at v6.16 751 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (c) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 */ 8#ifndef __LINUX_MTD_SPINAND_H 9#define __LINUX_MTD_SPINAND_H 10 11#include <linux/mutex.h> 12#include <linux/bitops.h> 13#include <linux/device.h> 14#include <linux/mtd/mtd.h> 15#include <linux/mtd/nand.h> 16#include <linux/spi/spi.h> 17#include <linux/spi/spi-mem.h> 18 19/** 20 * Standard SPI NAND flash operations 21 */ 22 23#define SPINAND_RESET_1S_0_0_OP \ 24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ 25 SPI_MEM_OP_NO_ADDR, \ 26 SPI_MEM_OP_NO_DUMMY, \ 27 SPI_MEM_OP_NO_DATA) 28 29#define SPINAND_WR_EN_DIS_1S_0_0_OP(enable) \ 30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ 31 SPI_MEM_OP_NO_ADDR, \ 32 SPI_MEM_OP_NO_DUMMY, \ 33 SPI_MEM_OP_NO_DATA) 34 35#define SPINAND_READID_1S_1S_1S_OP(naddr, ndummy, buf, len) \ 36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ 37 SPI_MEM_OP_ADDR(naddr, 0, 1), \ 38 SPI_MEM_OP_DUMMY(ndummy, 1), \ 39 SPI_MEM_OP_DATA_IN(len, buf, 1)) 40 41#define SPINAND_SET_FEATURE_1S_1S_1S_OP(reg, valptr) \ 42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ 43 SPI_MEM_OP_ADDR(1, reg, 1), \ 44 SPI_MEM_OP_NO_DUMMY, \ 45 SPI_MEM_OP_DATA_OUT(1, valptr, 1)) 46 47#define SPINAND_GET_FEATURE_1S_1S_1S_OP(reg, valptr) \ 48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ 49 SPI_MEM_OP_ADDR(1, reg, 1), \ 50 SPI_MEM_OP_NO_DUMMY, \ 51 SPI_MEM_OP_DATA_IN(1, valptr, 1)) 52 53#define SPINAND_BLK_ERASE_1S_1S_0_OP(addr) \ 54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ 55 SPI_MEM_OP_ADDR(3, addr, 1), \ 56 SPI_MEM_OP_NO_DUMMY, \ 57 SPI_MEM_OP_NO_DATA) 58 59#define SPINAND_PAGE_READ_1S_1S_0_OP(addr) \ 60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ 61 SPI_MEM_OP_ADDR(3, addr, 1), \ 62 SPI_MEM_OP_NO_DUMMY, \ 63 SPI_MEM_OP_NO_DATA) 64 65#define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(addr, ndummy, buf, len, ...) \ 66 SPI_MEM_OP(SPI_MEM_OP_CMD(0x03, 1), \ 67 SPI_MEM_OP_ADDR(2, addr, 1), \ 68 SPI_MEM_OP_DUMMY(ndummy, 1), \ 69 SPI_MEM_OP_DATA_IN(len, buf, 1), \ 70 SPI_MEM_OP_MAX_FREQ(__VA_ARGS__ + 0)) 71 72#define SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(addr, ndummy, buf, len) \ 73 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0b, 1), \ 74 SPI_MEM_OP_ADDR(2, addr, 1), \ 75 SPI_MEM_OP_DUMMY(ndummy, 1), \ 76 SPI_MEM_OP_DATA_IN(len, buf, 1)) 77 78#define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_1S_1S_OP(addr, ndummy, buf, len) \ 79 SPI_MEM_OP(SPI_MEM_OP_CMD(0x03, 1), \ 80 SPI_MEM_OP_ADDR(3, addr, 1), \ 81 SPI_MEM_OP_DUMMY(ndummy, 1), \ 82 SPI_MEM_OP_DATA_IN(len, buf, 1)) 83 84#define SPINAND_PAGE_READ_FROM_CACHE_FAST_3A_1S_1S_1S_OP(addr, ndummy, buf, len) \ 85 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0b, 1), \ 86 SPI_MEM_OP_ADDR(3, addr, 1), \ 87 SPI_MEM_OP_DUMMY(ndummy, 1), \ 88 SPI_MEM_OP_DATA_IN(len, buf, 1)) 89 90#define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_1D_OP(addr, ndummy, buf, len, freq) \ 91 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0d, 1), \ 92 SPI_MEM_DTR_OP_ADDR(2, addr, 1), \ 93 SPI_MEM_DTR_OP_DUMMY(ndummy, 1), \ 94 SPI_MEM_DTR_OP_DATA_IN(len, buf, 1), \ 95 SPI_MEM_OP_MAX_FREQ(freq)) 96 97#define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(addr, ndummy, buf, len) \ 98 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 