at v6.16 128 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/pgalloc_tag.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/compiler.h> 16#include <linux/mm_types.h> 17#include <linux/mmap_lock.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page-flags.h> 27#include <linux/page_ref.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30#include <linux/sched.h> 31#include <linux/pgtable.h> 32#include <linux/kasan.h> 33#include <linux/memremap.h> 34#include <linux/slab.h> 35#include <linux/cacheinfo.h> 36#include <linux/rcuwait.h> 37 38struct mempolicy; 39struct anon_vma; 40struct anon_vma_chain; 41struct user_struct; 42struct pt_regs; 43struct folio_batch; 44 45void arch_mm_preinit(void); 46void mm_core_init(void); 47void init_mm_internals(void); 48 49extern atomic_long_t _totalram_pages; 50static inline unsigned long totalram_pages(void) 51{ 52 return (unsigned long)atomic_long_read(&_totalram_pages); 53} 54 55static inline void totalram_pages_inc(void) 56{ 57 atomic_long_inc(&_totalram_pages); 58} 59 60static inline void totalram_pages_dec(void) 61{ 62 atomic_long_dec(&_totalram_pages); 63} 64 65static inline void totalram_pages_add(long count) 66{ 67 atomic_long_add(count, &_totalram_pages); 68} 69 70extern void * high_memory; 71 72#ifdef CONFIG_SYSCTL 73extern int sysctl_legacy_va_layout; 74#else 75#define sysctl_legacy_va_layout 0 76#endif 77 78#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 79extern const int mmap_rnd_bits_min; 80extern int mmap_rnd_bits_max __ro_after_init; 81extern int mmap_rnd_bits __read_mostly; 82#endif 83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 84extern const int mmap_rnd_compat_bits_min; 85extern const int mmap_rnd_compat_bits_max; 86extern int mmap_rnd_compat_bits __read_mostly; 87#endif 88 89#ifndef DIRECT_MAP_PHYSMEM_END 90# ifdef MAX_PHYSMEM_BITS 91# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 92# else 93# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 94# endif 95#endif 96 97#include <asm/page.h> 98#include <asm/processor.h> 99 100#ifndef __pa_symbol 101#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 102#endif 103 104#ifndef page_to_virt 105#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 106#endif 107 108#ifndef lm_alias 109#define lm_alias(x) __va(__pa_symbol(x)) 110#endif 111 112/* 113 * To prevent common memory management code establishing 114 * a zero page mapping on a read fault. 115 * This macro should be defined within <asm/pgtable.h>. 116 * s390 does this to prevent multiplexing of hardware bits 117 * related to the physical page in case of virtualization. 118 */ 119#ifndef mm_forbids_zeropage 120#define mm_forbids_zeropage(X) (0) 121#endif 122 123/* 124 * On some architectures it is expensive to call memset() for small sizes. 125 * If an architecture decides to implement their own version of 126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 127 * define their own version of this macro in <asm/pgtable.h> 128 */ 129#if BITS_PER_LONG == 64 130/* This function must be updated when the size of struct page grows above 96 131 * or reduces below 56. The idea that compiler optimizes out switch() 132 * statement, and only leaves move/store instructions. Also the compiler can 133 * combine write statements if they are both assignments and can be reordered, 134 * this can result in several of the writes here being dropped. 135 */ 136#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 137static inline void __mm_zero_struct_page(struct page *page) 138{ 139 unsigned long *_pp = (void *)page; 140 141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 142 BUILD_BUG_ON(sizeof(struct page) & 7); 143 BUILD_BUG_ON(sizeof(struct page) < 56); 144 BUILD_BUG_ON(sizeof(struct page) > 96); 145 146 switch (sizeof(struct page)) { 147 case 96: 148 _pp[11] = 0; 149 fallthrough; 150 case 88: 151 _pp[10] = 0; 152 fallthrough; 153 case 80: 154 _pp[9] = 0; 155 fallthrough; 156 case 72: 157 _pp[8] = 0; 158 fallthrough; 159 case 64: 160 _pp[7] = 0; 161 fallthrough; 162 case 56: 163 _pp[6] = 0; 164 _pp[5] = 0; 165 _pp[4] = 0; 166 _pp[3] = 0; 167 _pp[2] = 0; 168 _pp[1] = 0; 169 _pp[0] = 0; 170 } 171} 172#else 173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 174#endif 175 176/* 177 * Default maximum number of active map areas, this limits the number of vmas 178 * per mm struct. Users can overwrite this number by sysctl but there is a 179 * problem. 180 * 181 * When a program's coredump is generated as ELF format, a section is created 182 * per a vma. In ELF, the number of sections is represented in unsigned short. 183 * This means the number of sections should be smaller than 65535 at coredump. 184 * Because the kernel adds some informative sections to a image of program at 185 * generating coredump, we need some margin. The number of extra sections is 186 * 1-3 now and depends on arch. We use "5" as safe margin, here. 187 * 188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 189 * not a hard limit any more. Although some userspace tools can be surprised by 190 * that. 191 */ 192#define MAPCOUNT_ELF_CORE_MARGIN (5) 193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 194 195extern int sysctl_max_map_count; 196 197extern unsigned long sysctl_user_reserve_kbytes; 198extern unsigned long sysctl_admin_reserve_kbytes; 199 200#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 201#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 202#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 203#else 204#define nth_page(page,n) ((page) + (n)) 205#define folio_page_idx(folio, p) ((p) - &(folio)->page) 206#endif 207 208/* to align the pointer to the (next) page boundary */ 209#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 210 211/* to align the pointer to the (prev) page boundary */ 212#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 213 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 216 217static inline struct folio *lru_to_folio(struct list_head *head) 218{ 219 return list_entry((head)->prev, struct folio, lru); 220} 221 222void setup_initial_init_mm(void *start_code, void *end_code, 223 void *end_data, void *brk); 224 225/* 226 * Linux kernel virtual memory manager primitives. 227 * The idea being to have a "virtual" mm in the same way 228 * we have a virtual fs - giving a cleaner interface to the 229 * mm details, and allowing different kinds of memory mappings 230 * (from shared memory to executable loading to arbitrary 231 * mmap() functions). 