Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_TYPES_H
3#define _LINUX_MM_TYPES_H
4
5#include <linux/mm_types_task.h>
6
7#include <linux/auxvec.h>
8#include <linux/kref.h>
9#include <linux/list.h>
10#include <linux/spinlock.h>
11#include <linux/rbtree.h>
12#include <linux/maple_tree.h>
13#include <linux/rwsem.h>
14#include <linux/completion.h>
15#include <linux/cpumask.h>
16#include <linux/uprobes.h>
17#include <linux/rcupdate.h>
18#include <linux/page-flags-layout.h>
19#include <linux/workqueue.h>
20#include <linux/seqlock.h>
21#include <linux/percpu_counter.h>
22#include <linux/types.h>
23
24#include <asm/mmu.h>
25
26#ifndef AT_VECTOR_SIZE_ARCH
27#define AT_VECTOR_SIZE_ARCH 0
28#endif
29#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
30
31
32struct address_space;
33struct futex_private_hash;
34struct mem_cgroup;
35
36/*
37 * Each physical page in the system has a struct page associated with
38 * it to keep track of whatever it is we are using the page for at the
39 * moment. Note that we have no way to track which tasks are using
40 * a page, though if it is a pagecache page, rmap structures can tell us
41 * who is mapping it.
42 *
43 * If you allocate the page using alloc_pages(), you can use some of the
44 * space in struct page for your own purposes. The five words in the main
45 * union are available, except for bit 0 of the first word which must be
46 * kept clear. Many users use this word to store a pointer to an object
47 * which is guaranteed to be aligned. If you use the same storage as
48 * page->mapping, you must restore it to NULL before freeing the page.
49 *
50 * The mapcount field must not be used for own purposes.
51 *
52 * If you want to use the refcount field, it must be used in such a way
53 * that other CPUs temporarily incrementing and then decrementing the
54 * refcount does not cause problems. On receiving the page from
55 * alloc_pages(), the refcount will be positive.
56 *
57 * If you allocate pages of order > 0, you can use some of the fields
58 * in each subpage, but you may need to restore some of their values
59 * afterwards.
60 *
61 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
62 * That requires that freelist & counters in struct slab be adjacent and
63 * double-word aligned. Because struct slab currently just reinterprets the
64 * bits of struct page, we align all struct pages to double-word boundaries,
65 * and ensure that 'freelist' is aligned within struct slab.
66 */
67#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
68#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
69#else
70#define _struct_page_alignment __aligned(sizeof(unsigned long))
71#endif
72
73struct page {
74 unsigned long flags; /* Atomic flags, some possibly
75 * updated asynchronously */
76 /*
77 * Five words (20/40 bytes) are available in this union.
78 * WARNING: bit 0 of the first word is used for PageTail(). That
79 * means the other users of this union MUST NOT use the bit to
80 * avoid collision and false-positive PageTail().
81 */
82 union {
83 struct { /* Page cache and anonymous pages */
84 /**
85 * @lru: Pageout list, eg. active_list protected by
86 * lruvec->lru_lock. Sometimes used as a generic list
87 * by the page owner.
88 */
89 union {
90 struct list_head lru;
91
92 /* Or, for the Unevictable "LRU list" slot */
93 struct {
94 /* Always even, to negate PageTail */
95 void *__filler;
96 /* Count page's or folio's mlocks */
97 unsigned int mlock_count;
98 };
99
100 /* Or, free page */
101 struct list_head buddy_list;
102 struct list_head pcp_list;
103 struct {
104 struct llist_node pcp_llist;
105 unsigned int order;
106 };
107 };
108 /* See page-flags.h for PAGE_MAPPING_FLAGS */
109 struct address_space *mapping;
110 union {
111 pgoff_t __folio_index; /* Our offset within mapping. */
112 unsigned long share; /* share count for fsdax */
113 };
114 /**
115 * @private: Mapping-private opaque data.
116 * Usually used for buffer_heads if PagePrivate.
117 * Used for swp_entry_t if swapcache flag set.
118 * Indicates order in the buddy system if PageBuddy.
119 */
120 unsigned long private;
121 };
122 struct { /* page_pool used by netstack */
123 /**
124 * @pp_magic: magic value to avoid recycling non
125 * page_pool allocated pages.
126 */
127 unsigned long pp_magic;
128 struct page_pool *pp;
129 unsigned long _pp_mapping_pad;
130 unsigned long dma_addr;
131 atomic_long_t pp_ref_count;
132 };
133 struct { /* Tail pages of compound page */
134 unsigned long compound_head; /* Bit zero is set */
135 };
136 struct { /* ZONE_DEVICE pages */
137 /*
138 * The first word is used for compound_head or folio
139 * pgmap
140 */
141 void *_unused_pgmap_compound_head;
142 void *zone_device_data;
143 /*
144 * ZONE_DEVICE private pages are counted as being
145 * mapped so the next 3 words hold the mapping, index,
146 * and private fields from the source anonymous or
147 * page cache page while the page is migrated to device
148 * private memory.
149 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
150 * use the mapping, index, and private fields when
151 * pmem backed DAX files are mapped.
152 */
153 };
154
155 /** @rcu_head: You can use this to free a page by RCU. */
156 struct rcu_head rcu_head;
157 };
158
159 union { /* This union is 4 bytes in size. */
160 /*
161 * For head pages of typed folios, the value stored here
162 * allows for determining what this page is used for. The
163 * tail pages of typed folios will not store a type
164 * (page_type == _mapcount == -1).
165 *
166 * See page-flags.h for a list of page types which are currently
167 * stored here.
168 *
169 * Owners of typed folios may reuse the lower 16 bit of the
170 * head page page_type field after setting the page type,
171 * but must reset these 16 bit to -1 before clearing the
172 * page type.
173 */
174 unsigned int page_type;
175
176 /*
177 * For pages that are part of non-typed folios for which mappings
178 * are tracked via the RMAP, encodes the number of times this page
179 * is directly referenced by a page table.
180 *
181 * Note that the mapcount is always initialized to -1, so that
182 * transitions both from it and to it can be tracked, using
183 * atomic_inc_and_test() and atomic_add_negative(-1).
184 */
185 atomic_t _mapcount;
186 };
187
188 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
189 atomic_t _refcount;
190
191#ifdef CONFIG_MEMCG
192 unsigned long memcg_data;
193#elif defined(CONFIG_SLAB_OBJ_EXT)
194 unsigned long _unused_slab_obj_exts;
195#endif
196
197 /*
198 * On machines where all RAM is mapped into kernel address space,
199 * we can simply calculate the virtual address. On machines with
200 * highmem some memory is mapped into kernel virtual memory
201 * dynamically, so we need a place to store that address.
202 * Note that this field could be 16 bits on x86 ... ;)
203 *
204 * Architectures with slow multiplication can define
205 * WANT_PAGE_VIRTUAL in asm/page.h
206 */
207#if defined(WANT_PAGE_VIRTUAL)
208 void *virtual; /* Kernel virtual address (NULL if
209 not kmapped, ie. highmem) */
210#endif /* WANT_PAGE_VIRTUAL */
211
212#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
213 int _last_cpupid;
214#endif
215
216#ifdef CONFIG_KMSAN
217 /*
218 * KMSAN metadata for this page:
219 * - shadow page: every bit indicates whether the corresponding
220 * bit of the original page is initialized (0) or not (1);
221 * - origin page: every 4 bytes contain an id of the stack trace
222 * where the uninitialized value was created.
