arrange that 1573 * transfers are at least double buffered, and then explicitly resubmitted 1574 * in completion handlers, so 1575 * that data (such as audio or video) streams at as constant a rate as the 1576 * host controller scheduler can support. 1577 * 1578 * Completion Callbacks: 1579 * 1580 * The completion callback is made in_interrupt(), and one of the first 1581 * things that a completion handler should do is check the status field. 1582 * The status field is provided for all URBs. It is used to report 1583 * unlinked URBs, and status for all non-ISO transfers. It should not 1584 * be examined before the URB is returned to the completion handler. 1585 * 1586 * The context field is normally used to link URBs back to the relevant 1587 * driver or request state. 1588 * 1589 * When the completion callback is invoked for non-isochronous URBs, the 1590 * actual_length field tells how many bytes were transferred. This field 1591 * is updated even when the URB terminated with an error or was unlinked. 1592 * 1593 * ISO transfer status is reported in the status and actual_length fields 1594 * of the iso_frame_desc array, and the number of errors is reported in 1595 * error_count. Completion callbacks for ISO transfers will normally 1596 * (re)submit URBs to ensure a constant transfer rate. 1597 * 1598 * Note that even fields marked "public" should not be touched by the driver 1599 * when the urb is owned by the hcd, that is, since the call to 1600 * usb_submit_urb() till the entry into the completion routine. 1601 */ 1602struct urb { 1603 /* private: usb core and host controller only fields in the urb */ 1604 struct kref kref; /* reference count of the URB */ 1605 int unlinked; /* unlink error code */ 1606 void *hcpriv; /* private data for host controller */ 1607 atomic_t use_count; /* concurrent submissions counter */ 1608 atomic_t reject; /* submissions will fail */ 1609 1610 /* public: documented fields in the urb that can be used by drivers */ 1611 struct list_head urb_list; /* list head for use by the urb's 1612 * current owner */ 1613 struct list_head anchor_list; /* the URB may be anchored */ 1614 struct usb_anchor *anchor; 1615 struct usb_device *dev; /* (in) pointer to associated device */ 1616 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1617 unsigned int pipe; /* (in) pipe information */ 1618 unsigned int stream_id; /* (in) stream ID */ 1619 int status; /* (return) non-ISO status */ 1620 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1621 void *transfer_buffer; /* (in) associated data buffer */ 1622 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1623 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1624 int num_mapped_sgs; /* (internal) mapped sg entries */ 1625 int num_sgs; /* (in) number of entries in the sg list */ 1626 u32 transfer_buffer_length; /* (in) data buffer length */ 1627 u32 actual_length; /* (return) actual transfer length */ 1628 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1629 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1630 int start_frame; /* (modify) start frame (ISO) */ 1631 int number_of_packets; /* (in) number of ISO packets */ 1632 int interval; /* (modify) transfer interval 1633 * (INT/ISO) */ 1634 int error_count; /* (return) number of ISO errors */ 1635 void *context; /* (in) context for completion */ 1636 usb_complete_t complete; /* (in) completion routine */ 1637 struct usb_iso_packet_descriptor iso_frame_desc[]; 1638 /* (in) ISO ONLY */ 1639}; 1640 1641/* ----------------------------------------------------------------------- */ 1642 1643/** 1644 * usb_fill_control_urb - initializes a control urb 1645 * @urb: pointer to the urb to initialize. 1646 * @dev: pointer to the struct usb_device for this urb. 1647 * @pipe: the endpoint pipe 1648 * @setup_packet: pointer to the setup_packet buffer. The buffer must be 1649 * suitable for DMA. 1650 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1651 * suitable for DMA. 1652 * @buffer_length: length of the transfer buffer 1653 * @complete_fn: pointer to the usb_complete_t function 1654 * @context: what to set the urb context to. 1655 * 1656 * Initializes a control urb with the proper information needed to submit 1657 * it to a device. 1658 * 1659 * The transfer buffer and the setup_packet buffer will most likely be filled 1660 * or read via DMA. The simplest way to get a buffer that can be DMAed to is 1661 * allocating it via kmalloc() or equivalent, even for very small buffers. 