99 SPI_MEM_OP_ADDR(2, addr, 1), \ 100 SPI_MEM_OP_DUMMY(ndummy, 1), \ 101 SPI_MEM_OP_DATA_IN(len, buf, 2)) 102 103#define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_1S_2S_OP(addr, ndummy, buf, len) \ 104 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 105 SPI_MEM_OP_ADDR(3, addr, 1), \ 106 SPI_MEM_OP_DUMMY(ndummy, 1), \ 107 SPI_MEM_OP_DATA_IN(len, buf, 2)) 108 109#define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_2D_OP(addr, ndummy, buf, len, freq) \ 110 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3d, 1), \ 111 SPI_MEM_DTR_OP_ADDR(2, addr, 1), \ 112 SPI_MEM_DTR_OP_DUMMY(ndummy, 1), \ 113 SPI_MEM_DTR_OP_DATA_IN(len, buf, 2), \ 114 SPI_MEM_OP_MAX_FREQ(freq)) 115 116#define SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(addr, ndummy, buf, len, ...) \ 117 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 118 SPI_MEM_OP_ADDR(2, addr, 2), \ 119 SPI_MEM_OP_DUMMY(ndummy, 2), \ 120 SPI_MEM_OP_DATA_IN(len, buf, 2), \ 121 SPI_MEM_OP_MAX_FREQ(__VA_ARGS__ + 0)) 122 123#define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_2S_2S_OP(addr, ndummy, buf, len) \ 124 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 125 SPI_MEM_OP_ADDR(3, addr, 2), \ 126 SPI_MEM_OP_DUMMY(ndummy, 2), \ 127 SPI_MEM_OP_DATA_IN(len, buf, 2)) 128 129#define SPINAND_PAGE_READ_FROM_CACHE_1S_2D_2D_OP(addr, ndummy, buf, len, freq) \ 130 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbd, 1), \ 131 SPI_MEM_DTR_OP_ADDR(2, addr, 2), \ 132 SPI_MEM_DTR_OP_DUMMY(ndummy, 2), \ 133 SPI_MEM_DTR_OP_DATA_IN(len, buf, 2), \ 134 SPI_MEM_OP_MAX_FREQ(freq)) 135 136#define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(addr, ndummy, buf, len) \ 137 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 138 SPI_MEM_OP_ADDR(2, addr, 1), \ 139 SPI_MEM_OP_DUMMY(ndummy, 1), \ 140 SPI_MEM_OP_DATA_IN(len, buf, 4)) 141 142#define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_1S_4S_OP(addr, ndummy, buf, len) \ 143 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 144 SPI_MEM_OP_ADDR(3, addr, 1), \ 145 SPI_MEM_OP_DUMMY(ndummy, 1), \ 146 SPI_MEM_OP_DATA_IN(len, buf, 4)) 147 148#define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_4D_OP(addr, ndummy, buf, len, freq) \ 149 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6d, 1), \ 150 SPI_MEM_DTR_OP_ADDR(2, addr, 1), \ 151 SPI_MEM_DTR_OP_DUMMY(ndummy, 1), \ 152 SPI_MEM_DTR_OP_DATA_IN(len, buf, 4), \ 153 SPI_MEM_OP_MAX_FREQ(freq)) 154 155#define SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(addr, ndummy, buf, len, ...) \ 156 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 157 SPI_MEM_OP_ADDR(2, addr, 4), \ 158 SPI_MEM_OP_DUMMY(ndummy, 4), \ 159 SPI_MEM_OP_DATA_IN(len, buf, 4), \ 160 SPI_MEM_OP_MAX_FREQ(__VA_ARGS__ + 0)) 161 162#define SPINAND_PAGE_READ_FROM_CACHE_3A_1S_4S_4S_OP(addr, ndummy, buf, len) \ 163 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 164 SPI_MEM_OP_ADDR(3, addr, 4), \ 165 SPI_MEM_OP_DUMMY(ndummy, 4), \ 166 SPI_MEM_OP_DATA_IN(len, buf, 4)) 167 168#define SPINAND_PAGE_READ_FROM_CACHE_1S_4D_4D_OP(addr, ndummy, buf, len, freq) \ 169 SPI_MEM_OP(SPI_MEM_OP_CMD(0xed, 1), \ 170 SPI_MEM_DTR_OP_ADDR(2, addr, 4), \ 171 SPI_MEM_DTR_OP_DUMMY(ndummy, 4), \ 172 SPI_MEM_DTR_OP_DATA_IN(len, buf, 4), \ 173 SPI_MEM_OP_MAX_FREQ(freq)) 174 175#define