Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55/*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
67static inline unsigned long pte_index(unsigned long address)
68{
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70}
71
72#ifndef pmd_index
73static inline unsigned long pmd_index(unsigned long address)
74{
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76}
77#define pmd_index pmd_index
78#endif
79
80#ifndef pud_index
81static inline unsigned long pud_index(unsigned long address)
82{
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84}
85#define pud_index pud_index
86#endif
87
88#ifndef pgd_index
89/* Must be a compile-time constant, so implement it as a macro */
90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91#endif
92
93#ifndef kernel_pte_init
94static inline void kernel_pte_init(void *addr)
95{
96}
97#define kernel_pte_init kernel_pte_init
98#endif
99
100#ifndef pmd_init
101static inline void pmd_init(void *addr)
102{
103}
104#define pmd_init pmd_init
105#endif
106
107#ifndef pud_init
108static inline void pud_init(void *addr)
109{
110}
111#define pud_init pud_init
112#endif
113
114#ifndef pte_offset_kernel
115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116{
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118}
119#define pte_offset_kernel pte_offset_kernel
120#endif
121
122#ifdef CONFIG_HIGHPTE
123#define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125#define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128} while (0)
129#else
130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131{
132 return pte_offset_kernel(pmd, address);
133}
134static inline void pte_unmap(pte_t *pte)
135{
136 rcu_read_unlock();
137}
138#endif
139
140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141
142/* Find an entry in the second-level page table.. */
143#ifndef pmd_offset
144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145{
146 return pud_pgtable(*pud) + pmd_index(address);
147}
148#define pmd_offset pmd_offset
149#endif
150
151#ifndef pud_offset
152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153{
154 return p4d_pgtable(*p4d) + pud_index(address);
155}
156#define pud_offset pud_offset
157#endif
158
159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160{
161 return (pgd + pgd_index(address));
162};
163
164/*
165 * a shortcut to get a pgd_t in a given mm
166 */
167#ifndef pgd_offset
168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169#endif
170
171/*
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
174 */
175#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
176
177/*
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
183 */
184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185{
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187}
188
189static inline pmd_t *pmd_off_k(unsigned long va)
190{
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192}
193
194static inline pte_t *virt_to_kpte(unsigned long vaddr)
195{
196 pmd_t *pmd = pmd_off_k(vaddr);
197
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199}
200
201#ifndef pmd_young
202static inline int pmd_young(pmd_t pmd)
203{
204 return 0;
205}
206#endif
207
208#ifndef pmd_dirty
209static inline int pmd_dirty(pmd_t pmd)
210{
211 return 0;
212}
213#endif
214
215/*
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date.
226 *
227 * In the general case, no lock is guaranteed to be held between entry and exit
228 * of the lazy mode. So the implementation must assume preemption may be enabled
229 * and cpu migration is possible; it must take steps to be robust against this.
230 * (In practice, for user PTE updates, the appropriate page table lock(s) are
231 * held, but for kernel PTE updates, no lock is held). Nesting is not permitted
232 * and the mode cannot be used in interrupt context.
233 */
234#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
235#define arch_enter_lazy_mmu_mode() do {} while (0)
236#define arch_leave_lazy_mmu_mode() do {} while (0)
237#define arch_flush_lazy_mmu_mode() do {} while (0)
238#endif
239
240#ifndef pte_batch_hint
241/**
242 * pte_batch_hint - Number of pages that can be added to batch without scanning.
243 * @ptep: Page table pointer for the entry.
244 * @pte: Page table entry.
245 *
246 * Some architectures know that a set of contiguous ptes all map the same
247 * contiguous memory with the same permissions. In this case, it can provide a
248 * hint to aid pte batching without the core code needing to scan every pte.
249 *
250 * An architecture implementation may ignore the PTE accessed state. Further,
251 * the dirty state must apply atomically to all the PTEs described by the hint.
252 *
253 * May be overridden by the architecture, else pte_batch_hint is always 1.
254 */
255static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
256{
257 return 1;
258}
259#endif
260
261#ifndef pte_advance_pfn
262static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
263{
264 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
265}
266#endif
267
268#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
269
270#ifndef set_ptes
271/**
272 * set_ptes - Map consecutive pages to a contiguous range of addresses.
273 * @mm: Address space to map the pages into.
274 * @addr: Address to map the first page at.
275 * @ptep: Page table pointer for the first entry.
276 * @pte: Page table entry for the first page.
277 * @nr: Number of pages to map.
278 *
279 * When nr==1, initial state of pte may be present or not present, and new state
280 * may be present or not present. When nr>1, initial state of all ptes must be
281 * not present, and new state must be present.
282 *
283 * May be overridden by the architecture, or the architecture can define
284 * set_pte() and PFN_PTE_SHIFT.
285 *
286 * Context: The caller holds the page table lock. The pages all belong
287 * to the same folio. The PTEs are all in the same PMD.