232 */ 233 234struct vm_area_struct *vm_area_alloc(struct mm_struct *); 235struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 236void vm_area_free(struct vm_area_struct *); 237 238#ifndef CONFIG_MMU 239extern struct rb_root nommu_region_tree; 240extern struct rw_semaphore nommu_region_sem; 241 242extern unsigned int kobjsize(const void *objp); 243#endif 244 245/* 246 * vm_flags in vm_area_struct, see mm_types.h. 247 * When changing, update also include/trace/events/mmflags.h 248 */ 249#define VM_NONE 0x00000000 250 251#define VM_READ 0x00000001 /* currently active flags */ 252#define VM_WRITE 0x00000002 253#define VM_EXEC 0x00000004 254#define VM_SHARED 0x00000008 255 256/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 257#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 258#define VM_MAYWRITE 0x00000020 259#define VM_MAYEXEC 0x00000040 260#define VM_MAYSHARE 0x00000080 261 262#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 263#ifdef CONFIG_MMU 264#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 265#else /* CONFIG_MMU */ 266#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 267#define VM_UFFD_MISSING 0 268#endif /* CONFIG_MMU */ 269#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 271 272#define VM_LOCKED 0x00002000 273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 274 275 /* Used by sys_madvise() */ 276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 278 279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 285#define VM_SYNC 0x00800000 /* Synchronous page faults */ 286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 289 290#ifdef CONFIG_MEM_SOFT_DIRTY 291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 292#else 293# define VM_SOFTDIRTY 0 294#endif 295 296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 300 301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 307#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 308#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 309#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 310#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 311#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 312#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 313#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 314#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 315#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 316#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 317 318#ifdef CONFIG_ARCH_HAS_PKEYS 319# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 320# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 321# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 322# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 323#if CONFIG_ARCH_PKEY_BITS > 3 324# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 325#else 326# define VM_PKEY_BIT3 0 327#endif 328#if CONFIG_ARCH_PKEY_BITS > 4 329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 330#else 331# define VM_PKEY_BIT4 0 332#endif 333#endif /* CONFIG_ARCH_HAS_PKEYS */ 334 335#ifdef CONFIG_X86_USER_SHADOW_STACK 336/* 337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 338 * support core mm. 339 * 340 * These VMAs will get a single end guard page. This helps userspace protect 341 * itself from attacks. A single page is enough for current shadow stack archs 342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 343 * for more details on the guard size. 344 */ 345# define VM_SHADOW_STACK VM_HIGH_ARCH_5 346#endif 347 348#if defined(CONFIG_ARM64_GCS) 349/* 350 * arm64's Guarded Control Stack implements similar functionality and 351 * has similar constraints to shadow stacks. 352 */ 353# define VM_SHADOW_STACK VM_HIGH_ARCH_6 354#endif 355 356#ifndef VM_SHADOW_STACK 357# define VM_SHADOW_STACK VM_NONE 358#endif 359 360#if defined(CONFIG_PPC64) 361# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 362#elif defined(CONFIG_PARISC) 363# define VM_GROWSUP VM_ARCH_1 364#elif defined(CONFIG_SPARC64) 365# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 366# define VM_ARCH_CLEAR VM_SPARC_ADI 367#elif defined(CONFIG_ARM64) 368# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 369# define VM_ARCH_CLEAR VM_ARM64_BTI 370#elif !defined(CONFIG_MMU) 371# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 372#endif 373 374#if defined(CONFIG_ARM64_MTE) 375# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 376# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 377#else 378# define VM_MTE VM_NONE 379# define VM_MTE_ALLOWED VM_NONE 380#endif 381 382#ifndef VM_GROWSUP 383# define VM_GROWSUP VM_NONE 384#endif 385 386#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 387# define VM_UFFD_MINOR_BIT 41 388# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 389#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 390# define VM_UFFD_MINOR VM_NONE 391#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 393/* 394 * This flag is used to connect VFIO to arch specific KVM code. It 395 * indicates that the memory under this VMA is safe for use with any 396 * non-cachable memory type inside KVM. Some VFIO devices, on some 397 * platforms, are thought to be unsafe and can cause machine crashes 398 * if KVM does not lock down the memory type. 399 */ 400#ifdef CONFIG_64BIT 401#define VM_ALLOW_ANY_UNCACHED_BIT 39 402#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 403#else 404#define VM_ALLOW_ANY_UNCACHED VM_NONE 405#endif 406 407#ifdef CONFIG_64BIT 408#define VM_DROPPABLE_BIT 40 409#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 410#elif defined(CONFIG_PPC32) 411#define VM_DROPPABLE VM_ARCH_1 412#else 413#define VM_DROPPABLE VM_NONE 414#endif 415 416#ifdef CONFIG_64BIT 417/* VM is sealed, in vm_flags */ 418#define VM_SEALED _BITUL(63) 419#endif 420 421/* Bits set in the VMA until the stack is in its final location */ 422#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 423 424#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 425 426/* Common data flag combinations */ 427#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 429#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 430 VM_MAYWRITE | VM_MAYEXEC) 431#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 433 434#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 435#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 436#endif 437 438#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 439#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 440#endif 441 442#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 443 444#ifdef CONFIG_STACK_GROWSUP 445#define VM_STACK VM_GROWSUP 446#define VM_STACK_EARLY VM_GROWSDOWN 447#else 448#define VM_STACK VM_GROWSDOWN 449#define VM_STACK_EARLY 0 450#endif 451 452#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 453 454/* VMA basic access permission flags */ 455#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 456 457 458/* 459 * Special vmas that are non-mergable, non-mlock()able. 460 */ 461#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 462 463/* This mask prevents VMA from being scanned with khugepaged */ 464#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 465 466/* This mask defines which mm->def_flags a process can inherit its parent */ 467#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 468 469/* This mask represents all the VMA flag bits used by mlock */ 470#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 471 472/* Arch-specific flags to clear when updating VM flags on protection change */ 473#ifndef VM_ARCH_CLEAR 474# define VM_ARCH_CLEAR VM_NONE 475#endif 476#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 477 478/* 479 * mapping from the currently active vm_flags protection bits (the 480 * low four bits) to a page protection mask.. 481 */ 482 483/* 484 * The default fault flags that should be used by most of the 485 * arch-specific page fault handlers. 486 */ 487#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 488 FAULT_FLAG_KILLABLE | \ 489 FAULT_FLAG_INTERRUPTIBLE) 490 491/** 492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 493 * @flags: Fault flags. 