223 */
224 struct page *kmsan_shadow;
225 struct page *kmsan_origin;
226#endif
227} _struct_page_alignment;
228
229/*
230 * struct encoded_page - a nonexistent type marking this pointer
231 *
232 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
233 * with the low bits of the pointer indicating extra context-dependent
234 * information. Only used in mmu_gather handling, and this acts as a type
235 * system check on that use.
236 *
237 * We only really have two guaranteed bits in general, although you could
238 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
239 * for more.
240 *
241 * Use the supplied helper functions to endcode/decode the pointer and bits.
242 */
243struct encoded_page;
244
245#define ENCODED_PAGE_BITS 3ul
246
247/* Perform rmap removal after we have flushed the TLB. */
248#define ENCODED_PAGE_BIT_DELAY_RMAP 1ul
249
250/*
251 * The next item in an encoded_page array is the "nr_pages" argument, specifying
252 * the number of consecutive pages starting from this page, that all belong to
253 * the same folio. For example, "nr_pages" corresponds to the number of folio
254 * references that must be dropped. If this bit is not set, "nr_pages" is
255 * implicitly 1.
256 */
257#define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul
258
259static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
260{
261 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
262 return (struct encoded_page *)(flags | (unsigned long)page);
263}
264
265static inline unsigned long encoded_page_flags(struct encoded_page *page)
266{
267 return ENCODED_PAGE_BITS & (unsigned long)page;
268}
269
270static inline struct page *encoded_page_ptr(struct encoded_page *page)
271{
272 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
273}
274
275static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
276{
277 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
278 return (struct encoded_page *)(nr << 2);
279}
280
281static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
282{
283 return ((unsigned long)page) >> 2;
284}
285
286/*
287 * A swap entry has to fit into a "unsigned long", as the entry is hidden
288 * in the "index" field of the swapper address space.
289 */
290typedef struct {
291 unsigned long val;
292} swp_entry_t;
293
294#if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT)
295/* We have some extra room after the refcount in tail pages. */
296#define NR_PAGES_IN_LARGE_FOLIO
297#endif
298
299/*
300 * On 32bit, we can cut the required metadata in half, because:
301 * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have,
302 * so we can limit MM IDs to 15 bit (32767).
303 * (b) We don't expect folios where even a single complete PTE mapping by
304 * one MM would exceed 15 bits (order-15).
305 */
306#ifdef CONFIG_64BIT
307typedef int mm_id_mapcount_t;
308#define MM_ID_MAPCOUNT_MAX INT_MAX
309typedef unsigned int mm_id_t;
310#else /* !CONFIG_64BIT */
311typedef short mm_id_mapcount_t;
312#define MM_ID_MAPCOUNT_MAX SHRT_MAX
313typedef unsigned short mm_id_t;
314#endif /* CONFIG_64BIT */
315
316/* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */
317#define MM_ID_DUMMY 0
318#define MM_ID_MIN (MM_ID_DUMMY + 1)
319
320/*
321 * We leave the highest bit of each MM id unused, so we can store a flag
322 * in the highest bit of each folio->_mm_id[].
323 */
324#define MM_ID_BITS ((sizeof(mm_id_t) * BITS_PER_BYTE) - 1)
325#define MM_ID_MASK ((1U << MM_ID_BITS) - 1)
326#define MM_ID_MAX MM_ID_MASK
327
328/*
329 * In order to use bit_spin_lock(), which requires an unsigned long, we
330 * operate on folio->_mm_ids when working on flags.
331 */
332#define FOLIO_MM_IDS_LOCK_BITNUM MM_ID_BITS
333#define FOLIO_MM_IDS_LOCK_BIT BIT(FOLIO_MM_IDS_LOCK_BITNUM)
334#define FOLIO_MM_IDS_SHARED_BITNUM (2 * MM_ID_BITS + 1)
335#define FOLIO_MM_IDS_SHARED_BIT BIT(FOLIO_MM_IDS_SHARED_BITNUM)
336
337/**
338 * struct folio - Represents a contiguous set of bytes.
339 * @flags: Identical to the page flags.
340 * @lru: Least Recently Used list; tracks how recently this folio was used.
341 * @mlock_count: Number of times this folio has been pinned by mlock().
342 * @mapping: The file this page belongs to, or refers to the anon_vma for
343 * anonymous memory.
344 * @index: Offset within the file, in units of pages. For anonymous memory,
345 * this is the index from the beginning of the mmap.
346 * @share: number of DAX mappings that reference this folio. See
347 * dax_associate_entry.
348 * @private: Filesystem per-folio data (see folio_attach_private()).
349 * @swap: Used for swp_entry_t if folio_test_swapcache().
350 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
351 * find out how many times this folio is mapped by userspace.
352 * @_refcount: Do not access this member directly. Use folio_ref_count()
353 * to find how many references there are to this folio.
354 * @memcg_data: Memory Control Group data.
355 * @pgmap: Metadata for ZONE_DEVICE mappings
356 * @virtual: Virtual address in the kernel direct map.
357 * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
358 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
359 * @_large_mapcount: Do not use directly, call folio_mapcount().
360 * @_nr_pages_mapped: Do not use outside of rmap and debug code.
361 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
362 * @_nr_pages: Do not use directly, call folio_nr_pages().
363 * @_mm_id: Do not use outside of rmap code.
364 * @_mm_ids: Do not use outside of rmap code.
365 * @_mm_id_mapcount: Do not use outside of rmap code.
366 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
367 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
368 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
369 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
370 * @_deferred_list: Folios to be split under memory pressure.
371 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab.
372 *
373 * A folio is a physically, virtually and logically contiguous set
374 * of bytes. It is a power-of-two in size, and it is aligned to that
375 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
376 * in the page cache, it is at a file offset which is a multiple of that
377 * power-of-two. It may be mapped into userspace at an address which is
378 * at an arbitrary page offset, but its kernel virtual address is aligned
379 * to its size.
