at v6.16 151 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <net/checksum.h> 27#include <linux/rcupdate.h> 28#include <linux/dma-mapping.h> 29#include <linux/netdev_features.h> 30#include <net/flow_dissector.h> 31#include <linux/in6.h> 32#include <linux/if_packet.h> 33#include <linux/llist.h> 34#include <linux/page_frag_cache.h> 35#include <net/flow.h> 36#if IS_ENABLED(CONFIG_NF_CONNTRACK) 37#include <linux/netfilter/nf_conntrack_common.h> 38#endif 39#include <net/net_debug.h> 40#include <net/dropreason-core.h> 41#include <net/netmem.h> 42 43/** 44 * DOC: skb checksums 45 * 46 * The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * IP checksum related features 50 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 * 52 * Drivers advertise checksum offload capabilities in the features of a device. 53 * From the stack's point of view these are capabilities offered by the driver. 54 * A driver typically only advertises features that it is capable of offloading 55 * to its device. 56 * 57 * .. flat-table:: Checksum related device features 58 * :widths: 1 10 59 * 60 * * - %NETIF_F_HW_CSUM 61 * - The driver (or its device) is able to compute one 62 * IP (one's complement) checksum for any combination 63 * of protocols or protocol layering. The checksum is 64 * computed and set in a packet per the CHECKSUM_PARTIAL 65 * interface (see below). 66 * 67 * * - %NETIF_F_IP_CSUM 68 * - Driver (device) is only able to checksum plain 69 * TCP or UDP packets over IPv4. These are specifically 70 * unencapsulated packets of the form IPv4|TCP or 71 * IPv4|UDP where the Protocol field in the IPv4 header 72 * is TCP or UDP. The IPv4 header may contain IP options. 73 * This feature cannot be set in features for a device 74 * with NETIF_F_HW_CSUM also set. This feature is being 75 * DEPRECATED (see below). 76 * 77 * * - %NETIF_F_IPV6_CSUM 78 * - Driver (device) is only able to checksum plain 79 * TCP or UDP packets over IPv6. These are specifically 80 * unencapsulated packets of the form IPv6|TCP or 81 * IPv6|UDP where the Next Header field in the IPv6 82 * header is either TCP or UDP. IPv6 extension headers 83 * are not supported with this feature. This feature 84 * cannot be set in features for a device with 85 * NETIF_F_HW_CSUM also set. This feature is being 86 * DEPRECATED (see below). 87 * 88 * * - %NETIF_F_RXCSUM 89 * - Driver (device) performs receive checksum offload. 90 * This flag is only used to disable the RX checksum 91 * feature for a device. The stack will accept receive 92 * checksum indication in packets received on a device 93 * regardless of whether NETIF_F_RXCSUM is set. 94 * 95 * Checksumming of received packets by device 96 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 97 * 98 * Indication of checksum verification is set in &sk_buff.ip_summed. 99 * Possible values are: 100 * 101 * - %CHECKSUM_NONE 102 * 103 * Device did not checksum this packet e.g. due to lack of capabilities. 104 * The packet contains full (though not verified) checksum in packet but 105 * not in skb->csum. Thus, skb->csum is undefined in this case. 106 * 107 * - %CHECKSUM_UNNECESSARY 108 * 109 * The hardware you're dealing with doesn't calculate the full checksum 110 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 111 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 112 * if their checksums are okay. &sk_buff.csum is still undefined in this case 113 * though. A driver or device must never modify the checksum field in the 114 * packet even if checksum is verified. 115 * 116 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 117 * 118 * - TCP: IPv6 and IPv4. 119 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 120 * zero UDP checksum for either IPv4 or IPv6, the networking stack 121 * may perform further validation in this case. 122 * - GRE: only if the checksum is present in the header. 123 * - SCTP: indicates the CRC in SCTP header has been validated. 124 * - FCOE: indicates the CRC in FC frame has been validated. 125 * 126 * &sk_buff.csum_level indicates the number of consecutive checksums found in 127 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 128 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 129 * and a device is able to verify the checksums for UDP (possibly zero), 130 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 131 * two. If the device were only able to verify the UDP checksum and not 132 * GRE, either because it doesn't support GRE checksum or because GRE 133 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 134 * not considered in this case). 135 * 136 * - %CHECKSUM_COMPLETE 137 * 138 * This is the most generic way. The device supplied checksum of the _whole_ 139 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 140 * hardware doesn't need to parse L3/L4 headers to implement this. 141 * 142 * Notes: 143 * 144 * - Even if device supports only some protocols, but is able to produce 145 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 146 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 147 * 148 * - %CHECKSUM_PARTIAL 149 * 150 * A checksum is set up to be offloaded to a device as described in the 151 * output description for CHECKSUM_PARTIAL. This may occur on a packet 152 * received directly from another Linux OS, e.g., a virtualized Linux kernel 153 * on the same host, or it may be set in the input path in GRO or remote 154 * checksum offload. For the purposes of checksum verification, the checksum 155 * referred to by skb->csum_start + skb->csum_offset and any preceding 156 * checksums in the packet are considered verified. Any checksums in the 157 * packet that are after the checksum being offloaded are not considered to 158 * be verified. 159 * 160 * Checksumming on transmit for non-GSO 161 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 162 * 163 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 164 * Values are: 165 * 166 * - %CHECKSUM_PARTIAL 167 * 168 * The driver is required to checksum the packet as seen by hard_start_xmit() 169 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 170 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 171 * A driver may verify that the 172 * csum_start and csum_offset values are valid values given the length and 173 * offset of the packet, but it should not attempt to validate that the 174 * checksum refers to a legitimate transport layer checksum -- it is the 175 * purview of the stack to validate that csum_start and csum_offset are set 176 * correctly. 177 * 178 * When the stack requests checksum offload for a packet, the driver MUST 179 * ensure that the checksum is set correctly. A driver can either offload the 180 * checksum calculation to the device, or call skb_checksum_help (in the case 181 * that the device does not support offload for a particular checksum). 182 * 183 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 184 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 185 * checksum offload capability. 186 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 187 * on network device checksumming capabilities: if a packet does not match 188 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 189 * &sk_buff.csum_not_inet, see :ref:`crc`) 190 * is called to resolve the checksum. 191 * 192 * - %CHECKSUM_NONE 193 * 194 * The skb was already checksummed by the protocol, or a checksum is not 195 * required. 196 * 197 * - %CHECKSUM_UNNECESSARY 198 * 199 * This has the same meaning as CHECKSUM_NONE for checksum offload on 200 * output. 201 * 202 * - %CHECKSUM_COMPLETE 203 * 204 * Not used in checksum output. If a driver observes a packet with this value 205 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 206 * 207 * .. _crc: 208 * 209 * Non-IP checksum (CRC) offloads 210 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 211 * 212 * .. flat-table:: 213 * :widths: 1 10 214 * 215 * * - %NETIF_F_SCTP_CRC 216 * - This feature indicates that a device is capable of 217 * offloading the SCTP CRC in a packet. To perform this offload the stack 218 * will set csum_start and csum_offset accordingly, set ip_summed to 219 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 220 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 221 * A driver that supports both IP checksum offload and SCTP CRC32c offload 222 * must verify which offload is configured for a packet by testing the 223 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 224 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 225 * 226 * * - %NETIF_F_FCOE_CRC 227 * - This feature indicates that a device is capable of offloading the FCOE 228 * CRC in a packet. To perform this offload the stack will set ip_summed 229 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 230 * accordingly. Note that there is no indication in the skbuff that the 231 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 232 * both IP checksum offload and FCOE CRC offload must verify which offload 233 * is configured for a packet, presumably by inspecting packet headers. 234 * 235 * Checksumming on output with GSO 236 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 237 * 238 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 239 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 240 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 241 * part of the GSO operation is implied. If a checksum is being offloaded 242 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 243 * csum_offset are set to refer to the outermost checksum being offloaded 244 * (two offloaded checksums are possible with UDP encapsulation). 245 */ 246 247/* Don't change this without changing skb_csum_unnecessary! */ 248#define CHECKSUM_NONE 0 249#define CHECKSUM_UNNECESSARY 1 250#define CHECKSUM_COMPLETE 2 251#define CHECKSUM_PARTIAL 3 252 253/* Maximum value in skb->csum_level */ 254#define SKB_MAX_CSUM_LEVEL 3 255 256#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 257#define SKB_WITH_OVERHEAD(X) \ 258 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 259 260/* For X bytes available in skb->head, what is the minimal 261 * allocation needed, knowing struct skb_shared_info needs 262 * to be aligned. 263 */ 264#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 266 267#define SKB_MAX_ORDER(X, ORDER) \ 268 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 269#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 270#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 271 272/* return minimum truesize of one skb containing X bytes of data */ 273#define SKB_TRUESIZE(X) ((X) + \ 274 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 275 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 276 277struct net_device; 278struct scatterlist; 279struct pipe_inode_info; 280struct iov_iter; 281struct napi_struct; 282struct bpf_prog; 283union bpf_attr; 284struct skb_ext; 285struct ts_config; 286 287#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314}; 315#endif 316 317#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318/* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334}; 335#endif 336 337struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346}; 347 348struct sk_buff; 349 350#ifndef CONFIG_MAX_SKB_FRAGS 351# define CONFIG_MAX_SKB_FRAGS 17 352#endif 353 354#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 357 * segment using its current segmentation instead. 358 */ 359#define GSO_BY_FRAGS 0xFFFF 360 361typedef struct skb_frag { 362 netmem_ref netmem; 363 unsigned int len; 364 unsigned int offset; 365} skb_frag_t; 366 367/** 368 * skb_frag_size() - Returns the size of a skb fragment 369 * @frag: skb fragment 370 */ 371static inline unsigned int skb_frag_size(const skb_frag_t *frag) 372{ 373 return frag->len; 374} 375 376/** 377 * skb_frag_size_set() - Sets the size of a skb fragment 378 * @frag: skb fragment 379 * @size: size of fragment 380 */ 381static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 382{ 383 frag->len = size; 384} 385 386/** 387 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 388 * @frag: skb fragment 389 * @delta: value to add 390 */ 391static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 392{ 393 frag->len += delta; 394} 395 396/** 397 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 398 * @frag: skb fragment 399 * @delta: value to subtract 400 */ 401static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 402{ 403 frag->len -= delta; 404} 405 406/** 407 * skb_frag_must_loop - Test if %p is a high memory page 408 * @p: fragment's page 409 */ 410static inline bool skb_frag_must_loop(struct page *p) 411{ 412#if defined(CONFIG_HIGHMEM) 413 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 414 return true; 415#endif 416 return false; 417} 418 419/** 420 * skb_frag_foreach_page - loop over pages in a fragment 421 * 422 * @f: skb frag to operate on 423 * @f_off: offset from start of f->netmem 424 * @f_len: length from f_off to loop over 425 * @p: (temp var) current page 426 * @p_off: (temp var) offset from start of current page, 427 * non-zero only on first page. 428 * @p_len: (temp var) length in current page, 429 * < PAGE_SIZE only on first and last page. 430 * @copied: (temp var) length so far, excluding current p_len. 431 * 432 * A fragment can hold a compound page, in which case per-page 433 * operations, notably kmap_atomic, must be called for each 434 * regular page. 435 */ 436#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 437 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 438 p_off = (f_off) & (PAGE_SIZE - 1), \ 439 p_len = skb_frag_must_loop(p) ? \ 440 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 441 copied = 0; \ 442 copied < f_len; \ 443 copied += p_len, p++, p_off = 0, \ 444 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 445 446/** 447 * struct skb_shared_hwtstamps - hardware time stamps 448 * @hwtstamp: hardware time stamp transformed into duration 449 * since arbitrary point in time 450 * @netdev_data: address/cookie of network device driver used as 451 * reference to actual hardware time stamp 452 * 453 * Software time stamps generated by ktime_get_real() are stored in 454 * skb->tstamp. 455 * 456 * hwtstamps can only be compared against other hwtstamps from 457 * the same device. 458 * 459 * This structure is attached to packets as part of the 460 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 461 */ 462struct skb_shared_hwtstamps { 463 union { 464 ktime_t hwtstamp; 465 void *netdev_data; 466 }; 467}; 468 469/* Definitions for tx_flags in struct skb_shared_info */ 470enum { 471 /* generate hardware time stamp */ 472 SKBTX_HW_TSTAMP_NOBPF = 1 << 0, 473 474 /* generate software time stamp when queueing packet to NIC */ 475 SKBTX_SW_TSTAMP = 1 << 1, 476 477 /* device driver is going to provide hardware time stamp */ 478 SKBTX_IN_PROGRESS = 1 << 2, 479 480 /* generate software time stamp on packet tx completion */ 481 SKBTX_COMPLETION_TSTAMP = 1 << 3, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488 489 /* used for bpf extension when a bpf program is loaded */ 490 SKBTX_BPF = 1 << 7, 491}; 492 493#define SKBTX_HW_TSTAMP (SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF) 494 495#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 496 SKBTX_SCHED_TSTAMP | \ 497 SKBTX_BPF | \ 498 SKBTX_COMPLETION_TSTAMP) 499#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 500 SKBTX_ANY_SW_TSTAMP) 501 502/* Definitions for flags in struct skb_shared_info */ 503enum { 504 /* use zcopy routines */ 505 SKBFL_ZEROCOPY_ENABLE = BIT(0), 506 507 /* This indicates at least one fragment might be overwritten 508 * (as in vmsplice(), sendfile() ...) 509 * If we need to compute a TX checksum, we'll need to copy 510 * all frags to avoid possible bad checksum 511 */ 512 SKBFL_SHARED_FRAG = BIT(1), 513 514 /* segment contains only zerocopy data and should not be 515 * charged to the kernel memory. 516 */ 517 SKBFL_PURE_ZEROCOPY = BIT(2), 518 519 SKBFL_DONT_ORPHAN = BIT(3), 520 521 /* page references are managed by the ubuf_info, so it's safe to 522 * use frags only up until ubuf_info is released 523 */ 524 SKBFL_MANAGED_FRAG_REFS = BIT(4), 525}; 526 527#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 528#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 529 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 530 531struct ubuf_info_ops { 532 void (*complete)(struct sk_buff *, struct ubuf_info *, 533 bool zerocopy_success); 534 /* has to be compatible with skb_zcopy_set() */ 535 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 536}; 537 538/* 539 * The callback notifies userspace to release buffers when skb DMA is done in 540 * lower device, the skb last reference should be 0 when calling this. 541 * The zerocopy_success argument is true if zero copy transmit occurred, 542 * false on data copy or out of memory error caused by data copy attempt. 543 * The ctx field is used to track device context. 544 * The desc field is used to track userspace buffer index. 545 */ 546struct ubuf_info { 547 const struct ubuf_info_ops *ops; 548 refcount_t refcnt; 549 u8 flags; 550}; 551 552struct ubuf_info_msgzc { 553 struct ubuf_info ubuf; 554 555 union { 556 struct { 557 unsigned long desc; 558 void *ctx; 559 }; 560 struct { 561 u32 id; 562 u16 len; 563 u16 zerocopy:1; 564 u32 bytelen; 565 }; 566 }; 567 568 struct mmpin { 569 struct user_struct *user; 570 unsigned int num_pg; 571 } mmp; 572}; 573 574#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 575#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 576 ubuf) 577 578int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 579void mm_unaccount_pinned_pages(struct mmpin *mmp); 580 581/* Preserve some data across TX submission and completion. 582 * 583 * Note, this state is stored in the driver. Extending the layout 584 * might need some special care. 585 */ 586struct xsk_tx_metadata_compl { 587 __u64 *tx_timestamp; 588}; 589 590/* This data is invariant across clones and lives at 591 * the end of the header data, ie. at skb->end. 592 */ 593struct skb_shared_info { 594 __u8 flags; 595 __u8 meta_len; 596 __u8 nr_frags; 597 __u8 tx_flags; 598 unsigned short gso_size; 599 /* Warning: this field is not always filled in (UFO)! */ 600 unsigned short gso_segs; 601 struct sk_buff *frag_list; 602 union { 603 struct skb_shared_hwtstamps hwtstamps; 604 struct xsk_tx_metadata_compl xsk_meta; 605 }; 606 unsigned int gso_type; 607 u32 tskey; 608 609 /* 610 * Warning : all fields before dataref are cleared in __alloc_skb() 611 */ 612 atomic_t dataref; 613 614 union { 615 struct { 616 u32 xdp_frags_size; 617 u32 xdp_frags_truesize; 618 }; 619 620 /* 621 * Intermediate layers must ensure that destructor_arg 622 * remains valid until skb destructor. 623 */ 624 void *destructor_arg; 625 }; 626 627 /* must be last field, see pskb_expand_head() */ 628 skb_frag_t frags[MAX_SKB_FRAGS]; 629}; 630 631/** 632 * DOC: dataref and headerless skbs 633 * 634 * Transport layers send out clones of payload skbs they hold for 635 * retransmissions. To allow lower layers of the stack to prepend their headers 636 * we split &skb_shared_info.dataref into two halves. 637 * The lower 16 bits count the overall number of references. 638 * The higher 16 bits indicate how many of the references are payload-only. 639 * skb_header_cloned() checks if skb is allowed to add / write the headers. 640 * 641 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 642 * (via __skb_header_release()). Any clone created from marked skb will get 643 * &sk_buff.hdr_len populated with the available headroom. 