288 */
289static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
290 pte_t *ptep, pte_t pte, unsigned int nr)
291{
292 page_table_check_ptes_set(mm, ptep, pte, nr);
293
294 for (;;) {
295 set_pte(ptep, pte);
296 if (--nr == 0)
297 break;
298 ptep++;
299 pte = pte_next_pfn(pte);
300 }
301}
302#endif
303#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
304
305#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
306extern int ptep_set_access_flags(struct vm_area_struct *vma,
307 unsigned long address, pte_t *ptep,
308 pte_t entry, int dirty);
309#endif
310
311#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
313extern int pmdp_set_access_flags(struct vm_area_struct *vma,
314 unsigned long address, pmd_t *pmdp,
315 pmd_t entry, int dirty);
316extern int pudp_set_access_flags(struct vm_area_struct *vma,
317 unsigned long address, pud_t *pudp,
318 pud_t entry, int dirty);
319#else
320static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
321 unsigned long address, pmd_t *pmdp,
322 pmd_t entry, int dirty)
323{
324 BUILD_BUG();
325 return 0;
326}
327static inline int pudp_set_access_flags(struct vm_area_struct *vma,
328 unsigned long address, pud_t *pudp,
329 pud_t entry, int dirty)
330{
331 BUILD_BUG();
332 return 0;
333}
334#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
335#endif
336
337#ifndef ptep_get
338static inline pte_t ptep_get(pte_t *ptep)
339{
340 return READ_ONCE(*ptep);
341}
342#endif
343
344#ifndef pmdp_get
345static inline pmd_t pmdp_get(pmd_t *pmdp)
346{
347 return READ_ONCE(*pmdp);
348}
349#endif
350
351#ifndef pudp_get
352static inline pud_t pudp_get(pud_t *pudp)
353{
354 return READ_ONCE(*pudp);
355}
356#endif
357
358#ifndef p4dp_get
359static inline p4d_t p4dp_get(p4d_t *p4dp)
360{
361 return READ_ONCE(*p4dp);
362}
363#endif
364
365#ifndef pgdp_get
366static inline pgd_t pgdp_get(pgd_t *pgdp)
367{
368 return READ_ONCE(*pgdp);
369}
370#endif
371
372#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
373static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
374 unsigned long address,
375 pte_t *ptep)
376{
377 pte_t pte = ptep_get(ptep);
378 int r = 1;
379 if (!pte_young(pte))
380 r = 0;
381 else
382 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
383 return r;
384}
385#endif
386
387#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
388#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
389static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
390 unsigned long address,
391 pmd_t *pmdp)
392{
393 pmd_t pmd = *pmdp;
394 int r = 1;
395 if (!pmd_young(pmd))
396 r = 0;
397 else
398 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
399 return r;
400}
401#else
402static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
403 unsigned long address,
404 pmd_t *pmdp)
405{
406 BUILD_BUG();
407 return 0;
408}
409#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
410#endif
411
412#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
413int ptep_clear_flush_young(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep);
415#endif
416
417#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
419extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
420 unsigned long address, pmd_t *pmdp);
421#else
422/*
423 * Despite relevant to THP only, this API is called from generic rmap code
424 * under PageTransHuge(), hence needs a dummy implementation for !THP
425 */
426static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
427 unsigned long address, pmd_t *pmdp)
428{
429 BUILD_BUG();
430 return 0;
431}
432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
433#endif
434
435#ifndef arch_has_hw_nonleaf_pmd_young
436/*
437 * Return whether the accessed bit in non-leaf PMD entries is supported on the
438 * local CPU.
439 */
440static inline bool arch_has_hw_nonleaf_pmd_young(void)
441{
442 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
443}
444#endif
445
446#ifndef arch_has_hw_pte_young
447/*
448 * Return whether the accessed bit is supported on the local CPU.
449 *
450 * This stub assumes accessing through an old PTE triggers a page fault.
451 * Architectures that automatically set the access bit should overwrite it.
452 */
453static inline bool arch_has_hw_pte_young(void)
454{
455 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
456}
457#endif
458
459#ifndef arch_check_zapped_pte
460static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
461 pte_t pte)
462{
463}
464#endif
465
466#ifndef arch_check_zapped_pmd
467static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
468 pmd_t pmd)
469{
470}
471#endif
472
473#ifndef arch_check_zapped_pud
474static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
475{
476}
477#endif
478
479#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
480static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
481 unsigned long address,
482 pte_t *ptep)
483{
484 pte_t pte = ptep_get(ptep);
485 pte_clear(mm, address, ptep);
486 page_table_check_pte_clear(mm, pte);
487 return pte;
488}
489#endif
490
491#ifndef clear_young_dirty_ptes
492/**
493 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
494 * same folio as old/clean.
495 * @mm: Address space the pages are mapped into.
496 * @addr: Address the first page is mapped at.
497 * @ptep: Page table pointer for the first entry.
498 * @nr: Number of entries to mark old/clean.
499 * @flags: Flags to modify the PTE batch semantics.
500 *
501 * May be overridden by the architecture; otherwise, implemented by
502 * get_and_clear/modify/set for each pte in the range.
503 *
504 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
505 * some PTEs might be write-protected.
506 *
507 * Context: The caller holds the page table lock. The PTEs map consecutive
508 * pages that belong to the same folio. The PTEs are all in the same PMD.
509 */
510static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
511 unsigned long addr, pte_t *ptep,
512 unsigned int nr, cydp_t flags)
513{
514 pte_t pte;
515
516 for (;;) {
517 if (flags == CYDP_CLEAR_YOUNG)
518 ptep_test_and_clear_young(vma, addr, ptep);
519 else {
520 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
521 if (flags & CYDP_CLEAR_YOUNG)
522 pte = pte_mkold(pte);
523 if (flags & CYDP_CLEAR_DIRTY)
524 pte = pte_mkclean(pte);
525 set_pte_at(vma->vm_mm, addr, ptep, pte);
526 }
527 if (--nr == 0)
528 break;
529 ptep++;
530 addr += PAGE_SIZE;
531 }
532}
533#endif
534
535static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
536 pte_t *ptep)
537{
538 pte_t pte = ptep_get(ptep);
539
540 pte_clear(mm, addr, ptep);
541 /*
542 * No need for ptep_get_and_clear(): page table check doesn't care about
543 * any bits that could have been set by HW concurrently.
544 */
545 page_table_check_pte_clear(mm, pte);
546}
547
548#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
549/*
550 * For walking the pagetables without holding any locks. Some architectures
551 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
552 * instructions. We are guaranteed that a PTE will only either go from not
553 * present to present, or present to not present -- it will not switch to a
554 * completely different present page without a TLB flush inbetween; which we
555 * are blocking by holding interrupts off.
556 *
557 * Setting ptes from not present to present goes:
558 *
559 * ptep->pte_high = h;
560 * smp_wmb();
561 * ptep->pte_low = l;
562 *
563 * And present to not present goes:
564 *
565 * ptep->pte_low = 0;
566 * smp_wmb();
567 * ptep->pte_high = 0;
568 *
569 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
570 * We load pte_high *after* loading pte_low, which ensures we don't see an older
571 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
572 * picked up a changed pte high. We might have gotten rubbish values from
573 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
574 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
575 * operates on present ptes we're safe.
576 */
577static inline pte_t ptep_get_lockless(pte_t *ptep)
578{
579 pte_t pte;
580
581 do {
582 pte.pte_low = ptep->pte_low;
583 smp_rmb();
584 pte.pte_high = ptep->pte_high;
585 smp_rmb();
586 } while (unlikely(pte.pte_low != ptep->pte_low));
587
588 return pte;
589}
590#define ptep_get_lockless ptep_get_lockless
591
592#if CONFIG_PGTABLE_LEVELS > 2
593static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
594{
595 pmd_t pmd;
596
597 do {
598 pmd.pmd_low = pmdp->pmd_low;
599 smp_rmb();
600 pmd.pmd_high = pmdp->pmd_high;
601 smp_rmb();
602 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
603
604 return pmd;
605}
606#define pmdp_get_lockless pmdp_get_lockless
607#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
608#endif /* CONFIG_PGTABLE_LEVELS > 2 */
609#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
610
611/*
612 * We require that the PTE can be read atomically.