494 * 495 * This is mostly used for places where we want to try to avoid taking 496 * the mmap_lock for too long a time when waiting for another condition 497 * to change, in which case we can try to be polite to release the 498 * mmap_lock in the first round to avoid potential starvation of other 499 * processes that would also want the mmap_lock. 500 * 501 * Return: true if the page fault allows retry and this is the first 502 * attempt of the fault handling; false otherwise. 503 */ 504static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 505{ 506 return (flags & FAULT_FLAG_ALLOW_RETRY) && 507 (!(flags & FAULT_FLAG_TRIED)); 508} 509 510#define FAULT_FLAG_TRACE \ 511 { FAULT_FLAG_WRITE, "WRITE" }, \ 512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 516 { FAULT_FLAG_TRIED, "TRIED" }, \ 517 { FAULT_FLAG_USER, "USER" }, \ 518 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 522 523/* 524 * vm_fault is filled by the pagefault handler and passed to the vma's 525 * ->fault function. The vma's ->fault is responsible for returning a bitmask 526 * of VM_FAULT_xxx flags that give details about how the fault was handled. 527 * 528 * MM layer fills up gfp_mask for page allocations but fault handler might 529 * alter it if its implementation requires a different allocation context. 530 * 531 * pgoff should be used in favour of virtual_address, if possible. 532 */ 533struct vm_fault { 534 const struct { 535 struct vm_area_struct *vma; /* Target VMA */ 536 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 537 pgoff_t pgoff; /* Logical page offset based on vma */ 538 unsigned long address; /* Faulting virtual address - masked */ 539 unsigned long real_address; /* Faulting virtual address - unmasked */ 540 }; 541 enum fault_flag flags; /* FAULT_FLAG_xxx flags 542 * XXX: should really be 'const' */ 543 pmd_t *pmd; /* Pointer to pmd entry matching 544 * the 'address' */ 545 pud_t *pud; /* Pointer to pud entry matching 546 * the 'address' 547 */ 548 union { 549 pte_t orig_pte; /* Value of PTE at the time of fault */ 550 pmd_t orig_pmd; /* Value of PMD at the time of fault, 551 * used by PMD fault only. 552 */ 553 }; 554 555 struct page *cow_page; /* Page handler may use for COW fault */ 556 struct page *page; /* ->fault handlers should return a 557 * page here, unless VM_FAULT_NOPAGE 558 * is set (which is also implied by 559 * VM_FAULT_ERROR). 560 */ 561 /* These three entries are valid only while holding ptl lock */ 562 pte_t *pte; /* Pointer to pte entry matching 563 * the 'address'. NULL if the page 564 * table hasn't been allocated. 565 */ 566 spinlock_t *ptl; /* Page table lock. 567 * Protects pte page table if 'pte' 568 * is not NULL, otherwise pmd. 569 */ 570 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 571 * vm_ops->map_pages() sets up a page 572 * table from atomic context. 573 * do_fault_around() pre-allocates 574 * page table to avoid allocation from 575 * atomic context. 576 */ 577}; 578 579/* 580 * These are the virtual MM functions - opening of an area, closing and 581 * unmapping it (needed to keep files on disk up-to-date etc), pointer 582 * to the functions called when a no-page or a wp-page exception occurs. 583 */ 584struct vm_operations_struct { 585 void (*open)(struct vm_area_struct * area); 586 /** 587 * @close: Called when the VMA is being removed from the MM. 588 * Context: User context. May sleep. Caller holds mmap_lock. 589 */ 590 void (*close)(struct vm_area_struct * area); 591 /* Called any time before splitting to check if it's allowed */ 592 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 593 int (*mremap)(struct vm_area_struct *area); 594 /* 595 * Called by mprotect() to make driver-specific permission 596 * checks before mprotect() is finalised. The VMA must not 597 * be modified. Returns 0 if mprotect() can proceed. 598 */ 599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 600 unsigned long end, unsigned long newflags); 601 vm_fault_t (*fault)(struct vm_fault *vmf); 602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 603 vm_fault_t (*map_pages)(struct vm_fault *vmf, 604 pgoff_t start_pgoff, pgoff_t end_pgoff); 605 unsigned long (*pagesize)(struct vm_area_struct * area); 606 607 /* notification that a previously read-only page is about to become 608 * writable, if an error is returned it will cause a SIGBUS */ 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 610 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 613 614 /* called by access_process_vm when get_user_pages() fails, typically 615 * for use by special VMAs. See also generic_access_phys() for a generic 616 * implementation useful for any iomem mapping. 617 */ 618 int (*access)(struct vm_area_struct *vma, unsigned long addr, 619 void *buf, int len, int write); 620 621 /* Called by the /proc/PID/maps code to ask the vma whether it 622 * has a special name. Returning non-NULL will also cause this 623 * vma to be dumped unconditionally. */ 624 const char *(*name)(struct vm_area_struct *vma); 625 626#ifdef CONFIG_NUMA 627 /* 628 * set_policy() op must add a reference to any non-NULL @new mempolicy 629 * to hold the policy upon return. Caller should pass NULL @new to 630 * remove a policy and fall back to surrounding context--i.e. do not 631 * install a MPOL_DEFAULT policy, nor the task or system default 632 * mempolicy. 633 */ 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 635 636 /* 637 * get_policy() op must add reference [mpol_get()] to any policy at 638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 639 * in mm/mempolicy.c will do this automatically. 640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 643 * must return NULL--i.e., do not "fallback" to task or system default 644 * policy. 645 */ 646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 647 unsigned long addr, pgoff_t *ilx); 648#endif 649 /* 650 * Called by vm_normal_page() for special PTEs to find the 651 * page for @addr. This is useful if the default behavior 652 * (using pte_page()) would not find the correct page. 653 */ 654 struct page *(*find_special_page)(struct vm_area_struct *vma, 655 unsigned long addr); 656}; 657 658#ifdef CONFIG_NUMA_BALANCING 659static inline void vma_numab_state_init(struct vm_area_struct *vma) 660{ 661 vma->numab_state = NULL; 662} 663static inline void vma_numab_state_free(struct vm_area_struct *vma) 664{ 665 kfree(vma->numab_state); 666} 667#else 668static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 669static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 670#endif /* CONFIG_NUMA_BALANCING */ 671 672/* 673 * These must be here rather than mmap_lock.h as dependent on vm_fault type, 674 * declared in this header. 