644 * If there's the only clone in existence it's able to modify the headroom 645 * at will. The sequence of calls inside the transport layer is:: 646 * 647 * <alloc skb> 648 * skb_reserve() 649 * __skb_header_release() 650 * skb_clone() 651 * // send the clone down the stack 652 * 653 * This is not a very generic construct and it depends on the transport layers 654 * doing the right thing. In practice there's usually only one payload-only skb. 655 * Having multiple payload-only skbs with different lengths of hdr_len is not 656 * possible. The payload-only skbs should never leave their owner. 657 */ 658#define SKB_DATAREF_SHIFT 16 659#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 660 661 662enum { 663 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 664 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 665 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 666}; 667 668enum { 669 SKB_GSO_TCPV4 = 1 << 0, 670 671 /* This indicates the skb is from an untrusted source. */ 672 SKB_GSO_DODGY = 1 << 1, 673 674 /* This indicates the tcp segment has CWR set. */ 675 SKB_GSO_TCP_ECN = 1 << 2, 676 677 SKB_GSO_TCP_FIXEDID = 1 << 3, 678 679 SKB_GSO_TCPV6 = 1 << 4, 680 681 SKB_GSO_FCOE = 1 << 5, 682 683 SKB_GSO_GRE = 1 << 6, 684 685 SKB_GSO_GRE_CSUM = 1 << 7, 686 687 SKB_GSO_IPXIP4 = 1 << 8, 688 689 SKB_GSO_IPXIP6 = 1 << 9, 690 691 SKB_GSO_UDP_TUNNEL = 1 << 10, 692 693 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 694 695 SKB_GSO_PARTIAL = 1 << 12, 696 697 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 698 699 SKB_GSO_SCTP = 1 << 14, 700 701 SKB_GSO_ESP = 1 << 15, 702 703 SKB_GSO_UDP = 1 << 16, 704 705 SKB_GSO_UDP_L4 = 1 << 17, 706 707 SKB_GSO_FRAGLIST = 1 << 18, 708 709 SKB_GSO_TCP_ACCECN = 1 << 19, 710}; 711 712#if BITS_PER_LONG > 32 713#define NET_SKBUFF_DATA_USES_OFFSET 1 714#endif 715 716#ifdef NET_SKBUFF_DATA_USES_OFFSET 717typedef unsigned int sk_buff_data_t; 718#else 719typedef unsigned char *sk_buff_data_t; 720#endif 721 722enum skb_tstamp_type { 723 SKB_CLOCK_REALTIME, 724 SKB_CLOCK_MONOTONIC, 725 SKB_CLOCK_TAI, 726 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 727}; 728 729/** 730 * DOC: Basic sk_buff geometry 731 * 732 * struct sk_buff itself is a metadata structure and does not hold any packet 733 * data. All the data is held in associated buffers. 734 * 735 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 736 * into two parts: 737 * 738 * - data buffer, containing headers and sometimes payload; 739 * this is the part of the skb operated on by the common helpers 740 * such as skb_put() or skb_pull(); 741 * - shared info (struct skb_shared_info) which holds an array of pointers 742 * to read-only data in the (page, offset, length) format. 743 * 744 * Optionally &skb_shared_info.frag_list may point to another skb. 745 * 746 * Basic diagram may look like this:: 747 * 748 * --------------- 749 * | sk_buff | 750 * --------------- 751 * ,--------------------------- + head 752 * / ,----------------- + data 753 * / / ,----------- + tail 754 * | | | , + end 755 * | | | | 756 * v v v v 757 * ----------------------------------------------- 758 * | headroom | data | tailroom | skb_shared_info | 759 * ----------------------------------------------- 760 * + [page frag] 761 * + [page frag] 762 * + [page frag] 763 * + [page frag] --------- 764 * + frag_list --> | sk_buff | 765 * --------- 766 * 767 */ 768 769/** 770 * struct sk_buff - socket buffer 771 * @next: Next buffer in list 772 * @prev: Previous buffer in list 773 * @tstamp: Time we arrived/left 774 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 775 * for retransmit timer 776 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 777 * @list: queue head 778 * @ll_node: anchor in an llist (eg socket defer_list) 779 * @sk: Socket we are owned by 780 * @dev: Device we arrived on/are leaving by 781 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 782 * @cb: Control buffer. Free for use by every layer. Put private vars here 783 * @_skb_refdst: destination entry (with norefcount bit) 784 * @len: Length of actual data 785 * @data_len: Data length 786 * @mac_len: Length of link layer header 787 * @hdr_len: writable header length of cloned skb 788 * @csum: Checksum (must include start/offset pair) 789 * @csum_start: Offset from skb->head where checksumming should start 790 * @csum_offset: Offset from csum_start where checksum should be stored 791 * @priority: Packet queueing priority 792 * @ignore_df: allow local fragmentation 793 * @cloned: Head may be cloned (check refcnt to be sure) 794 * @ip_summed: Driver fed us an IP checksum 795 * @nohdr: Payload reference only, must not modify header 796 * @pkt_type: Packet class 797 * @fclone: skbuff clone status 798 * @ipvs_property: skbuff is owned by ipvs 799 * @inner_protocol_type: whether the inner protocol is 800 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 801 * @remcsum_offload: remote checksum offload is enabled 802 * @offload_fwd_mark: Packet was L2-forwarded in hardware 803 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 804 * @tc_skip_classify: do not classify packet. set by IFB device 805 * @tc_at_ingress: used within tc_classify to distinguish in/egress 806 * @redirected: packet was redirected by packet classifier 807 * @from_ingress: packet was redirected from the ingress path 808 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 809 * @peeked: this packet has been seen already, so stats have been 810 * done for it, don't do them again 811 * @nf_trace: netfilter packet trace flag 812 * @protocol: Packet protocol from driver 813 * @destructor: Destruct function 814 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 815 * @_sk_redir: socket redirection information for skmsg 816 * @_nfct: Associated connection, if any (with nfctinfo bits) 817 * @skb_iif: ifindex of device we arrived on 818 * @tc_index: Traffic control index 819 * @hash: the packet hash 820 * @queue_mapping: Queue mapping for multiqueue devices 821 * @head_frag: skb was allocated from page fragments, 822 * not allocated by kmalloc() or vmalloc(). 823 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 824 * @pp_recycle: mark the packet for recycling instead of freeing (implies 825 * page_pool support on driver) 826 * @active_extensions: active extensions (skb_ext_id types) 827 * @ndisc_nodetype: router type (from link layer) 828 * @ooo_okay: allow the mapping of a socket to a queue to be changed 829 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 830 * ports. 831 * @sw_hash: indicates hash was computed in software stack 832 * @wifi_acked_valid: wifi_acked was set 833 * @wifi_acked: whether frame was acked on wifi or not 834 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 835 * @encapsulation: indicates the inner headers in the skbuff are valid 836 * @encap_hdr_csum: software checksum is needed 837 * @csum_valid: checksum is already valid 838 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 839 * @csum_complete_sw: checksum was completed by software 840 * @csum_level: indicates the number of consecutive checksums found in 841 * the packet minus one that have been verified as 842 * CHECKSUM_UNNECESSARY (max 3) 843 * @unreadable: indicates that at least 1 of the fragments in this skb is 844 * unreadable. 845 * @dst_pending_confirm: need to confirm neighbour 846 * @decrypted: Decrypted SKB 847 * @slow_gro: state present at GRO time, slower prepare step required 848 * @tstamp_type: When set, skb->tstamp has the 849 * delivery_time clock base of skb->tstamp. 850 * @napi_id: id of the NAPI struct this skb came from 851 * @sender_cpu: (aka @napi_id) source CPU in XPS 852 * @alloc_cpu: CPU which did the skb allocation. 853 * @secmark: security marking 854 * @mark: Generic packet mark 855 * @reserved_tailroom: (aka @mark) number of bytes of free space available 856 * at the tail of an sk_buff 857 * @vlan_all: vlan fields (proto & tci) 858 * @vlan_proto: vlan encapsulation protocol 859 * @vlan_tci: vlan tag control information 860 * @inner_protocol: Protocol (encapsulation) 861 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 862 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 863 * @inner_transport_header: Inner transport layer header (encapsulation) 864 * @inner_network_header: Network layer header (encapsulation) 865 * @inner_mac_header: Link layer header (encapsulation) 866 * @transport_header: Transport layer header 867 * @network_header: Network layer header 868 * @mac_header: Link layer header 869 * @kcov_handle: KCOV remote handle for remote coverage collection 870 * @tail: Tail pointer 871 * @end: End pointer 872 * @head: Head of buffer 873 * @data: Data head pointer 874 * @truesize: Buffer size 875 * @users: User count - see {datagram,tcp}.c 876 * @extensions: allocated extensions, valid if active_extensions is nonzero 877 */ 878 879struct sk_buff { 880 union { 881 struct { 882 /* These two members must be first to match sk_buff_head. */ 883 struct sk_buff *next; 884 struct sk_buff *prev; 885 886 union { 887 struct net_device *dev; 888 /* Some protocols might use this space to store information, 889 * while device pointer would be NULL. 890 * UDP receive path is one user. 891 */ 892 unsigned long dev_scratch; 893 }; 894 }; 895 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 896 struct list_head list; 897 struct llist_node ll_node; 898 }; 899 900 struct sock *sk; 901 902 union { 903 ktime_t tstamp; 904 u64 skb_mstamp_ns; /* earliest departure time */ 905 }; 906 /* 907 * This is the control buffer. It is free to use for every 908 * layer. Please put your private variables there. If you 909 * want to keep them across layers you have to do a skb_clone() 910 * first. This is owned by whoever has the skb queued ATM. 911 */ 912 char cb[48] __aligned(8); 913 914 union { 915 struct { 916 unsigned long _skb_refdst; 917 void (*destructor)(struct sk_buff *skb); 918 }; 919 struct list_head tcp_tsorted_anchor; 920#ifdef CONFIG_NET_SOCK_MSG 921 unsigned long _sk_redir; 922#endif 923 }; 924 925#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 926 unsigned long _nfct; 927#endif 928 unsigned int len, 929 data_len; 930 __u16 mac_len, 931 hdr_len; 932 933 /* Following fields are _not_ copied in __copy_skb_header() 934 * Note that queue_mapping is here mostly to fill a hole. 935 */ 936 __u16 queue_mapping; 937 938/* if you move cloned around you also must adapt those constants */ 939#ifdef __BIG_ENDIAN_BITFIELD 940#define CLONED_MASK (1 << 7) 941#else 942#define CLONED_MASK 1 943#endif 944#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 945 946 /* private: */ 947 __u8 __cloned_offset[0]; 948 /* public: */ 949 __u8 cloned:1, 950 nohdr:1, 951 fclone:2, 952 peeked:1, 953 head_frag:1, 954 pfmemalloc:1, 955 pp_recycle:1; /* page_pool recycle indicator */ 956#ifdef CONFIG_SKB_EXTENSIONS 957 __u8 active_extensions; 958#endif 959 960 /* Fields enclosed in headers group are copied 961 * using a single memcpy() in __copy_skb_header() 962 */ 963 struct_group(headers, 964 965 /* private: */ 966 __u8 __pkt_type_offset[0]; 967 /* public: */ 968 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 969 __u8 ignore_df:1; 970 __u8 dst_pending_confirm:1; 971 __u8 ip_summed:2; 972 __u8 ooo_okay:1; 973 974 /* private: */ 975 __u8 __mono_tc_offset[0]; 976 /* public: */ 977 __u8 tstamp_type:2; /* See skb_tstamp_type */ 978#ifdef CONFIG_NET_XGRESS 979 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 980 __u8 tc_skip_classify:1; 981#endif 982 __u8 remcsum_offload:1; 983 __u8 csum_complete_sw:1; 984 __u8 csum_level:2; 985 __u8 inner_protocol_type:1; 986 987 __u8 l4_hash:1; 988 __u8 sw_hash:1; 989#ifdef CONFIG_WIRELESS 990 __u8 wifi_acked_valid:1; 991 __u8 wifi_acked:1; 992#endif 993 __u8 no_fcs:1; 994 /* Indicates the inner headers are valid in the skbuff. */ 995 __u8 encapsulation:1; 996 __u8 encap_hdr_csum:1; 997 __u8 csum_valid:1; 998#ifdef CONFIG_IPV6_NDISC_NODETYPE 999 __u8 ndisc_nodetype:2; 1000#endif 1001 1002#if IS_ENABLED(CONFIG_IP_VS) 1003 __u8 ipvs_property:1; 1004#endif 1005#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 1006 __u8 nf_trace:1; 1007#endif 1008#ifdef CONFIG_NET_SWITCHDEV 1009 __u8 offload_fwd_mark:1; 1010 __u8 offload_l3_fwd_mark:1; 1011#endif 1012 __u8 redirected:1; 1013#ifdef CONFIG_NET_REDIRECT 1014 __u8 from_ingress:1; 1015#endif 1016#ifdef CONFIG_NETFILTER_SKIP_EGRESS 1017 __u8 nf_skip_egress:1; 1018#endif 1019#ifdef CONFIG_SKB_DECRYPTED 1020 __u8 decrypted:1; 1021#endif 1022 __u8 slow_gro:1; 1023#if IS_ENABLED(CONFIG_IP_SCTP) 1024 __u8 csum_not_inet:1; 1025#endif 1026 __u8 unreadable:1; 1027#if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1028 __u16 tc_index; /* traffic control index */ 1029#endif 1030 1031 u16 alloc_cpu; 1032 1033 union { 1034 __wsum csum; 1035 struct { 1036 __u16 csum_start; 1037 __u16 csum_offset; 1038 }; 1039 }; 1040 __u32 priority; 1041 int skb_iif; 1042 __u32 hash; 1043 union { 1044 u32 vlan_all; 1045 struct { 1046 __be16 vlan_proto; 1047 __u16 vlan_tci; 1048 }; 1049 }; 1050#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1051 union { 1052 unsigned int napi_id; 1053 unsigned int sender_cpu; 1054 }; 1055#endif 1056#ifdef CONFIG_NETWORK_SECMARK 1057 __u32 secmark; 1058#endif 1059 1060 union { 1061 __u32 mark; 1062 __u32 reserved_tailroom; 1063 }; 1064 1065 union { 1066 __be16 inner_protocol; 1067 __u8 inner_ipproto; 1068 }; 1069 1070 __u16 inner_transport_header; 1071 __u16 inner_network_header; 1072 __u16 inner_mac_header; 1073 1074 __be16 protocol; 1075 __u16 transport_header; 1076 __u16 network_header; 1077 __u16 mac_header; 1078 1079#ifdef CONFIG_KCOV 1080 u64 kcov_handle; 1081#endif 1082 1083 ); /* end headers group */ 1084 1085 /* These elements must be at the end, see alloc_skb() for details. */ 1086 sk_buff_data_t tail; 1087 sk_buff_data_t end; 1088 unsigned char *head, 1089 *data; 1090 unsigned int truesize; 1091 refcount_t users; 1092 1093#ifdef CONFIG_SKB_EXTENSIONS 1094 /* only usable after checking ->active_extensions != 0 */ 1095 struct skb_ext *extensions; 1096#endif 1097}; 1098 1099/* if you move pkt_type around you also must adapt those constants */ 1100#ifdef __BIG_ENDIAN_BITFIELD 1101#define PKT_TYPE_MAX (7 << 5) 1102#else 1103#define PKT_TYPE_MAX 7 1104#endif 1105#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1106 1107/* if you move tc_at_ingress or tstamp_type 1108 * around, you also must adapt these constants. 1109 */ 1110#ifdef __BIG_ENDIAN_BITFIELD 1111#define SKB_TSTAMP_TYPE_MASK (3 << 6) 1112#define SKB_TSTAMP_TYPE_RSHIFT (6) 1113#define TC_AT_INGRESS_MASK (1 << 5) 1114#else 1115#define SKB_TSTAMP_TYPE_MASK (3) 1116#define TC_AT_INGRESS_MASK (1 << 2) 1117#endif 1118#define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1119 1120#ifdef __KERNEL__ 1121/* 1122 * Handling routines are only of interest to the kernel 1123 */ 1124 1125#define SKB_ALLOC_FCLONE 0x01 1126#define SKB_ALLOC_RX 0x02 1127#define SKB_ALLOC_NAPI 0x04 1128 1129/** 1130 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1131 * @skb: buffer 1132 */ 1133static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1134{ 1135 return unlikely(skb->pfmemalloc); 1136} 1137 1138/* 1139 * skb might have a dst pointer attached, refcounted or not. 1140 * _skb_refdst low order bit is set if refcount was _not_ taken 1141 */ 1142#define SKB_DST_NOREF 1UL 1143#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1144 1145/** 1146 * skb_dst - returns skb dst_entry 1147 * @skb: buffer 1148 * 1149 * Returns: skb dst_entry, regardless of reference taken or not. 1150 */ 1151static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1152{ 1153 /* If refdst was not refcounted, check we still are in a 1154 * rcu_read_lock section 1155 */ 1156 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1157 !rcu_read_lock_held() && 1158 !rcu_read_lock_bh_held()); 1159 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1160} 1161 1162/** 1163 * skb_dst_set - sets skb dst 1164 * @skb: buffer 1165 * @dst: dst entry 1166 * 1167 * Sets skb dst, assuming a reference was taken on dst and should 1168 * be released by skb_dst_drop() 1169 */ 1170static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1171{ 1172 skb->slow_gro |= !!dst; 1173 skb->_skb_refdst = (unsigned long)dst; 1174} 1175 1176/** 1177 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1178 * @skb: buffer 1179 * @dst: dst entry 1180 * 1181 * Sets skb dst, assuming a reference was not taken on dst. 1182 * If dst entry is cached, we do not take reference and dst_release 1183 * will be avoided by refdst_drop. If dst entry is not cached, we take 1184 * reference, so that last dst_release can destroy the dst immediately. 1185 */ 1186static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1187{ 1188 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1189 skb->slow_gro |= !!dst; 1190 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1191} 1192 1193/** 1194 * skb_dst_is_noref - Test if skb dst isn't refcounted 1195 * @skb: buffer 1196 */ 1197static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1198{ 1199 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1200} 1201 1202/* For mangling skb->pkt_type from user space side from applications 1203 * such as nft, tc, etc, we only allow a conservative subset of 1204 * possible pkt_types to be set. 1205*/ 1206static inline bool skb_pkt_type_ok(u32 ptype) 1207{ 1208 return ptype <= PACKET_OTHERHOST; 1209} 1210 1211/** 1212 * skb_napi_id - Returns the skb's NAPI id 1213 * @skb: buffer 1214 */ 1215static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1216{ 1217#ifdef CONFIG_NET_RX_BUSY_POLL 1218 return skb->napi_id; 1219#else 1220 return 0; 1221#endif 1222} 1223 1224static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1225{ 1226#ifdef CONFIG_WIRELESS 1227 return skb->wifi_acked_valid; 1228#else 1229 return 0; 1230#endif 1231} 1232 1233/** 1234 * skb_unref - decrement the skb's reference count 1235 * @skb: buffer 1236 * 1237 * Returns: true if we can free the skb. 1238 */ 1239static inline bool skb_unref(struct sk_buff *skb) 1240{ 1241 if (unlikely(!skb)) 1242 return false; 1243 if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1)) 1244 smp_rmb(); 1245 else if (likely(!refcount_dec_and_test(&skb->users))) 1246 return false; 1247 1248 return true; 1249} 1250 1251static inline bool skb_data_unref(const struct sk_buff *skb, 1252 struct skb_shared_info *shinfo) 1253{ 1254 int bias; 1255 1256 if (!skb->cloned) 1257 return true; 1258 1259 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1260 1261 if (atomic_read(&shinfo->dataref) == bias) 1262 smp_rmb(); 1263 else if (atomic_sub_return(bias, &shinfo->dataref)) 1264 return false; 1265 1266 return true; 1267} 1268 1269void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1270 enum skb_drop_reason reason); 1271 1272static inline void 1273kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1274{ 1275 sk_skb_reason_drop(NULL, skb, reason); 1276} 1277 1278/** 1279 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1280 * @skb: buffer to free 1281 */ 1282static inline void kfree_skb(struct sk_buff *skb) 1283{ 1284 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1285} 1286 1287void skb_release_head_state(struct sk_buff *skb); 1288void kfree_skb_list_reason(struct sk_buff *segs, 1289 enum skb_drop_reason reason); 1290void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1291void skb_tx_error(struct sk_buff *skb); 1292 1293static inline void kfree_skb_list(struct sk_buff *segs) 1294{ 1295 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1296} 1297 1298#ifdef CONFIG_TRACEPOINTS 1299void consume_skb(struct sk_buff *skb); 1300#else 1301static inline void consume_skb(struct sk_buff *skb) 1302{ 1303 return kfree_skb(skb); 1304} 1305#endif 1306 1307void __consume_stateless_skb(struct sk_buff *skb); 1308void __kfree_skb(struct sk_buff *skb); 1309 1310void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1311bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1312 bool *fragstolen, int *delta_truesize); 1313 1314struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1315 int node); 1316struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1317struct sk_buff *build_skb(void *data, unsigned int frag_size); 1318struct sk_buff *build_skb_around(struct sk_buff *skb, 1319 void *data, unsigned int frag_size); 1320void skb_attempt_defer_free(struct sk_buff *skb); 1321 1322u32 napi_skb_cache_get_bulk(void **skbs, u32 n); 1323struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1324struct sk_buff *slab_build_skb(void *data); 1325 1326/** 1327 * alloc_skb - allocate a network buffer 1328 * @size: size to allocate 1329 * @priority: allocation mask 1330 * 1331 * This function is a convenient wrapper around __alloc_skb(). 