613 */
614#ifndef ptep_get_lockless
615static inline pte_t ptep_get_lockless(pte_t *ptep)
616{
617 return ptep_get(ptep);
618}
619#endif
620
621#ifndef pmdp_get_lockless
622static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
623{
624 return pmdp_get(pmdp);
625}
626static inline void pmdp_get_lockless_sync(void)
627{
628}
629#endif
630
631#ifdef CONFIG_TRANSPARENT_HUGEPAGE
632#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
633static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
634 unsigned long address,
635 pmd_t *pmdp)
636{
637 pmd_t pmd = *pmdp;
638
639 pmd_clear(pmdp);
640 page_table_check_pmd_clear(mm, pmd);
641
642 return pmd;
643}
644#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
645#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
646static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
647 unsigned long address,
648 pud_t *pudp)
649{
650 pud_t pud = *pudp;
651
652 pud_clear(pudp);
653 page_table_check_pud_clear(mm, pud);
654
655 return pud;
656}
657#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
658#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
659
660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
661#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
662static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
663 unsigned long address, pmd_t *pmdp,
664 int full)
665{
666 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
667}
668#endif
669
670#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
671static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
672 unsigned long address, pud_t *pudp,
673 int full)
674{
675 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
676}
677#endif
678#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
679
680#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
681static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
682 unsigned long address, pte_t *ptep,
683 int full)
684{
685 return ptep_get_and_clear(mm, address, ptep);
686}
687#endif
688
689#ifndef get_and_clear_full_ptes
690/**
691 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
692 * the same folio, collecting dirty/accessed bits.
693 * @mm: Address space the pages are mapped into.
694 * @addr: Address the first page is mapped at.
695 * @ptep: Page table pointer for the first entry.
696 * @nr: Number of entries to clear.
697 * @full: Whether we are clearing a full mm.
698 *
699 * May be overridden by the architecture; otherwise, implemented as a simple
700 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
701 * returned PTE.
702 *
703 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
704 * some PTEs might be write-protected.
705 *
706 * Context: The caller holds the page table lock. The PTEs map consecutive
707 * pages that belong to the same folio. The PTEs are all in the same PMD.
708 */
709static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
710 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
711{
712 pte_t pte, tmp_pte;
713
714 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
715 while (--nr) {
716 ptep++;
717 addr += PAGE_SIZE;
718 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
719 if (pte_dirty(tmp_pte))
720 pte = pte_mkdirty(pte);
721 if (pte_young(tmp_pte))
722 pte = pte_mkyoung(pte);
723 }
724 return pte;
725}
726#endif
727
728#ifndef clear_full_ptes
729/**
730 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
731 * folio.
732 * @mm: Address space the pages are mapped into.
733 * @addr: Address the first page is mapped at.
734 * @ptep: Page table pointer for the first entry.
735 * @nr: Number of entries to clear.
736 * @full: Whether we are clearing a full mm.
737 *
738 * May be overridden by the architecture; otherwise, implemented as a simple
739 * loop over ptep_get_and_clear_full().
740 *
741 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
742 * some PTEs might be write-protected.
743 *
744 * Context: The caller holds the page table lock. The PTEs map consecutive
745 * pages that belong to the same folio. The PTEs are all in the same PMD.
746 */
747static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
748 pte_t *ptep, unsigned int nr, int full)
749{
750 for (;;) {
751 ptep_get_and_clear_full(mm, addr, ptep, full);
752 if (--nr == 0)
753 break;
754 ptep++;
755 addr += PAGE_SIZE;
756 }
757}
758#endif
759
760/*
761 * If two threads concurrently fault at the same page, the thread that
762 * won the race updates the PTE and its local TLB/Cache. The other thread
763 * gives up, simply does nothing, and continues; on architectures where
764 * software can update TLB, local TLB can be updated here to avoid next page
765 * fault. This function updates TLB only, do nothing with cache or others.
766 * It is the difference with function update_mmu_cache.
767 */
768#ifndef update_mmu_tlb_range
769static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
770 unsigned long address, pte_t *ptep, unsigned int nr)
771{
772}
773#endif
774
775static inline void update_mmu_tlb(struct vm_area_struct *vma,
776 unsigned long address, pte_t *ptep)
777{
778 update_mmu_tlb_range(vma, address, ptep, 1);
779}
780
781/*
782 * Some architectures may be able to avoid expensive synchronization
783 * primitives when modifications are made to PTE's which are already
784 * not present, or in the process of an address space destruction.
785 */
786#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
787static inline void pte_clear_not_present_full(struct mm_struct *mm,
788 unsigned long address,
789 pte_t *ptep,
790 int full)
791{
792 pte_clear(mm, address, ptep);
793}
794#endif
795
796#ifndef clear_not_present_full_ptes
797/**
798 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
799 * consecutive in the pgtable.
800 * @mm: Address space the ptes represent.
801 * @addr: Address of the first pte.
802 * @ptep: Page table pointer for the first entry.
803 * @nr: Number of entries to clear.
804 * @full: Whether we are clearing a full mm.
805 *
806 * May be overridden by the architecture; otherwise, implemented as a simple
807 * loop over pte_clear_not_present_full().
808 *
809 * Context: The caller holds the page table lock. The PTEs are all not present.
810 * The PTEs are all in the same PMD.
811 */
812static inline void clear_not_present_full_ptes(struct mm_struct *mm,
813 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
814{
815 for (;;) {
816 pte_clear_not_present_full(mm, addr, ptep, full);
817 if (--nr == 0)
818 break;
819 ptep++;
820 addr += PAGE_SIZE;
821 }
822}
823#endif
824
825#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
826extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
827 unsigned long address,
828 pte_t *ptep);
829#endif
830
831#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
832extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
833 unsigned long address,
834 pmd_t *pmdp);
835extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
836 unsigned long address,
837 pud_t *pudp);
838#endif
839
840#ifndef pte_mkwrite
841static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
842{
843 return pte_mkwrite_novma(pte);
844}
845#endif
846
847#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
848static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
849{
850 return pmd_mkwrite_novma(pmd);
851}
852#endif
853
854#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
855struct mm_struct;
856static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
857{
858 pte_t old_pte = ptep_get(ptep);
859 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
860}
861#endif
862
863#ifndef wrprotect_ptes
864/**
865 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
866 * folio.
867 * @mm: Address space the pages are mapped into.