380 */
381struct folio {
382 /* private: don't document the anon union */
383 union {
384 struct {
385 /* public: */
386 unsigned long flags;
387 union {
388 struct list_head lru;
389 /* private: avoid cluttering the output */
390 struct {
391 void *__filler;
392 /* public: */
393 unsigned int mlock_count;
394 /* private: */
395 };
396 /* public: */
397 struct dev_pagemap *pgmap;
398 };
399 struct address_space *mapping;
400 union {
401 pgoff_t index;
402 unsigned long share;
403 };
404 union {
405 void *private;
406 swp_entry_t swap;
407 };
408 atomic_t _mapcount;
409 atomic_t _refcount;
410#ifdef CONFIG_MEMCG
411 unsigned long memcg_data;
412#elif defined(CONFIG_SLAB_OBJ_EXT)
413 unsigned long _unused_slab_obj_exts;
414#endif
415#if defined(WANT_PAGE_VIRTUAL)
416 void *virtual;
417#endif
418#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
419 int _last_cpupid;
420#endif
421 /* private: the union with struct page is transitional */
422 };
423 struct page page;
424 };
425 union {
426 struct {
427 unsigned long _flags_1;
428 unsigned long _head_1;
429 union {
430 struct {
431 /* public: */
432 atomic_t _large_mapcount;
433 atomic_t _nr_pages_mapped;
434#ifdef CONFIG_64BIT
435 atomic_t _entire_mapcount;
436 atomic_t _pincount;
437#endif /* CONFIG_64BIT */
438 mm_id_mapcount_t _mm_id_mapcount[2];
439 union {
440 mm_id_t _mm_id[2];
441 unsigned long _mm_ids;
442 };
443 /* private: the union with struct page is transitional */
444 };
445 unsigned long _usable_1[4];
446 };
447 atomic_t _mapcount_1;
448 atomic_t _refcount_1;
449 /* public: */
450#ifdef NR_PAGES_IN_LARGE_FOLIO
451 unsigned int _nr_pages;
452#endif /* NR_PAGES_IN_LARGE_FOLIO */
453 /* private: the union with struct page is transitional */
454 };
455 struct page __page_1;
456 };
457 union {
458 struct {
459 unsigned long _flags_2;
460 unsigned long _head_2;
461 /* public: */
462 struct list_head _deferred_list;
463#ifndef CONFIG_64BIT
464 atomic_t _entire_mapcount;
465 atomic_t _pincount;
466#endif /* !CONFIG_64BIT */
467 /* private: the union with struct page is transitional */
468 };
469 struct page __page_2;
470 };
471 union {
472 struct {
473 unsigned long _flags_3;
474 unsigned long _head_3;
475 /* public: */
476 void *_hugetlb_subpool;
477 void *_hugetlb_cgroup;
478 void *_hugetlb_cgroup_rsvd;
479 void *_hugetlb_hwpoison;
480 /* private: the union with struct page is transitional */
481 };
482 struct page __page_3;
483 };
484};
485
486#define FOLIO_MATCH(pg, fl) \
487 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
488FOLIO_MATCH(flags, flags);
489FOLIO_MATCH(lru, lru);
490FOLIO_MATCH(mapping, mapping);
491FOLIO_MATCH(compound_head, lru);
492FOLIO_MATCH(__folio_index, index);
493FOLIO_MATCH(private, private);
494FOLIO_MATCH(_mapcount, _mapcount);
495FOLIO_MATCH(_refcount, _refcount);
496#ifdef CONFIG_MEMCG
497FOLIO_MATCH(memcg_data, memcg_data);
498#endif
499#if defined(WANT_PAGE_VIRTUAL)
500FOLIO_MATCH(virtual, virtual);
501#endif
502#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
503FOLIO_MATCH(_last_cpupid, _last_cpupid);
504#endif
505#undef FOLIO_MATCH
506#define FOLIO_MATCH(pg, fl) \
507 static_assert(offsetof(struct folio, fl) == \
508 offsetof(struct page, pg) + sizeof(struct page))
509FOLIO_MATCH(flags, _flags_1);
510FOLIO_MATCH(compound_head, _head_1);
511FOLIO_MATCH(_mapcount, _mapcount_1);
512FOLIO_MATCH(_refcount, _refcount_1);
513#undef FOLIO_MATCH
514#define FOLIO_MATCH(pg, fl) \
515 static_assert(offsetof(struct folio, fl) == \
516 offsetof(struct page, pg) + 2 * sizeof(struct page))
517FOLIO_MATCH(flags, _flags_2);
518FOLIO_MATCH(compound_head, _head_2);
519#undef FOLIO_MATCH
520#define FOLIO_MATCH(pg, fl) \
521 static_assert(offsetof(struct folio, fl) == \
522 offsetof(struct page, pg) + 3 * sizeof(struct page))
523FOLIO_MATCH(flags, _flags_3);
524FOLIO_MATCH(compound_head, _head_3);
525#undef FOLIO_MATCH
526
527/**
528 * struct ptdesc - Memory descriptor for page tables.
529 * @__page_flags: Same as page flags. Powerpc only.
530 * @pt_rcu_head: For freeing page table pages.
531 * @pt_list: List of used page tables. Used for s390 gmap shadow pages
532 * (which are not linked into the user page tables) and x86
533 * pgds.
534 * @_pt_pad_1: Padding that aliases with page's compound head.
535 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs.
536 * @__page_mapping: Aliases with page->mapping. Unused for page tables.
537 * @pt_index: Used for s390 gmap.
538 * @pt_mm: Used for x86 pgds.
539 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
540 * @pt_share_count: Used for HugeTLB PMD page table share count.
541 * @_pt_pad_2: Padding to ensure proper alignment.
542 * @ptl: Lock for the page table.
543 * @__page_type: Same as page->page_type. Unused for page tables.
544 * @__page_refcount: Same as page refcount.
545 * @pt_memcg_data: Memcg data. Tracked for page tables here.
546 *
547 * This struct overlays struct page for now. Do not modify without a good
548 * understanding of the issues.
549 */
550struct ptdesc {
551 unsigned long __page_flags;
552
553 union {
554 struct rcu_head pt_rcu_head;
555 struct list_head pt_list;
556 struct {
557 unsigned long _pt_pad_1;
558 pgtable_t pmd_huge_pte;
559 };
560 };
561 unsigned long __page_mapping;
562
563 union {
564 pgoff_t pt_index;
565 struct mm_struct *pt_mm;
566 atomic_t pt_frag_refcount;
567#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
568 atomic_t pt_share_count;
569#endif
570 };
571
572 union {
573 unsigned long _pt_pad_2;
574#if ALLOC_SPLIT_PTLOCKS
575 spinlock_t *ptl;
576#else
577 spinlock_t ptl;
578#endif
579 };
580 unsigned int __page_type;
581 atomic_t __page_refcount;
582#ifdef CONFIG_MEMCG
583 unsigned long pt_memcg_data;
584#endif
585};
586
587#define TABLE_MATCH(pg, pt) \
588 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
589TABLE_MATCH(flags, __page_flags);
590TABLE_MATCH(compound_head, pt_list);
591TABLE_MATCH(compound_head, _pt_pad_1);
592TABLE_MATCH(mapping, __page_mapping);
593TABLE_MATCH(__folio_index, pt_index);
594TABLE_MATCH(rcu_head, pt_rcu_head);
595TABLE_MATCH(page_type, __page_type);
596TABLE_MATCH(_refcount, __page_refcount);
597#ifdef CONFIG_MEMCG
598TABLE_MATCH(memcg_data, pt_memcg_data);
599#endif
600#undef TABLE_MATCH
601static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
602
603#define ptdesc_page(pt) (_Generic((pt), \
604 const struct ptdesc *: (const struct page *)(pt), \
605 struct ptdesc *: (struct page *)(pt)))
606
607#define ptdesc_folio(pt) (_Generic((pt), \
608 const struct ptdesc *: (const struct folio *)(pt), \
609 struct ptdesc *: (struct folio *)(pt)))
610
611#define page_ptdesc(p) (_Generic((p), \
612 const struct page *: (const struct ptdesc *)(p), \
613 struct page *: (struct ptdesc *)(p)))
614
615#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
616static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
617{
618 atomic_set(&ptdesc->pt_share_count, 0);
619}
620
621static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
622{
623 atomic_inc(&ptdesc->pt_share_count);
624}
625
626static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
627{
628 atomic_dec(&ptdesc->pt_share_count);
629}
630
631static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc)
632{
633 return atomic_read(&ptdesc->pt_share_count);
634}
635#else
636static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
637{
638}
639#endif
640
641/*
642 * Used for sizing the vmemmap region on some architectures
643 */
644#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
645
646/*
647 * page_private can be used on tail pages. However, PagePrivate is only
648 * checked by the VM on the head page. So page_private on the tail pages
649 * should be used for data that's ancillary to the head page (eg attaching
650 * buffer heads to tail pages after attaching buffer heads to the head page)
651 */
652#define page_private(page) ((page)->private)
653
654static inline void set_page_private(struct page *page, unsigned long private)
655{
656 page->private = private;
657}
658
659static inline void *folio_get_private(struct folio *folio)
660{
661 return folio->private;
662}
663
664typedef unsigned long vm_flags_t;
665
666/*
667 * freeptr_t represents a SLUB freelist pointer, which might be encoded
668 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
669 */
670typedef struct { unsigned long v; } freeptr_t;
671
672/*
673 * A region containing a mapping of a non-memory backed file under NOMMU
674 * conditions. These are held in a global tree and are pinned by the VMAs that
675 * map parts of them.