1332 */ 1333static inline struct sk_buff *alloc_skb(unsigned int size, 1334 gfp_t priority) 1335{ 1336 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1337} 1338 1339struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1340 unsigned long data_len, 1341 int max_page_order, 1342 int *errcode, 1343 gfp_t gfp_mask); 1344struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1345 1346/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1347struct sk_buff_fclones { 1348 struct sk_buff skb1; 1349 1350 struct sk_buff skb2; 1351 1352 refcount_t fclone_ref; 1353}; 1354 1355/** 1356 * skb_fclone_busy - check if fclone is busy 1357 * @sk: socket 1358 * @skb: buffer 1359 * 1360 * Returns: true if skb is a fast clone, and its clone is not freed. 1361 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1362 * so we also check that didn't happen. 1363 */ 1364static inline bool skb_fclone_busy(const struct sock *sk, 1365 const struct sk_buff *skb) 1366{ 1367 const struct sk_buff_fclones *fclones; 1368 1369 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1370 1371 return skb->fclone == SKB_FCLONE_ORIG && 1372 refcount_read(&fclones->fclone_ref) > 1 && 1373 READ_ONCE(fclones->skb2.sk) == sk; 1374} 1375 1376/** 1377 * alloc_skb_fclone - allocate a network buffer from fclone cache 1378 * @size: size to allocate 1379 * @priority: allocation mask 1380 * 1381 * This function is a convenient wrapper around __alloc_skb(). 1382 */ 1383static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1384 gfp_t priority) 1385{ 1386 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1387} 1388 1389struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1390void skb_headers_offset_update(struct sk_buff *skb, int off); 1391int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1392struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1393void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1394struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1395struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1396 gfp_t gfp_mask, bool fclone); 1397static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1398 gfp_t gfp_mask) 1399{ 1400 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1401} 1402 1403int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1404struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1405 unsigned int headroom); 1406struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1407struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1408 int newtailroom, gfp_t priority); 1409int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1410 int offset, int len); 1411int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1412 int offset, int len); 1413int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1414int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1415 1416/** 1417 * skb_pad - zero pad the tail of an skb 1418 * @skb: buffer to pad 1419 * @pad: space to pad 1420 * 1421 * Ensure that a buffer is followed by a padding area that is zero 1422 * filled. Used by network drivers which may DMA or transfer data 1423 * beyond the buffer end onto the wire. 1424 * 1425 * May return error in out of memory cases. The skb is freed on error. 1426 */ 1427static inline int skb_pad(struct sk_buff *skb, int pad) 1428{ 1429 return __skb_pad(skb, pad, true); 1430} 1431#define dev_kfree_skb(a) consume_skb(a) 1432 1433int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1434 int offset, size_t size, size_t max_frags); 1435 1436struct skb_seq_state { 1437 __u32 lower_offset; 1438 __u32 upper_offset; 1439 __u32 frag_idx; 1440 __u32 stepped_offset; 1441 struct sk_buff *root_skb; 1442 struct sk_buff *cur_skb; 1443 __u8 *frag_data; 1444 __u32 frag_off; 1445}; 1446 1447void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1448 unsigned int to, struct skb_seq_state *st); 1449unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1450 struct skb_seq_state *st); 1451void skb_abort_seq_read(struct skb_seq_state *st); 1452int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len); 1453 1454unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1455 unsigned int to, struct ts_config *config); 1456 1457/* 1458 * Packet hash types specify the type of hash in skb_set_hash. 1459 * 1460 * Hash types refer to the protocol layer addresses which are used to 1461 * construct a packet's hash. The hashes are used to differentiate or identify 1462 * flows of the protocol layer for the hash type. Hash types are either 1463 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1464 * 1465 * Properties of hashes: 1466 * 1467 * 1) Two packets in different flows have different hash values 1468 * 2) Two packets in the same flow should have the same hash value 1469 * 1470 * A hash at a higher layer is considered to be more specific. A driver should 1471 * set the most specific hash possible. 1472 * 1473 * A driver cannot indicate a more specific hash than the layer at which a hash 1474 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1475 * 1476 * A driver may indicate a hash level which is less specific than the 1477 * actual layer the hash was computed on. For instance, a hash computed 1478 * at L4 may be considered an L3 hash. This should only be done if the 1479 * driver can't unambiguously determine that the HW computed the hash at 1480 * the higher layer. Note that the "should" in the second property above 1481 * permits this. 1482 */ 1483enum pkt_hash_types { 1484 PKT_HASH_TYPE_NONE, /* Undefined type */ 1485 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1486 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1487 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1488}; 1489 1490static inline void skb_clear_hash(struct sk_buff *skb) 1491{ 1492 skb->hash = 0; 1493 skb->sw_hash = 0; 1494 skb->l4_hash = 0; 1495} 1496 1497static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1498{ 1499 if (!skb->l4_hash) 1500 skb_clear_hash(skb); 1501} 1502 1503static inline void 1504__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1505{ 1506 skb->l4_hash = is_l4; 1507 skb->sw_hash = is_sw; 1508 skb->hash = hash; 1509} 1510 1511static inline void 1512skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1513{ 1514 /* Used by drivers to set hash from HW */ 1515 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1516} 1517 1518static inline void 1519__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1520{ 1521 __skb_set_hash(skb, hash, true, is_l4); 1522} 1523 1524u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); 1525 1526static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1527{ 1528 return __skb_get_hash_symmetric_net(NULL, skb); 1529} 1530 1531void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); 1532u32 skb_get_poff(const struct sk_buff *skb); 1533u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1534 const struct flow_keys_basic *keys, int hlen); 1535__be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1536 const void *data, int hlen_proto); 1537 1538void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1539 const struct flow_dissector_key *key, 1540 unsigned int key_count); 1541 1542struct bpf_flow_dissector; 1543u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1544 __be16 proto, int nhoff, int hlen, unsigned int flags); 1545 1546bool __skb_flow_dissect(const struct net *net, 1547 const struct sk_buff *skb, 1548 struct flow_dissector *flow_dissector, 1549 void *target_container, const void *data, 1550 __be16 proto, int nhoff, int hlen, unsigned int flags); 1551 1552static inline bool skb_flow_dissect(const struct sk_buff *skb, 1553 struct flow_dissector *flow_dissector, 1554 void *target_container, unsigned int flags) 1555{ 1556 return __skb_flow_dissect(NULL, skb, flow_dissector, 1557 target_container, NULL, 0, 0, 0, flags); 1558} 1559 1560static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1561 struct flow_keys *flow, 1562 unsigned int flags) 1563{ 1564 memset(flow, 0, sizeof(*flow)); 1565 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1566 flow, NULL, 0, 0, 0, flags); 1567} 1568 1569static inline bool 1570skb_flow_dissect_flow_keys_basic(const struct net *net, 1571 const struct sk_buff *skb, 1572 struct flow_keys_basic *flow, 1573 const void *data, __be16 proto, 1574 int nhoff, int hlen, unsigned int flags) 1575{ 1576 memset(flow, 0, sizeof(*flow)); 1577 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1578 data, proto, nhoff, hlen, flags); 1579} 1580 1581void skb_flow_dissect_meta(const struct sk_buff *skb, 1582 struct flow_dissector *flow_dissector, 1583 void *target_container); 1584 1585/* Gets a skb connection tracking info, ctinfo map should be a 1586 * map of mapsize to translate enum ip_conntrack_info states 1587 * to user states. 1588 */ 1589void 1590skb_flow_dissect_ct(const struct sk_buff *skb, 1591 struct flow_dissector *flow_dissector, 1592 void *target_container, 1593 u16 *ctinfo_map, size_t mapsize, 1594 bool post_ct, u16 zone); 1595void 1596skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1597 struct flow_dissector *flow_dissector, 1598 void *target_container); 1599 1600void skb_flow_dissect_hash(const struct sk_buff *skb, 1601 struct flow_dissector *flow_dissector, 1602 void *target_container); 1603 1604static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) 1605{ 1606 if (!skb->l4_hash && !skb->sw_hash) 1607 __skb_get_hash_net(net, skb); 1608 1609 return skb->hash; 1610} 1611 1612static inline __u32 skb_get_hash(struct sk_buff *skb) 1613{ 1614 if (!skb->l4_hash && !skb->sw_hash) 1615 __skb_get_hash_net(NULL, skb); 1616 1617 return skb->hash; 1618} 1619 1620static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1621{ 1622 if (!skb->l4_hash && !skb->sw_hash) { 1623 struct flow_keys keys; 1624 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1625 1626 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1627 } 1628 1629 return skb->hash; 1630} 1631 1632__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1633 const siphash_key_t *perturb); 1634 1635static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1636{ 1637 return skb->hash; 1638} 1639 1640static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1641{ 1642 to->hash = from->hash; 1643 to->sw_hash = from->sw_hash; 1644 to->l4_hash = from->l4_hash; 1645}; 1646 1647static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1648 const struct sk_buff *skb2) 1649{ 1650#ifdef CONFIG_SKB_DECRYPTED 1651 return skb2->decrypted - skb1->decrypted; 1652#else 1653 return 0; 1654#endif 1655} 1656 1657static inline bool skb_is_decrypted(const struct sk_buff *skb) 1658{ 1659#ifdef CONFIG_SKB_DECRYPTED 1660 return skb->decrypted; 1661#else 1662 return false; 1663#endif 1664} 1665 1666static inline void skb_copy_decrypted(struct sk_buff *to, 1667 const struct sk_buff *from) 1668{ 1669#ifdef CONFIG_SKB_DECRYPTED 1670 to->decrypted = from->decrypted; 1671#endif 1672} 1673 1674#ifdef NET_SKBUFF_DATA_USES_OFFSET 1675static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1676{ 1677 return skb->head + skb->end; 1678} 1679 1680static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1681{ 1682 return skb->end; 1683} 1684 1685static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1686{ 1687 skb->end = offset; 1688} 1689#else 1690static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1691{ 1692 return skb->end; 1693} 1694 1695static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1696{ 1697 return skb->end - skb->head; 1698} 1699 1700static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1701{ 1702 skb->end = skb->head + offset; 1703} 1704#endif 1705 1706extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1707 1708struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1709 struct ubuf_info *uarg, bool devmem); 1710 1711void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1712 1713struct net_devmem_dmabuf_binding; 1714 1715int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1716 struct sk_buff *skb, struct iov_iter *from, 1717 size_t length, 1718 struct net_devmem_dmabuf_binding *binding); 1719 1720int zerocopy_fill_skb_from_iter(struct sk_buff *skb, 1721 struct iov_iter *from, size_t length); 1722 1723static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1724 struct msghdr *msg, int len) 1725{ 1726 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len, 1727 NULL); 1728} 1729 1730int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1731 struct msghdr *msg, int len, 1732 struct ubuf_info *uarg, 1733 struct net_devmem_dmabuf_binding *binding); 1734 1735/* Internal */ 1736#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1737 1738static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1739{ 1740 return &skb_shinfo(skb)->hwtstamps; 1741} 1742 1743static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1744{ 1745 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1746 1747 return is_zcopy ? skb_uarg(skb) : NULL; 1748} 1749 1750static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1751{ 1752 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1753} 1754 1755static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1756{ 1757 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1758} 1759 1760static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1761 const struct sk_buff *skb2) 1762{ 1763 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1764} 1765 1766static inline void net_zcopy_get(struct ubuf_info *uarg) 1767{ 1768 refcount_inc(&uarg->refcnt); 1769} 1770 1771static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1772{ 1773 skb_shinfo(skb)->destructor_arg = uarg; 1774 skb_shinfo(skb)->flags |= uarg->flags; 1775} 1776 1777static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1778 bool *have_ref) 1779{ 1780 if (skb && uarg && !skb_zcopy(skb)) { 1781 if (unlikely(have_ref && *have_ref)) 1782 *have_ref = false; 1783 else 1784 net_zcopy_get(uarg); 1785 skb_zcopy_init(skb, uarg); 1786 } 1787} 1788 1789static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1790{ 1791 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1792 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1793} 1794 1795static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1796{ 1797 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1798} 1799 1800static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1801{ 1802 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1803} 1804 1805static inline void net_zcopy_put(struct ubuf_info *uarg) 1806{ 1807 if (uarg) 1808 uarg->ops->complete(NULL, uarg, true); 1809} 1810 1811static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1812{ 1813 if (uarg) { 1814 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1815 msg_zerocopy_put_abort(uarg, have_uref); 1816 else if (have_uref) 1817 net_zcopy_put(uarg); 1818 } 1819} 1820 1821/* Release a reference on a zerocopy structure */ 1822static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1823{ 1824 struct ubuf_info *uarg = skb_zcopy(skb); 1825 1826 if (uarg) { 1827 if (!skb_zcopy_is_nouarg(skb)) 1828 uarg->ops->complete(skb, uarg, zerocopy_success); 1829 1830 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1831 } 1832} 1833 1834void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1835 1836static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1837{ 1838 if (unlikely(skb_zcopy_managed(skb))) 1839 __skb_zcopy_downgrade_managed(skb); 1840} 1841 1842/* Return true if frags in this skb are readable by the host. */ 1843static inline bool skb_frags_readable(const struct sk_buff *skb) 1844{ 1845 return !skb->unreadable; 1846} 1847 1848static inline void skb_mark_not_on_list(struct sk_buff *skb) 1849{ 1850 skb->next = NULL; 1851} 1852 1853static inline void skb_poison_list(struct sk_buff *skb) 1854{ 1855#ifdef CONFIG_DEBUG_NET 1856 skb->next = SKB_LIST_POISON_NEXT; 1857#endif 1858} 1859 1860/* Iterate through singly-linked GSO fragments of an skb. */ 1861#define skb_list_walk_safe(first, skb, next_skb) \ 1862 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1863 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1864 1865static inline void skb_list_del_init(struct sk_buff *skb) 1866{ 1867 __list_del_entry(&skb->list); 1868 skb_mark_not_on_list(skb); 1869} 1870 1871/** 1872 * skb_queue_empty - check if a queue is empty 1873 * @list: queue head 1874 * 1875 * Returns true if the queue is empty, false otherwise. 1876 */ 1877static inline int skb_queue_empty(const struct sk_buff_head *list) 1878{ 1879 return list->next == (const struct sk_buff *) list; 1880} 1881 1882/** 1883 * skb_queue_empty_lockless - check if a queue is empty 1884 * @list: queue head 1885 * 1886 * Returns true if the queue is empty, false otherwise. 1887 * This variant can be used in lockless contexts. 1888 */ 1889static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1890{ 1891 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1892} 1893 1894 1895/** 1896 * skb_queue_is_last - check if skb is the last entry in the queue 1897 * @list: queue head 1898 * @skb: buffer 1899 * 1900 * Returns true if @skb is the last buffer on the list. 1901 */ 1902static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1903 const struct sk_buff *skb) 1904{ 1905 return skb->next == (const struct sk_buff *) list; 1906} 1907 1908/** 1909 * skb_queue_is_first - check if skb is the first entry in the queue 1910 * @list: queue head 1911 * @skb: buffer 1912 * 1913 * Returns true if @skb is the first buffer on the list. 1914 */ 1915static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1916 const struct sk_buff *skb) 1917{ 1918 return skb->prev == (const struct sk_buff *) list; 1919} 1920 1921/** 1922 * skb_queue_next - return the next packet in the queue 1923 * @list: queue head 1924 * @skb: current buffer 1925 * 1926 * Return the next packet in @list after @skb. It is only valid to 1927 * call this if skb_queue_is_last() evaluates to false. 1928 */ 1929static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1930 const struct sk_buff *skb) 1931{ 1932 /* This BUG_ON may seem severe, but if we just return then we 1933 * are going to dereference garbage. 1934 */ 1935 BUG_ON(skb_queue_is_last(list, skb)); 1936 return skb->next; 1937} 1938 1939/** 1940 * skb_queue_prev - return the prev packet in the queue 1941 * @list: queue head 1942 * @skb: current buffer 1943 * 1944 * Return the prev packet in @list before @skb. It is only valid to 1945 * call this if skb_queue_is_first() evaluates to false. 1946 */ 1947static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1948 const struct sk_buff *skb) 1949{ 1950 /* This BUG_ON may seem severe, but if we just return then we 1951 * are going to dereference garbage. 1952 */ 1953 BUG_ON(skb_queue_is_first(list, skb)); 1954 return skb->prev; 1955} 1956 1957/** 1958 * skb_get - reference buffer 1959 * @skb: buffer to reference 1960 * 1961 * Makes another reference to a socket buffer and returns a pointer 1962 * to the buffer. 