868 * @addr: Address the first page is mapped at.
869 * @ptep: Page table pointer for the first entry.
870 * @nr: Number of entries to write-protect.
871 *
872 * May be overridden by the architecture; otherwise, implemented as a simple
873 * loop over ptep_set_wrprotect().
874 *
875 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
876 * some PTEs might be write-protected.
877 *
878 * Context: The caller holds the page table lock. The PTEs map consecutive
879 * pages that belong to the same folio. The PTEs are all in the same PMD.
880 */
881static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
882 pte_t *ptep, unsigned int nr)
883{
884 for (;;) {
885 ptep_set_wrprotect(mm, addr, ptep);
886 if (--nr == 0)
887 break;
888 ptep++;
889 addr += PAGE_SIZE;
890 }
891}
892#endif
893
894/*
895 * On some architectures hardware does not set page access bit when accessing
896 * memory page, it is responsibility of software setting this bit. It brings
897 * out extra page fault penalty to track page access bit. For optimization page
898 * access bit can be set during all page fault flow on these arches.
899 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
900 * where software maintains page access bit.
901 */
902#ifndef pte_sw_mkyoung
903static inline pte_t pte_sw_mkyoung(pte_t pte)
904{
905 return pte;
906}
907#define pte_sw_mkyoung pte_sw_mkyoung
908#endif
909
910#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
912static inline void pmdp_set_wrprotect(struct mm_struct *mm,
913 unsigned long address, pmd_t *pmdp)
914{
915 pmd_t old_pmd = *pmdp;
916 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
917}
918#else
919static inline void pmdp_set_wrprotect(struct mm_struct *mm,
920 unsigned long address, pmd_t *pmdp)
921{
922 BUILD_BUG();
923}
924#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
925#endif
926#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
927#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
928#ifdef CONFIG_TRANSPARENT_HUGEPAGE
929static inline void pudp_set_wrprotect(struct mm_struct *mm,
930 unsigned long address, pud_t *pudp)
931{
932 pud_t old_pud = *pudp;
933
934 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
935}
936#else
937static inline void pudp_set_wrprotect(struct mm_struct *mm,
938 unsigned long address, pud_t *pudp)
939{
940 BUILD_BUG();
941}
942#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
943#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
944#endif
945
946#ifndef pmdp_collapse_flush
947#ifdef CONFIG_TRANSPARENT_HUGEPAGE
948extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
949 unsigned long address, pmd_t *pmdp);
950#else
951static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
952 unsigned long address,
953 pmd_t *pmdp)
954{
955 BUILD_BUG();
956 return *pmdp;
957}
958#define pmdp_collapse_flush pmdp_collapse_flush
959#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
960#endif
961
962#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
963extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
964 pgtable_t pgtable);
965#endif
966
967#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
968extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
969#endif
970
971#ifndef arch_needs_pgtable_deposit
972#define arch_needs_pgtable_deposit() (false)
973#endif
974
975#ifdef CONFIG_TRANSPARENT_HUGEPAGE
976/*
977 * This is an implementation of pmdp_establish() that is only suitable for an
978 * architecture that doesn't have hardware dirty/accessed bits. In this case we
979 * can't race with CPU which sets these bits and non-atomic approach is fine.
980 */
981static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
982 unsigned long address, pmd_t *pmdp, pmd_t pmd)
983{
984 pmd_t old_pmd = *pmdp;
985 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
986 return old_pmd;
987}
988#endif
989
990#ifndef __HAVE_ARCH_PMDP_INVALIDATE
991extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
992 pmd_t *pmdp);
993#endif
994
995#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
996
997/*
998 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
999 * hugepage mapping in the page tables. This function is similar to
1000 * pmdp_invalidate(), but should only be used if the access and dirty bits would
1001 * not be cleared by the software in the new PMD value. The function ensures
1002 * that hardware changes of the access and dirty bits updates would not be lost.
1003 *
1004 * Doing so can allow in certain architectures to avoid a TLB flush in most
1005 * cases. Yet, another TLB flush might be necessary later if the PMD update
1006 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1007 * even when a TLB flush is needed because of the update, the caller may be able
1008 * to batch these TLB flushing operations, so fewer TLB flush operations are
1009 * needed.
1010 */
1011extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1012 unsigned long address, pmd_t *pmdp);
1013#endif
1014
1015#ifndef __HAVE_ARCH_PTE_SAME
1016static inline int pte_same(pte_t pte_a, pte_t pte_b)
1017{
1018 return pte_val(pte_a) == pte_val(pte_b);
1019}
1020#endif
1021
1022#ifndef __HAVE_ARCH_PTE_UNUSED
1023/*
1024 * Some architectures provide facilities to virtualization guests
1025 * so that they can flag allocated pages as unused. This allows the
1026 * host to transparently reclaim unused pages. This function returns
1027 * whether the pte's page is unused.
1028 */
1029static inline int pte_unused(pte_t pte)
1030{
1031 return 0;
1032}
1033#endif
1034
1035#ifndef pte_access_permitted
1036#define pte_access_permitted(pte, write) \
1037 (pte_present(pte) && (!(write) || pte_write(pte)))
1038#endif
1039
1040#ifndef pmd_access_permitted
1041#define pmd_access_permitted(pmd, write) \
1042 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1043#endif
1044
1045#ifndef pud_access_permitted
1046#define pud_access_permitted(pud, write) \
1047 (pud_present(pud) && (!(write) || pud_write(pud)))
1048#endif
1049
1050#ifndef p4d_access_permitted
1051#define p4d_access_permitted(p4d, write) \
1052 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1053#endif
1054
1055#ifndef pgd_access_permitted
1056#define pgd_access_permitted(pgd, write) \
1057 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1058#endif
1059
1060#ifndef __HAVE_ARCH_PMD_SAME
1061static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1062{
1063 return pmd_val(pmd_a) == pmd_val(pmd_b);
1064}
1065#endif
1066
1067#ifndef pud_same
1068static inline int pud_same(pud_t pud_a, pud_t pud_b)
1069{
1070 return pud_val(pud_a) == pud_val(pud_b);
1071}
1072#define pud_same pud_same
1073#endif
1074
1075#ifndef __HAVE_ARCH_P4D_SAME
1076static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1077{
1078 return p4d_val(p4d_a) == p4d_val(p4d_b);
1079}
1080#endif
1081
1082#ifndef __HAVE_ARCH_PGD_SAME
1083static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1084{
1085 return pgd_val(pgd_a) == pgd_val(pgd_b);
1086}
1087#endif
1088
1089#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1090static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1091 struct vm_area_struct *vma,
1092 unsigned long addr,
1093 pte_t pte, pte_t oldpte,
1094 int nr)
1095{
1096
1097}
1098#else
1099/*
1100 * Some architectures support metadata associated with a page. When a
1101 * page is being swapped out, this metadata must be saved so it can be
1102 * restored when the page is swapped back in. SPARC M7 and newer
1103 * processors support an ADI (Application Data Integrity) tag for the
1104 * page as metadata for the page. arch_do_swap_page() can restore this
1105 * metadata when a page is swapped back in.