675 */ 676#ifdef CONFIG_PER_VMA_LOCK 677static inline void release_fault_lock(struct vm_fault *vmf) 678{ 679 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 680 vma_end_read(vmf->vma); 681 else 682 mmap_read_unlock(vmf->vma->vm_mm); 683} 684 685static inline void assert_fault_locked(struct vm_fault *vmf) 686{ 687 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 688 vma_assert_locked(vmf->vma); 689 else 690 mmap_assert_locked(vmf->vma->vm_mm); 691} 692#else 693static inline void release_fault_lock(struct vm_fault *vmf) 694{ 695 mmap_read_unlock(vmf->vma->vm_mm); 696} 697 698static inline void assert_fault_locked(struct vm_fault *vmf) 699{ 700 mmap_assert_locked(vmf->vma->vm_mm); 701} 702#endif /* CONFIG_PER_VMA_LOCK */ 703 704extern const struct vm_operations_struct vma_dummy_vm_ops; 705 706static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 707{ 708 memset(vma, 0, sizeof(*vma)); 709 vma->vm_mm = mm; 710 vma->vm_ops = &vma_dummy_vm_ops; 711 INIT_LIST_HEAD(&vma->anon_vma_chain); 712 vma_lock_init(vma, false); 713} 714 715/* Use when VMA is not part of the VMA tree and needs no locking */ 716static inline void vm_flags_init(struct vm_area_struct *vma, 717 vm_flags_t flags) 718{ 719 ACCESS_PRIVATE(vma, __vm_flags) = flags; 720} 721 722/* 723 * Use when VMA is part of the VMA tree and modifications need coordination 724 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 725 * it should be locked explicitly beforehand. 726 */ 727static inline void vm_flags_reset(struct vm_area_struct *vma, 728 vm_flags_t flags) 729{ 730 vma_assert_write_locked(vma); 731 vm_flags_init(vma, flags); 732} 733 734static inline void vm_flags_reset_once(struct vm_area_struct *vma, 735 vm_flags_t flags) 736{ 737 vma_assert_write_locked(vma); 738 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 739} 740 741static inline void vm_flags_set(struct vm_area_struct *vma, 742 vm_flags_t flags) 743{ 744 vma_start_write(vma); 745 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 746} 747 748static inline void vm_flags_clear(struct vm_area_struct *vma, 749 vm_flags_t flags) 750{ 751 vma_start_write(vma); 752 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 753} 754 755/* 756 * Use only if VMA is not part of the VMA tree or has no other users and 757 * therefore needs no locking. 758 */ 759static inline void __vm_flags_mod(struct vm_area_struct *vma, 760 vm_flags_t set, vm_flags_t clear) 761{ 762 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 763} 764 765/* 766 * Use only when the order of set/clear operations is unimportant, otherwise 767 * use vm_flags_{set|clear} explicitly. 768 */ 769static inline void vm_flags_mod(struct vm_area_struct *vma, 770 vm_flags_t set, vm_flags_t clear) 771{ 772 vma_start_write(vma); 773 __vm_flags_mod(vma, set, clear); 774} 775 776static inline void vma_set_anonymous(struct vm_area_struct *vma) 777{ 778 vma->vm_ops = NULL; 779} 780 781static inline bool vma_is_anonymous(struct vm_area_struct *vma) 782{ 783 return !vma->vm_ops; 784} 785 786/* 787 * Indicate if the VMA is a heap for the given task; for 788 * /proc/PID/maps that is the heap of the main task. 789 */ 790static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 791{ 792 return vma->vm_start < vma->vm_mm->brk && 793 vma->vm_end > vma->vm_mm->start_brk; 794} 795 796/* 797 * Indicate if the VMA is a stack for the given task; for 798 * /proc/PID/maps that is the stack of the main task. 799 */ 800static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 801{ 802 /* 803 * We make no effort to guess what a given thread considers to be 804 * its "stack". It's not even well-defined for programs written 805 * languages like Go. 806 */ 807 return vma->vm_start <= vma->vm_mm->start_stack && 808 vma->vm_end >= vma->vm_mm->start_stack; 809} 810 811static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 812{ 813 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 814 815 if (!maybe_stack) 816 return false; 817 818 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 819 VM_STACK_INCOMPLETE_SETUP) 820 return true; 821 822 return false; 823} 824 825static inline bool vma_is_foreign(struct vm_area_struct *vma) 826{ 827 if (!current->mm) 828 return true; 829 830 if (current->mm != vma->vm_mm) 831 return true; 832 833 return false; 834} 835 836static inline bool vma_is_accessible(struct vm_area_struct *vma) 837{ 838 return vma->vm_flags & VM_ACCESS_FLAGS; 839} 840 841static inline bool is_shared_maywrite(vm_flags_t vm_flags) 842{ 843 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 844 (VM_SHARED | VM_MAYWRITE); 845} 846 847static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 848{ 849 return is_shared_maywrite(vma->vm_flags); 850} 851 852static inline 853struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 854{ 855 return mas_find(&vmi->mas, max - 1); 856} 857 858static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 859{ 860 /* 861 * Uses mas_find() to get the first VMA when the iterator starts. 862 * Calling mas_next() could skip the first entry. 863 */ 864 return mas_find(&vmi->mas, ULONG_MAX); 865} 866 867static inline 868struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 869{ 870 return mas_next_range(&vmi->mas, ULONG_MAX); 871} 872 873 874static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 875{ 876 return mas_prev(&vmi->mas, 0); 877} 878 879static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 880 unsigned long start, unsigned long end, gfp_t gfp) 881{ 882 __mas_set_range(&vmi->mas, start, end - 1); 883 mas_store_gfp(&vmi->mas, NULL, gfp); 884 if (unlikely(mas_is_err(&vmi->mas))) 885 return -ENOMEM; 886 887 return 0; 888} 889 890/* Free any unused preallocations */ 891static inline void vma_iter_free(struct vma_iterator *vmi) 892{ 893 mas_destroy(&vmi->mas); 894} 895 896static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 897 struct vm_area_struct *vma) 898{ 899 vmi->mas.index = vma->vm_start; 900 vmi->mas.last = vma->vm_end - 1; 901 mas_store(&vmi->mas, vma); 902 if (unlikely(mas_is_err(&vmi->mas))) 903 return -ENOMEM; 904 905 vma_mark_attached(vma); 906 return 0; 907} 908 909static inline void vma_iter_invalidate(struct vma_iterator *vmi) 910{ 911 mas_pause(&vmi->mas); 912} 913 914static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 915{ 916 mas_set(&vmi->mas, addr); 917} 918 919#define for_each_vma(__vmi, __vma) \ 920 while (((__vma) = vma_next(&(__vmi))) != NULL) 921 922/* The MM code likes to work with exclusive end addresses */ 923#define for_each_vma_range(__vmi, __vma, __end) \ 924 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 925 926#ifdef CONFIG_SHMEM 927/* 928 * The vma_is_shmem is not inline because it is used only by slow 929 * paths in userfault. 930 */ 931bool vma_is_shmem(struct vm_area_struct *vma); 932bool vma_is_anon_shmem(struct vm_area_struct *vma); 933#else 934static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 935static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 936#endif 937 938int vma_is_stack_for_current(struct vm_area_struct *vma); 939 940/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 941#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 942 943struct mmu_gather; 944struct inode; 945 946extern void prep_compound_page(struct page *page, unsigned int order); 947 948static inline unsigned int folio_large_order(const struct folio *folio) 949{ 950 return folio->_flags_1 & 0xff; 951} 952 953#ifdef NR_PAGES_IN_LARGE_FOLIO 954static inline long folio_large_nr_pages(const struct folio *folio) 955{ 956 return folio->_nr_pages; 957} 958#else 959static inline long folio_large_nr_pages(const struct folio *folio) 960{ 961 return 1L << folio_large_order(folio); 962} 963#endif 964 965/* 966 * compound_order() can be called without holding a reference, which means 967 * that niceties like page_folio() don't work. These callers should be 968 * prepared to handle wild return values. For example, PG_head may be 969 * set before the order is initialised, or this may be a tail page. 970 * See compaction.c for some good examples. 