1963 */ 1964static inline struct sk_buff *skb_get(struct sk_buff *skb) 1965{ 1966 refcount_inc(&skb->users); 1967 return skb; 1968} 1969 1970/* 1971 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1972 */ 1973 1974/** 1975 * skb_cloned - is the buffer a clone 1976 * @skb: buffer to check 1977 * 1978 * Returns true if the buffer was generated with skb_clone() and is 1979 * one of multiple shared copies of the buffer. Cloned buffers are 1980 * shared data so must not be written to under normal circumstances. 1981 */ 1982static inline int skb_cloned(const struct sk_buff *skb) 1983{ 1984 return skb->cloned && 1985 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1986} 1987 1988static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1989{ 1990 might_sleep_if(gfpflags_allow_blocking(pri)); 1991 1992 if (skb_cloned(skb)) 1993 return pskb_expand_head(skb, 0, 0, pri); 1994 1995 return 0; 1996} 1997 1998/* This variant of skb_unclone() makes sure skb->truesize 1999 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 2000 * 2001 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 2002 * when various debugging features are in place. 2003 */ 2004int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 2005static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2006{ 2007 might_sleep_if(gfpflags_allow_blocking(pri)); 2008 2009 if (skb_cloned(skb)) 2010 return __skb_unclone_keeptruesize(skb, pri); 2011 return 0; 2012} 2013 2014/** 2015 * skb_header_cloned - is the header a clone 2016 * @skb: buffer to check 2017 * 2018 * Returns true if modifying the header part of the buffer requires 2019 * the data to be copied. 2020 */ 2021static inline int skb_header_cloned(const struct sk_buff *skb) 2022{ 2023 int dataref; 2024 2025 if (!skb->cloned) 2026 return 0; 2027 2028 dataref = atomic_read(&skb_shinfo(skb)->dataref); 2029 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 2030 return dataref != 1; 2031} 2032 2033static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 2034{ 2035 might_sleep_if(gfpflags_allow_blocking(pri)); 2036 2037 if (skb_header_cloned(skb)) 2038 return pskb_expand_head(skb, 0, 0, pri); 2039 2040 return 0; 2041} 2042 2043/** 2044 * __skb_header_release() - allow clones to use the headroom 2045 * @skb: buffer to operate on 2046 * 2047 * See "DOC: dataref and headerless skbs". 2048 */ 2049static inline void __skb_header_release(struct sk_buff *skb) 2050{ 2051 skb->nohdr = 1; 2052 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2053} 2054 2055 2056/** 2057 * skb_shared - is the buffer shared 2058 * @skb: buffer to check 2059 * 2060 * Returns true if more than one person has a reference to this 2061 * buffer. 2062 */ 2063static inline int skb_shared(const struct sk_buff *skb) 2064{ 2065 return refcount_read(&skb->users) != 1; 2066} 2067 2068/** 2069 * skb_share_check - check if buffer is shared and if so clone it 2070 * @skb: buffer to check 2071 * @pri: priority for memory allocation 2072 * 2073 * If the buffer is shared the buffer is cloned and the old copy 2074 * drops a reference. A new clone with a single reference is returned. 2075 * If the buffer is not shared the original buffer is returned. When 2076 * being called from interrupt status or with spinlocks held pri must 2077 * be GFP_ATOMIC. 2078 * 2079 * NULL is returned on a memory allocation failure. 2080 */ 2081static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2082{ 2083 might_sleep_if(gfpflags_allow_blocking(pri)); 2084 if (skb_shared(skb)) { 2085 struct sk_buff *nskb = skb_clone(skb, pri); 2086 2087 if (likely(nskb)) 2088 consume_skb(skb); 2089 else 2090 kfree_skb(skb); 2091 skb = nskb; 2092 } 2093 return skb; 2094} 2095 2096/* 2097 * Copy shared buffers into a new sk_buff. We effectively do COW on 2098 * packets to handle cases where we have a local reader and forward 2099 * and a couple of other messy ones. The normal one is tcpdumping 2100 * a packet that's being forwarded. 2101 */ 2102 2103/** 2104 * skb_unshare - make a copy of a shared buffer 2105 * @skb: buffer to check 2106 * @pri: priority for memory allocation 2107 * 2108 * If the socket buffer is a clone then this function creates a new 2109 * copy of the data, drops a reference count on the old copy and returns 2110 * the new copy with the reference count at 1. If the buffer is not a clone 2111 * the original buffer is returned. When called with a spinlock held or 2112 * from interrupt state @pri must be %GFP_ATOMIC 2113 * 2114 * %NULL is returned on a memory allocation failure. 2115 */ 2116static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2117 gfp_t pri) 2118{ 2119 might_sleep_if(gfpflags_allow_blocking(pri)); 2120 if (skb_cloned(skb)) { 2121 struct sk_buff *nskb = skb_copy(skb, pri); 2122 2123 /* Free our shared copy */ 2124 if (likely(nskb)) 2125 consume_skb(skb); 2126 else 2127 kfree_skb(skb); 2128 skb = nskb; 2129 } 2130 return skb; 2131} 2132 2133/** 2134 * skb_peek - peek at the head of an &sk_buff_head 2135 * @list_: list to peek at 2136 * 2137 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2138 * be careful with this one. A peek leaves the buffer on the 2139 * list and someone else may run off with it. You must hold 2140 * the appropriate locks or have a private queue to do this. 2141 * 2142 * Returns %NULL for an empty list or a pointer to the head element. 2143 * The reference count is not incremented and the reference is therefore 2144 * volatile. Use with caution. 2145 */ 2146static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2147{ 2148 struct sk_buff *skb = list_->next; 2149 2150 if (skb == (struct sk_buff *)list_) 2151 skb = NULL; 2152 return skb; 2153} 2154 2155/** 2156 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2157 * @list_: list to peek at 2158 * 2159 * Like skb_peek(), but the caller knows that the list is not empty. 2160 */ 2161static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2162{ 2163 return list_->next; 2164} 2165 2166/** 2167 * skb_peek_next - peek skb following the given one from a queue 2168 * @skb: skb to start from 2169 * @list_: list to peek at 2170 * 2171 * Returns %NULL when the end of the list is met or a pointer to the 2172 * next element. The reference count is not incremented and the 2173 * reference is therefore volatile. Use with caution. 2174 */ 2175static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2176 const struct sk_buff_head *list_) 2177{ 2178 struct sk_buff *next = skb->next; 2179 2180 if (next == (struct sk_buff *)list_) 2181 next = NULL; 2182 return next; 2183} 2184 2185/** 2186 * skb_peek_tail - peek at the tail of an &sk_buff_head 2187 * @list_: list to peek at 2188 * 2189 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2190 * be careful with this one. A peek leaves the buffer on the 2191 * list and someone else may run off with it. You must hold 2192 * the appropriate locks or have a private queue to do this. 2193 * 2194 * Returns %NULL for an empty list or a pointer to the tail element. 2195 * The reference count is not incremented and the reference is therefore 2196 * volatile. Use with caution. 2197 */ 2198static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2199{ 2200 struct sk_buff *skb = READ_ONCE(list_->prev); 2201 2202 if (skb == (struct sk_buff *)list_) 2203 skb = NULL; 2204 return skb; 2205 2206} 2207 2208/** 2209 * skb_queue_len - get queue length 2210 * @list_: list to measure 2211 * 2212 * Return the length of an &sk_buff queue. 2213 */ 2214static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2215{ 2216 return list_->qlen; 2217} 2218 2219/** 2220 * skb_queue_len_lockless - get queue length 2221 * @list_: list to measure 2222 * 2223 * Return the length of an &sk_buff queue. 2224 * This variant can be used in lockless contexts. 2225 */ 2226static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2227{ 2228 return READ_ONCE(list_->qlen); 2229} 2230 2231/** 2232 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2233 * @list: queue to initialize 2234 * 2235 * This initializes only the list and queue length aspects of 2236 * an sk_buff_head object. This allows to initialize the list 2237 * aspects of an sk_buff_head without reinitializing things like 2238 * the spinlock. It can also be used for on-stack sk_buff_head 2239 * objects where the spinlock is known to not be used. 2240 */ 2241static inline void __skb_queue_head_init(struct sk_buff_head *list) 2242{ 2243 list->prev = list->next = (struct sk_buff *)list; 2244 list->qlen = 0; 2245} 2246 2247/* 2248 * This function creates a split out lock class for each invocation; 2249 * this is needed for now since a whole lot of users of the skb-queue 2250 * infrastructure in drivers have different locking usage (in hardirq) 2251 * than the networking core (in softirq only). In the long run either the 2252 * network layer or drivers should need annotation to consolidate the 2253 * main types of usage into 3 classes. 2254 */ 2255static inline void skb_queue_head_init(struct sk_buff_head *list) 2256{ 2257 spin_lock_init(&list->lock); 2258 __skb_queue_head_init(list); 2259} 2260 2261static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2262 struct lock_class_key *class) 2263{ 2264 skb_queue_head_init(list); 2265 lockdep_set_class(&list->lock, class); 2266} 2267 2268/* 2269 * Insert an sk_buff on a list. 2270 * 2271 * The "__skb_xxxx()" functions are the non-atomic ones that 2272 * can only be called with interrupts disabled. 2273 */ 2274static inline void __skb_insert(struct sk_buff *newsk, 2275 struct sk_buff *prev, struct sk_buff *next, 2276 struct sk_buff_head *list) 2277{ 2278 /* See skb_queue_empty_lockless() and skb_peek_tail() 2279 * for the opposite READ_ONCE() 2280 */ 2281 WRITE_ONCE(newsk->next, next); 2282 WRITE_ONCE(newsk->prev, prev); 2283 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2284 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2285 WRITE_ONCE(list->qlen, list->qlen + 1); 2286} 2287 2288static inline void __skb_queue_splice(const struct sk_buff_head *list, 2289 struct sk_buff *prev, 2290 struct sk_buff *next) 2291{ 2292 struct sk_buff *first = list->next; 2293 struct sk_buff *last = list->prev; 2294 2295 WRITE_ONCE(first->prev, prev); 2296 WRITE_ONCE(prev->next, first); 2297 2298 WRITE_ONCE(last->next, next); 2299 WRITE_ONCE(next->prev, last); 2300} 2301 2302/** 2303 * skb_queue_splice - join two skb lists, this is designed for stacks 2304 * @list: the new list to add 2305 * @head: the place to add it in the first list 2306 */ 2307static inline void skb_queue_splice(const struct sk_buff_head *list, 2308 struct sk_buff_head *head) 2309{ 2310 if (!skb_queue_empty(list)) { 2311 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2312 head->qlen += list->qlen; 2313 } 2314} 2315 2316/** 2317 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2318 * @list: the new list to add 2319 * @head: the place to add it in the first list 2320 * 2321 * The list at @list is reinitialised 2322 */ 2323static inline void skb_queue_splice_init(struct sk_buff_head *list, 2324 struct sk_buff_head *head) 2325{ 2326 if (!skb_queue_empty(list)) { 2327 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2328 head->qlen += list->qlen; 2329 __skb_queue_head_init(list); 2330 } 2331} 2332 2333/** 2334 * skb_queue_splice_tail - join two skb lists, each list being a queue 2335 * @list: the new list to add 2336 * @head: the place to add it in the first list 2337 */ 2338static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2339 struct sk_buff_head *head) 2340{ 2341 if (!skb_queue_empty(list)) { 2342 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2343 head->qlen += list->qlen; 2344 } 2345} 2346 2347/** 2348 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2349 * @list: the new list to add 2350 * @head: the place to add it in the first list 2351 * 2352 * Each of the lists is a queue. 2353 * The list at @list is reinitialised 2354 */ 2355static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2356 struct sk_buff_head *head) 2357{ 2358 if (!skb_queue_empty(list)) { 2359 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2360 head->qlen += list->qlen; 2361 __skb_queue_head_init(list); 2362 } 2363} 2364 2365/** 2366 * __skb_queue_after - queue a buffer at the list head 2367 * @list: list to use 2368 * @prev: place after this buffer 2369 * @newsk: buffer to queue 2370 * 2371 * Queue a buffer int the middle of a list. This function takes no locks 2372 * and you must therefore hold required locks before calling it. 2373 * 2374 * A buffer cannot be placed on two lists at the same time. 2375 */ 2376static inline void __skb_queue_after(struct sk_buff_head *list, 2377 struct sk_buff *prev, 2378 struct sk_buff *newsk) 2379{ 2380 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2381} 2382 2383void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2384 struct sk_buff_head *list); 2385 2386static inline void __skb_queue_before(struct sk_buff_head *list, 2387 struct sk_buff *next, 2388 struct sk_buff *newsk) 2389{ 2390 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2391} 2392 2393/** 2394 * __skb_queue_head - queue a buffer at the list head 2395 * @list: list to use 2396 * @newsk: buffer to queue 2397 * 2398 * Queue a buffer at the start of a list. This function takes no locks 2399 * and you must therefore hold required locks before calling it. 2400 * 2401 * A buffer cannot be placed on two lists at the same time. 2402 */ 2403static inline void __skb_queue_head(struct sk_buff_head *list, 2404 struct sk_buff *newsk) 2405{ 2406 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2407} 2408void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2409 2410/** 2411 * __skb_queue_tail - queue a buffer at the list tail 2412 * @list: list to use 2413 * @newsk: buffer to queue 2414 * 2415 * Queue a buffer at the end of a list. This function takes no locks 2416 * and you must therefore hold required locks before calling it. 2417 * 2418 * A buffer cannot be placed on two lists at the same time. 2419 */ 2420static inline void __skb_queue_tail(struct sk_buff_head *list, 2421 struct sk_buff *newsk) 2422{ 2423 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2424} 2425void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2426 2427/* 2428 * remove sk_buff from list. _Must_ be called atomically, and with 2429 * the list known.. 2430 */ 2431void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2432static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2433{ 2434 struct sk_buff *next, *prev; 2435 2436 WRITE_ONCE(list->qlen, list->qlen - 1); 2437 next = skb->next; 2438 prev = skb->prev; 2439 skb->next = skb->prev = NULL; 2440 WRITE_ONCE(next->prev, prev); 2441 WRITE_ONCE(prev->next, next); 2442} 2443 2444/** 2445 * __skb_dequeue - remove from the head of the queue 2446 * @list: list to dequeue from 2447 * 2448 * Remove the head of the list. This function does not take any locks 2449 * so must be used with appropriate locks held only. The head item is 2450 * returned or %NULL if the list is empty. 2451 */ 2452static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2453{ 2454 struct sk_buff *skb = skb_peek(list); 2455 if (skb) 2456 __skb_unlink(skb, list); 2457 return skb; 2458} 2459struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2460 2461/** 2462 * __skb_dequeue_tail - remove from the tail of the queue 2463 * @list: list to dequeue from 2464 * 2465 * Remove the tail of the list. This function does not take any locks 2466 * so must be used with appropriate locks held only. The tail item is 2467 * returned or %NULL if the list is empty. 2468 */ 2469static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2470{ 2471 struct sk_buff *skb = skb_peek_tail(list); 2472 if (skb) 2473 __skb_unlink(skb, list); 2474 return skb; 2475} 2476struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2477 2478 2479static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2480{ 2481 return skb->data_len; 2482} 2483 2484static inline unsigned int skb_headlen(const struct sk_buff *skb) 2485{ 2486 return skb->len - skb->data_len; 2487} 2488 2489static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2490{ 2491 unsigned int i, len = 0; 2492 2493 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2494 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2495 return len; 2496} 2497 2498static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2499{ 2500 return skb_headlen(skb) + __skb_pagelen(skb); 2501} 2502 2503static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2504 netmem_ref netmem, int off, 2505 int size) 2506{ 2507 frag->netmem = netmem; 2508 frag->offset = off; 2509 skb_frag_size_set(frag, size); 2510} 2511 2512static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2513 struct page *page, 2514 int off, int size) 2515{ 2516 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2517} 2518 2519static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2520 int i, netmem_ref netmem, 2521 int off, int size) 2522{ 2523 skb_frag_t *frag = &shinfo->frags[i]; 2524 2525 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2526} 2527 2528static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2529 int i, struct page *page, 2530 int off, int size) 2531{ 2532 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2533 size); 2534} 2535 2536/** 2537 * skb_len_add - adds a number to len fields of skb 2538 * @skb: buffer to add len to 2539 * @delta: number of bytes to add 2540 */ 2541static inline void skb_len_add(struct sk_buff *skb, int delta) 2542{ 2543 skb->len += delta; 2544 skb->data_len += delta; 2545 skb->truesize += delta; 2546} 2547 2548/** 2549 * __skb_fill_netmem_desc - initialise a fragment in an skb 2550 * @skb: buffer containing fragment to be initialised 2551 * @i: fragment index to initialise 2552 * @netmem: the netmem to use for this fragment 2553 * @off: the offset to the data with @page 2554 * @size: the length of the data 2555 * 2556 * Initialises the @i'th fragment of @skb to point to &size bytes at 2557 * offset @off within @page. 2558 * 2559 * Does not take any additional reference on the fragment. 2560 */ 2561static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2562 netmem_ref netmem, int off, int size) 2563{ 2564 struct page *page; 2565 2566 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2567 2568 if (netmem_is_net_iov(netmem)) { 2569 skb->unreadable = true; 2570 return; 2571 } 2572 2573 page = netmem_to_page(netmem); 2574 2575 /* Propagate page pfmemalloc to the skb if we can. The problem is 2576 * that not all callers have unique ownership of the page but rely 2577 * on page_is_pfmemalloc doing the right thing(tm). 2578 */ 2579 page = compound_head(page); 2580 if (page_is_pfmemalloc(page)) 2581 skb->pfmemalloc = true; 2582} 2583 2584static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2585 struct page *page, int off, int size) 2586{ 2587 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2588} 2589 2590static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2591 netmem_ref netmem, int off, int size) 2592{ 2593 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2594 skb_shinfo(skb)->nr_frags = i + 1; 2595} 2596 2597/** 2598 * skb_fill_page_desc - initialise a paged fragment in an skb 2599 * @skb: buffer containing fragment to be initialised 2600 * @i: paged fragment index to initialise 2601 * @page: the page to use for this fragment 2602 * @off: the offset to the data with @page 2603 * @size: the length of the data 2604 * 2605 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2606 * @skb to point to @size bytes at offset @off within @page. In 2607 * addition updates @skb such that @i is the last fragment. 2608 * 2609 * Does not take any additional reference on the fragment. 