1106 */
1107static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1108 struct vm_area_struct *vma,
1109 unsigned long addr,
1110 pte_t pte, pte_t oldpte,
1111 int nr)
1112{
1113 for (int i = 0; i < nr; i++) {
1114 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1115 pte_advance_pfn(pte, i),
1116 pte_advance_pfn(oldpte, i));
1117 }
1118}
1119#endif
1120
1121#ifndef __HAVE_ARCH_UNMAP_ONE
1122/*
1123 * Some architectures support metadata associated with a page. When a
1124 * page is being swapped out, this metadata must be saved so it can be
1125 * restored when the page is swapped back in. SPARC M7 and newer
1126 * processors support an ADI (Application Data Integrity) tag for the
1127 * page as metadata for the page. arch_unmap_one() can save this
1128 * metadata on a swap-out of a page.
1129 */
1130static inline int arch_unmap_one(struct mm_struct *mm,
1131 struct vm_area_struct *vma,
1132 unsigned long addr,
1133 pte_t orig_pte)
1134{
1135 return 0;
1136}
1137#endif
1138
1139/*
1140 * Allow architectures to preserve additional metadata associated with
1141 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1142 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1143 */
1144#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1145static inline int arch_prepare_to_swap(struct folio *folio)
1146{
1147 return 0;
1148}
1149#endif
1150
1151#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1152static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1153{
1154}
1155
1156static inline void arch_swap_invalidate_area(int type)
1157{
1158}
1159#endif
1160
1161#ifndef __HAVE_ARCH_SWAP_RESTORE
1162static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1163{
1164}
1165#endif
1166
1167#ifndef __HAVE_ARCH_MOVE_PTE
1168#define move_pte(pte, old_addr, new_addr) (pte)
1169#endif
1170
1171#ifndef pte_accessible
1172# define pte_accessible(mm, pte) ((void)(pte), 1)
1173#endif
1174
1175#ifndef flush_tlb_fix_spurious_fault
1176#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1177#endif
1178
1179/*
1180 * When walking page tables, get the address of the next boundary,
1181 * or the end address of the range if that comes earlier. Although no
1182 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1183 */
1184
1185#define pgd_addr_end(addr, end) \
1186({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1187 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1188})
1189
1190#ifndef p4d_addr_end
1191#define p4d_addr_end(addr, end) \
1192({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1193 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1194})
1195#endif
1196
1197#ifndef pud_addr_end
1198#define pud_addr_end(addr, end) \
1199({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1200 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1201})
1202#endif
1203
1204#ifndef pmd_addr_end
1205#define pmd_addr_end(addr, end) \
1206({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1207 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1208})
1209#endif
1210
1211/*
1212 * When walking page tables, we usually want to skip any p?d_none entries;
1213 * and any p?d_bad entries - reporting the error before resetting to none.
1214 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1215 */
1216void pgd_clear_bad(pgd_t *);
1217
1218#ifndef __PAGETABLE_P4D_FOLDED
1219void p4d_clear_bad(p4d_t *);
1220#else
1221#define p4d_clear_bad(p4d) do { } while (0)
1222#endif
1223
1224#ifndef __PAGETABLE_PUD_FOLDED
1225void pud_clear_bad(pud_t *);
1226#else
1227#define pud_clear_bad(p4d) do { } while (0)
1228#endif
1229
1230void pmd_clear_bad(pmd_t *);
1231
1232static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1233{
1234 if (pgd_none(*pgd))
1235 return 1;
1236 if (unlikely(pgd_bad(*pgd))) {
1237 pgd_clear_bad(pgd);
1238 return 1;
1239 }
1240 return 0;
1241}
1242
1243static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1244{
1245 if (p4d_none(*p4d))
1246 return 1;
1247 if (unlikely(p4d_bad(*p4d))) {
1248 p4d_clear_bad(p4d);
1249 return 1;
1250 }
1251 return 0;
1252}
1253
1254static inline int pud_none_or_clear_bad(pud_t *pud)
1255{
1256 if (pud_none(*pud))
1257 return 1;
1258 if (unlikely(pud_bad(*pud))) {
1259 pud_clear_bad(pud);
1260 return 1;
1261 }
1262 return 0;
1263}
1264
1265static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1266{
1267 if (pmd_none(*pmd))
1268 return 1;
1269 if (unlikely(pmd_bad(*pmd))) {
1270 pmd_clear_bad(pmd);
1271 return 1;
1272 }
1273 return 0;
1274}
1275
1276static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1277 unsigned long addr,
1278 pte_t *ptep)
1279{
1280 /*
1281 * Get the current pte state, but zero it out to make it
1282 * non-present, preventing the hardware from asynchronously
1283 * updating it.
1284 */
1285 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1286}
1287
1288static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1289 unsigned long addr,
1290 pte_t *ptep, pte_t pte)
1291{
1292 /*
1293 * The pte is non-present, so there's no hardware state to
1294 * preserve.
1295 */
1296 set_pte_at(vma->vm_mm, addr, ptep, pte);
1297}
1298
1299#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1300/*
1301 * Start a pte protection read-modify-write transaction, which
1302 * protects against asynchronous hardware modifications to the pte.
1303 * The intention is not to prevent the hardware from making pte
1304 * updates, but to prevent any updates it may make from being lost.
1305 *
1306 * This does not protect against other software modifications of the
1307 * pte; the appropriate pte lock must be held over the transaction.
1308 *
1309 * Note that this interface is intended to be batchable, meaning that
1310 * ptep_modify_prot_commit may not actually update the pte, but merely
1311 * queue the update to be done at some later time. The update must be
1312 * actually committed before the pte lock is released, however.
1313 */
1314static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1315 unsigned long addr,
1316 pte_t *ptep)
1317{
1318 return __ptep_modify_prot_start(vma, addr, ptep);
1319}
1320
1321/*
1322 * Commit an update to a pte, leaving any hardware-controlled bits in
1323 * the PTE unmodified.