971 */ 972static inline unsigned int compound_order(struct page *page) 973{ 974 struct folio *folio = (struct folio *)page; 975 976 if (!test_bit(PG_head, &folio->flags)) 977 return 0; 978 return folio_large_order(folio); 979} 980 981/** 982 * folio_order - The allocation order of a folio. 983 * @folio: The folio. 984 * 985 * A folio is composed of 2^order pages. See get_order() for the definition 986 * of order. 987 * 988 * Return: The order of the folio. 989 */ 990static inline unsigned int folio_order(const struct folio *folio) 991{ 992 if (!folio_test_large(folio)) 993 return 0; 994 return folio_large_order(folio); 995} 996 997/** 998 * folio_reset_order - Reset the folio order and derived _nr_pages 999 * @folio: The folio. 1000 * 1001 * Reset the order and derived _nr_pages to 0. Must only be used in the 1002 * process of splitting large folios. 1003 */ 1004static inline void folio_reset_order(struct folio *folio) 1005{ 1006 if (WARN_ON_ONCE(!folio_test_large(folio))) 1007 return; 1008 folio->_flags_1 &= ~0xffUL; 1009#ifdef NR_PAGES_IN_LARGE_FOLIO 1010 folio->_nr_pages = 0; 1011#endif 1012} 1013 1014#include <linux/huge_mm.h> 1015 1016/* 1017 * Methods to modify the page usage count. 1018 * 1019 * What counts for a page usage: 1020 * - cache mapping (page->mapping) 1021 * - private data (page->private) 1022 * - page mapped in a task's page tables, each mapping 1023 * is counted separately 1024 * 1025 * Also, many kernel routines increase the page count before a critical 1026 * routine so they can be sure the page doesn't go away from under them. 1027 */ 1028 1029/* 1030 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1031 */ 1032static inline int put_page_testzero(struct page *page) 1033{ 1034 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1035 return page_ref_dec_and_test(page); 1036} 1037 1038static inline int folio_put_testzero(struct folio *folio) 1039{ 1040 return put_page_testzero(&folio->page); 1041} 1042 1043/* 1044 * Try to grab a ref unless the page has a refcount of zero, return false if 1045 * that is the case. 1046 * This can be called when MMU is off so it must not access 1047 * any of the virtual mappings. 1048 */ 1049static inline bool get_page_unless_zero(struct page *page) 1050{ 1051 return page_ref_add_unless(page, 1, 0); 1052} 1053 1054static inline struct folio *folio_get_nontail_page(struct page *page) 1055{ 1056 if (unlikely(!get_page_unless_zero(page))) 1057 return NULL; 1058 return (struct folio *)page; 1059} 1060 1061extern int page_is_ram(unsigned long pfn); 1062 1063enum { 1064 REGION_INTERSECTS, 1065 REGION_DISJOINT, 1066 REGION_MIXED, 1067}; 1068 1069int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1070 unsigned long desc); 1071 1072/* Support for virtually mapped pages */ 1073struct page *vmalloc_to_page(const void *addr); 1074unsigned long vmalloc_to_pfn(const void *addr); 1075 1076/* 1077 * Determine if an address is within the vmalloc range 1078 * 1079 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1080 * is no special casing required. 1081 */ 1082#ifdef CONFIG_MMU 1083extern bool is_vmalloc_addr(const void *x); 1084extern int is_vmalloc_or_module_addr(const void *x); 1085#else 1086static inline bool is_vmalloc_addr(const void *x) 1087{ 1088 return false; 1089} 1090static inline int is_vmalloc_or_module_addr(const void *x) 1091{ 1092 return 0; 1093} 1094#endif 1095 1096/* 1097 * How many times the entire folio is mapped as a single unit (eg by a 1098 * PMD or PUD entry). This is probably not what you want, except for 1099 * debugging purposes or implementation of other core folio_*() primitives. 1100 */ 1101static inline int folio_entire_mapcount(const struct folio *folio) 1102{ 1103 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1104 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1105 return 0; 1106 return atomic_read(&folio->_entire_mapcount) + 1; 1107} 1108 1109static inline int folio_large_mapcount(const struct folio *folio) 1110{ 1111 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1112 return atomic_read(&folio->_large_mapcount) + 1; 1113} 1114 1115/** 1116 * folio_mapcount() - Number of mappings of this folio. 1117 * @folio: The folio. 1118 * 1119 * The folio mapcount corresponds to the number of present user page table 1120 * entries that reference any part of a folio. Each such present user page 1121 * table entry must be paired with exactly on folio reference. 1122 * 1123 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1124 * exactly once. 1125 * 1126 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1127 * references the entire folio counts exactly once, even when such special 1128 * page table entries are comprised of multiple ordinary page table entries. 1129 * 1130 * Will report 0 for pages which cannot be mapped into userspace, such as 1131 * slab, page tables and similar. 1132 * 1133 * Return: The number of times this folio is mapped. 1134 */ 1135static inline int folio_mapcount(const struct folio *folio) 1136{ 1137 int mapcount; 1138 1139 if (likely(!folio_test_large(folio))) { 1140 mapcount = atomic_read(&folio->_mapcount) + 1; 1141 if (page_mapcount_is_type(mapcount)) 1142 mapcount = 0; 1143 return mapcount; 1144 } 1145 return folio_large_mapcount(folio); 1146} 1147 1148/** 1149 * folio_mapped - Is this folio mapped into userspace? 1150 * @folio: The folio. 1151 * 1152 * Return: True if any page in this folio is referenced by user page tables. 1153 */ 1154static inline bool folio_mapped(const struct folio *folio) 1155{ 1156 return folio_mapcount(folio) >= 1; 1157} 1158 1159/* 1160 * Return true if this page is mapped into pagetables. 1161 * For compound page it returns true if any sub-page of compound page is mapped, 1162 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1163 */ 1164static inline bool page_mapped(const struct page *page) 1165{ 1166 return folio_mapped(page_folio(page)); 1167} 1168 1169static inline struct page *virt_to_head_page(const void *x) 1170{ 1171 struct page *page = virt_to_page(x); 1172 1173 return compound_head(page); 1174} 1175 1176static inline struct folio *virt_to_folio(const void *x) 1177{ 1178 struct page *page = virt_to_page(x); 1179 1180 return page_folio(page); 1181} 1182 1183void __folio_put(struct folio *folio); 1184 1185void split_page(struct page *page, unsigned int order); 1186void folio_copy(struct folio *dst, struct folio *src); 1187int folio_mc_copy(struct folio *dst, struct folio *src); 1188 1189unsigned long nr_free_buffer_pages(void); 1190 1191/* Returns the number of bytes in this potentially compound page. */ 1192static inline unsigned long page_size(struct page *page) 1193{ 1194 return PAGE_SIZE << compound_order(page); 1195} 1196 1197/* Returns the number of bits needed for the number of bytes in a page */ 1198static inline unsigned int page_shift(struct page *page) 1199{ 1200 return PAGE_SHIFT + compound_order(page); 1201} 1202 1203/** 1204 * thp_order - Order of a transparent huge page. 1205 * @page: Head page of a transparent huge page. 1206 */ 1207static inline unsigned int thp_order(struct page *page) 1208{ 1209 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1210 return compound_order(page); 