SPINAND_PAGE_READ_FROM_CACHE_1S_1S_8S_OP(addr, ndummy, buf, len, freq) \ 176 SPI_MEM_OP(SPI_MEM_OP_CMD(0x8b, 1), \ 177 SPI_MEM_OP_ADDR(2, addr, 1), \ 178 SPI_MEM_OP_DUMMY(ndummy, 1), \ 179 SPI_MEM_OP_DATA_IN(len, buf, 8), \ 180 SPI_MEM_OP_MAX_FREQ(freq)) 181 182#define SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(addr, ndummy, buf, len, freq) \ 183 SPI_MEM_OP(SPI_MEM_OP_CMD(0xcb, 1), \ 184 SPI_MEM_OP_ADDR(2, addr, 8), \ 185 SPI_MEM_OP_DUMMY(ndummy, 8), \ 186 SPI_MEM_OP_DATA_IN(len, buf, 8), \ 187 SPI_MEM_OP_MAX_FREQ(freq)) 188 189#define SPINAND_PAGE_READ_FROM_CACHE_1S_1D_8D_OP(addr, ndummy, buf, len, freq) \ 190 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9d, 1), \ 191 SPI_MEM_DTR_OP_ADDR(2, addr, 1), \ 192 SPI_MEM_DTR_OP_DUMMY(ndummy, 1), \ 193 SPI_MEM_DTR_OP_DATA_IN(len, buf, 8), \ 194 SPI_MEM_OP_MAX_FREQ(freq)) 195 196#define SPINAND_PROG_EXEC_1S_1S_0_OP(addr) \ 197 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ 198 SPI_MEM_OP_ADDR(3, addr, 1), \ 199 SPI_MEM_OP_NO_DUMMY, \ 200 SPI_MEM_OP_NO_DATA) 201 202#define SPINAND_PROG_LOAD_1S_1S_1S_OP(reset, addr, buf, len) \ 203 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ 204 SPI_MEM_OP_ADDR(2, addr, 1), \ 205 SPI_MEM_OP_NO_DUMMY, \ 206 SPI_MEM_OP_DATA_OUT(len, buf, 1)) 207 208#define SPINAND_PROG_LOAD_1S_1S_4S_OP(reset, addr, buf, len) \ 209 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ 210 SPI_MEM_OP_ADDR(2, addr, 1), \ 211 SPI_MEM_OP_NO_DUMMY, \ 212 SPI_MEM_OP_DATA_OUT(len, buf, 4)) 213 214#define SPINAND_PROG_LOAD_1S_1S_8S_OP(addr, buf, len) \ 215 SPI_MEM_OP(SPI_MEM_OP_CMD(0x82, 1), \ 216 SPI_MEM_OP_ADDR(2, addr, 1), \ 217 SPI_MEM_OP_NO_DUMMY, \ 218 SPI_MEM_OP_DATA_OUT(len, buf, 8)) 219 220#define SPINAND_PROG_LOAD_1S_8S_8S_OP(reset, addr, buf, len) \ 221 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0xc2 : 0xc4, 1), \ 222 SPI_MEM_OP_ADDR(2, addr, 8), \ 223 SPI_MEM_OP_NO_DUMMY, \ 224 SPI_MEM_OP_DATA_OUT(len, buf, 8)) 225 226/** 227 * Standard SPI NAND flash commands 228 */ 229#define SPINAND_CMD_PROG_LOAD_X4 0x32 230#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 231 232/* feature register */ 233#define REG_BLOCK_LOCK 0xa0 234#define BL_ALL_UNLOCKED 0x00 235 236/* configuration register */ 237#define REG_CFG 0xb0 238#define CFG_OTP_ENABLE BIT(6) 239#define CFG_ECC_ENABLE BIT(4) 240#define CFG_QUAD_ENABLE BIT(0) 241 242/* status register */ 243#define REG_STATUS 0xc0 244#define STATUS_BUSY BIT(0) 245#define STATUS_ERASE_FAILED BIT(2) 246#define STATUS_PROG_FAILED BIT(3) 247#define STATUS_ECC_MASK GENMASK(5, 4) 248#define STATUS_ECC_NO_BITFLIPS (0 << 4) 249#define STATUS_ECC_HAS_BITFLIPS (1 << 4) 250#define STATUS_ECC_UNCOR_ERROR (2 << 4) 251 252struct spinand_op; 253struct spinand_device; 254 255#define SPINAND_MAX_ID_LEN 5 256/* 257 * For erase, write and read operation, we got the following timings : 258 * tBERS (erase) 1ms to 4ms 259 * tPROG 300us to 400us 260 * tREAD 25us to 100us 261 * In order to minimize latency, the min value is divided by 4 for the 262 * initial delay, and dividing by 20 for the poll delay. 263 * For reset, 5us/10us/500us if the device is respectively 264 * reading/programming/erasing when the RESET occurs. Since we always 265 * issue a RESET when the device is IDLE, 5us is selected for both initial 266 * and poll delay. 