1324 */
1325static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1326 unsigned long addr,
1327 pte_t *ptep, pte_t old_pte, pte_t pte)
1328{
1329 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1330}
1331#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1332#endif /* CONFIG_MMU */
1333
1334/*
1335 * No-op macros that just return the current protection value. Defined here
1336 * because these macros can be used even if CONFIG_MMU is not defined.
1337 */
1338
1339#ifndef pgprot_nx
1340#define pgprot_nx(prot) (prot)
1341#endif
1342
1343#ifndef pgprot_noncached
1344#define pgprot_noncached(prot) (prot)
1345#endif
1346
1347#ifndef pgprot_writecombine
1348#define pgprot_writecombine pgprot_noncached
1349#endif
1350
1351#ifndef pgprot_writethrough
1352#define pgprot_writethrough pgprot_noncached
1353#endif
1354
1355#ifndef pgprot_device
1356#define pgprot_device pgprot_noncached
1357#endif
1358
1359#ifndef pgprot_mhp
1360#define pgprot_mhp(prot) (prot)
1361#endif
1362
1363#ifdef CONFIG_MMU
1364#ifndef pgprot_modify
1365#define pgprot_modify pgprot_modify
1366static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1367{
1368 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1369 newprot = pgprot_noncached(newprot);
1370 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1371 newprot = pgprot_writecombine(newprot);
1372 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1373 newprot = pgprot_device(newprot);
1374 return newprot;
1375}
1376#endif
1377#endif /* CONFIG_MMU */
1378
1379#ifndef pgprot_encrypted
1380#define pgprot_encrypted(prot) (prot)
1381#endif
1382
1383#ifndef pgprot_decrypted
1384#define pgprot_decrypted(prot) (prot)
1385#endif
1386
1387/*
1388 * A facility to provide batching of the reload of page tables and
1389 * other process state with the actual context switch code for
1390 * paravirtualized guests. By convention, only one of the batched
1391 * update (lazy) modes (CPU, MMU) should be active at any given time,
1392 * entry should never be nested, and entry and exits should always be
1393 * paired. This is for sanity of maintaining and reasoning about the
1394 * kernel code. In this case, the exit (end of the context switch) is
1395 * in architecture-specific code, and so doesn't need a generic
1396 * definition.
1397 */
1398#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1399#define arch_start_context_switch(prev) do {} while (0)
1400#endif
1401
1402#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1403#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1404static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1405{
1406 return pmd;
1407}
1408
1409static inline int pmd_swp_soft_dirty(pmd_t pmd)
1410{
1411 return 0;
1412}
1413
1414static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1415{
1416 return pmd;
1417}
1418#endif
1419#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1420static inline int pte_soft_dirty(pte_t pte)
1421{
1422 return 0;
1423}
1424
1425static inline int pmd_soft_dirty(pmd_t pmd)
1426{
1427 return 0;
1428}
1429
1430static inline pte_t pte_mksoft_dirty(pte_t pte)
1431{
1432 return pte;
1433}
1434
1435static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1436{
1437 return pmd;
1438}
1439
1440static inline pte_t pte_clear_soft_dirty(pte_t pte)
1441{
1442 return pte;
1443}
1444
1445static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1446{
1447 return pmd;
1448}
1449
1450static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1451{
1452 return pte;
1453}
1454
1455static inline int pte_swp_soft_dirty(pte_t pte)
1456{
1457 return 0;
1458}
1459
1460static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1461{
1462 return pte;
1463}
1464
1465static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1466{
1467 return pmd;
1468}
1469
1470static inline int pmd_swp_soft_dirty(pmd_t pmd)
1471{
1472 return 0;
1473}
1474
1475static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1476{
1477 return pmd;
1478}
1479#endif
1480
1481#ifndef __HAVE_PFNMAP_TRACKING
1482/*
1483 * Interfaces that can be used by architecture code to keep track of
1484 * memory type of pfn mappings specified by the remap_pfn_range,
1485 * vmf_insert_pfn.
1486 */
1487
1488static inline int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size,
1489 pgprot_t *prot)
1490{
1491 return 0;
1492}
1493
1494static inline int pfnmap_track(unsigned long pfn, unsigned long size,
1495 pgprot_t *prot)
1496{
1497 return 0;
1498}
1499
1500static inline void pfnmap_untrack(unsigned long pfn, unsigned long size)
1501{
1502}
1503#else
1504/**
1505 * pfnmap_setup_cachemode - setup the cachemode in the pgprot for a pfn range
1506 * @pfn: the start of the pfn range
1507 * @size: the size of the pfn range in bytes
1508 * @prot: the pgprot to modify
1509 *
1510 * Lookup the cachemode for the pfn range starting at @pfn with the size
1511 * @size and store it in @prot, leaving other data in @prot unchanged.
1512 *
1513 * This allows for a hardware implementation to have fine-grained control of
1514 * memory cache behavior at page level granularity. Without a hardware
1515 * implementation, this function does nothing.
1516 *
1517 * Currently there is only one implementation for this - x86 Page Attribute
1518 * Table (PAT). See Documentation/arch/x86/pat.rst for more details.
1519 *
1520 * This function can fail if the pfn range spans pfns that require differing
1521 * cachemodes. If the pfn range was previously verified to have a single
1522 * cachemode, it is sufficient to query only a single pfn. The assumption is
1523 * that this is the case for drivers using the vmf_insert_pfn*() interface.
1524 *
1525 * Returns 0 on success and -EINVAL on error.
1526 */
1527int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size,
1528 pgprot_t *prot);
1529
1530/**
1531 * pfnmap_track - track a pfn range
1532 * @pfn: the start of the pfn range
1533 * @size: the size of the pfn range in bytes
1534 * @prot: the pgprot to track
1535 *
1536 * Requested the pfn range to be 'tracked' by a hardware implementation and
1537 * setup the cachemode in @prot similar to pfnmap_setup_cachemode().
1538 *
1539 * This allows for fine-grained control of memory cache behaviour at page
1540 * level granularity. Tracking memory this way is persisted across VMA splits
1541 * (VMA merging does not apply for VM_PFNMAP).
1542 *
1543 * Currently, there is only one implementation for this - x86 Page Attribute
1544 * Table (PAT). See Documentation/arch/x86/pat.rst for more details.
1545 *
1546 * Returns 0 on success and -EINVAL on error.