1662 * If the buffers are embedded in a bigger structure, there is a risk that 1663 * the buffer itself, the previous fields and/or the next fields are corrupted 1664 * due to cache incoherencies; or slowed down if they are evicted from the 1665 * cache. For more information, check &struct urb. 1666 * 1667 */ 1668static inline void usb_fill_control_urb(struct urb *urb, 1669 struct usb_device *dev, 1670 unsigned int pipe, 1671 unsigned char *setup_packet, 1672 void *transfer_buffer, 1673 int buffer_length, 1674 usb_complete_t complete_fn, 1675 void *context) 1676{ 1677 urb->dev = dev; 1678 urb->pipe = pipe; 1679 urb->setup_packet = setup_packet; 1680 urb->transfer_buffer = transfer_buffer; 1681 urb->transfer_buffer_length = buffer_length; 1682 urb->complete = complete_fn; 1683 urb->context = context; 1684} 1685 1686/** 1687 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1688 * @urb: pointer to the urb to initialize. 1689 * @dev: pointer to the struct usb_device for this urb. 1690 * @pipe: the endpoint pipe 1691 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1692 * suitable for DMA. 1693 * @buffer_length: length of the transfer buffer 1694 * @complete_fn: pointer to the usb_complete_t function 1695 * @context: what to set the urb context to. 1696 * 1697 * Initializes a bulk urb with the proper information needed to submit it 1698 * to a device. 1699 * 1700 * Refer to usb_fill_control_urb() for a description of the requirements for 1701 * transfer_buffer. 1702 */ 1703static inline void usb_fill_bulk_urb(struct urb *urb, 1704 struct usb_device *dev, 1705 unsigned int pipe, 1706 void *transfer_buffer, 1707 int buffer_length, 1708 usb_complete_t complete_fn, 1709 void *context) 1710{ 1711 urb->dev = dev; 1712 urb->pipe = pipe; 1713 urb->transfer_buffer = transfer_buffer; 1714 urb->transfer_buffer_length = buffer_length; 1715 urb->complete = complete_fn; 1716 urb->context = context; 1717} 1718 1719/** 1720 * usb_fill_int_urb - macro to help initialize a interrupt urb 1721 * @urb: pointer to the urb to initialize. 1722 * @dev: pointer to the struct usb_device for this urb. 1723 * @pipe: the endpoint pipe 1724 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1725 * suitable for DMA. 1726 * @buffer_length: length of the transfer buffer 1727 * @complete_fn: pointer to the usb_complete_t function 1728 * @context: what to set the urb context to. 1729 * @interval: what to set the urb interval to, encoded like 1730 * the endpoint descriptor's bInterval value. 1731 * 1732 * Initializes a interrupt urb with the proper information needed to submit 1733 * it to a device. 1734 * 1735 * Refer to usb_fill_control_urb() for a description of the requirements for 1736 * transfer_buffer. 1737 * 1738 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1739 * encoding of the endpoint interval, and express polling intervals in 1740 * microframes (eight per millisecond) rather than in frames (one per 1741 * millisecond). 1742 */ 1743static inline void usb_fill_int_urb(struct urb *urb, 1744 struct usb_device *dev, 1745 unsigned int pipe, 1746 void *transfer_buffer, 1747 int buffer_length, 1748 usb_complete_t complete_fn, 1749 void *context, 1750 int interval) 1751{ 1752 urb->dev = dev; 1753 urb->pipe = pipe; 1754 urb->transfer_buffer = transfer_buffer; 1755 urb->transfer_buffer_length = buffer_length; 1756 urb->complete = complete_fn; 1757 urb->context = context; 1758 1759 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1760 /* make sure interval is within allowed range */ 1761 interval = clamp(interval, 1, 16); 1762 1763 urb->interval = 1 << (interval - 1); 1764 } else { 1765 urb->interval = interval; 1766 } 1767 1768 urb->start_frame = -1; 1769} 1770 1771extern void usb_init_urb(struct urb *urb); 1772extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1773extern void usb_free_urb(struct urb *urb); 1774#define usb_put_urb usb_free_urb 1775extern struct urb *usb_get_urb(struct urb *urb); 1776extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1777extern int usb_unlink_urb(struct urb *urb); 1778extern void usb_kill_urb(struct urb *urb); 1779extern void usb_poison_urb(struct urb *urb); 1780extern void usb_unpoison_urb(struct urb *urb); 1781extern void usb_block_urb(struct urb *urb); 1782extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1783extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1784extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1785extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1786extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1787extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1788extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1789extern void usb_unanchor_urb(struct urb *urb); 1790extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1791 unsigned int timeout); 1792extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1793extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1794extern int usb_anchor_empty(struct usb_anchor *anchor); 1795 1796#define usb_unblock_urb usb_unpoison_urb 1797 1798/** 1799 * usb_urb_dir_in - check if an URB describes an IN transfer 1800 * @urb: URB to be checked 1801 * 1802 * Return: 1 if @urb describes an IN transfer (device-to-host), 1803 * otherwise 0. 