267 */ 268#define SPINAND_READ_INITIAL_DELAY_US 6 269#define SPINAND_READ_POLL_DELAY_US 5 270#define SPINAND_RESET_INITIAL_DELAY_US 5 271#define SPINAND_RESET_POLL_DELAY_US 5 272#define SPINAND_WRITE_INITIAL_DELAY_US 75 273#define SPINAND_WRITE_POLL_DELAY_US 15 274#define SPINAND_ERASE_INITIAL_DELAY_US 250 275#define SPINAND_ERASE_POLL_DELAY_US 50 276 277#define SPINAND_WAITRDY_TIMEOUT_MS 400 278 279/** 280 * struct spinand_id - SPI NAND id structure 281 * @data: buffer containing the id bytes. Currently 4 bytes large, but can 282 * be extended if required 283 * @len: ID length 284 */ 285struct spinand_id { 286 u8 data[SPINAND_MAX_ID_LEN]; 287 int len; 288}; 289 290enum spinand_readid_method { 291 SPINAND_READID_METHOD_OPCODE, 292 SPINAND_READID_METHOD_OPCODE_ADDR, 293 SPINAND_READID_METHOD_OPCODE_DUMMY, 294}; 295 296/** 297 * struct spinand_devid - SPI NAND device id structure 298 * @id: device id of current chip 299 * @len: number of bytes in device id 300 * @method: method to read chip id 301 * There are 3 possible variants: 302 * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately 303 * after read_id opcode. 304 * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after 305 * read_id opcode + 1-byte address. 306 * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after 307 * read_id opcode + 1 dummy byte. 308 */ 309struct spinand_devid { 310 const u8 *id; 311 const u8 len; 312 const enum spinand_readid_method method; 313}; 314 315/** 316 * struct manufacurer_ops - SPI NAND manufacturer specific operations 317 * @init: initialize a SPI NAND device 318 * @cleanup: cleanup a SPI NAND device 319 * 320 * Each SPI NAND manufacturer driver should implement this interface so that 321 * NAND chips coming from this vendor can be initialized properly. 322 */ 323struct spinand_manufacturer_ops { 324 int (*init)(struct spinand_device *spinand); 325 void (*cleanup)(struct spinand_device *spinand); 326}; 327 328/** 329 * struct spinand_manufacturer - SPI NAND manufacturer instance 330 * @id: manufacturer ID 331 * @name: manufacturer name 332 * @devid_len: number of bytes in device ID 333 * @chips: supported SPI NANDs under current manufacturer 334 * @nchips: number of SPI NANDs available in chips array 335 * @ops: manufacturer operations 336 */ 337struct spinand_manufacturer { 338 u8 id; 339 char *name; 340 const struct spinand_info *chips; 341 const size_t nchips; 342 const struct spinand_manufacturer_ops *ops; 343}; 344 345/* SPI NAND manufacturers */ 346extern const struct spinand_manufacturer alliancememory_spinand_manufacturer; 347extern const struct spinand_manufacturer ato_spinand_manufacturer; 348extern const struct spinand_manufacturer esmt_c8_spinand_manufacturer; 349extern const struct spinand_manufacturer foresee_spinand_manufacturer; 350extern const struct spinand_manufacturer gigadevice_spinand_manufacturer; 351extern const struct spinand_manufacturer macronix_spinand_manufacturer; 352extern const struct spinand_manufacturer micron_spinand_manufacturer; 353extern const struct spinand_manufacturer paragon_spinand_manufacturer; 354extern const struct spinand_manufacturer skyhigh_spinand_manufacturer; 355extern const struct spinand_manufacturer toshiba_spinand_manufacturer; 356extern const struct spinand_manufacturer winbond_spinand_manufacturer; 357extern const struct spinand_manufacturer