1547 */
1548int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot);
1549
1550/**
1551 * pfnmap_untrack - untrack a pfn range
1552 * @pfn: the start of the pfn range
1553 * @size: the size of the pfn range in bytes
1554 *
1555 * Untrack a pfn range previously tracked through pfnmap_track().
1556 */
1557void pfnmap_untrack(unsigned long pfn, unsigned long size);
1558#endif
1559
1560/**
1561 * pfnmap_setup_cachemode_pfn - setup the cachemode in the pgprot for a pfn
1562 * @pfn: the pfn
1563 * @prot: the pgprot to modify
1564 *
1565 * Lookup the cachemode for @pfn and store it in @prot, leaving other
1566 * data in @prot unchanged.
1567 *
1568 * See pfnmap_setup_cachemode() for details.
1569 */
1570static inline void pfnmap_setup_cachemode_pfn(unsigned long pfn, pgprot_t *prot)
1571{
1572 pfnmap_setup_cachemode(pfn, PAGE_SIZE, prot);
1573}
1574
1575#ifdef CONFIG_MMU
1576#ifdef __HAVE_COLOR_ZERO_PAGE
1577static inline int is_zero_pfn(unsigned long pfn)
1578{
1579 extern unsigned long zero_pfn;
1580 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1581 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1582}
1583
1584#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1585
1586#else
1587static inline int is_zero_pfn(unsigned long pfn)
1588{
1589 extern unsigned long zero_pfn;
1590 return pfn == zero_pfn;
1591}
1592
1593static inline unsigned long my_zero_pfn(unsigned long addr)
1594{
1595 extern unsigned long zero_pfn;
1596 return zero_pfn;
1597}
1598#endif
1599#else
1600static inline int is_zero_pfn(unsigned long pfn)
1601{
1602 return 0;
1603}
1604
1605static inline unsigned long my_zero_pfn(unsigned long addr)
1606{
1607 return 0;
1608}
1609#endif /* CONFIG_MMU */
1610
1611#ifdef CONFIG_MMU
1612
1613#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1614static inline int pmd_trans_huge(pmd_t pmd)
1615{
1616 return 0;
1617}
1618#ifndef pmd_write
1619static inline int pmd_write(pmd_t pmd)
1620{
1621 BUG();
1622 return 0;
1623}
1624#endif /* pmd_write */
1625#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1626
1627#ifndef pud_write
1628static inline int pud_write(pud_t pud)
1629{
1630 BUG();
1631 return 0;
1632}
1633#endif /* pud_write */
1634
1635#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1636static inline int pmd_devmap(pmd_t pmd)
1637{
1638 return 0;
1639}
1640static inline int pud_devmap(pud_t pud)
1641{
1642 return 0;
1643}
1644static inline int pgd_devmap(pgd_t pgd)
1645{
1646 return 0;
1647}
1648#endif
1649
1650#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1651 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1652static inline int pud_trans_huge(pud_t pud)
1653{
1654 return 0;
1655}
1656#endif
1657
1658static inline int pud_trans_unstable(pud_t *pud)
1659{
1660#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1661 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1662 pud_t pudval = READ_ONCE(*pud);
1663
1664 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1665 return 1;
1666 if (unlikely(pud_bad(pudval))) {
1667 pud_clear_bad(pud);
1668 return 1;
1669 }
1670#endif
1671 return 0;
1672}
1673
1674#ifndef CONFIG_NUMA_BALANCING
1675/*
1676 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1677 * perfectly valid to indicate "no" in that case, which is why our default
1678 * implementation defaults to "always no".
1679 *
1680 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1681 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1682 * accessible VMAs.
1683 *
1684 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1685 * looking at the VMA accessibility is sufficient.
1686 */
1687static inline int pte_protnone(pte_t pte)
1688{
1689 return 0;
1690}
1691
1692static inline int pmd_protnone(pmd_t pmd)
1693{
1694 return 0;
1695}
1696#endif /* CONFIG_NUMA_BALANCING */
1697
1698#endif /* CONFIG_MMU */
1699
1700#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1701
1702#ifndef __PAGETABLE_P4D_FOLDED
1703int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1704void p4d_clear_huge(p4d_t *p4d);
1705#else
1706static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1707{
1708 return 0;
1709}
1710static inline void p4d_clear_huge(p4d_t *p4d) { }
1711#endif /* !__PAGETABLE_P4D_FOLDED */
1712
1713int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1714int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1715int pud_clear_huge(pud_t *pud);
1716int pmd_clear_huge(pmd_t *pmd);
1717int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1718int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1719int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1720#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1721static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1722{
1723 return 0;
1724}
1725static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1726{
1727 return 0;
1728}
1729static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1730{
1731 return 0;
1732}
1733static inline void p4d_clear_huge(p4d_t *p4d) { }
1734static inline int pud_clear_huge(pud_t *pud)
1735{
1736 return 0;
1737}
1738static inline int pmd_clear_huge(pmd_t *pmd)
1739{
1740 return 0;
1741}
1742static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1743{
1744 return 0;
1745}
1746static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1747{
1748 return 0;
1749}
1750static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1751{
1752 return 0;
1753}
1754#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1755
1756#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1757#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1758/*
1759 * ARCHes with special requirements for evicting THP backing TLB entries can
1760 * implement this. Otherwise also, it can help optimize normal TLB flush in
1761 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1762 * entire TLB if flush span is greater than a threshold, which will
1763 * likely be true for a single huge page. Thus a single THP flush will
1764 * invalidate the entire TLB which is not desirable.
1765 * e.g. see arch/arc: flush_pmd_tlb_range
1766 */
1767#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1768#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1769#else
1770#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1771#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1772#endif
1773#endif
1774
1775struct file;
1776int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1777 unsigned long size, pgprot_t *vma_prot);
1778
1779#ifndef CONFIG_X86_ESPFIX64
1780static inline void init_espfix_bsp(void) { }
1781#endif
1782
1783extern void __init pgtable_cache_init(void);
1784
1785#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1786static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1787{
1788 return true;
1789}
1790
1791static inline bool arch_has_pfn_modify_check(void)
1792{
1793 return false;
1794}
1795#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1796
1797/*
1798 * Architecture PAGE_KERNEL_* fallbacks
1799 *
1800 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1801 * because they really don't support them, or the port needs to be updated to
1802 * reflect the required functionality. Below are a set of relatively safe
1803 * fallbacks, as best effort, which we can count on in lieu of the architectures
1804 * not defining them on their own yet.