1804 */ 1805static inline int usb_urb_dir_in(struct urb *urb) 1806{ 1807 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1808} 1809 1810/** 1811 * usb_urb_dir_out - check if an URB describes an OUT transfer 1812 * @urb: URB to be checked 1813 * 1814 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1815 * otherwise 0. 1816 */ 1817static inline int usb_urb_dir_out(struct urb *urb) 1818{ 1819 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1820} 1821 1822int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1823int usb_urb_ep_type_check(const struct urb *urb); 1824 1825void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1826 gfp_t mem_flags, dma_addr_t *dma); 1827void usb_free_coherent(struct usb_device *dev, size_t size, 1828 void *addr, dma_addr_t dma); 1829 1830/*-------------------------------------------------------------------* 1831 * SYNCHRONOUS CALL SUPPORT * 1832 *-------------------------------------------------------------------*/ 1833 1834extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1835 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1836 void *data, __u16 size, int timeout); 1837extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1838 void *data, int len, int *actual_length, int timeout); 1839extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1840 void *data, int len, int *actual_length, 1841 int timeout); 1842 1843/* wrappers around usb_control_msg() for the most common standard requests */ 1844int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1845 __u8 requesttype, __u16 value, __u16 index, 1846 const void *data, __u16 size, int timeout, 1847 gfp_t memflags); 1848int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1849 __u8 requesttype, __u16 value, __u16 index, 1850 void *data, __u16 size, int timeout, 1851 gfp_t memflags); 1852extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1853 unsigned char descindex, void *buf, int size); 1854extern int usb_get_status(struct usb_device *dev, 1855 int recip, int type, int target, void *data); 1856 1857static inline int usb_get_std_status(struct usb_device *dev, 1858 int recip, int target, void *data) 1859{ 1860 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1861 data); 1862} 1863 1864static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1865{ 1866 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1867 0, data); 1868} 1869 1870extern int usb_string(struct usb_device *dev, int index, 1871 char *buf, size_t size); 1872extern char *usb_cache_string(struct usb_device *udev, int index); 1873 1874/* wrappers that also update important state inside usbcore */ 1875extern int usb_clear_halt(struct usb_device *dev, int pipe); 1876extern int usb_reset_configuration(struct usb_device *dev); 1877extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1878extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1879 1880/* this request isn't really synchronous, but it belongs with the others */ 1881extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1882 1883/* choose and set configuration for device */ 1884extern int usb_choose_configuration(struct usb_device *udev); 1885extern int usb_set_configuration(struct usb_device *dev, int configuration); 1886 1887/* 1888 * timeouts, in milliseconds, used for sending/receiving control messages 1889 * they typically complete within a few frames (msec) after they're issued 1890 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1891 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1892 */ 1893#define USB_CTRL_GET_TIMEOUT 5000 1894#define USB_CTRL_SET_TIMEOUT 5000 1895 1896 1897/** 1898 * struct usb_sg_request - support for scatter/gather I/O 1899 * @status: zero indicates success, else negative errno 1900 * @bytes: counts bytes transferred. 1901 * 1902 * These requests are initialized using usb_sg_init(), and then are used 1903 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1904 * members of the request object aren't for driver access. 1905 * 1906 * The status and bytecount values are valid only after usb_sg_wait() 1907 * returns. If the status is zero, then the bytecount matches the total 1908 * from the request. 1909 * 1910 * After an error completion, drivers may need to clear a halt condition 1911 * on the endpoint. 1912 */ 1913struct usb_sg_request { 1914 int status; 1915 size_t bytes; 1916 1917 /* private: 1918 * members below are private to usbcore, 1919 * and are not provided for driver access! 