1211} 1212 1213/** 1214 * thp_size - Size of a transparent huge page. 1215 * @page: Head page of a transparent huge page. 1216 * 1217 * Return: Number of bytes in this page. 1218 */ 1219static inline unsigned long thp_size(struct page *page) 1220{ 1221 return PAGE_SIZE << thp_order(page); 1222} 1223 1224#ifdef CONFIG_MMU 1225/* 1226 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1227 * servicing faults for write access. In the normal case, do always want 1228 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1229 * that do not have writing enabled, when used by access_process_vm. 1230 */ 1231static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1232{ 1233 if (likely(vma->vm_flags & VM_WRITE)) 1234 pte = pte_mkwrite(pte, vma); 1235 return pte; 1236} 1237 1238vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); 1239void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1240 struct page *page, unsigned int nr, unsigned long addr); 1241 1242vm_fault_t finish_fault(struct vm_fault *vmf); 1243#endif 1244 1245/* 1246 * Multiple processes may "see" the same page. E.g. for untouched 1247 * mappings of /dev/null, all processes see the same page full of 1248 * zeroes, and text pages of executables and shared libraries have 1249 * only one copy in memory, at most, normally. 1250 * 1251 * For the non-reserved pages, page_count(page) denotes a reference count. 1252 * page_count() == 0 means the page is free. page->lru is then used for 1253 * freelist management in the buddy allocator. 1254 * page_count() > 0 means the page has been allocated. 1255 * 1256 * Pages are allocated by the slab allocator in order to provide memory 1257 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1258 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1259 * unless a particular usage is carefully commented. (the responsibility of 1260 * freeing the kmalloc memory is the caller's, of course). 1261 * 1262 * A page may be used by anyone else who does a __get_free_page(). 1263 * In this case, page_count still tracks the references, and should only 1264 * be used through the normal accessor functions. The top bits of page->flags 1265 * and page->virtual store page management information, but all other fields 1266 * are unused and could be used privately, carefully. The management of this 1267 * page is the responsibility of the one who allocated it, and those who have 1268 * subsequently been given references to it. 1269 * 1270 * The other pages (we may call them "pagecache pages") are completely 1271 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1272 * The following discussion applies only to them. 1273 * 1274 * A pagecache page contains an opaque `private' member, which belongs to the 1275 * page's address_space. Usually, this is the address of a circular list of 1276 * the page's disk buffers. PG_private must be set to tell the VM to call 1277 * into the filesystem to release these pages. 1278 * 1279 * A folio may belong to an inode's memory mapping. In this case, 1280 * folio->mapping points to the inode, and folio->index is the file 1281 * offset of the folio, in units of PAGE_SIZE. 1282 * 1283 * If pagecache pages are not associated with an inode, they are said to be 1284 * anonymous pages. These may become associated with the swapcache, and in that 1285 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1286 * 1287 * In either case (swapcache or inode backed), the pagecache itself holds one 1288 * reference to the page. Setting PG_private should also increment the 1289 * refcount. The each user mapping also has a reference to the page. 1290 * 1291 * The pagecache pages are stored in a per-mapping radix tree, which is 1292 * rooted at mapping->i_pages, and indexed by offset. 1293 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1294 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1295 * 1296 * All pagecache pages may be subject to I/O: 1297 * - inode pages may need to be read from disk, 1298 * - inode pages which have been modified and are MAP_SHARED may need 1299 * to be written back to the inode on disk, 1300 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1301 * modified may need to be swapped out to swap space and (later) to be read 1302 * back into memory. 1303 */ 1304 1305/* 127: arbitrary random number, small enough to assemble well */ 1306#define folio_ref_zero_or_close_to_overflow(folio) \ 1307 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1308 1309/** 1310 * folio_get - Increment the reference count on a folio. 1311 * @folio: The folio. 1312 * 1313 * Context: May be called in any context, as long as you know that 1314 * you have a refcount on the folio. If you do not already have one, 1315 * folio_try_get() may be the right interface for you to use. 1316 */ 1317static inline void folio_get(struct folio *folio) 1318{ 1319 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1320 folio_ref_inc(folio); 1321} 1322 1323static inline void get_page(struct page *page) 1324{ 1325 struct folio *folio = page_folio(page); 1326 if (WARN_ON_ONCE(folio_test_slab(folio))) 1327 return; 1328 folio_get(folio); 1329} 1330 1331static inline __must_check bool try_get_page(struct page *page) 1332{ 1333 page = compound_head(page); 1334 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1335 return false; 1336 page_ref_inc(page); 1337 return true; 1338} 1339 1340/** 1341 * folio_put - Decrement the reference count on a folio. 1342 * @folio: The folio. 1343 * 1344 * If the folio's reference count reaches zero, the memory will be 1345 * released back to the page allocator and may be used by another 1346 * allocation immediately. Do not access the memory or the struct folio 1347 * after calling folio_put() unless you can be sure that it wasn't the 1348 * last reference. 1349 * 1350 * Context: May be called in process or interrupt context, but not in NMI 1351 * context. May be called while holding a spinlock. 1352 */ 1353static inline void folio_put(struct folio *folio) 1354{ 1355 if (folio_put_testzero(folio)) 1356 __folio_put(folio); 1357} 1358 1359/** 1360 * folio_put_refs - Reduce the reference count on a folio. 1361 * @folio: The folio. 1362 * @refs: The amount to subtract from the folio's reference count. 1363 * 1364 * If the folio's reference count reaches zero, the memory will be 1365 * released back to the page allocator and may be used by another 1366 * allocation immediately. Do not access the memory or the struct folio 1367 * after calling folio_put_refs() unless you can be sure that these weren't 1368 * the last references. 1369 * 1370 * Context: May be called in process or interrupt context, but not in NMI 1371 * context. May be called while holding a spinlock. 1372 */ 1373static inline void folio_put_refs(struct folio *folio, int refs) 1374{ 1375 if (folio_ref_sub_and_test(folio, refs)) 1376 __folio_put(folio); 1377} 1378 1379void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1380 1381/* 1382 * union release_pages_arg - an array of pages or folios 1383 * 1384 * release_pages() releases a simple array of multiple pages, and 1385 * accepts various different forms of said page array: either 1386 * a regular old boring array of pages, an array of folios, or 1387 * an array of encoded page pointers. 