676 */
677struct vm_region {
678 struct rb_node vm_rb; /* link in global region tree */
679 vm_flags_t vm_flags; /* VMA vm_flags */
680 unsigned long vm_start; /* start address of region */
681 unsigned long vm_end; /* region initialised to here */
682 unsigned long vm_top; /* region allocated to here */
683 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
684 struct file *vm_file; /* the backing file or NULL */
685
686 int vm_usage; /* region usage count (access under nommu_region_sem) */
687 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
688 * this region */
689};
690
691#ifdef CONFIG_USERFAULTFD
692#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
693struct vm_userfaultfd_ctx {
694 struct userfaultfd_ctx *ctx;
695};
696#else /* CONFIG_USERFAULTFD */
697#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
698struct vm_userfaultfd_ctx {};
699#endif /* CONFIG_USERFAULTFD */
700
701struct anon_vma_name {
702 struct kref kref;
703 /* The name needs to be at the end because it is dynamically sized. */
704 char name[];
705};
706
707#ifdef CONFIG_ANON_VMA_NAME
708/*
709 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
710 * either keep holding the lock while using the returned pointer or it should
711 * raise anon_vma_name refcount before releasing the lock.
712 */
713struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
714struct anon_vma_name *anon_vma_name_alloc(const char *name);
715void anon_vma_name_free(struct kref *kref);
716#else /* CONFIG_ANON_VMA_NAME */
717static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
718{
719 return NULL;
720}
721
722static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
723{
724 return NULL;
725}
726#endif
727
728#define VMA_LOCK_OFFSET 0x40000000
729#define VMA_REF_LIMIT (VMA_LOCK_OFFSET - 1)
730
731struct vma_numab_state {
732 /*
733 * Initialised as time in 'jiffies' after which VMA
734 * should be scanned. Delays first scan of new VMA by at
735 * least sysctl_numa_balancing_scan_delay:
736 */
737 unsigned long next_scan;
738
739 /*
740 * Time in jiffies when pids_active[] is reset to
741 * detect phase change behaviour:
742 */
743 unsigned long pids_active_reset;
744
745 /*
746 * Approximate tracking of PIDs that trapped a NUMA hinting
747 * fault. May produce false positives due to hash collisions.
748 *
749 * [0] Previous PID tracking
750 * [1] Current PID tracking
751 *
752 * Window moves after next_pid_reset has expired approximately
753 * every VMA_PID_RESET_PERIOD jiffies:
754 */
755 unsigned long pids_active[2];
756
757 /* MM scan sequence ID when scan first started after VMA creation */
758 int start_scan_seq;
759
760 /*
761 * MM scan sequence ID when the VMA was last completely scanned.
762 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
763 */
764 int prev_scan_seq;
765};
766
767#ifdef __HAVE_PFNMAP_TRACKING
768struct pfnmap_track_ctx {
769 struct kref kref;
770 unsigned long pfn;
771 unsigned long size; /* in bytes */
772};
773#endif
774
775/*
776 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to
777 * manipulate mutable fields which will cause those fields to be updated in the
778 * resultant VMA.
779 *
780 * Helper functions are not required for manipulating any field.
781 */
782struct vm_area_desc {
783 /* Immutable state. */
784 struct mm_struct *mm;
785 unsigned long start;
786 unsigned long end;
787
788 /* Mutable fields. Populated with initial state. */
789 pgoff_t pgoff;
790 struct file *file;
791 vm_flags_t vm_flags;
792 pgprot_t page_prot;
793
794 /* Write-only fields. */
795 const struct vm_operations_struct *vm_ops;
796 void *private_data;
797};
798
799/*
800 * This struct describes a virtual memory area. There is one of these
801 * per VM-area/task. A VM area is any part of the process virtual memory
802 * space that has a special rule for the page-fault handlers (ie a shared
803 * library, the executable area etc).
804 *
805 * Only explicitly marked struct members may be accessed by RCU readers before
806 * getting a stable reference.
807 *
808 * WARNING: when adding new members, please update vm_area_init_from() to copy
809 * them during vm_area_struct content duplication.
810 */
811struct vm_area_struct {
812 /* The first cache line has the info for VMA tree walking. */
813
814 union {
815 struct {
816 /* VMA covers [vm_start; vm_end) addresses within mm */
817 unsigned long vm_start;
818 unsigned long vm_end;
819 };
820 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */
821 };
822
823 /*
824 * The address space we belong to.
825 * Unstable RCU readers are allowed to read this.
826 */
827 struct mm_struct *vm_mm;
828 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
829
830 /*
831 * Flags, see mm.h.
832 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
833 */
834 union {
835 const vm_flags_t vm_flags;
836 vm_flags_t __private __vm_flags;
837 };
838
839#ifdef CONFIG_PER_VMA_LOCK
840 /*
841 * Can only be written (using WRITE_ONCE()) while holding both:
842 * - mmap_lock (in write mode)
843 * - vm_refcnt bit at VMA_LOCK_OFFSET is set
844 * Can be read reliably while holding one of:
845 * - mmap_lock (in read or write mode)
846 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1
847 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
848 * while holding nothing (except RCU to keep the VMA struct allocated).
849 *
850 * This sequence counter is explicitly allowed to overflow; sequence
851 * counter reuse can only lead to occasional unnecessary use of the
852 * slowpath.
853 */
854 unsigned int vm_lock_seq;
855#endif
856 /*
857 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
858 * list, after a COW of one of the file pages. A MAP_SHARED vma
859 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
860 * or brk vma (with NULL file) can only be in an anon_vma list.
861 */
862 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
863 * page_table_lock */
864 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
865
866 /* Function pointers to deal with this struct. */
867 const struct vm_operations_struct *vm_ops;
868
869 /* Information about our backing store: */
870 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
871 units */
872 struct file * vm_file; /* File we map to (can be NULL). */
873 void * vm_private_data; /* was vm_pte (shared mem) */
874
875#ifdef CONFIG_SWAP
876 atomic_long_t swap_readahead_info;
877#endif
878#ifndef CONFIG_MMU
879 struct vm_region *vm_region; /* NOMMU mapping region */
880#endif
881#ifdef CONFIG_NUMA
882 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
883#endif
884#ifdef CONFIG_NUMA_BALANCING
885 struct vma_numab_state *numab_state; /* NUMA Balancing state */
886#endif
887#ifdef CONFIG_PER_VMA_LOCK
888 /* Unstable RCU readers are allowed to read this. */
889 refcount_t vm_refcnt ____cacheline_aligned_in_smp;
890#ifdef CONFIG_DEBUG_LOCK_ALLOC
891 struct lockdep_map vmlock_dep_map;
892#endif
893#endif
894 /*
895 * For areas with an address space and backing store,
896 * linkage into the address_space->i_mmap interval tree.