2610 */ 2611static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2612 struct page *page, int off, int size) 2613{ 2614 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2615} 2616 2617/** 2618 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2619 * @skb: buffer containing fragment to be initialised 2620 * @i: paged fragment index to initialise 2621 * @page: the page to use for this fragment 2622 * @off: the offset to the data with @page 2623 * @size: the length of the data 2624 * 2625 * Variant of skb_fill_page_desc() which does not deal with 2626 * pfmemalloc, if page is not owned by us. 2627 */ 2628static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2629 struct page *page, int off, 2630 int size) 2631{ 2632 struct skb_shared_info *shinfo = skb_shinfo(skb); 2633 2634 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2635 shinfo->nr_frags = i + 1; 2636} 2637 2638void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2639 int off, int size, unsigned int truesize); 2640 2641static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2642 struct page *page, int off, int size, 2643 unsigned int truesize) 2644{ 2645 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2646 truesize); 2647} 2648 2649void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2650 unsigned int truesize); 2651 2652#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2653 2654#ifdef NET_SKBUFF_DATA_USES_OFFSET 2655static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2656{ 2657 return skb->head + skb->tail; 2658} 2659 2660static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2661{ 2662 skb->tail = skb->data - skb->head; 2663} 2664 2665static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2666{ 2667 skb_reset_tail_pointer(skb); 2668 skb->tail += offset; 2669} 2670 2671#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2672static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2673{ 2674 return skb->tail; 2675} 2676 2677static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2678{ 2679 skb->tail = skb->data; 2680} 2681 2682static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2683{ 2684 skb->tail = skb->data + offset; 2685} 2686 2687#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2688 2689static inline void skb_assert_len(struct sk_buff *skb) 2690{ 2691#ifdef CONFIG_DEBUG_NET 2692 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2693 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2694#endif /* CONFIG_DEBUG_NET */ 2695} 2696 2697#if defined(CONFIG_FAIL_SKB_REALLOC) 2698void skb_might_realloc(struct sk_buff *skb); 2699#else 2700static inline void skb_might_realloc(struct sk_buff *skb) {} 2701#endif 2702 2703/* 2704 * Add data to an sk_buff 2705 */ 2706void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2707void *skb_put(struct sk_buff *skb, unsigned int len); 2708static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2709{ 2710 void *tmp = skb_tail_pointer(skb); 2711 SKB_LINEAR_ASSERT(skb); 2712 skb->tail += len; 2713 skb->len += len; 2714 return tmp; 2715} 2716 2717static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2718{ 2719 void *tmp = __skb_put(skb, len); 2720 2721 memset(tmp, 0, len); 2722 return tmp; 2723} 2724 2725static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2726 unsigned int len) 2727{ 2728 void *tmp = __skb_put(skb, len); 2729 2730 memcpy(tmp, data, len); 2731 return tmp; 2732} 2733 2734static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2735{ 2736 *(u8 *)__skb_put(skb, 1) = val; 2737} 2738 2739static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2740{ 2741 void *tmp = skb_put(skb, len); 2742 2743 memset(tmp, 0, len); 2744 2745 return tmp; 2746} 2747 2748static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2749 unsigned int len) 2750{ 2751 void *tmp = skb_put(skb, len); 2752 2753 memcpy(tmp, data, len); 2754 2755 return tmp; 2756} 2757 2758static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2759{ 2760 *(u8 *)skb_put(skb, 1) = val; 2761} 2762 2763void *skb_push(struct sk_buff *skb, unsigned int len); 2764static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2765{ 2766 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2767 2768 skb->data -= len; 2769 skb->len += len; 2770 return skb->data; 2771} 2772 2773void *skb_pull(struct sk_buff *skb, unsigned int len); 2774static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2775{ 2776 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2777 2778 skb->len -= len; 2779 if (unlikely(skb->len < skb->data_len)) { 2780#if defined(CONFIG_DEBUG_NET) 2781 skb->len += len; 2782 pr_err("__skb_pull(len=%u)\n", len); 2783 skb_dump(KERN_ERR, skb, false); 2784#endif 2785 BUG(); 2786 } 2787 return skb->data += len; 2788} 2789 2790static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2791{ 2792 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2793} 2794 2795void *skb_pull_data(struct sk_buff *skb, size_t len); 2796 2797void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2798 2799static inline enum skb_drop_reason 2800pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2801{ 2802 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2803 skb_might_realloc(skb); 2804 2805 if (likely(len <= skb_headlen(skb))) 2806 return SKB_NOT_DROPPED_YET; 2807 2808 if (unlikely(len > skb->len)) 2809 return SKB_DROP_REASON_PKT_TOO_SMALL; 2810 2811 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2812 return SKB_DROP_REASON_NOMEM; 2813 2814 return SKB_NOT_DROPPED_YET; 2815} 2816 2817static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2818{ 2819 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2820} 2821 2822static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2823{ 2824 if (!pskb_may_pull(skb, len)) 2825 return NULL; 2826 2827 skb->len -= len; 2828 return skb->data += len; 2829} 2830 2831void skb_condense(struct sk_buff *skb); 2832 2833/** 2834 * skb_headroom - bytes at buffer head 2835 * @skb: buffer to check 2836 * 2837 * Return the number of bytes of free space at the head of an &sk_buff. 2838 */ 2839static inline unsigned int skb_headroom(const struct sk_buff *skb) 2840{ 2841 return skb->data - skb->head; 2842} 2843 2844/** 2845 * skb_tailroom - bytes at buffer end 2846 * @skb: buffer to check 2847 * 2848 * Return the number of bytes of free space at the tail of an sk_buff 2849 */ 2850static inline int skb_tailroom(const struct sk_buff *skb) 2851{ 2852 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2853} 2854 2855/** 2856 * skb_availroom - bytes at buffer end 2857 * @skb: buffer to check 2858 * 2859 * Return the number of bytes of free space at the tail of an sk_buff 2860 * allocated by sk_stream_alloc() 2861 */ 2862static inline int skb_availroom(const struct sk_buff *skb) 2863{ 2864 if (skb_is_nonlinear(skb)) 2865 return 0; 2866 2867 return skb->end - skb->tail - skb->reserved_tailroom; 2868} 2869 2870/** 2871 * skb_reserve - adjust headroom 2872 * @skb: buffer to alter 2873 * @len: bytes to move 2874 * 2875 * Increase the headroom of an empty &sk_buff by reducing the tail 2876 * room. This is only allowed for an empty buffer. 2877 */ 2878static inline void skb_reserve(struct sk_buff *skb, int len) 2879{ 2880 skb->data += len; 2881 skb->tail += len; 2882} 2883 2884/** 2885 * skb_tailroom_reserve - adjust reserved_tailroom 2886 * @skb: buffer to alter 2887 * @mtu: maximum amount of headlen permitted 2888 * @needed_tailroom: minimum amount of reserved_tailroom 2889 * 2890 * Set reserved_tailroom so that headlen can be as large as possible but 2891 * not larger than mtu and tailroom cannot be smaller than 2892 * needed_tailroom. 2893 * The required headroom should already have been reserved before using 2894 * this function. 2895 */ 2896static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2897 unsigned int needed_tailroom) 2898{ 2899 SKB_LINEAR_ASSERT(skb); 2900 if (mtu < skb_tailroom(skb) - needed_tailroom) 2901 /* use at most mtu */ 2902 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2903 else 2904 /* use up to all available space */ 2905 skb->reserved_tailroom = needed_tailroom; 2906} 2907 2908#define ENCAP_TYPE_ETHER 0 2909#define ENCAP_TYPE_IPPROTO 1 2910 2911static inline void skb_set_inner_protocol(struct sk_buff *skb, 2912 __be16 protocol) 2913{ 2914 skb->inner_protocol = protocol; 2915 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2916} 2917 2918static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2919 __u8 ipproto) 2920{ 2921 skb->inner_ipproto = ipproto; 2922 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2923} 2924 2925static inline void skb_reset_inner_headers(struct sk_buff *skb) 2926{ 2927 skb->inner_mac_header = skb->mac_header; 2928 skb->inner_network_header = skb->network_header; 2929 skb->inner_transport_header = skb->transport_header; 2930} 2931 2932static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2933{ 2934 return skb->mac_header != (typeof(skb->mac_header))~0U; 2935} 2936 2937static inline void skb_reset_mac_len(struct sk_buff *skb) 2938{ 2939 if (!skb_mac_header_was_set(skb)) { 2940 DEBUG_NET_WARN_ON_ONCE(1); 2941 skb->mac_len = 0; 2942 } else { 2943 skb->mac_len = skb->network_header - skb->mac_header; 2944 } 2945} 2946 2947static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2948 *skb) 2949{ 2950 return skb->head + skb->inner_transport_header; 2951} 2952 2953static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2954{ 2955 return skb_inner_transport_header(skb) - skb->data; 2956} 2957 2958static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2959{ 2960 long offset = skb->data - skb->head; 2961 2962 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset); 2963 skb->inner_transport_header = offset; 2964} 2965 2966static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2967 const int offset) 2968{ 2969 skb_reset_inner_transport_header(skb); 2970 skb->inner_transport_header += offset; 2971} 2972 2973static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2974{ 2975 return skb->head + skb->inner_network_header; 2976} 2977 2978static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2979{ 2980 long offset = skb->data - skb->head; 2981 2982 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset); 2983 skb->inner_network_header = offset; 2984} 2985 2986static inline void skb_set_inner_network_header(struct sk_buff *skb, 2987 const int offset) 2988{ 2989 skb_reset_inner_network_header(skb); 2990 skb->inner_network_header += offset; 2991} 2992 2993static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2994{ 2995 return skb->inner_network_header > 0; 2996} 2997 2998static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2999{ 3000 return skb->head + skb->inner_mac_header; 3001} 3002 3003static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 3004{ 3005 long offset = skb->data - skb->head; 3006 3007 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset); 3008 skb->inner_mac_header = offset; 3009} 3010 3011static inline void skb_set_inner_mac_header(struct sk_buff *skb, 3012 const int offset) 3013{ 3014 skb_reset_inner_mac_header(skb); 3015 skb->inner_mac_header += offset; 3016} 3017static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 3018{ 3019 return skb->transport_header != (typeof(skb->transport_header))~0U; 3020} 3021 3022static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 3023{ 3024 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3025 return skb->head + skb->transport_header; 3026} 3027 3028static inline void skb_reset_transport_header(struct sk_buff *skb) 3029{ 3030 long offset = skb->data - skb->head; 3031 3032 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset); 3033 skb->transport_header = offset; 3034} 3035 3036static inline void skb_set_transport_header(struct sk_buff *skb, 3037 const int offset) 3038{ 3039 skb_reset_transport_header(skb); 3040 skb->transport_header += offset; 3041} 3042 3043static inline unsigned char *skb_network_header(const struct sk_buff *skb) 3044{ 3045 return skb->head + skb->network_header; 3046} 3047 3048static inline void skb_reset_network_header(struct sk_buff *skb) 3049{ 3050 long offset = skb->data - skb->head; 3051 3052 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset); 3053 skb->network_header = offset; 3054} 3055 3056static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 3057{ 3058 skb_reset_network_header(skb); 3059 skb->network_header += offset; 3060} 3061 3062static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 3063{ 3064 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3065 return skb->head + skb->mac_header; 3066} 3067 3068static inline int skb_mac_offset(const struct sk_buff *skb) 3069{ 3070 return skb_mac_header(skb) - skb->data; 3071} 3072 3073static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3074{ 3075 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3076 return skb->network_header - skb->mac_header; 3077} 3078 3079static inline void skb_unset_mac_header(struct sk_buff *skb) 3080{ 3081 skb->mac_header = (typeof(skb->mac_header))~0U; 3082} 3083 3084static inline void skb_reset_mac_header(struct sk_buff *skb) 3085{ 3086 long offset = skb->data - skb->head; 3087 3088 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset); 3089 skb->mac_header = offset; 3090} 3091 3092static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3093{ 3094 skb_reset_mac_header(skb); 3095 skb->mac_header += offset; 3096} 3097 3098static inline void skb_pop_mac_header(struct sk_buff *skb) 3099{ 3100 skb->mac_header = skb->network_header; 3101} 3102 3103static inline void skb_probe_transport_header(struct sk_buff *skb) 3104{ 3105 struct flow_keys_basic keys; 3106 3107 if (skb_transport_header_was_set(skb)) 3108 return; 3109 3110 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3111 NULL, 0, 0, 0, 0)) 3112 skb_set_transport_header(skb, keys.control.thoff); 3113} 3114 3115static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3116{ 3117 if (skb_mac_header_was_set(skb)) { 3118 const unsigned char *old_mac = skb_mac_header(skb); 3119 3120 skb_set_mac_header(skb, -skb->mac_len); 3121 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3122 } 3123} 3124 3125/* Move the full mac header up to current network_header. 3126 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3127 * Must be provided the complete mac header length. 3128 */ 3129static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3130{ 3131 if (skb_mac_header_was_set(skb)) { 3132 const unsigned char *old_mac = skb_mac_header(skb); 3133 3134 skb_set_mac_header(skb, -full_mac_len); 3135 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3136 __skb_push(skb, full_mac_len - skb->mac_len); 3137 } 3138} 3139 3140static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3141{ 3142 return skb->csum_start - skb_headroom(skb); 3143} 3144 3145static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3146{ 3147 return skb->head + skb->csum_start; 3148} 3149 3150static inline int skb_transport_offset(const struct sk_buff *skb) 3151{ 3152 return skb_transport_header(skb) - skb->data; 3153} 3154 3155static inline u32 skb_network_header_len(const struct sk_buff *skb) 3156{ 3157 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3158 return skb->transport_header - skb->network_header; 3159} 3160 3161static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3162{ 3163 return skb->inner_transport_header - skb->inner_network_header; 3164} 3165 3166static inline int skb_network_offset(const struct sk_buff *skb) 3167{ 3168 return skb_network_header(skb) - skb->data; 3169} 3170 3171static inline int skb_inner_network_offset(const struct sk_buff *skb) 3172{ 3173 return skb_inner_network_header(skb) - skb->data; 3174} 3175 3176static inline enum skb_drop_reason 3177pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len) 3178{ 3179 return pskb_may_pull_reason(skb, skb_network_offset(skb) + len); 3180} 3181 3182static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3183{ 3184 return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 3185} 3186 3187/* 3188 * CPUs often take a performance hit when accessing unaligned memory 3189 * locations. The actual performance hit varies, it can be small if the 3190 * hardware handles it or large if we have to take an exception and fix it 3191 * in software. 3192 * 3193 * Since an ethernet header is 14 bytes network drivers often end up with 3194 * the IP header at an unaligned offset. The IP header can be aligned by 3195 * shifting the start of the packet by 2 bytes. Drivers should do this 3196 * with: 3197 * 3198 * skb_reserve(skb, NET_IP_ALIGN); 3199 * 3200 * The downside to this alignment of the IP header is that the DMA is now 3201 * unaligned. On some architectures the cost of an unaligned DMA is high 3202 * and this cost outweighs the gains made by aligning the IP header. 3203 * 3204 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3205 * to be overridden. 3206 */ 3207#ifndef NET_IP_ALIGN 3208#define NET_IP_ALIGN 2 3209#endif 3210 3211/* 3212 * The networking layer reserves some headroom in skb data (via 3213 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3214 * the header has to grow. In the default case, if the header has to grow 3215 * 32 bytes or less we avoid the reallocation. 3216 * 3217 * Unfortunately this headroom changes the DMA alignment of the resulting 3218 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3219 * on some architectures. An architecture can override this value, 3220 * perhaps setting it to a cacheline in size (since that will maintain 3221 * cacheline alignment of the DMA). It must be a power of 2. 3222 * 3223 * Various parts of the networking layer expect at least 32 bytes of 3224 * headroom, you should not reduce this. 3225 * 3226 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3227 * to reduce average number of cache lines per packet. 3228 * get_rps_cpu() for example only access one 64 bytes aligned block : 3229 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3230 */ 3231#ifndef NET_SKB_PAD 3232#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3233#endif 3234 3235int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3236 3237static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3238{ 3239 if (WARN_ON(skb_is_nonlinear(skb))) 3240 return; 3241 skb->len = len; 3242 skb_set_tail_pointer(skb, len); 3243} 3244 3245static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3246{ 3247 __skb_set_length(skb, len); 3248} 3249 3250void skb_trim(struct sk_buff *skb, unsigned int len); 3251 3252static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3253{ 3254 if (skb->data_len) 3255 return ___pskb_trim(skb, len); 3256 __skb_trim(skb, len); 3257 return 0; 3258} 3259 3260static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3261{ 3262 skb_might_realloc(skb); 3263 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3264} 3265 3266/** 3267 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3268 * @skb: buffer to alter 3269 * @len: new length 3270 * 3271 * This is identical to pskb_trim except that the caller knows that 3272 * the skb is not cloned so we should never get an error due to out- 3273 * of-memory. 3274 */ 3275static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3276{ 3277 int err = pskb_trim(skb, len); 3278 BUG_ON(err); 3279} 3280 3281static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3282{ 3283 unsigned int diff = len - skb->len; 3284 3285 if (skb_tailroom(skb) < diff) { 3286 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3287 GFP_ATOMIC); 3288 if (ret) 3289 return ret; 3290 } 3291 __skb_set_length(skb, len); 3292 return 0; 3293} 3294 3295/** 3296 * skb_orphan - orphan a buffer 3297 * @skb: buffer to orphan 3298 * 3299 * If a buffer currently has an owner then we call the owner's 3300 * destructor function and make the @skb unowned. The buffer continues 3301 * to exist but is no longer charged to its former owner. 