xtx_spinand_manufacturer; 358 359/** 360 * struct spinand_op_variants - SPI NAND operation variants 361 * @ops: the list of variants for a given operation 362 * @nops: the number of variants 363 * 364 * Some operations like read-from-cache/write-to-cache have several variants 365 * depending on the number of IO lines you use to transfer data or address 366 * cycles. This structure is a way to describe the different variants supported 367 * by a chip and let the core pick the best one based on the SPI mem controller 368 * capabilities. 369 */ 370struct spinand_op_variants { 371 const struct spi_mem_op *ops; 372 unsigned int nops; 373}; 374 375#define SPINAND_OP_VARIANTS(name, ...) \ 376 const struct spinand_op_variants name = { \ 377 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ 378 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ 379 sizeof(struct spi_mem_op), \ 380 } 381 382/** 383 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND 384 * chip 385 * @get_status: get the ECC status. Should return a positive number encoding 386 * the number of corrected bitflips if correction was possible or 387 * -EBADMSG if there are uncorrectable errors. I can also return 388 * other negative error codes if the error is not caused by 389 * uncorrectable bitflips 390 * @ooblayout: the OOB layout used by the on-die ECC implementation 391 */ 392struct spinand_ecc_info { 393 int (*get_status)(struct spinand_device *spinand, u8 status); 394 const struct mtd_ooblayout_ops *ooblayout; 395}; 396 397#define SPINAND_HAS_QE_BIT BIT(0) 398#define SPINAND_HAS_CR_FEAT_BIT BIT(1) 399#define SPINAND_HAS_PROG_PLANE_SELECT_BIT BIT(2) 400#define SPINAND_HAS_READ_PLANE_SELECT_BIT BIT(3) 401#define SPINAND_NO_RAW_ACCESS BIT(4) 402 403/** 404 * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure 405 * @status: status of the last wait operation that will be used in case 406 * ->get_status() is not populated by the spinand device. 407 */ 408struct spinand_ondie_ecc_conf { 409 u8 status; 410}; 411 412/** 413 * struct spinand_otp_layout - structure to describe the SPI NAND OTP area 414 * @npages: number of pages in the OTP 415 * @start_page: start page of the user/factory OTP area. 416 */ 417struct spinand_otp_layout { 418 unsigned int npages; 419 unsigned int start_page; 420}; 421 422/** 423 * struct spinand_fact_otp_ops - SPI NAND OTP methods for factory area 424 * @info: get the OTP area information 425 * @read: read from the SPI NAND OTP area 426 */ 427struct spinand_fact_otp_ops { 428 int (*info)(struct spinand_device *spinand, size_t len, 429 struct otp_info *buf, size_t *retlen); 430 int (*read)(struct spinand_device *spinand, loff_t from, size_t len, 431 size_t *retlen, u8 *buf); 432}; 433 434/** 435 * struct spinand_user_otp_ops - SPI NAND OTP methods for user area 436 * @info: get the OTP area information 437 * @lock: lock an OTP region 438 * @erase: erase an OTP region 439 * @read: read from the SPI NAND OTP area 440 * @write: write to the SPI NAND OTP area 441 */ 442struct spinand_user_otp_ops { 443 int (*info)(struct spinand_device *spinand, size_t len, 444 struct otp_info *buf, size_t *retlen); 445 int (*lock)(struct spinand_device *spinand, loff_t from, size_t len); 446 int (*erase)(struct spinand_device *spinand, loff_t from, size_t len); 447 int (*read)(struct