897 *
898 */
899 struct {
900 struct rb_node rb;
901 unsigned long rb_subtree_last;
902 } shared;
903#ifdef CONFIG_ANON_VMA_NAME
904 /*
905 * For private and shared anonymous mappings, a pointer to a null
906 * terminated string containing the name given to the vma, or NULL if
907 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
908 */
909 struct anon_vma_name *anon_name;
910#endif
911 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
912#ifdef __HAVE_PFNMAP_TRACKING
913 struct pfnmap_track_ctx *pfnmap_track_ctx;
914#endif
915} __randomize_layout;
916
917#ifdef CONFIG_NUMA
918#define vma_policy(vma) ((vma)->vm_policy)
919#else
920#define vma_policy(vma) NULL
921#endif
922
923#ifdef CONFIG_SCHED_MM_CID
924struct mm_cid {
925 u64 time;
926 int cid;
927 int recent_cid;
928};
929#endif
930
931struct kioctx_table;
932struct iommu_mm_data;
933struct mm_struct {
934 struct {
935 /*
936 * Fields which are often written to are placed in a separate
937 * cache line.
938 */
939 struct {
940 /**
941 * @mm_count: The number of references to &struct
942 * mm_struct (@mm_users count as 1).
943 *
944 * Use mmgrab()/mmdrop() to modify. When this drops to
945 * 0, the &struct mm_struct is freed.
946 */
947 atomic_t mm_count;
948 } ____cacheline_aligned_in_smp;
949
950 struct maple_tree mm_mt;
951
952 unsigned long mmap_base; /* base of mmap area */
953 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
954#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
955 /* Base addresses for compatible mmap() */
956 unsigned long mmap_compat_base;
957 unsigned long mmap_compat_legacy_base;
958#endif
959 unsigned long task_size; /* size of task vm space */
960 pgd_t * pgd;
961
962#ifdef CONFIG_MEMBARRIER
963 /**
964 * @membarrier_state: Flags controlling membarrier behavior.
965 *
966 * This field is close to @pgd to hopefully fit in the same
967 * cache-line, which needs to be touched by switch_mm().
968 */
969 atomic_t membarrier_state;
970#endif
971
972 /**
973 * @mm_users: The number of users including userspace.
974 *
975 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
976 * drops to 0 (i.e. when the task exits and there are no other
977 * temporary reference holders), we also release a reference on
978 * @mm_count (which may then free the &struct mm_struct if
979 * @mm_count also drops to 0).
980 */
981 atomic_t mm_users;
982
983#ifdef CONFIG_SCHED_MM_CID
984 /**
985 * @pcpu_cid: Per-cpu current cid.
986 *
987 * Keep track of the currently allocated mm_cid for each cpu.
988 * The per-cpu mm_cid values are serialized by their respective
989 * runqueue locks.
990 */
991 struct mm_cid __percpu *pcpu_cid;
992 /*
993 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
994 *
995 * When the next mm_cid scan is due (in jiffies).
996 */
997 unsigned long mm_cid_next_scan;
998 /**
999 * @nr_cpus_allowed: Number of CPUs allowed for mm.
1000 *
1001 * Number of CPUs allowed in the union of all mm's
1002 * threads allowed CPUs.
1003 */
1004 unsigned int nr_cpus_allowed;
1005 /**
1006 * @max_nr_cid: Maximum number of allowed concurrency
1007 * IDs allocated.
1008 *
1009 * Track the highest number of allowed concurrency IDs
1010 * allocated for the mm.
1011 */
1012 atomic_t max_nr_cid;
1013 /**
1014 * @cpus_allowed_lock: Lock protecting mm cpus_allowed.
1015 *
1016 * Provide mutual exclusion for mm cpus_allowed and
1017 * mm nr_cpus_allowed updates.
1018 */
1019 raw_spinlock_t cpus_allowed_lock;
1020#endif
1021#ifdef CONFIG_MMU
1022 atomic_long_t pgtables_bytes; /* size of all page tables */
1023#endif
1024 int map_count; /* number of VMAs */
1025
1026 spinlock_t page_table_lock; /* Protects page tables and some
1027 * counters
1028 */
1029 /*
1030 * With some kernel config, the current mmap_lock's offset
1031 * inside 'mm_struct' is at 0x120, which is very optimal, as
1032 * its two hot fields 'count' and 'owner' sit in 2 different
1033 * cachelines, and when mmap_lock is highly contended, both
1034 * of the 2 fields will be accessed frequently, current layout
1035 * will help to reduce cache bouncing.
1036 *
1037 * So please be careful with adding new fields before
1038 * mmap_lock, which can easily push the 2 fields into one
1039 * cacheline.
1040 */
1041 struct rw_semaphore mmap_lock;
1042
1043 struct list_head mmlist; /* List of maybe swapped mm's. These
1044 * are globally strung together off
1045 * init_mm.mmlist, and are protected
1046 * by mmlist_lock
1047 */
1048#ifdef CONFIG_PER_VMA_LOCK
1049 struct rcuwait vma_writer_wait;
1050 /*
1051 * This field has lock-like semantics, meaning it is sometimes
1052 * accessed with ACQUIRE/RELEASE semantics.
1053 * Roughly speaking, incrementing the sequence number is
1054 * equivalent to releasing locks on VMAs; reading the sequence
1055 * number can be part of taking a read lock on a VMA.
1056 * Incremented every time mmap_lock is write-locked/unlocked.
1057 * Initialized to 0, therefore odd values indicate mmap_lock
1058 * is write-locked and even values that it's released.
1059 *
1060 * Can be modified under write mmap_lock using RELEASE
1061 * semantics.
1062 * Can be read with no other protection when holding write
1063 * mmap_lock.
1064 * Can be read with ACQUIRE semantics if not holding write
1065 * mmap_lock.
1066 */
1067 seqcount_t mm_lock_seq;
1068#endif
1069#ifdef CONFIG_FUTEX_PRIVATE_HASH
1070 struct mutex futex_hash_lock;
1071 struct futex_private_hash __rcu *futex_phash;
1072 struct futex_private_hash *futex_phash_new;
1073#endif
1074
1075 unsigned long hiwater_rss; /* High-watermark of RSS usage */
1076 unsigned long hiwater_vm; /* High-water virtual memory usage */
1077
1078 unsigned long total_vm; /* Total pages mapped */
1079 unsigned long locked_vm; /* Pages that have PG_mlocked set */
1080 atomic64_t pinned_vm; /* Refcount permanently increased */
1081 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
1082 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
1083 unsigned long stack_vm; /* VM_STACK */
1084 unsigned long def_flags;
1085
1086 /**
1087 * @write_protect_seq: Locked when any thread is write
1088 * protecting pages mapped by this mm to enforce a later COW,
1089 * for instance during page table copying for fork().
1090 */
1091 seqcount_t write_protect_seq;
1092
1093 spinlock_t arg_lock; /* protect the below fields */
1094
1095 unsigned long start_code, end_code, start_data, end_data;
1096 unsigned long start_brk, brk, start_stack;
1097 unsigned long arg_start, arg_end, env_start, env_end;
1098
1099 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
1100
1101 struct percpu_counter rss_stat[NR_MM_COUNTERS];
1102
1103 struct linux_binfmt *binfmt;
1104
1105 /* Architecture-specific MM context */
1106 mm_context_t context;
1107
1108 unsigned long flags; /* Must use atomic bitops to access */
1109
1110#ifdef CONFIG_AIO
1111 spinlock_t ioctx_lock;
1112 struct kioctx_table __rcu *ioctx_table;
1113#endif
1114#ifdef CONFIG_MEMCG
1115 /*
1116 * "owner" points to a task that is regarded as the canonical
1117 * user/owner of this mm. All of the following must be true in
1118 * order for it to be changed:
1119 *
1120 * current == mm->owner
1121 * current->mm != mm
1122 * new_owner->mm == mm
1123 * new_owner->alloc_lock is held
1124 */
1125 struct task_struct __rcu *owner;
1126#endif
1127 struct user_namespace *user_ns;
1128
1129 /* store ref to file /proc/<pid>/exe symlink points to */
1130 struct file __rcu *exe_file;
1131#ifdef CONFIG_MMU_NOTIFIER
1132 struct mmu_notifier_subscriptions *notifier_subscriptions;
1133#endif
1134#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1135 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
1136#endif
1137#ifdef CONFIG_NUMA_BALANCING
1138 /*
1139 * numa_next_scan is the next time that PTEs will be remapped
1140 * PROT_NONE to trigger NUMA hinting faults; such faults gather
1141 * statistics and migrate pages to new nodes if necessary.