1388 * 1389 * The transparent union syntax for this kind of "any of these 1390 * argument types" is all kinds of ugly, so look away. 1391 */ 1392typedef union { 1393 struct page **pages; 1394 struct folio **folios; 1395 struct encoded_page **encoded_pages; 1396} release_pages_arg __attribute__ ((__transparent_union__)); 1397 1398void release_pages(release_pages_arg, int nr); 1399 1400/** 1401 * folios_put - Decrement the reference count on an array of folios. 1402 * @folios: The folios. 1403 * 1404 * Like folio_put(), but for a batch of folios. This is more efficient 1405 * than writing the loop yourself as it will optimise the locks which need 1406 * to be taken if the folios are freed. The folios batch is returned 1407 * empty and ready to be reused for another batch; there is no need to 1408 * reinitialise it. 1409 * 1410 * Context: May be called in process or interrupt context, but not in NMI 1411 * context. May be called while holding a spinlock. 1412 */ 1413static inline void folios_put(struct folio_batch *folios) 1414{ 1415 folios_put_refs(folios, NULL); 1416} 1417 1418static inline void put_page(struct page *page) 1419{ 1420 struct folio *folio = page_folio(page); 1421 1422 if (folio_test_slab(folio)) 1423 return; 1424 1425 folio_put(folio); 1426} 1427 1428/* 1429 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1430 * the page's refcount so that two separate items are tracked: the original page 1431 * reference count, and also a new count of how many pin_user_pages() calls were 1432 * made against the page. ("gup-pinned" is another term for the latter). 1433 * 1434 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1435 * distinct from normal pages. As such, the unpin_user_page() call (and its 1436 * variants) must be used in order to release gup-pinned pages. 1437 * 1438 * Choice of value: 1439 * 1440 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1441 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1442 * simpler, due to the fact that adding an even power of two to the page 1443 * refcount has the effect of using only the upper N bits, for the code that 1444 * counts up using the bias value. This means that the lower bits are left for 1445 * the exclusive use of the original code that increments and decrements by one 1446 * (or at least, by much smaller values than the bias value). 1447 * 1448 * Of course, once the lower bits overflow into the upper bits (and this is 1449 * OK, because subtraction recovers the original values), then visual inspection 1450 * no longer suffices to directly view the separate counts. However, for normal 1451 * applications that don't have huge page reference counts, this won't be an 1452 * issue. 1453 * 1454 * Locking: the lockless algorithm described in folio_try_get_rcu() 1455 * provides safe operation for get_user_pages(), folio_mkclean() and 1456 * other calls that race to set up page table entries. 1457 */ 1458#define GUP_PIN_COUNTING_BIAS (1U << 10) 1459 1460void unpin_user_page(struct page *page); 1461void unpin_folio(struct folio *folio); 1462void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1463 bool make_dirty); 1464void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1465 bool make_dirty); 1466void unpin_user_pages(struct page **pages, unsigned long npages); 1467void unpin_user_folio(struct folio *folio, unsigned long npages); 1468void unpin_folios(struct folio **folios, unsigned long nfolios); 1469 1470static inline bool is_cow_mapping(vm_flags_t flags) 1471{ 1472 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1473} 1474 1475#ifndef CONFIG_MMU 1476static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1477{ 1478 /* 1479 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1480 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1481 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1482 * underlying memory if ptrace is active, so this is only possible if 1483 * ptrace does not apply. Note that there is no mprotect() to upgrade 1484 * write permissions later. 1485 */ 1486 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1487} 1488#endif 1489 1490#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1491#define SECTION_IN_PAGE_FLAGS 1492#endif 1493 1494/* 1495 * The identification function is mainly used by the buddy allocator for 1496 * determining if two pages could be buddies. We are not really identifying 1497 * the zone since we could be using the section number id if we do not have 1498 * node id available in page flags. 1499 * We only guarantee that it will return the same value for two combinable 1500 * pages in a zone. 1501 */ 1502static inline int page_zone_id(struct page *page) 1503{ 1504 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1505} 1506 1507#ifdef NODE_NOT_IN_PAGE_FLAGS 1508int page_to_nid(const struct page *page); 1509#else 1510static inline int page_to_nid(const struct page *page) 1511{ 1512 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1513} 1514#endif 1515 1516static inline int folio_nid(const struct folio *folio) 1517{ 1518 return page_to_nid(&folio->page); 1519} 1520 1521#ifdef CONFIG_NUMA_BALANCING 1522/* page access time bits needs to hold at least 4 seconds */ 1523#define PAGE_ACCESS_TIME_MIN_BITS 12 1524#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1525#define PAGE_ACCESS_TIME_BUCKETS \ 1526 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1527#else 1528#define PAGE_ACCESS_TIME_BUCKETS 0 1529#endif 1530 1531#define PAGE_ACCESS_TIME_MASK \ 1532 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1533 1534static inline int cpu_pid_to_cpupid(int cpu, int pid) 1535{ 1536 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1537} 1538 1539static inline int cpupid_to_pid(int cpupid) 1540{ 1541 return cpupid & LAST__PID_MASK; 1542} 1543 1544static inline int cpupid_to_cpu(int cpupid) 1545{ 1546 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1547} 1548 1549static inline int cpupid_to_nid(int cpupid) 1550{ 1551 return cpu_to_node(cpupid_to_cpu(cpupid)); 1552} 1553 1554static inline bool cpupid_pid_unset(int cpupid) 1555{ 1556 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1557} 1558 1559static inline bool cpupid_cpu_unset(int cpupid) 1560{ 1561 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1562} 1563 1564static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1565{ 1566 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1567} 1568 1569#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1570#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1571static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1572{ 1573 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1574} 1575 1576static inline int folio_last_cpupid(struct folio *folio) 1577{ 1578 return folio->_last_cpupid; 1579} 1580static inline void page_cpupid_reset_last(struct page *page) 1581{ 1582 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1583} 1584#else 1585static inline int folio_last_cpupid(struct folio *folio) 1586{ 1587 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1588} 1589 1590int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1591 1592static inline void page_cpupid_reset_last(struct page *page) 1593{ 1594 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1595} 1596#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1597 1598static inline int