3302 */ 3303static inline void skb_orphan(struct sk_buff *skb) 3304{ 3305 if (skb->destructor) { 3306 skb->destructor(skb); 3307 skb->destructor = NULL; 3308 skb->sk = NULL; 3309 } else { 3310 BUG_ON(skb->sk); 3311 } 3312} 3313 3314/** 3315 * skb_orphan_frags - orphan the frags contained in a buffer 3316 * @skb: buffer to orphan frags from 3317 * @gfp_mask: allocation mask for replacement pages 3318 * 3319 * For each frag in the SKB which needs a destructor (i.e. has an 3320 * owner) create a copy of that frag and release the original 3321 * page by calling the destructor. 3322 */ 3323static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3324{ 3325 if (likely(!skb_zcopy(skb))) 3326 return 0; 3327 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3328 return 0; 3329 return skb_copy_ubufs(skb, gfp_mask); 3330} 3331 3332/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3333static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3334{ 3335 if (likely(!skb_zcopy(skb))) 3336 return 0; 3337 return skb_copy_ubufs(skb, gfp_mask); 3338} 3339 3340/** 3341 * __skb_queue_purge_reason - empty a list 3342 * @list: list to empty 3343 * @reason: drop reason 3344 * 3345 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3346 * the list and one reference dropped. This function does not take the 3347 * list lock and the caller must hold the relevant locks to use it. 3348 */ 3349static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3350 enum skb_drop_reason reason) 3351{ 3352 struct sk_buff *skb; 3353 3354 while ((skb = __skb_dequeue(list)) != NULL) 3355 kfree_skb_reason(skb, reason); 3356} 3357 3358static inline void __skb_queue_purge(struct sk_buff_head *list) 3359{ 3360 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3361} 3362 3363void skb_queue_purge_reason(struct sk_buff_head *list, 3364 enum skb_drop_reason reason); 3365 3366static inline void skb_queue_purge(struct sk_buff_head *list) 3367{ 3368 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3369} 3370 3371unsigned int skb_rbtree_purge(struct rb_root *root); 3372void skb_errqueue_purge(struct sk_buff_head *list); 3373 3374void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3375 3376/** 3377 * netdev_alloc_frag - allocate a page fragment 3378 * @fragsz: fragment size 3379 * 3380 * Allocates a frag from a page for receive buffer. 3381 * Uses GFP_ATOMIC allocations. 3382 */ 3383static inline void *netdev_alloc_frag(unsigned int fragsz) 3384{ 3385 return __netdev_alloc_frag_align(fragsz, ~0u); 3386} 3387 3388static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3389 unsigned int align) 3390{ 3391 WARN_ON_ONCE(!is_power_of_2(align)); 3392 return __netdev_alloc_frag_align(fragsz, -align); 3393} 3394 3395struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3396 gfp_t gfp_mask); 3397 3398/** 3399 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3400 * @dev: network device to receive on 3401 * @length: length to allocate 3402 * 3403 * Allocate a new &sk_buff and assign it a usage count of one. The 3404 * buffer has unspecified headroom built in. Users should allocate 3405 * the headroom they think they need without accounting for the 3406 * built in space. The built in space is used for optimisations. 3407 * 3408 * %NULL is returned if there is no free memory. Although this function 3409 * allocates memory it can be called from an interrupt. 3410 */ 3411static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3412 unsigned int length) 3413{ 3414 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3415} 3416 3417/* legacy helper around __netdev_alloc_skb() */ 3418static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3419 gfp_t gfp_mask) 3420{ 3421 return __netdev_alloc_skb(NULL, length, gfp_mask); 3422} 3423 3424/* legacy helper around netdev_alloc_skb() */ 3425static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3426{ 3427 return netdev_alloc_skb(NULL, length); 3428} 3429 3430 3431static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3432 unsigned int length, gfp_t gfp) 3433{ 3434 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3435 3436 if (NET_IP_ALIGN && skb) 3437 skb_reserve(skb, NET_IP_ALIGN); 3438 return skb; 3439} 3440 3441static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3442 unsigned int length) 3443{ 3444 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3445} 3446 3447static inline void skb_free_frag(void *addr) 3448{ 3449 page_frag_free(addr); 3450} 3451 3452void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3453 3454static inline void *napi_alloc_frag(unsigned int fragsz) 3455{ 3456 return __napi_alloc_frag_align(fragsz, ~0u); 3457} 3458 3459static inline void *napi_alloc_frag_align(unsigned int fragsz, 3460 unsigned int align) 3461{ 3462 WARN_ON_ONCE(!is_power_of_2(align)); 3463 return __napi_alloc_frag_align(fragsz, -align); 3464} 3465 3466struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3467void napi_consume_skb(struct sk_buff *skb, int budget); 3468 3469void napi_skb_free_stolen_head(struct sk_buff *skb); 3470void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3471 3472/** 3473 * __dev_alloc_pages - allocate page for network Rx 3474 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3475 * @order: size of the allocation 3476 * 3477 * Allocate a new page. 3478 * 3479 * %NULL is returned if there is no free memory. 3480*/ 3481static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3482 unsigned int order) 3483{ 3484 /* This piece of code contains several assumptions. 3485 * 1. This is for device Rx, therefore a cold page is preferred. 3486 * 2. The expectation is the user wants a compound page. 3487 * 3. If requesting a order 0 page it will not be compound 3488 * due to the check to see if order has a value in prep_new_page 3489 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3490 * code in gfp_to_alloc_flags that should be enforcing this. 3491 */ 3492 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3493 3494 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3495} 3496#define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3497 3498/* 3499 * This specialized allocator has to be a macro for its allocations to be 3500 * accounted separately (to have a separate alloc_tag). 3501 */ 3502#define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3503 3504/** 3505 * __dev_alloc_page - allocate a page for network Rx 3506 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3507 * 3508 * Allocate a new page. 3509 * 3510 * %NULL is returned if there is no free memory. 3511 */ 3512static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3513{ 3514 return __dev_alloc_pages_noprof(gfp_mask, 0); 3515} 3516#define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3517 3518/* 3519 * This specialized allocator has to be a macro for its allocations to be 3520 * accounted separately (to have a separate alloc_tag). 3521 */ 3522#define dev_alloc_page() dev_alloc_pages(0) 3523 3524/** 3525 * dev_page_is_reusable - check whether a page can be reused for network Rx 3526 * @page: the page to test 3527 * 3528 * A page shouldn't be considered for reusing/recycling if it was allocated 3529 * under memory pressure or at a distant memory node. 3530 * 3531 * Returns: false if this page should be returned to page allocator, true 3532 * otherwise. 3533 */ 3534static inline bool dev_page_is_reusable(const struct page *page) 3535{ 3536 return likely(page_to_nid(page) == numa_mem_id() && 3537 !page_is_pfmemalloc(page)); 3538} 3539 3540/** 3541 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3542 * @page: The page that was allocated from skb_alloc_page 3543 * @skb: The skb that may need pfmemalloc set 3544 */ 3545static inline void skb_propagate_pfmemalloc(const struct page *page, 3546 struct sk_buff *skb) 3547{ 3548 if (page_is_pfmemalloc(page)) 3549 skb->pfmemalloc = true; 3550} 3551 3552/** 3553 * skb_frag_off() - Returns the offset of a skb fragment 3554 * @frag: the paged fragment 3555 */ 3556static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3557{ 3558 return frag->offset; 3559} 3560 3561/** 3562 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3563 * @frag: skb fragment 3564 * @delta: value to add 3565 */ 3566static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3567{ 3568 frag->offset += delta; 3569} 3570 3571/** 3572 * skb_frag_off_set() - Sets the offset of a skb fragment 3573 * @frag: skb fragment 3574 * @offset: offset of fragment 3575 */ 3576static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3577{ 3578 frag->offset = offset; 3579} 3580 3581/** 3582 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3583 * @fragto: skb fragment where offset is set 3584 * @fragfrom: skb fragment offset is copied from 3585 */ 3586static inline void skb_frag_off_copy(skb_frag_t *fragto, 3587 const skb_frag_t *fragfrom) 3588{ 3589 fragto->offset = fragfrom->offset; 3590} 3591 3592/* Return: true if the skb_frag contains a net_iov. */ 3593static inline bool skb_frag_is_net_iov(const skb_frag_t *frag) 3594{ 3595 return netmem_is_net_iov(frag->netmem); 3596} 3597 3598/** 3599 * skb_frag_net_iov - retrieve the net_iov referred to by fragment 3600 * @frag: the fragment 3601 * 3602 * Return: the &struct net_iov associated with @frag. Returns NULL if this 3603 * frag has no associated net_iov. 3604 */ 3605static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag) 3606{ 3607 if (!skb_frag_is_net_iov(frag)) 3608 return NULL; 3609 3610 return netmem_to_net_iov(frag->netmem); 3611} 3612 3613/** 3614 * skb_frag_page - retrieve the page referred to by a paged fragment 3615 * @frag: the paged fragment 3616 * 3617 * Return: the &struct page associated with @frag. Returns NULL if this frag 3618 * has no associated page. 3619 */ 3620static inline struct page *skb_frag_page(const skb_frag_t *frag) 3621{ 3622 if (skb_frag_is_net_iov(frag)) 3623 return NULL; 3624 3625 return netmem_to_page(frag->netmem); 3626} 3627 3628/** 3629 * skb_frag_netmem - retrieve the netmem referred to by a fragment 3630 * @frag: the fragment 3631 * 3632 * Return: the &netmem_ref associated with @frag. 3633 */ 3634static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag) 3635{ 3636 return frag->netmem; 3637} 3638 3639int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3640 unsigned int headroom); 3641int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3642 const struct bpf_prog *prog); 3643 3644/** 3645 * skb_frag_address - gets the address of the data contained in a paged fragment 3646 * @frag: the paged fragment buffer 3647 * 3648 * Returns: the address of the data within @frag. The page must already 3649 * be mapped. 3650 */ 3651static inline void *skb_frag_address(const skb_frag_t *frag) 3652{ 3653 if (!skb_frag_page(frag)) 3654 return NULL; 3655 3656 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3657} 3658 3659/** 3660 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3661 * @frag: the paged fragment buffer 3662 * 3663 * Returns: the address of the data within @frag. Checks that the page 3664 * is mapped and returns %NULL otherwise. 3665 */ 3666static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3667{ 3668 void *ptr = page_address(skb_frag_page(frag)); 3669 if (unlikely(!ptr)) 3670 return NULL; 3671 3672 return ptr + skb_frag_off(frag); 3673} 3674 3675/** 3676 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3677 * @fragto: skb fragment where page is set 3678 * @fragfrom: skb fragment page is copied from 3679 */ 3680static inline void skb_frag_page_copy(skb_frag_t *fragto, 3681 const skb_frag_t *fragfrom) 3682{ 3683 fragto->netmem = fragfrom->netmem; 3684} 3685 3686bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3687 3688/** 3689 * __skb_frag_dma_map - maps a paged fragment via the DMA API 3690 * @dev: the device to map the fragment to 3691 * @frag: the paged fragment to map 3692 * @offset: the offset within the fragment (starting at the 3693 * fragment's own offset) 3694 * @size: the number of bytes to map 3695 * @dir: the direction of the mapping (``PCI_DMA_*``) 3696 * 3697 * Maps the page associated with @frag to @device. 3698 */ 3699static inline dma_addr_t __skb_frag_dma_map(struct device *dev, 3700 const skb_frag_t *frag, 3701 size_t offset, size_t size, 3702 enum dma_data_direction dir) 3703{ 3704 if (skb_frag_is_net_iov(frag)) { 3705 return netmem_to_net_iov(frag->netmem)->dma_addr + offset + 3706 frag->offset; 3707 } 3708 return dma_map_page(dev, skb_frag_page(frag), 3709 skb_frag_off(frag) + offset, size, dir); 3710} 3711 3712#define skb_frag_dma_map(dev, frag, ...) \ 3713 CONCATENATE(_skb_frag_dma_map, \ 3714 COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__) 3715 3716#define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({ \ 3717 const skb_frag_t *uf = (frag); \ 3718 size_t uo = (offset); \ 3719 \ 3720 __skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo, \ 3721 DMA_TO_DEVICE); \ 3722}) 3723#define _skb_frag_dma_map1(dev, frag, offset) \ 3724 __skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_), \ 3725 __UNIQUE_ID(offset_)) 3726#define _skb_frag_dma_map0(dev, frag) \ 3727 _skb_frag_dma_map1(dev, frag, 0) 3728#define _skb_frag_dma_map2(dev, frag, offset, size) \ 3729 __skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE) 3730#define _skb_frag_dma_map3(dev, frag, offset, size, dir) \ 3731 __skb_frag_dma_map(dev, frag, offset, size, dir) 3732 3733static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3734 gfp_t gfp_mask) 3735{ 3736 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3737} 3738 3739 3740static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3741 gfp_t gfp_mask) 3742{ 3743 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3744} 3745 3746 3747/** 3748 * skb_clone_writable - is the header of a clone writable 3749 * @skb: buffer to check 3750 * @len: length up to which to write 3751 * 3752 * Returns true if modifying the header part of the cloned buffer 3753 * does not requires the data to be copied. 3754 */ 3755static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3756{ 3757 return !skb_header_cloned(skb) && 3758 skb_headroom(skb) + len <= skb->hdr_len; 3759} 3760 3761static inline int skb_try_make_writable(struct sk_buff *skb, 3762 unsigned int write_len) 3763{ 3764 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3765 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3766} 3767 3768static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3769 int cloned) 3770{ 3771 int delta = 0; 3772 3773 if (headroom > skb_headroom(skb)) 3774 delta = headroom - skb_headroom(skb); 3775 3776 if (delta || cloned) 3777 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3778 GFP_ATOMIC); 3779 return 0; 3780} 3781 3782/** 3783 * skb_cow - copy header of skb when it is required 3784 * @skb: buffer to cow 3785 * @headroom: needed headroom 3786 * 3787 * If the skb passed lacks sufficient headroom or its data part 3788 * is shared, data is reallocated. If reallocation fails, an error 3789 * is returned and original skb is not changed. 3790 * 3791 * The result is skb with writable area skb->head...skb->tail 3792 * and at least @headroom of space at head. 3793 */ 3794static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3795{ 3796 return __skb_cow(skb, headroom, skb_cloned(skb)); 3797} 3798 3799/** 3800 * skb_cow_head - skb_cow but only making the head writable 3801 * @skb: buffer to cow 3802 * @headroom: needed headroom 3803 * 3804 * This function is identical to skb_cow except that we replace the 3805 * skb_cloned check by skb_header_cloned. It should be used when 3806 * you only need to push on some header and do not need to modify 3807 * the data. 3808 */ 3809static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3810{ 3811 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3812} 3813 3814/** 3815 * skb_padto - pad an skbuff up to a minimal size 3816 * @skb: buffer to pad 3817 * @len: minimal length 3818 * 3819 * Pads up a buffer to ensure the trailing bytes exist and are 3820 * blanked. If the buffer already contains sufficient data it 3821 * is untouched. Otherwise it is extended. Returns zero on 3822 * success. The skb is freed on error. 3823 */ 3824static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3825{ 3826 unsigned int size = skb->len; 3827 if (likely(size >= len)) 3828 return 0; 3829 return skb_pad(skb, len - size); 3830} 3831 3832/** 3833 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3834 * @skb: buffer to pad 3835 * @len: minimal length 3836 * @free_on_error: free buffer on error 3837 * 3838 * Pads up a buffer to ensure the trailing bytes exist and are 3839 * blanked. If the buffer already contains sufficient data it 3840 * is untouched. Otherwise it is extended. Returns zero on 3841 * success. The skb is freed on error if @free_on_error is true. 3842 */ 3843static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3844 unsigned int len, 3845 bool free_on_error) 3846{ 3847 unsigned int size = skb->len; 3848 3849 if (unlikely(size < len)) { 3850 len -= size; 3851 if (__skb_pad(skb, len, free_on_error)) 3852 return -ENOMEM; 3853 __skb_put(skb, len); 3854 } 3855 return 0; 3856} 3857 3858/** 3859 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3860 * @skb: buffer to pad 3861 * @len: minimal length 3862 * 3863 * Pads up a buffer to ensure the trailing bytes exist and are 3864 * blanked. If the buffer already contains sufficient data it 3865 * is untouched. Otherwise it is extended. Returns zero on 3866 * success. The skb is freed on error. 3867 */ 3868static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3869{ 3870 return __skb_put_padto(skb, len, true); 3871} 3872 3873bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3874 __must_check; 3875 3876static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3877 const struct page *page, int off) 3878{ 3879 if (skb_zcopy(skb)) 3880 return false; 3881 if (i) { 3882 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3883 3884 return page == skb_frag_page(frag) && 3885 off == skb_frag_off(frag) + skb_frag_size(frag); 3886 } 3887 return false; 3888} 3889 3890static inline int __skb_linearize(struct sk_buff *skb) 3891{ 3892 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3893} 3894 3895/** 3896 * skb_linearize - convert paged skb to linear one 3897 * @skb: buffer to linarize 3898 * 3899 * If there is no free memory -ENOMEM is returned, otherwise zero 3900 * is returned and the old skb data released. 3901 */ 3902static inline int skb_linearize(struct sk_buff *skb) 3903{ 3904 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3905} 3906 3907/** 3908 * skb_has_shared_frag - can any frag be overwritten 3909 * @skb: buffer to test 3910 * 3911 * Return: true if the skb has at least one frag that might be modified 3912 * by an external entity (as in vmsplice()/sendfile()) 3913 */ 3914static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3915{ 3916 return skb_is_nonlinear(skb) && 3917 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3918} 3919 3920/** 3921 * skb_linearize_cow - make sure skb is linear and writable 3922 * @skb: buffer to process 3923 * 3924 * If there is no free memory -ENOMEM is returned, otherwise zero 3925 * is returned and the old skb data released. 3926 */ 3927static inline int skb_linearize_cow(struct sk_buff *skb) 3928{ 3929 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3930 __skb_linearize(skb) : 0; 3931} 3932 3933static __always_inline void 3934__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3935 unsigned int off) 3936{ 3937 if (skb->ip_summed == CHECKSUM_COMPLETE) 3938 skb->csum = csum_block_sub(skb->csum, 3939 csum_partial(start, len, 0), off); 3940 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3941 skb_checksum_start_offset(skb) < 0) 3942 skb->ip_summed = CHECKSUM_NONE; 3943} 3944 3945/** 3946 * skb_postpull_rcsum - update checksum for received skb after pull 3947 * @skb: buffer to update 3948 * @start: start of data before pull 3949 * @len: length of data pulled 3950 * 3951 * After doing a pull on a received packet, you need to call this to 3952 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3953 * CHECKSUM_NONE so that it can be recomputed from scratch. 