1142 */
1143 unsigned long numa_next_scan;
1144
1145 /* Restart point for scanning and remapping PTEs. */
1146 unsigned long numa_scan_offset;
1147
1148 /* numa_scan_seq prevents two threads remapping PTEs. */
1149 int numa_scan_seq;
1150#endif
1151 /*
1152 * An operation with batched TLB flushing is going on. Anything
1153 * that can move process memory needs to flush the TLB when
1154 * moving a PROT_NONE mapped page.
1155 */
1156 atomic_t tlb_flush_pending;
1157#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1158 /* See flush_tlb_batched_pending() */
1159 atomic_t tlb_flush_batched;
1160#endif
1161 struct uprobes_state uprobes_state;
1162#ifdef CONFIG_PREEMPT_RT
1163 struct rcu_head delayed_drop;
1164#endif
1165#ifdef CONFIG_HUGETLB_PAGE
1166 atomic_long_t hugetlb_usage;
1167#endif
1168 struct work_struct async_put_work;
1169
1170#ifdef CONFIG_IOMMU_MM_DATA
1171 struct iommu_mm_data *iommu_mm;
1172#endif
1173#ifdef CONFIG_KSM
1174 /*
1175 * Represent how many pages of this process are involved in KSM
1176 * merging (not including ksm_zero_pages).
1177 */
1178 unsigned long ksm_merging_pages;
1179 /*
1180 * Represent how many pages are checked for ksm merging
1181 * including merged and not merged.
1182 */
1183 unsigned long ksm_rmap_items;
1184 /*
1185 * Represent how many empty pages are merged with kernel zero
1186 * pages when enabling KSM use_zero_pages.
1187 */
1188 atomic_long_t ksm_zero_pages;
1189#endif /* CONFIG_KSM */
1190#ifdef CONFIG_LRU_GEN_WALKS_MMU
1191 struct {
1192 /* this mm_struct is on lru_gen_mm_list */
1193 struct list_head list;
1194 /*
1195 * Set when switching to this mm_struct, as a hint of
1196 * whether it has been used since the last time per-node
1197 * page table walkers cleared the corresponding bits.
1198 */
1199 unsigned long bitmap;
1200#ifdef CONFIG_MEMCG
1201 /* points to the memcg of "owner" above */
1202 struct mem_cgroup *memcg;
1203#endif
1204 } lru_gen;
1205#endif /* CONFIG_LRU_GEN_WALKS_MMU */
1206#ifdef CONFIG_MM_ID
1207 mm_id_t mm_id;
1208#endif /* CONFIG_MM_ID */
1209 } __randomize_layout;
1210
1211 /*
1212 * The mm_cpumask needs to be at the end of mm_struct, because it
1213 * is dynamically sized based on nr_cpu_ids.
1214 */
1215 unsigned long cpu_bitmap[];
1216};
1217
1218#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1219 MT_FLAGS_USE_RCU)
1220extern struct mm_struct init_mm;
1221
1222/* Pointer magic because the dynamic array size confuses some compilers. */
1223static inline void mm_init_cpumask(struct mm_struct *mm)
1224{
1225 unsigned long cpu_bitmap = (unsigned long)mm;
1226
1227 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1228 cpumask_clear((struct cpumask *)cpu_bitmap);
1229}
1230
1231/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
1232static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1233{
1234 return (struct cpumask *)&mm->cpu_bitmap;
1235}
1236
1237#ifdef CONFIG_LRU_GEN
1238
1239struct lru_gen_mm_list {
1240 /* mm_struct list for page table walkers */
1241 struct list_head fifo;
1242 /* protects the list above */
1243 spinlock_t lock;
1244};
1245
1246#endif /* CONFIG_LRU_GEN */
1247
1248#ifdef CONFIG_LRU_GEN_WALKS_MMU
1249
1250void lru_gen_add_mm(struct mm_struct *mm);
1251void lru_gen_del_mm(struct mm_struct *mm);
1252void lru_gen_migrate_mm(struct mm_struct *mm);
1253
1254static inline void lru_gen_init_mm(struct mm_struct *mm)
1255{
1256 INIT_LIST_HEAD(&mm->lru_gen.list);
1257 mm->lru_gen.bitmap = 0;
1258#ifdef CONFIG_MEMCG
1259 mm->lru_gen.memcg = NULL;
1260#endif
1261}
1262
1263static inline void lru_gen_use_mm(struct mm_struct *mm)
1264{
1265 /*
1266 * When the bitmap is set, page reclaim knows this mm_struct has been
1267 * used since the last time it cleared the bitmap. So it might be worth
1268 * walking the page tables of this mm_struct to clear the accessed bit.
1269 */
1270 WRITE_ONCE(mm->lru_gen.bitmap, -1);
1271}
1272
1273#else /* !CONFIG_LRU_GEN_WALKS_MMU */
1274
1275static inline void lru_gen_add_mm(struct mm_struct *mm)
1276{
1277}
1278
1279static inline void lru_gen_del_mm(struct mm_struct *mm)
1280{
1281}
1282
1283static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1284{
1285}
1286
1287static inline void lru_gen_init_mm(struct mm_struct *mm)
1288{
1289}
1290
1291static inline void lru_gen_use_mm(struct mm_struct *mm)
1292{
1293}
1294
1295#endif /* CONFIG_LRU_GEN_WALKS_MMU */
1296
1297struct vma_iterator {
1298 struct ma_state mas;
1299};
1300
1301#define VMA_ITERATOR(name, __mm, __addr) \
1302 struct vma_iterator name = { \
1303 .mas = { \
1304 .tree = &(__mm)->mm_mt, \
1305 .index = __addr, \
1306 .node = NULL, \
1307 .status = ma_start, \
1308 }, \
1309 }
1310
1311static inline void vma_iter_init(struct vma_iterator *vmi,
1312 struct mm_struct *mm, unsigned long addr)
1313{
1314 mas_init(&vmi->mas, &mm->mm_mt, addr);
1315}
1316
1317#ifdef CONFIG_SCHED_MM_CID
1318
1319enum mm_cid_state {
1320 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */
1321 MM_CID_LAZY_PUT = (1U << 31),
1322};
1323
1324static inline bool mm_cid_is_unset(int cid)
1325{
1326 return cid == MM_CID_UNSET;
1327}
1328
1329static inline bool mm_cid_is_lazy_put(int cid)
1330{
1331 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1332}
1333
1334static inline bool mm_cid_is_valid(int cid)
1335{
1336 return !(cid & MM_CID_LAZY_PUT);
1337}
1338
1339static inline int mm_cid_set_lazy_put(int cid)
1340{
1341 return cid | MM_CID_LAZY_PUT;
1342}
1343
1344static inline int mm_cid_clear_lazy_put(int cid)
1345{
1346 return cid & ~MM_CID_LAZY_PUT;
1347}
1348
1349/*
1350 * mm_cpus_allowed: Union of all mm's threads allowed CPUs.