spinand_device *spinand, loff_t from, size_t len, 448 size_t *retlen, u8 *buf); 449 int (*write)(struct spinand_device *spinand, loff_t from, size_t len, 450 size_t *retlen, const u8 *buf); 451}; 452 453/** 454 * struct spinand_fact_otp - SPI NAND OTP grouping structure for factory area 455 * @layout: OTP region layout 456 * @ops: OTP access ops 457 */ 458struct spinand_fact_otp { 459 const struct spinand_otp_layout layout; 460 const struct spinand_fact_otp_ops *ops; 461}; 462 463/** 464 * struct spinand_user_otp - SPI NAND OTP grouping structure for user area 465 * @layout: OTP region layout 466 * @ops: OTP access ops 467 */ 468struct spinand_user_otp { 469 const struct spinand_otp_layout layout; 470 const struct spinand_user_otp_ops *ops; 471}; 472 473/** 474 * struct spinand_info - Structure used to describe SPI NAND chips 475 * @model: model name 476 * @devid: device ID 477 * @flags: OR-ing of the SPINAND_XXX flags 478 * @memorg: memory organization 479 * @eccreq: ECC requirements 480 * @eccinfo: on-die ECC info 481 * @op_variants: operations variants 482 * @op_variants.read_cache: variants of the read-cache operation 483 * @op_variants.write_cache: variants of the write-cache operation 484 * @op_variants.update_cache: variants of the update-cache operation 485 * @select_target: function used to select a target/die. Required only for 486 * multi-die chips 487 * @set_cont_read: enable/disable continuous cached reads 488 * @fact_otp: SPI NAND factory OTP info. 489 * @user_otp: SPI NAND user OTP info. 490 * @read_retries: the number of read retry modes supported 491 * @set_read_retry: enable/disable read retry for data recovery 492 * 493 * Each SPI NAND manufacturer driver should have a spinand_info table 494 * describing all the chips supported by the driver. 495 */ 496struct spinand_info { 497 const char *model; 498 struct spinand_devid devid; 499 u32 flags; 500 struct nand_memory_organization memorg; 501 struct nand_ecc_props eccreq; 502 struct spinand_ecc_info eccinfo; 503 struct { 504 const struct spinand_op_variants *read_cache; 505 const struct spinand_op_variants *write_cache; 506 const struct spinand_op_variants *update_cache; 507 } op_variants; 508 int (*select_target)(struct spinand_device *spinand, 509 unsigned int target); 510 int (*set_cont_read)(struct spinand_device *spinand, 511 bool enable); 512 struct spinand_fact_otp fact_otp; 513 struct spinand_user_otp user_otp; 514 unsigned int read_retries; 515 int (*set_read_retry)(struct spinand_device *spinand, 516 unsigned int read_retry); 517}; 518 519#define SPINAND_ID(__method, ...) \ 520 { \ 521 .id = (const u8[]){ __VA_ARGS__ }, \ 522 .len = sizeof((u8[]){ __VA_ARGS__ }), \ 523 .method = __method, \ 524 } 525 526#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ 527 { \ 528 .read_cache = __read, \ 529 .write_cache = __write, \ 530 .update_cache = __update, \ 531 } 532 533#define SPINAND_ECCINFO(__ooblayout, __get_status) \ 534 .eccinfo = { \ 535 .ooblayout = __ooblayout, \ 536 .get_status = __get_status, \ 537 } 538 539#define SPINAND_SELECT_TARGET(__func) \ 540 .select_target = __func 541 542#define SPINAND_CONT_READ(__set_cont_read) \ 543 .set_cont_read = __set_cont_read 544 545#define SPINAND_FACT_OTP_INFO(__npages, __start_page, __ops) \ 546 .fact_otp = { \ 547 .layout = { \ 548 .npages = __npages, \ 