3954 */ 3955static inline void skb_postpull_rcsum(struct sk_buff *skb, 3956 const void *start, unsigned int len) 3957{ 3958 if (skb->ip_summed == CHECKSUM_COMPLETE) 3959 skb->csum = wsum_negate(csum_partial(start, len, 3960 wsum_negate(skb->csum))); 3961 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3962 skb_checksum_start_offset(skb) < 0) 3963 skb->ip_summed = CHECKSUM_NONE; 3964} 3965 3966static __always_inline void 3967__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3968 unsigned int off) 3969{ 3970 if (skb->ip_summed == CHECKSUM_COMPLETE) 3971 skb->csum = csum_block_add(skb->csum, 3972 csum_partial(start, len, 0), off); 3973} 3974 3975/** 3976 * skb_postpush_rcsum - update checksum for received skb after push 3977 * @skb: buffer to update 3978 * @start: start of data after push 3979 * @len: length of data pushed 3980 * 3981 * After doing a push on a received packet, you need to call this to 3982 * update the CHECKSUM_COMPLETE checksum. 3983 */ 3984static inline void skb_postpush_rcsum(struct sk_buff *skb, 3985 const void *start, unsigned int len) 3986{ 3987 __skb_postpush_rcsum(skb, start, len, 0); 3988} 3989 3990void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3991 3992/** 3993 * skb_push_rcsum - push skb and update receive checksum 3994 * @skb: buffer to update 3995 * @len: length of data pulled 3996 * 3997 * This function performs an skb_push on the packet and updates 3998 * the CHECKSUM_COMPLETE checksum. It should be used on 3999 * receive path processing instead of skb_push unless you know 4000 * that the checksum difference is zero (e.g., a valid IP header) 4001 * or you are setting ip_summed to CHECKSUM_NONE. 4002 */ 4003static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 4004{ 4005 skb_push(skb, len); 4006 skb_postpush_rcsum(skb, skb->data, len); 4007 return skb->data; 4008} 4009 4010int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 4011/** 4012 * pskb_trim_rcsum - trim received skb and update checksum 4013 * @skb: buffer to trim 4014 * @len: new length 4015 * 4016 * This is exactly the same as pskb_trim except that it ensures the 4017 * checksum of received packets are still valid after the operation. 4018 * It can change skb pointers. 4019 */ 4020 4021static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4022{ 4023 skb_might_realloc(skb); 4024 if (likely(len >= skb->len)) 4025 return 0; 4026 return pskb_trim_rcsum_slow(skb, len); 4027} 4028 4029static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4030{ 4031 if (skb->ip_summed == CHECKSUM_COMPLETE) 4032 skb->ip_summed = CHECKSUM_NONE; 4033 __skb_trim(skb, len); 4034 return 0; 4035} 4036 4037static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 4038{ 4039 if (skb->ip_summed == CHECKSUM_COMPLETE) 4040 skb->ip_summed = CHECKSUM_NONE; 4041 return __skb_grow(skb, len); 4042} 4043 4044#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 4045#define skb_rb_first(root) rb_to_skb(rb_first(root)) 4046#define skb_rb_last(root) rb_to_skb(rb_last(root)) 4047#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 4048#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 4049 4050#define skb_queue_walk(queue, skb) \ 4051 for (skb = (queue)->next; \ 4052 skb != (struct sk_buff *)(queue); \ 4053 skb = skb->next) 4054 4055#define skb_queue_walk_safe(queue, skb, tmp) \ 4056 for (skb = (queue)->next, tmp = skb->next; \ 4057 skb != (struct sk_buff *)(queue); \ 4058 skb = tmp, tmp = skb->next) 4059 4060#define skb_queue_walk_from(queue, skb) \ 4061 for (; skb != (struct sk_buff *)(queue); \ 4062 skb = skb->next) 4063 4064#define skb_rbtree_walk(skb, root) \ 4065 for (skb = skb_rb_first(root); skb != NULL; \ 4066 skb = skb_rb_next(skb)) 4067 4068#define skb_rbtree_walk_from(skb) \ 4069 for (; skb != NULL; \ 4070 skb = skb_rb_next(skb)) 4071 4072#define skb_rbtree_walk_from_safe(skb, tmp) \ 4073 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 4074 skb = tmp) 4075 4076#define skb_queue_walk_from_safe(queue, skb, tmp) \ 4077 for (tmp = skb->next; \ 4078 skb != (struct sk_buff *)(queue); \ 4079 skb = tmp, tmp = skb->next) 4080 4081#define skb_queue_reverse_walk(queue, skb) \ 4082 for (skb = (queue)->prev; \ 4083 skb != (struct sk_buff *)(queue); \ 4084 skb = skb->prev) 4085 4086#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 4087 for (skb = (queue)->prev, tmp = skb->prev; \ 4088 skb != (struct sk_buff *)(queue); \ 4089 skb = tmp, tmp = skb->prev) 4090 4091#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 4092 for (tmp = skb->prev; \ 4093 skb != (struct sk_buff *)(queue); \ 4094 skb = tmp, tmp = skb->prev) 4095 4096static inline bool skb_has_frag_list(const struct sk_buff *skb) 4097{ 4098 return skb_shinfo(skb)->frag_list != NULL; 4099} 4100 4101static inline void skb_frag_list_init(struct sk_buff *skb) 4102{ 4103 skb_shinfo(skb)->frag_list = NULL; 4104} 4105 4106#define skb_walk_frags(skb, iter) \ 4107 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 4108 4109 4110int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 4111 int *err, long *timeo_p, 4112 const struct sk_buff *skb); 4113struct sk_buff *__skb_try_recv_from_queue(struct sk_buff_head *queue, 4114 unsigned int flags, 4115 int *off, int *err, 4116 struct sk_buff **last); 4117struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 4118 struct sk_buff_head *queue, 4119 unsigned int flags, int *off, int *err, 4120 struct sk_buff **last); 4121struct sk_buff *__skb_recv_datagram(struct sock *sk, 4122 struct sk_buff_head *sk_queue, 4123 unsigned int flags, int *off, int *err); 4124struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4125__poll_t datagram_poll(struct file *file, struct socket *sock, 4126 struct poll_table_struct *wait); 4127int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4128 struct iov_iter *to, int size); 4129static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4130 struct msghdr *msg, int size) 4131{ 4132 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4133} 4134int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4135 struct msghdr *msg); 4136int skb_copy_and_crc32c_datagram_iter(const struct sk_buff *skb, int offset, 4137 struct iov_iter *to, int len, u32 *crcp); 4138int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4139 struct iov_iter *from, int len); 4140int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4141void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4142int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4143int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4144int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4145__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4146 int len); 4147int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4148 struct pipe_inode_info *pipe, unsigned int len, 4149 unsigned int flags); 4150int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4151 int len); 4152int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 4153 int offset, int len, int flags); 4154int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4155void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4156unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4157int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4158 int len, int hlen); 4159void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4160int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4161void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4162struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4163struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4164 unsigned int offset); 4165struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4166int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4167int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4168int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4169int skb_vlan_pop(struct sk_buff *skb); 4170int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4171int skb_eth_pop(struct sk_buff *skb); 4172int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4173 const unsigned char *src); 4174int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4175 int mac_len, bool ethernet); 4176int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4177 bool ethernet); 4178int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4179int skb_mpls_dec_ttl(struct sk_buff *skb); 4180struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4181 gfp_t gfp); 4182 4183static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4184{ 4185 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4186} 4187 4188static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4189{ 4190 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4191} 4192 4193__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4194 __wsum csum); 4195u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc); 4196 4197static inline void * __must_check 4198__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4199 const void *data, int hlen, void *buffer) 4200{ 4201 if (likely(hlen - offset >= len)) 4202 return (void *)data + offset; 4203 4204 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4205 return NULL; 4206 4207 return buffer; 4208} 4209 4210static inline void * __must_check 4211skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4212{ 4213 return __skb_header_pointer(skb, offset, len, skb->data, 4214 skb_headlen(skb), buffer); 4215} 4216 4217static inline void * __must_check 4218skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4219{ 4220 if (likely(skb_headlen(skb) - offset >= len)) 4221 return skb->data + offset; 4222 return NULL; 4223} 4224 4225/** 4226 * skb_needs_linearize - check if we need to linearize a given skb 4227 * depending on the given device features. 4228 * @skb: socket buffer to check 4229 * @features: net device features 4230 * 4231 * Returns true if either: 4232 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4233 * 2. skb is fragmented and the device does not support SG. 4234 */ 4235static inline bool skb_needs_linearize(struct sk_buff *skb, 4236 netdev_features_t features) 4237{ 4238 return skb_is_nonlinear(skb) && 4239 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4240 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4241} 4242 4243static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4244 void *to, 4245 const unsigned int len) 4246{ 4247 memcpy(to, skb->data, len); 4248} 4249 4250static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4251 const int offset, void *to, 4252 const unsigned int len) 4253{ 4254 memcpy(to, skb->data + offset, len); 4255} 4256 4257static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4258 const void *from, 4259 const unsigned int len) 4260{ 4261 memcpy(skb->data, from, len); 4262} 4263 4264static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4265 const int offset, 4266 const void *from, 4267 const unsigned int len) 4268{ 4269 memcpy(skb->data + offset, from, len); 4270} 4271 4272void skb_init(void); 4273 4274static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4275{ 4276 return skb->tstamp; 4277} 4278 4279/** 4280 * skb_get_timestamp - get timestamp from a skb 4281 * @skb: skb to get stamp from 4282 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4283 * 4284 * Timestamps are stored in the skb as offsets to a base timestamp. 4285 * This function converts the offset back to a struct timeval and stores 4286 * it in stamp. 4287 */ 4288static inline void skb_get_timestamp(const struct sk_buff *skb, 4289 struct __kernel_old_timeval *stamp) 4290{ 4291 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4292} 4293 4294static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4295 struct __kernel_sock_timeval *stamp) 4296{ 4297 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4298 4299 stamp->tv_sec = ts.tv_sec; 4300 stamp->tv_usec = ts.tv_nsec / 1000; 4301} 4302 4303static inline void skb_get_timestampns(const struct sk_buff *skb, 4304 struct __kernel_old_timespec *stamp) 4305{ 4306 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4307 4308 stamp->tv_sec = ts.tv_sec; 4309 stamp->tv_nsec = ts.tv_nsec; 4310} 4311 4312static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4313 struct __kernel_timespec *stamp) 4314{ 4315 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4316 4317 stamp->tv_sec = ts.tv_sec; 4318 stamp->tv_nsec = ts.tv_nsec; 4319} 4320 4321static inline void __net_timestamp(struct sk_buff *skb) 4322{ 4323 skb->tstamp = ktime_get_real(); 4324 skb->tstamp_type = SKB_CLOCK_REALTIME; 4325} 4326 4327static inline ktime_t net_timedelta(ktime_t t) 4328{ 4329 return ktime_sub(ktime_get_real(), t); 4330} 4331 4332static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4333 u8 tstamp_type) 4334{ 4335 skb->tstamp = kt; 4336 4337 if (kt) 4338 skb->tstamp_type = tstamp_type; 4339 else 4340 skb->tstamp_type = SKB_CLOCK_REALTIME; 4341} 4342 4343static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4344 ktime_t kt, clockid_t clockid) 4345{ 4346 u8 tstamp_type = SKB_CLOCK_REALTIME; 4347 4348 switch (clockid) { 4349 case CLOCK_REALTIME: 4350 break; 4351 case CLOCK_MONOTONIC: 4352 tstamp_type = SKB_CLOCK_MONOTONIC; 4353 break; 4354 case CLOCK_TAI: 4355 tstamp_type = SKB_CLOCK_TAI; 4356 break; 4357 default: 4358 WARN_ON_ONCE(1); 4359 kt = 0; 4360 } 4361 4362 skb_set_delivery_time(skb, kt, tstamp_type); 4363} 4364 4365DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4366 4367/* It is used in the ingress path to clear the delivery_time. 4368 * If needed, set the skb->tstamp to the (rcv) timestamp. 4369 */ 4370static inline void skb_clear_delivery_time(struct sk_buff *skb) 4371{ 4372 if (skb->tstamp_type) { 4373 skb->tstamp_type = SKB_CLOCK_REALTIME; 4374 if (static_branch_unlikely(&netstamp_needed_key)) 4375 skb->tstamp = ktime_get_real(); 4376 else 4377 skb->tstamp = 0; 4378 } 4379} 4380 4381static inline void skb_clear_tstamp(struct sk_buff *skb) 4382{ 4383 if (skb->tstamp_type) 4384 return; 4385 4386 skb->tstamp = 0; 4387} 4388 4389static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4390{ 4391 if (skb->tstamp_type) 4392 return 0; 4393 4394 return skb->tstamp; 4395} 4396 4397static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4398{ 4399 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4400 return skb->tstamp; 4401 4402 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4403 return ktime_get_real(); 4404 4405 return 0; 4406} 4407 4408static inline u8 skb_metadata_len(const struct sk_buff *skb) 4409{ 4410 return skb_shinfo(skb)->meta_len; 4411} 4412 4413static inline void *skb_metadata_end(const struct sk_buff *skb) 4414{ 4415 return skb_mac_header(skb); 4416} 4417 4418static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4419 const struct sk_buff *skb_b, 4420 u8 meta_len) 4421{ 4422 const void *a = skb_metadata_end(skb_a); 4423 const void *b = skb_metadata_end(skb_b); 4424 u64 diffs = 0; 4425 4426 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4427 BITS_PER_LONG != 64) 4428 goto slow; 4429 4430 /* Using more efficient variant than plain call to memcmp(). */ 4431 switch (meta_len) { 4432#define __it(x, op) (x -= sizeof(u##op)) 4433#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4434 case 32: diffs |= __it_diff(a, b, 64); 4435 fallthrough; 4436 case 24: diffs |= __it_diff(a, b, 64); 4437 fallthrough; 4438 case 16: diffs |= __it_diff(a, b, 64); 4439 fallthrough; 4440 case 8: diffs |= __it_diff(a, b, 64); 4441 break; 4442 case 28: diffs |= __it_diff(a, b, 64); 4443 fallthrough; 4444 case 20: diffs |= __it_diff(a, b, 64); 4445 fallthrough; 4446 case 12: diffs |= __it_diff(a, b, 64); 4447 fallthrough; 4448 case 4: diffs |= __it_diff(a, b, 32); 4449 break; 4450 default: 4451slow: 4452 return memcmp(a - meta_len, b - meta_len, meta_len); 4453 } 4454 return diffs; 4455} 4456 4457static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4458 const struct sk_buff *skb_b) 4459{ 4460 u8 len_a = skb_metadata_len(skb_a); 4461 u8 len_b = skb_metadata_len(skb_b); 4462 4463 if (!(len_a | len_b)) 4464 return false; 4465 4466 return len_a != len_b ? 4467 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4468} 4469 4470static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4471{ 4472 skb_shinfo(skb)->meta_len = meta_len; 4473} 4474 4475static inline void skb_metadata_clear(struct sk_buff *skb) 4476{ 4477 skb_metadata_set(skb, 0); 4478} 4479 4480struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4481 4482#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4483 4484void skb_clone_tx_timestamp(struct sk_buff *skb); 4485bool skb_defer_rx_timestamp(struct sk_buff *skb); 4486 4487#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4488 4489static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4490{ 4491} 4492 4493static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4494{ 4495 return false; 4496} 4497 4498#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4499 4500/** 4501 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4502 * 4503 * PHY drivers may accept clones of transmitted packets for 4504 * timestamping via their phy_driver.txtstamp method. These drivers 4505 * must call this function to return the skb back to the stack with a 4506 * timestamp. 4507 * 4508 * @skb: clone of the original outgoing packet 4509 * @hwtstamps: hardware time stamps 4510 * 4511 */ 4512void skb_complete_tx_timestamp(struct sk_buff *skb, 4513 struct skb_shared_hwtstamps *hwtstamps); 4514 4515void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4516 struct skb_shared_hwtstamps *hwtstamps, 4517 struct sock *sk, int tstype); 4518 4519/** 4520 * skb_tstamp_tx - queue clone of skb with send time stamps 4521 * @orig_skb: the original outgoing packet 4522 * @hwtstamps: hardware time stamps, may be NULL if not available 4523 * 4524 * If the skb has a socket associated, then this function clones the 4525 * skb (thus sharing the actual data and optional structures), stores 4526 * the optional hardware time stamping information (if non NULL) or 4527 * generates a software time stamp (otherwise), then queues the clone 4528 * to the error queue of the socket. Errors are silently ignored. 4529 */ 4530void skb_tstamp_tx(struct sk_buff *orig_skb, 4531 struct skb_shared_hwtstamps *hwtstamps); 4532 4533/** 4534 * skb_tx_timestamp() - Driver hook for transmit timestamping 4535 * 4536 * Ethernet MAC Drivers should call this function in their hard_xmit() 4537 * function immediately before giving the sk_buff to the MAC hardware. 4538 * 4539 * Specifically, one should make absolutely sure that this function is 4540 * called before TX completion of this packet can trigger. Otherwise 4541 * the packet could potentially already be freed. 4542 * 4543 * @skb: A socket buffer. 4544 */ 4545static inline void skb_tx_timestamp(struct sk_buff *skb) 4546{ 4547 skb_clone_tx_timestamp(skb); 4548 if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF)) 4549 skb_tstamp_tx(skb, NULL); 4550} 4551 4552/** 4553 * skb_complete_wifi_ack - deliver skb with wifi status 4554 * 4555 * @skb: the original outgoing packet 4556 * @acked: ack status 4557 * 4558 */ 4559void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4560 4561__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4562__sum16 __skb_checksum_complete(struct sk_buff *skb); 4563 4564static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4565{ 4566 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4567 skb->csum_valid || 4568 (skb->ip_summed == CHECKSUM_PARTIAL && 4569 skb_checksum_start_offset(skb) >= 0)); 4570} 4571 4572/** 4573 * skb_checksum_complete - Calculate checksum of an entire packet 4574 * @skb: packet to process 4575 * 4576 * This function calculates the checksum over the entire packet plus 4577 * the value of skb->csum. The latter can be used to supply the 4578 * checksum of a pseudo header as used by TCP/UDP. It returns the 4579 * checksum. 