1351 */
1352static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm)
1353{
1354 unsigned long bitmap = (unsigned long)mm;
1355
1356 bitmap += offsetof(struct mm_struct, cpu_bitmap);
1357 /* Skip cpu_bitmap */
1358 bitmap += cpumask_size();
1359 return (struct cpumask *)bitmap;
1360}
1361
1362/* Accessor for struct mm_struct's cidmask. */
1363static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1364{
1365 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm);
1366
1367 /* Skip mm_cpus_allowed */
1368 cid_bitmap += cpumask_size();
1369 return (struct cpumask *)cid_bitmap;
1370}
1371
1372static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p)
1373{
1374 int i;
1375
1376 for_each_possible_cpu(i) {
1377 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1378
1379 pcpu_cid->cid = MM_CID_UNSET;
1380 pcpu_cid->recent_cid = MM_CID_UNSET;
1381 pcpu_cid->time = 0;
1382 }
1383 mm->nr_cpus_allowed = p->nr_cpus_allowed;
1384 atomic_set(&mm->max_nr_cid, 0);
1385 raw_spin_lock_init(&mm->cpus_allowed_lock);
1386 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask);
1387 cpumask_clear(mm_cidmask(mm));
1388}
1389
1390static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p)
1391{
1392 mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
1393 if (!mm->pcpu_cid)
1394 return -ENOMEM;
1395 mm_init_cid(mm, p);
1396 return 0;
1397}
1398#define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1399
1400static inline void mm_destroy_cid(struct mm_struct *mm)
1401{
1402 free_percpu(mm->pcpu_cid);
1403 mm->pcpu_cid = NULL;
1404}
1405
1406static inline unsigned int mm_cid_size(void)
1407{
1408 return 2 * cpumask_size(); /* mm_cpus_allowed(), mm_cidmask(). */
1409}
1410
1411static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask)
1412{
1413 struct cpumask *mm_allowed = mm_cpus_allowed(mm);
1414
1415 if (!mm)
1416 return;
1417 /* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */
1418 raw_spin_lock(&mm->cpus_allowed_lock);
1419 cpumask_or(mm_allowed, mm_allowed, cpumask);
1420 WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed));
1421 raw_spin_unlock(&mm->cpus_allowed_lock);
1422}
1423#else /* CONFIG_SCHED_MM_CID */
1424static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { }
1425static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; }
1426static inline void mm_destroy_cid(struct mm_struct *mm) { }
1427
1428static inline unsigned int mm_cid_size(void)
1429{
1430 return 0;
1431}
1432static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { }
1433#endif /* CONFIG_SCHED_MM_CID */
1434
1435struct mmu_gather;
1436extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1437extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1438extern void tlb_finish_mmu(struct mmu_gather *tlb);
1439
1440struct vm_fault;
1441
1442/**
1443 * typedef vm_fault_t - Return type for page fault handlers.
1444 *
1445 * Page fault handlers return a bitmask of %VM_FAULT values.
1446 */
1447typedef __bitwise unsigned int vm_fault_t;
1448
1449/**
1450 * enum vm_fault_reason - Page fault handlers return a bitmask of
1451 * these values to tell the core VM what happened when handling the
1452 * fault. Used to decide whether a process gets delivered SIGBUS or
1453 * just gets major/minor fault counters bumped up.
1454 *
1455 * @VM_FAULT_OOM: Out Of Memory
1456 * @VM_FAULT_SIGBUS: Bad access
1457 * @VM_FAULT_MAJOR: Page read from storage
1458 * @VM_FAULT_HWPOISON: Hit poisoned small page
1459 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
1460 * in upper bits
1461 * @VM_FAULT_SIGSEGV: segmentation fault
1462 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
1463 * @VM_FAULT_LOCKED: ->fault locked the returned page
1464 * @VM_FAULT_RETRY: ->fault blocked, must retry
1465 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
1466 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
1467 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
1468 * fsync() to complete (for synchronous page faults
1469 * in DAX)
1470 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
1471 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
1472 *
1473 */
1474enum vm_fault_reason {
1475 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
1476 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
1477 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
1478 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
1479 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1480 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
1481 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
1482 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
1483 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
1484 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
1485 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
1486 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
1487 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
1488 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
1489};
1490
1491/* Encode hstate index for a hwpoisoned large page */
1492#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1493#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1494
1495#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
1496 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
1497 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1498
1499#define VM_FAULT_RESULT_TRACE \
1500 { VM_FAULT_OOM, "OOM" }, \
1501 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1502 { VM_FAULT_MAJOR, "MAJOR" }, \
1503 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1504 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1505 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1506 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1507 { VM_FAULT_LOCKED, "LOCKED" }, \
1508 { VM_FAULT_RETRY, "RETRY" }, \
1509 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1510 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1511 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \
1512 { VM_FAULT_COMPLETED, "COMPLETED" }
1513
1514struct vm_special_mapping {
1515 const char *name; /* The name, e.g. "[vdso]". */
1516
1517 /*
1518 * If .fault is not provided, this points to a
1519 * NULL-terminated array of pages that back the special mapping.
1520 *
1521 * This must not be NULL unless .fault is provided.
1522 */
1523 struct page **pages;
1524
1525 /*
1526 * If non-NULL, then this is called to resolve page faults
1527 * on the special mapping. If used, .pages is not checked.
1528 */
1529 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1530 struct vm_area_struct *vma,
1531 struct vm_fault *vmf);
1532
1533 int (*mremap)(const struct vm_special_mapping *sm,
1534 struct vm_area_struct *new_vma);
1535
1536 void (*close)(const struct vm_special_mapping *sm,
1537 struct vm_area_struct *vma);
1538};
1539
1540enum tlb_flush_reason {
1541 TLB_FLUSH_ON_TASK_SWITCH,
1542 TLB_REMOTE_SHOOTDOWN,
1543 TLB_LOCAL_SHOOTDOWN,
1544 TLB_LOCAL_MM_SHOOTDOWN,
1545 TLB_REMOTE_SEND_IPI,
1546 TLB_REMOTE_WRONG_CPU,
1547 NR_TLB_FLUSH_REASONS,
1548};
1549
1550/**
1551 * enum fault_flag - Fault flag definitions.
1552 * @FAULT_FLAG_WRITE: Fault was a write fault.
1553 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1554 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1555 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1556 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1557 * @FAULT_FLAG_TRIED: The fault has been tried once.
1558 * @FAULT_FLAG_USER: The fault originated in userspace.
1559 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1560 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1561 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1562 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1563 * COW mapping, making sure that an exclusive anon page is
1564 * mapped after the fault.
1565 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1566 * We should only access orig_pte if this flag set.
1567 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1568 *
1569 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1570 * whether we would allow page faults to retry by specifying these two
1571 * fault flags correctly. Currently there can be three legal combinations:
1572 *
1573 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
1574 * this is the first try
1575 *
1576 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
1577 * we've already tried at least once
1578 *
1579 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1580 *
1581 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1582 * be used. Note that page faults can be allowed to retry for multiple times,
1583 * in which case we'll have an initial fault with flags (a) then later on
1584 * continuous faults with flags (b). We should always try to detect pending
1585 * signals before a retry to make sure the continuous page faults can still be
1586 * interrupted if necessary.