1805 */
1806
1807#ifndef PAGE_KERNEL_RO
1808# define PAGE_KERNEL_RO PAGE_KERNEL
1809#endif
1810
1811#ifndef PAGE_KERNEL_EXEC
1812# define PAGE_KERNEL_EXEC PAGE_KERNEL
1813#endif
1814
1815/*
1816 * Page Table Modification bits for pgtbl_mod_mask.
1817 *
1818 * These are used by the p?d_alloc_track*() set of functions an in the generic
1819 * vmalloc/ioremap code to track at which page-table levels entries have been
1820 * modified. Based on that the code can better decide when vmalloc and ioremap
1821 * mapping changes need to be synchronized to other page-tables in the system.
1822 */
1823#define __PGTBL_PGD_MODIFIED 0
1824#define __PGTBL_P4D_MODIFIED 1
1825#define __PGTBL_PUD_MODIFIED 2
1826#define __PGTBL_PMD_MODIFIED 3
1827#define __PGTBL_PTE_MODIFIED 4
1828
1829#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1830#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1831#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1832#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1833#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1834
1835/* Page-Table Modification Mask */
1836typedef unsigned int pgtbl_mod_mask;
1837
1838#endif /* !__ASSEMBLY__ */
1839
1840#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1841#ifdef CONFIG_PHYS_ADDR_T_64BIT
1842/*
1843 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1844 * with physical address space extension, but falls back to
1845 * BITS_PER_LONG otherwise.
1846 */
1847#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1848#else
1849#define MAX_POSSIBLE_PHYSMEM_BITS 32
1850#endif
1851#endif
1852
1853#ifndef has_transparent_hugepage
1854#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1855#endif
1856
1857#ifndef has_transparent_pud_hugepage
1858#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1859#endif
1860/*
1861 * On some architectures it depends on the mm if the p4d/pud or pmd
1862 * layer of the page table hierarchy is folded or not.
1863 */
1864#ifndef mm_p4d_folded
1865#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1866#endif
1867
1868#ifndef mm_pud_folded
1869#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1870#endif
1871
1872#ifndef mm_pmd_folded
1873#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1874#endif
1875
1876#ifndef p4d_offset_lockless
1877#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1878#endif
1879#ifndef pud_offset_lockless
1880#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1881#endif
1882#ifndef pmd_offset_lockless
1883#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1884#endif
1885
1886/*
1887 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1888 * mapping. It should work globally across all archs, without any
1889 * dependency on CONFIG_* options. For architectures that do not support
1890 * huge mappings on specific levels, below fallbacks will be used.
1891 *
1892 * A leaf pgtable entry should always imply the following:
1893 *
1894 * - It is a "present" entry. IOW, before using this API, please check it
1895 * with pXd_present() first. NOTE: it may not always mean the "present
1896 * bit" is set. For example, PROT_NONE entries are always "present".
1897 *
1898 * - It should _never_ be a swap entry of any type. Above "present" check
1899 * should have guarded this, but let's be crystal clear on this.
1900 *
1901 * - It should contain a huge PFN, which points to a huge page larger than
1902 * PAGE_SIZE of the platform. The PFN format isn't important here.
1903 *
1904 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1905 * pXd_devmap(), or hugetlb mappings).
1906 */
1907#ifndef pgd_leaf
1908#define pgd_leaf(x) false
1909#endif
1910#ifndef p4d_leaf
1911#define p4d_leaf(x) false
1912#endif
1913#ifndef pud_leaf
1914#define pud_leaf(x) false
1915#endif
1916#ifndef pmd_leaf
1917#define pmd_leaf(x) false
1918#endif
1919
1920#ifndef pgd_leaf_size
1921#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1922#endif
1923#ifndef p4d_leaf_size
1924#define p4d_leaf_size(x) P4D_SIZE
1925#endif
1926#ifndef pud_leaf_size
1927#define pud_leaf_size(x) PUD_SIZE
1928#endif
1929#ifndef pmd_leaf_size
1930#define pmd_leaf_size(x) PMD_SIZE
1931#endif
1932#ifndef __pte_leaf_size
1933#ifndef pte_leaf_size
1934#define pte_leaf_size(x) PAGE_SIZE
1935#endif
1936#define __pte_leaf_size(x,y) pte_leaf_size(y)
1937#endif
1938
1939/*
1940 * We always define pmd_pfn for all archs as it's used in lots of generic
1941 * code. Now it happens too for pud_pfn (and can happen for larger
1942 * mappings too in the future; we're not there yet). Instead of defining
1943 * it for all archs (like pmd_pfn), provide a fallback.
1944 *
1945 * Note that returning 0 here means any arch that didn't define this can
1946 * get severely wrong when it hits a real pud leaf. It's arch's
1947 * responsibility to properly define it when a huge pud is possible.
1948 */
1949#ifndef pud_pfn
1950#define pud_pfn(x) 0
1951#endif
1952
1953/*
1954 * Some architectures have MMUs that are configurable or selectable at boot
1955 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1956 * helps to have a static maximum value.
1957 */
1958
1959#ifndef MAX_PTRS_PER_PTE
1960#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1961#endif
1962
1963#ifndef MAX_PTRS_PER_PMD
1964#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1965#endif
1966
1967#ifndef MAX_PTRS_PER_PUD
1968#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1969#endif
1970
1971#ifndef MAX_PTRS_PER_P4D
1972#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1973#endif
1974
1975#ifndef pte_pgprot
1976#define pte_pgprot(x) ((pgprot_t) {0})
1977#endif
1978
1979#ifndef pmd_pgprot
1980#define pmd_pgprot(x) ((pgprot_t) {0})
1981#endif
1982
1983#ifndef pud_pgprot
1984#define pud_pgprot(x) ((pgprot_t) {0})
1985#endif
1986
1987/* description of effects of mapping type and prot in current implementation.
1988 * this is due to the limited x86 page protection hardware. The expected
1989 * behavior is in parens:
1990 *
1991 * map_type prot
1992 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1993 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1994 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1995 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1996 *
1997 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1998 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1999 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
2000 *
2001 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
2002 * MAP_PRIVATE (with Enhanced PAN supported):
2003 * r: (no) no
2004 * w: (no) no
2005 * x: (yes) yes
2006 */
2007#define DECLARE_VM_GET_PAGE_PROT \
2008pgprot_t vm_get_page_prot(unsigned long vm_flags) \
2009{ \
2010 return protection_map[vm_flags & \
2011 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
2012} \
2013EXPORT_SYMBOL(vm_get_page_prot);
2014
2015#endif /* _LINUX_PGTABLE_H */