1920 */ 1921 spinlock_t lock; 1922 1923 struct usb_device *dev; 1924 int pipe; 1925 1926 int entries; 1927 struct urb **urbs; 1928 1929 int count; 1930 struct completion complete; 1931}; 1932 1933int usb_sg_init( 1934 struct usb_sg_request *io, 1935 struct usb_device *dev, 1936 unsigned pipe, 1937 unsigned period, 1938 struct scatterlist *sg, 1939 int nents, 1940 size_t length, 1941 gfp_t mem_flags 1942); 1943void usb_sg_cancel(struct usb_sg_request *io); 1944void usb_sg_wait(struct usb_sg_request *io); 1945 1946 1947/* ----------------------------------------------------------------------- */ 1948 1949/* 1950 * For various legacy reasons, Linux has a small cookie that's paired with 1951 * a struct usb_device to identify an endpoint queue. Queue characteristics 1952 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1953 * an unsigned int encoded as: 1954 * 1955 * - direction: bit 7 (0 = Host-to-Device [Out], 1956 * 1 = Device-to-Host [In] ... 1957 * like endpoint bEndpointAddress) 1958 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1959 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1960 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1961 * 10 = control, 11 = bulk) 1962 * 1963 * Given the device address and endpoint descriptor, pipes are redundant. 1964 */ 1965 1966/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1967/* (yet ... they're the values used by usbfs) */ 1968#define PIPE_ISOCHRONOUS 0 1969#define PIPE_INTERRUPT 1 1970#define PIPE_CONTROL 2 1971#define PIPE_BULK 3 1972 1973#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1974#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1975 1976#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1977#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1978 1979#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1980#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1981#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1982#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1983#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1984 1985static inline unsigned int __create_pipe(struct usb_device *dev, 1986 unsigned int endpoint) 1987{ 1988 return (dev->devnum << 8) | (endpoint << 15); 1989} 1990 1991/* Create various pipes... */ 1992#define usb_sndctrlpipe(dev, endpoint) \ 1993 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1994#define usb_rcvctrlpipe(dev, endpoint) \ 1995 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1996#define usb_sndisocpipe(dev, endpoint) \ 1997 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1998#define usb_rcvisocpipe(dev, endpoint) \ 1999 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2000#define usb_sndbulkpipe(dev, endpoint) \ 2001 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 2002#define usb_rcvbulkpipe(dev, endpoint) \ 2003 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2004#define usb_sndintpipe(dev, endpoint) \ 2005 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 2006#define usb_rcvintpipe(dev, endpoint) \ 2007 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2008 2009static inline struct usb_host_endpoint * 2010usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 2011{ 2012 struct usb_host_endpoint **eps; 2013 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2014 return eps[usb_pipeendpoint(pipe)]; 2015} 2016 2017static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2018{ 2019 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2020 2021 if (!ep) 2022 return 0; 2023 2024 /* NOTE: only 0x07ff bits are for packet size... */ 2025 return usb_endpoint_maxp(&ep->desc); 2026} 2027 2028/* translate USB error codes to codes user space understands */ 2029static inline int usb_translate_errors(int error_code) 2030{ 2031 switch (error_code) { 2032 case 0: 2033 case -ENOMEM: 2034 case -ENODEV: 2035 case -EOPNOTSUPP: 2036 return error_code; 2037 default: 2038 return -EIO; 2039 } 2040} 2041 2042/* Events from the usb core */ 2043#define USB_DEVICE_ADD 0x0001 2044#define USB_DEVICE_REMOVE 0x0002 2045#define USB_BUS_ADD 0x0003 2046#define USB_BUS_REMOVE 0x0004 2047extern void usb_register_notify(struct notifier_block *nb); 2048extern void usb_unregister_notify(struct notifier_block *nb); 2049 2050/* debugfs stuff */ 2051extern struct dentry *usb_debug_root; 2052 2053/* LED triggers */ 2054enum usb_led_event { 2055 USB_LED_EVENT_HOST = 0, 2056 USB_LED_EVENT_GADGET = 1, 2057}; 2058 2059#ifdef CONFIG_USB_LED_TRIG 2060extern void usb_led_activity(enum usb_led_event ev); 2061#else 2062static inline void usb_led_activity(enum usb_led_event ev) {} 2063#endif 2064 2065#endif /* __KERNEL__ */ 2066 2067#endif