549 .start_page = __start_page, \ 550 }, \ 551 .ops = __ops, \ 552 } 553 554#define SPINAND_USER_OTP_INFO(__npages, __start_page, __ops) \ 555 .user_otp = { \ 556 .layout = { \ 557 .npages = __npages, \ 558 .start_page = __start_page, \ 559 }, \ 560 .ops = __ops, \ 561 } 562 563#define SPINAND_READ_RETRY(__read_retries, __set_read_retry) \ 564 .read_retries = __read_retries, \ 565 .set_read_retry = __set_read_retry 566 567#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ 568 __flags, ...) \ 569 { \ 570 .model = __model, \ 571 .devid = __id, \ 572 .memorg = __memorg, \ 573 .eccreq = __eccreq, \ 574 .op_variants = __op_variants, \ 575 .flags = __flags, \ 576 __VA_ARGS__ \ 577 } 578 579struct spinand_dirmap { 580 struct spi_mem_dirmap_desc *wdesc; 581 struct spi_mem_dirmap_desc *rdesc; 582 struct spi_mem_dirmap_desc *wdesc_ecc; 583 struct spi_mem_dirmap_desc *rdesc_ecc; 584}; 585 586/** 587 * struct spinand_device - SPI NAND device instance 588 * @base: NAND device instance 589 * @spimem: pointer to the SPI mem object 590 * @lock: lock used to serialize accesses to the NAND 591 * @id: NAND ID as returned by READ_ID 592 * @flags: NAND flags 593 * @op_templates: various SPI mem op templates 594 * @op_templates.read_cache: read cache op template 595 * @op_templates.write_cache: write cache op template 596 * @op_templates.update_cache: update cache op template 597 * @select_target: select a specific target/die. Usually called before sending 598 * a command addressing a page or an eraseblock embedded in 599 * this die. Only required if your chip exposes several dies 600 * @cur_target: currently selected target/die 601 * @eccinfo: on-die ECC information 602 * @cfg_cache: config register cache. One entry per die 603 * @databuf: bounce buffer for data 604 * @oobbuf: bounce buffer for OOB data 605 * @scratchbuf: buffer used for everything but page accesses. This is needed 606 * because the spi-mem interface explicitly requests that buffers 607 * passed in spi_mem_op be DMA-able, so we can't based the bufs on 608 * the stack 609 * @manufacturer: SPI NAND manufacturer information 610 * @cont_read_possible: Field filled by the core once the whole system 611 * configuration is known to tell whether continuous reads are 612 * suitable to use or not in general with this chip/configuration. 613 * A per-transfer check must of course be done to ensure it is 614 * actually relevant to enable this feature. 615 * @set_cont_read: Enable/disable the continuous read feature 616 * @priv: manufacturer private data 617 * @fact_otp: SPI NAND factory OTP info. 618 * @user_otp: SPI NAND user OTP info. 619 * @read_retries: the number of read retry modes supported 620 * @set_read_retry: Enable/disable the read retry feature 621 */ 622struct spinand_device { 623 struct nand_device base; 624 struct spi_mem *spimem; 625 struct mutex lock; 626 struct spinand_id id; 627 u32 flags; 628 629 struct { 630 const struct spi_mem_op *read_cache; 631 const struct spi_mem_op *write_cache; 632 const struct spi_mem_op *update_cache; 633 } op_templates; 634 635 struct spinand_dirmap *dirmaps; 636 637 int (*select_target)(struct spinand_device *spinand, 638 unsigned int target); 639 unsigned int cur_target; 640 641 struct spinand_ecc_info eccinfo; 642 643 u8 *cfg_cache; 644 u8 *databuf; 645 u8 *oobbuf; 646 u8 *scratchbuf; 647 const struct spinand_manufacturer *manufacturer; 648 void *priv; 649 650 bool cont_read_possible; 651 int (*set_cont_read)(struct spinand_device *spinand, 652 bool enable); 653 654 const struct spinand_fact_otp *fact_otp; 655 const struct spinand_user_otp *user_otp; 656 657 unsigned int read_retries; 658 int (*set_read_retry)(struct spinand_device *spinand, 659 unsigned int retry_mode); 660}; 661 662/** 663 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance 664 * @mtd: MTD instance 665 * 666 * Return: the SPI NAND device attached to @mtd. 667 */ 668static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) 669{ 670 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); 671} 672 673/** 674 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device 675 * @spinand: SPI NAND device 676 * 677 * Return: the MTD device embedded in @spinand. 678 */ 679static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) 680{ 681 return nanddev_to_mtd(&spinand->base); 682} 683 684/** 685 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object 686 * @nand: NAND object 687 * 688 * Return: the SPI NAND device embedding @nand. 689 */ 690static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) 691{ 692 return container_of(nand, struct spinand_device, base); 693} 694 695/** 696 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object 697 * @spinand: SPI NAND device 698 * 699 * Return: the NAND device embedded in @spinand. 700 */ 701static inline struct nand_device * 702spinand_to_nand(struct spinand_device *spinand) 703{ 704 return &spinand->base; 705} 706 707/** 708 * spinand_set_of_node - Attach a DT node to a SPI NAND device 709 * @spinand: SPI NAND device 710 * @np: DT node 711 * 712 * Attach a DT node to a SPI NAND device. 713 */ 714static inline void spinand_set_of_node(struct spinand_device *spinand, 715 struct device_node *np) 716{ 717 nanddev_set_of_node(&spinand->base, np); 718} 719 720int spinand_match_and_init(struct spinand_device *spinand, 721 const struct spinand_info *table, 722 unsigned int table_size, 723 enum spinand_readid_method rdid_method); 724 725int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); 726int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val); 727int spinand_select_target(struct spinand_device *spinand, unsigned int target); 728 729int spinand_wait(struct spinand_device *spinand, unsigned long initial_delay_us, 730 unsigned long poll_delay_us, u8 *s); 731 732int spinand_read_page(struct spinand_device *spinand, 733 const struct nand_page_io_req *req); 734 735int spinand_write_page(struct spinand_device *spinand, 736 const struct nand_page_io_req *req); 737 738size_t spinand_otp_page_size(struct spinand_device *spinand); 739size_t spinand_fact_otp_size(struct spinand_device *spinand); 740size_t spinand_user_otp_size(struct spinand_device *spinand); 741 742int spinand_fact_otp_read(struct spinand_device *spinand, loff_t ofs, 743 size_t len, size_t *retlen, u8 *buf); 744int spinand_user_otp_read(struct spinand_device *spinand, loff_t ofs, 745 size_t len, size_t *retlen, u8 *buf); 746int spinand_user_otp_write(struct spinand_device *spinand, loff_t ofs, 747 size_t len, size_t *retlen, const u8 *buf); 748 749int spinand_set_mtd_otp_ops(struct spinand_device *spinand); 750 751#endif /* __LINUX_MTD_SPINAND_H */