4580 * 4581 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4582 * this function can be used to verify that checksum on received 4583 * packets. In that case the function should return zero if the 4584 * checksum is correct. In particular, this function will return zero 4585 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4586 * hardware has already verified the correctness of the checksum. 4587 */ 4588static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4589{ 4590 return skb_csum_unnecessary(skb) ? 4591 0 : __skb_checksum_complete(skb); 4592} 4593 4594static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4595{ 4596 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4597 if (skb->csum_level == 0) 4598 skb->ip_summed = CHECKSUM_NONE; 4599 else 4600 skb->csum_level--; 4601 } 4602} 4603 4604static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4605{ 4606 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4607 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4608 skb->csum_level++; 4609 } else if (skb->ip_summed == CHECKSUM_NONE) { 4610 skb->ip_summed = CHECKSUM_UNNECESSARY; 4611 skb->csum_level = 0; 4612 } 4613} 4614 4615static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4616{ 4617 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4618 skb->ip_summed = CHECKSUM_NONE; 4619 skb->csum_level = 0; 4620 } 4621} 4622 4623/* Check if we need to perform checksum complete validation. 4624 * 4625 * Returns: true if checksum complete is needed, false otherwise 4626 * (either checksum is unnecessary or zero checksum is allowed). 4627 */ 4628static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4629 bool zero_okay, 4630 __sum16 check) 4631{ 4632 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4633 skb->csum_valid = 1; 4634 __skb_decr_checksum_unnecessary(skb); 4635 return false; 4636 } 4637 4638 return true; 4639} 4640 4641/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4642 * in checksum_init. 4643 */ 4644#define CHECKSUM_BREAK 76 4645 4646/* Unset checksum-complete 4647 * 4648 * Unset checksum complete can be done when packet is being modified 4649 * (uncompressed for instance) and checksum-complete value is 4650 * invalidated. 4651 */ 4652static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4653{ 4654 if (skb->ip_summed == CHECKSUM_COMPLETE) 4655 skb->ip_summed = CHECKSUM_NONE; 4656} 4657 4658/* Validate (init) checksum based on checksum complete. 4659 * 4660 * Return values: 4661 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4662 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4663 * checksum is stored in skb->csum for use in __skb_checksum_complete 4664 * non-zero: value of invalid checksum 4665 * 4666 */ 4667static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4668 bool complete, 4669 __wsum psum) 4670{ 4671 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4672 if (!csum_fold(csum_add(psum, skb->csum))) { 4673 skb->csum_valid = 1; 4674 return 0; 4675 } 4676 } 4677 4678 skb->csum = psum; 4679 4680 if (complete || skb->len <= CHECKSUM_BREAK) { 4681 __sum16 csum; 4682 4683 csum = __skb_checksum_complete(skb); 4684 skb->csum_valid = !csum; 4685 return csum; 4686 } 4687 4688 return 0; 4689} 4690 4691static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4692{ 4693 return 0; 4694} 4695 4696/* Perform checksum validate (init). Note that this is a macro since we only 4697 * want to calculate the pseudo header which is an input function if necessary. 4698 * First we try to validate without any computation (checksum unnecessary) and 4699 * then calculate based on checksum complete calling the function to compute 4700 * pseudo header. 4701 * 4702 * Return values: 4703 * 0: checksum is validated or try to in skb_checksum_complete 4704 * non-zero: value of invalid checksum 4705 */ 4706#define __skb_checksum_validate(skb, proto, complete, \ 4707 zero_okay, check, compute_pseudo) \ 4708({ \ 4709 __sum16 __ret = 0; \ 4710 skb->csum_valid = 0; \ 4711 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4712 __ret = __skb_checksum_validate_complete(skb, \ 4713 complete, compute_pseudo(skb, proto)); \ 4714 __ret; \ 4715}) 4716 4717#define skb_checksum_init(skb, proto, compute_pseudo) \ 4718 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4719 4720#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4721 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4722 4723#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4724 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4725 4726#define skb_checksum_validate_zero_check(skb, proto, check, \ 4727 compute_pseudo) \ 4728 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4729 4730#define skb_checksum_simple_validate(skb) \ 4731 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4732 4733static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4734{ 4735 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4736} 4737 4738static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4739{ 4740 skb->csum = ~pseudo; 4741 skb->ip_summed = CHECKSUM_COMPLETE; 4742} 4743 4744#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4745do { \ 4746 if (__skb_checksum_convert_check(skb)) \ 4747 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4748} while (0) 4749 4750static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4751 u16 start, u16 offset) 4752{ 4753 skb->ip_summed = CHECKSUM_PARTIAL; 4754 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4755 skb->csum_offset = offset - start; 4756} 4757 4758/* Update skbuf and packet to reflect the remote checksum offload operation. 4759 * When called, ptr indicates the starting point for skb->csum when 4760 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4761 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4762 */ 4763static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4764 int start, int offset, bool nopartial) 4765{ 4766 __wsum delta; 4767 4768 if (!nopartial) { 4769 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4770 return; 4771 } 4772 4773 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4774 __skb_checksum_complete(skb); 4775 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4776 } 4777 4778 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4779 4780 /* Adjust skb->csum since we changed the packet */ 4781 skb->csum = csum_add(skb->csum, delta); 4782} 4783 4784static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4785{ 4786#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4787 return (void *)(skb->_nfct & NFCT_PTRMASK); 4788#else 4789 return NULL; 4790#endif 4791} 4792 4793static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4794{ 4795#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4796 return skb->_nfct; 4797#else 4798 return 0UL; 4799#endif 4800} 4801 4802static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4803{ 4804#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4805 skb->slow_gro |= !!nfct; 4806 skb->_nfct = nfct; 4807#endif 4808} 4809 4810#ifdef CONFIG_SKB_EXTENSIONS 4811enum skb_ext_id { 4812#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4813 SKB_EXT_BRIDGE_NF, 4814#endif 4815#ifdef CONFIG_XFRM 4816 SKB_EXT_SEC_PATH, 4817#endif 4818#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4819 TC_SKB_EXT, 4820#endif 4821#if IS_ENABLED(CONFIG_MPTCP) 4822 SKB_EXT_MPTCP, 4823#endif 4824#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4825 SKB_EXT_MCTP, 4826#endif 4827 SKB_EXT_NUM, /* must be last */ 4828}; 4829 4830/** 4831 * struct skb_ext - sk_buff extensions 4832 * @refcnt: 1 on allocation, deallocated on 0 4833 * @offset: offset to add to @data to obtain extension address 4834 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4835 * @data: start of extension data, variable sized 4836 * 4837 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4838 * to use 'u8' types while allowing up to 2kb worth of extension data. 4839 */ 4840struct skb_ext { 4841 refcount_t refcnt; 4842 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4843 u8 chunks; /* same */ 4844 char data[] __aligned(8); 4845}; 4846 4847struct skb_ext *__skb_ext_alloc(gfp_t flags); 4848void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4849 struct skb_ext *ext); 4850void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4851void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4852void __skb_ext_put(struct skb_ext *ext); 4853 4854static inline void skb_ext_put(struct sk_buff *skb) 4855{ 4856 if (skb->active_extensions) 4857 __skb_ext_put(skb->extensions); 4858} 4859 4860static inline void __skb_ext_copy(struct sk_buff *dst, 4861 const struct sk_buff *src) 4862{ 4863 dst->active_extensions = src->active_extensions; 4864 4865 if (src->active_extensions) { 4866 struct skb_ext *ext = src->extensions; 4867 4868 refcount_inc(&ext->refcnt); 4869 dst->extensions = ext; 4870 } 4871} 4872 4873static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4874{ 4875 skb_ext_put(dst); 4876 __skb_ext_copy(dst, src); 4877} 4878 4879static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4880{ 4881 return !!ext->offset[i]; 4882} 4883 4884static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4885{ 4886 return skb->active_extensions & (1 << id); 4887} 4888 4889static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4890{ 4891 if (skb_ext_exist(skb, id)) 4892 __skb_ext_del(skb, id); 4893} 4894 4895static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4896{ 4897 if (skb_ext_exist(skb, id)) { 4898 struct skb_ext *ext = skb->extensions; 4899 4900 return (void *)ext + (ext->offset[id] << 3); 4901 } 4902 4903 return NULL; 4904} 4905 4906static inline void skb_ext_reset(struct sk_buff *skb) 4907{ 4908 if (unlikely(skb->active_extensions)) { 4909 __skb_ext_put(skb->extensions); 4910 skb->active_extensions = 0; 4911 } 4912} 4913 4914static inline bool skb_has_extensions(struct sk_buff *skb) 4915{ 4916 return unlikely(skb->active_extensions); 4917} 4918#else 4919static inline void skb_ext_put(struct sk_buff *skb) {} 4920static inline void skb_ext_reset(struct sk_buff *skb) {} 4921static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4922static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4923static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4924static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4925#endif /* CONFIG_SKB_EXTENSIONS */ 4926 4927static inline void nf_reset_ct(struct sk_buff *skb) 4928{ 4929#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4930 nf_conntrack_put(skb_nfct(skb)); 4931 skb->_nfct = 0; 4932#endif 4933} 4934 4935static inline void nf_reset_trace(struct sk_buff *skb) 4936{ 4937#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4938 skb->nf_trace = 0; 4939#endif 4940} 4941 4942static inline void ipvs_reset(struct sk_buff *skb) 4943{ 4944#if IS_ENABLED(CONFIG_IP_VS) 4945 skb->ipvs_property = 0; 4946#endif 4947} 4948 4949/* Note: This doesn't put any conntrack info in dst. */ 4950static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4951 bool copy) 4952{ 4953#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4954 dst->_nfct = src->_nfct; 4955 nf_conntrack_get(skb_nfct(src)); 4956#endif 4957#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4958 if (copy) 4959 dst->nf_trace = src->nf_trace; 4960#endif 4961} 4962 4963static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4964{ 4965#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4966 nf_conntrack_put(skb_nfct(dst)); 4967#endif 4968 dst->slow_gro = src->slow_gro; 4969 __nf_copy(dst, src, true); 4970} 4971 4972#ifdef CONFIG_NETWORK_SECMARK 4973static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4974{ 4975 to->secmark = from->secmark; 4976} 4977 4978static inline void skb_init_secmark(struct sk_buff *skb) 4979{ 4980 skb->secmark = 0; 4981} 4982#else 4983static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4984{ } 4985 4986static inline void skb_init_secmark(struct sk_buff *skb) 4987{ } 4988#endif 4989 4990static inline int secpath_exists(const struct sk_buff *skb) 4991{ 4992#ifdef CONFIG_XFRM 4993 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4994#else 4995 return 0; 4996#endif 4997} 4998 4999static inline bool skb_irq_freeable(const struct sk_buff *skb) 5000{ 5001 return !skb->destructor && 5002 !secpath_exists(skb) && 5003 !skb_nfct(skb) && 5004 !skb->_skb_refdst && 5005 !skb_has_frag_list(skb); 5006} 5007 5008static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 5009{ 5010 skb->queue_mapping = queue_mapping; 5011} 5012 5013static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 5014{ 5015 return skb->queue_mapping; 5016} 5017 5018static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 5019{ 5020 to->queue_mapping = from->queue_mapping; 5021} 5022 5023static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 5024{ 5025 skb->queue_mapping = rx_queue + 1; 5026} 5027 5028static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 5029{ 5030 return skb->queue_mapping - 1; 5031} 5032 5033static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 5034{ 5035 return skb->queue_mapping != 0; 5036} 5037 5038static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 5039{ 5040 skb->dst_pending_confirm = val; 5041} 5042 5043static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 5044{ 5045 return skb->dst_pending_confirm != 0; 5046} 5047 5048static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 5049{ 5050#ifdef CONFIG_XFRM 5051 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 5052#else 5053 return NULL; 5054#endif 5055} 5056 5057static inline bool skb_is_gso(const struct sk_buff *skb) 5058{ 5059 return skb_shinfo(skb)->gso_size; 5060} 5061 5062/* Note: Should be called only if skb_is_gso(skb) is true */ 5063static inline bool skb_is_gso_v6(const struct sk_buff *skb) 5064{ 5065 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 5066} 5067 5068/* Note: Should be called only if skb_is_gso(skb) is true */ 5069static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 5070{ 5071 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 5072} 5073 5074/* Note: Should be called only if skb_is_gso(skb) is true */ 5075static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 5076{ 5077 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 5078} 5079 5080static inline void skb_gso_reset(struct sk_buff *skb) 5081{ 5082 skb_shinfo(skb)->gso_size = 0; 5083 skb_shinfo(skb)->gso_segs = 0; 5084 skb_shinfo(skb)->gso_type = 0; 5085} 5086 5087static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 5088 u16 increment) 5089{ 5090 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5091 return; 5092 shinfo->gso_size += increment; 5093} 5094 5095static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 5096 u16 decrement) 5097{ 5098 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5099 return; 5100 shinfo->gso_size -= decrement; 5101} 5102 5103void __skb_warn_lro_forwarding(const struct sk_buff *skb); 5104 5105static inline bool skb_warn_if_lro(const struct sk_buff *skb) 5106{ 5107 /* LRO sets gso_size but not gso_type, whereas if GSO is really 5108 * wanted then gso_type will be set. */ 5109 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5110 5111 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 5112 unlikely(shinfo->gso_type == 0)) { 5113 __skb_warn_lro_forwarding(skb); 5114 return true; 5115 } 5116 return false; 5117} 5118 5119static inline void skb_forward_csum(struct sk_buff *skb) 5120{ 5121 /* Unfortunately we don't support this one. Any brave souls? */ 5122 if (skb->ip_summed == CHECKSUM_COMPLETE) 5123 skb->ip_summed = CHECKSUM_NONE; 5124} 5125 5126/** 5127 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5128 * @skb: skb to check 5129 * 5130 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5131 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5132 * use this helper, to document places where we make this assertion. 5133 */ 5134static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5135{ 5136 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5137} 5138 5139bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5140 5141int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5142struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5143 unsigned int transport_len, 5144 __sum16(*skb_chkf)(struct sk_buff *skb)); 5145 5146/** 5147 * skb_head_is_locked - Determine if the skb->head is locked down 5148 * @skb: skb to check 5149 * 5150 * The head on skbs build around a head frag can be removed if they are 5151 * not cloned. This function returns true if the skb head is locked down 5152 * due to either being allocated via kmalloc, or by being a clone with 5153 * multiple references to the head. 5154 */ 5155static inline bool skb_head_is_locked(const struct sk_buff *skb) 5156{ 5157 return !skb->head_frag || skb_cloned(skb); 5158} 5159 5160/* Local Checksum Offload. 5161 * Compute outer checksum based on the assumption that the 5162 * inner checksum will be offloaded later. 5163 * See Documentation/networking/checksum-offloads.rst for 5164 * explanation of how this works. 5165 * Fill in outer checksum adjustment (e.g. with sum of outer 5166 * pseudo-header) before calling. 5167 * Also ensure that inner checksum is in linear data area. 5168 */ 5169static inline __wsum lco_csum(struct sk_buff *skb) 5170{ 5171 unsigned char *csum_start = skb_checksum_start(skb); 5172 unsigned char *l4_hdr = skb_transport_header(skb); 5173 __wsum partial; 5174 5175 /* Start with complement of inner checksum adjustment */ 5176 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5177 skb->csum_offset)); 5178 5179 /* Add in checksum of our headers (incl. outer checksum 5180 * adjustment filled in by caller) and return result. 5181 */ 5182 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5183} 5184 5185static inline bool skb_is_redirected(const struct sk_buff *skb) 5186{ 5187 return skb->redirected; 5188} 5189 5190static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5191{ 5192 skb->redirected = 1; 5193#ifdef CONFIG_NET_REDIRECT 5194 skb->from_ingress = from_ingress; 5195 if (skb->from_ingress) 5196 skb_clear_tstamp(skb); 5197#endif 5198} 5199 5200static inline void skb_reset_redirect(struct sk_buff *skb) 5201{ 5202 skb->redirected = 0; 5203} 5204 5205static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5206 bool from_ingress) 5207{ 5208 skb->redirected = 1; 5209#ifdef CONFIG_NET_REDIRECT 5210 skb->from_ingress = from_ingress; 5211#endif 5212} 5213 5214static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5215{ 5216#if IS_ENABLED(CONFIG_IP_SCTP) 5217 return skb->csum_not_inet; 5218#else 5219 return 0; 5220#endif 5221} 5222 5223static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5224{ 5225 skb->ip_summed = CHECKSUM_NONE; 5226#if IS_ENABLED(CONFIG_IP_SCTP) 5227 skb->csum_not_inet = 0; 5228#endif 5229} 5230 5231static inline void skb_set_kcov_handle(struct sk_buff *skb, 5232 const u64 kcov_handle) 5233{ 5234#ifdef CONFIG_KCOV 5235 skb->kcov_handle = kcov_handle; 5236#endif 5237} 5238 5239static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5240{ 5241#ifdef CONFIG_KCOV 5242 return skb->kcov_handle; 5243#else 5244 return 0; 5245#endif 5246} 5247 5248static inline void skb_mark_for_recycle(struct sk_buff *skb) 5249{ 5250#ifdef CONFIG_PAGE_POOL 5251 skb->pp_recycle = 1; 5252#endif 5253} 5254 5255ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5256 ssize_t maxsize, gfp_t gfp); 5257 5258#endif /* __KERNEL__ */ 5259#endif /* _LINUX_SKBUFF_H */