1587 *
1588 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1589 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1590 * applied to mappings that are not COW mappings.
1591 */
1592enum fault_flag {
1593 FAULT_FLAG_WRITE = 1 << 0,
1594 FAULT_FLAG_MKWRITE = 1 << 1,
1595 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
1596 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
1597 FAULT_FLAG_KILLABLE = 1 << 4,
1598 FAULT_FLAG_TRIED = 1 << 5,
1599 FAULT_FLAG_USER = 1 << 6,
1600 FAULT_FLAG_REMOTE = 1 << 7,
1601 FAULT_FLAG_INSTRUCTION = 1 << 8,
1602 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
1603 FAULT_FLAG_UNSHARE = 1 << 10,
1604 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
1605 FAULT_FLAG_VMA_LOCK = 1 << 12,
1606};
1607
1608typedef unsigned int __bitwise zap_flags_t;
1609
1610/* Flags for clear_young_dirty_ptes(). */
1611typedef int __bitwise cydp_t;
1612
1613/* Clear the access bit */
1614#define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0))
1615
1616/* Clear the dirty bit */
1617#define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1))
1618
1619/*
1620 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1621 * other. Here is what they mean, and how to use them:
1622 *
1623 *
1624 * FIXME: For pages which are part of a filesystem, mappings are subject to the
1625 * lifetime enforced by the filesystem and we need guarantees that longterm
1626 * users like RDMA and V4L2 only establish mappings which coordinate usage with
1627 * the filesystem. Ideas for this coordination include revoking the longterm
1628 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
1629 * added after the problem with filesystems was found FS DAX VMAs are
1630 * specifically failed. Filesystem pages are still subject to bugs and use of
1631 * FOLL_LONGTERM should be avoided on those pages.
1632 *
1633 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1634 * that region. And so, CMA attempts to migrate the page before pinning, when
1635 * FOLL_LONGTERM is specified.
1636 *
1637 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1638 * but an additional pin counting system) will be invoked. This is intended for
1639 * anything that gets a page reference and then touches page data (for example,
1640 * Direct IO). This lets the filesystem know that some non-file-system entity is
1641 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1642 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1643 * a call to unpin_user_page().
1644 *
1645 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1646 * and separate refcounting mechanisms, however, and that means that each has
1647 * its own acquire and release mechanisms:
1648 *
1649 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1650 *
1651 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1652 *
1653 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1654 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1655 * calls applied to them, and that's perfectly OK. This is a constraint on the
1656 * callers, not on the pages.)
1657 *
1658 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1659 * directly by the caller. That's in order to help avoid mismatches when
1660 * releasing pages: get_user_pages*() pages must be released via put_page(),
1661 * while pin_user_pages*() pages must be released via unpin_user_page().
1662 *
1663 * Please see Documentation/core-api/pin_user_pages.rst for more information.
1664 */
1665
1666enum {
1667 /* check pte is writable */
1668 FOLL_WRITE = 1 << 0,
1669 /* do get_page on page */
1670 FOLL_GET = 1 << 1,
1671 /* give error on hole if it would be zero */
1672 FOLL_DUMP = 1 << 2,
1673 /* get_user_pages read/write w/o permission */
1674 FOLL_FORCE = 1 << 3,
1675 /*
1676 * if a disk transfer is needed, start the IO and return without waiting
1677 * upon it
1678 */
1679 FOLL_NOWAIT = 1 << 4,
1680 /* do not fault in pages */
1681 FOLL_NOFAULT = 1 << 5,
1682 /* check page is hwpoisoned */
1683 FOLL_HWPOISON = 1 << 6,
1684 /* don't do file mappings */
1685 FOLL_ANON = 1 << 7,
1686 /*
1687 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1688 * time period _often_ under userspace control. This is in contrast to
1689 * iov_iter_get_pages(), whose usages are transient.
1690 */
1691 FOLL_LONGTERM = 1 << 8,
1692 /* split huge pmd before returning */
1693 FOLL_SPLIT_PMD = 1 << 9,
1694 /* allow returning PCI P2PDMA pages */
1695 FOLL_PCI_P2PDMA = 1 << 10,
1696 /* allow interrupts from generic signals */
1697 FOLL_INTERRUPTIBLE = 1 << 11,
1698 /*
1699 * Always honor (trigger) NUMA hinting faults.
1700 *
1701 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1702 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1703 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1704 * hinting faults.
1705 */
1706 FOLL_HONOR_NUMA_FAULT = 1 << 12,
1707
1708 /* See also internal only FOLL flags in mm/internal.h */
1709};
1710
1711/* mm flags */
1712
1713/*
1714 * The first two bits represent core dump modes for set-user-ID,
1715 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h
1716 */
1717#define MMF_DUMPABLE_BITS 2
1718#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
1719/* coredump filter bits */
1720#define MMF_DUMP_ANON_PRIVATE 2
1721#define MMF_DUMP_ANON_SHARED 3
1722#define MMF_DUMP_MAPPED_PRIVATE 4
1723#define MMF_DUMP_MAPPED_SHARED 5
1724#define MMF_DUMP_ELF_HEADERS 6
1725#define MMF_DUMP_HUGETLB_PRIVATE 7
1726#define MMF_DUMP_HUGETLB_SHARED 8
1727#define MMF_DUMP_DAX_PRIVATE 9
1728#define MMF_DUMP_DAX_SHARED 10
1729
1730#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
1731#define MMF_DUMP_FILTER_BITS 9
1732#define MMF_DUMP_FILTER_MASK \
1733 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
1734#define MMF_DUMP_FILTER_DEFAULT \
1735 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
1736 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
1737
1738#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
1739# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
1740#else
1741# define MMF_DUMP_MASK_DEFAULT_ELF 0
1742#endif
1743 /* leave room for more dump flags */
1744#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
1745#define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */
1746
1747/*
1748 * This one-shot flag is dropped due to necessity of changing exe once again
1749 * on NFS restore
1750 */
1751//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
1752
1753#define MMF_HAS_UPROBES 19 /* has uprobes */
1754#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
1755#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
1756#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
1757#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
1758#define MMF_DISABLE_THP 24 /* disable THP for all VMAs */
1759#define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP)
1760#define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */
1761#define MMF_MULTIPROCESS 26 /* mm is shared between processes */
1762/*
1763 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either
1764 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into
1765 * a counter on its own. We're aggresive on this bit for now: even if the
1766 * pinned pages were unpinned later on, we'll still keep this bit set for the
1767 * lifecycle of this mm, just for simplicity.
1768 */
1769#define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */
1770
1771#define MMF_HAS_MDWE 28
1772#define MMF_HAS_MDWE_MASK (1 << MMF_HAS_MDWE)
1773
1774
1775#define MMF_HAS_MDWE_NO_INHERIT 29
1776
1777#define MMF_VM_MERGE_ANY 30
1778#define MMF_VM_MERGE_ANY_MASK (1 << MMF_VM_MERGE_ANY)
1779
1780#define MMF_TOPDOWN 31 /* mm searches top down by default */
1781#define MMF_TOPDOWN_MASK (1 << MMF_TOPDOWN)
1782
1783#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\
1784 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\
1785 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK)
1786
1787static inline unsigned long mmf_init_flags(unsigned long flags)
1788{
1789 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT))
1790 flags &= ~((1UL << MMF_HAS_MDWE) |
1791 (1UL << MMF_HAS_MDWE_NO_INHERIT));
1792 return flags & MMF_INIT_MASK;
1793}
1794
1795#endif /* _LINUX_MM_TYPES_H */