folio_xchg_access_time(struct folio *folio, int time) 1599{ 1600 int last_time; 1601 1602 last_time = folio_xchg_last_cpupid(folio, 1603 time >> PAGE_ACCESS_TIME_BUCKETS); 1604 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1605} 1606 1607static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1608{ 1609 unsigned int pid_bit; 1610 1611 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1612 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1613 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1614 } 1615} 1616 1617bool folio_use_access_time(struct folio *folio); 1618#else /* !CONFIG_NUMA_BALANCING */ 1619static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1620{ 1621 return folio_nid(folio); /* XXX */ 1622} 1623 1624static inline int folio_xchg_access_time(struct folio *folio, int time) 1625{ 1626 return 0; 1627} 1628 1629static inline int folio_last_cpupid(struct folio *folio) 1630{ 1631 return folio_nid(folio); /* XXX */ 1632} 1633 1634static inline int cpupid_to_nid(int cpupid) 1635{ 1636 return -1; 1637} 1638 1639static inline int cpupid_to_pid(int cpupid) 1640{ 1641 return -1; 1642} 1643 1644static inline int cpupid_to_cpu(int cpupid) 1645{ 1646 return -1; 1647} 1648 1649static inline int cpu_pid_to_cpupid(int nid, int pid) 1650{ 1651 return -1; 1652} 1653 1654static inline bool cpupid_pid_unset(int cpupid) 1655{ 1656 return true; 1657} 1658 1659static inline void page_cpupid_reset_last(struct page *page) 1660{ 1661} 1662 1663static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1664{ 1665 return false; 1666} 1667 1668static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1669{ 1670} 1671static inline bool folio_use_access_time(struct folio *folio) 1672{ 1673 return false; 1674} 1675#endif /* CONFIG_NUMA_BALANCING */ 1676 1677#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1678 1679/* 1680 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1681 * setting tags for all pages to native kernel tag value 0xff, as the default 1682 * value 0x00 maps to 0xff. 1683 */ 1684 1685static inline u8 page_kasan_tag(const struct page *page) 1686{ 1687 u8 tag = KASAN_TAG_KERNEL; 1688 1689 if (kasan_enabled()) { 1690 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1691 tag ^= 0xff; 1692 } 1693 1694 return tag; 1695} 1696 1697static inline void page_kasan_tag_set(struct page *page, u8 tag) 1698{ 1699 unsigned long old_flags, flags; 1700 1701 if (!kasan_enabled()) 1702 return; 1703 1704 tag ^= 0xff; 1705 old_flags = READ_ONCE(page->flags); 1706 do { 1707 flags = old_flags; 1708 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1709 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1710 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1711} 1712 1713static inline void page_kasan_tag_reset(struct page *page) 1714{ 1715 if (kasan_enabled()) 1716 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1717} 1718 1719#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1720 1721static inline u8 page_kasan_tag(const struct page *page) 1722{ 1723 return 0xff; 1724} 1725 1726static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1727static inline void page_kasan_tag_reset(struct page *page) { } 1728 1729#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1730 1731static inline struct zone *page_zone(const struct page *page) 1732{ 1733 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1734} 1735 1736static inline pg_data_t *page_pgdat(const struct page *page) 1737{ 1738 return NODE_DATA(page_to_nid(page)); 1739} 1740 1741static inline struct zone *folio_zone(const struct folio *folio) 1742{ 1743 return page_zone(&folio->page); 1744} 1745 1746static inline pg_data_t *folio_pgdat(const struct folio *folio) 1747{ 1748 return page_pgdat(&folio->page); 1749} 1750 1751#ifdef SECTION_IN_PAGE_FLAGS 1752static inline void set_page_section(struct page *page, unsigned long section) 1753{ 1754 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1755 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1756} 1757 1758static inline unsigned long page_to_section(const struct page *page) 1759{ 1760 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1761} 1762#endif 1763 1764/** 1765 * folio_pfn - Return the Page Frame Number of a folio. 1766 * @folio: The folio. 1767 * 1768 * A folio may contain multiple pages. The pages have consecutive 1769 * Page Frame Numbers. 1770 * 1771 * Return: The Page Frame Number of the first page in the folio. 1772 */ 1773static inline unsigned long folio_pfn(const struct folio *folio) 1774{ 1775 return page_to_pfn(&folio->page); 1776} 1777 1778static inline struct folio *pfn_folio(unsigned long pfn) 1779{ 1780 return page_folio(pfn_to_page(pfn)); 1781} 1782 1783#ifdef CONFIG_MMU 1784static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1785{ 1786 return pfn_pte(page_to_pfn(page), pgprot); 1787} 1788 1789/** 1790 * folio_mk_pte - Create a PTE for this folio 1791 * @folio: The folio to create a PTE for 1792 * @pgprot: The page protection bits to use 1793 * 1794 * Create a page table entry for the first page of this folio. 1795 * This is suitable for passing to set_ptes(). 1796 * 1797 * Return: A page table entry suitable for mapping this folio. 1798 */ 1799static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot) 1800{ 1801 return pfn_pte(folio_pfn(folio), pgprot); 1802} 1803 1804#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1805/** 1806 * folio_mk_pmd - Create a PMD for this folio 1807 * @folio: The folio to create a PMD for 1808 * @pgprot: The page protection bits to use 1809 * 1810 * Create a page table entry for the first page of this folio. 1811 * This is suitable for passing to set_pmd_at(). 1812 * 1813 * Return: A page table entry suitable for mapping this folio. 1814 */ 1815static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot) 1816{ 1817 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot)); 1818} 1819#endif 1820#endif /* CONFIG_MMU */ 1821 1822static inline bool folio_has_pincount(const struct folio *folio) 1823{ 1824 if (IS_ENABLED(CONFIG_64BIT)) 1825 return folio_test_large(folio); 1826 return folio_order(folio) > 1; 1827} 1828 1829/** 1830 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1831 * @folio: The folio. 1832 * 1833 * This function checks if a folio has been pinned via a call to 1834 * a function in the pin_user_pages() family. 1835 * 1836 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1837 * because it means "definitely not pinned for DMA", but true means "probably 1838 * pinned for DMA, but possibly a false positive due to having at least 1839 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1840 * 1841 * False positives are OK, because: a) it's unlikely for a folio to 1842 * get that many refcounts, and b) all the callers of this routine are 1843 * expected to be able to deal gracefully with a false positive. 1844 * 1845 * For most large folios, the result will be exactly correct. That's because 1846 * we have more tracking data available: the _pincount field is used 1847 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1848 * 1849 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1850 * 1851 * Return: True, if it is likely that the folio has been "dma-pinned". 1852 * False, if the folio is definitely not dma-pinned. 1853 */ 1854static inline bool folio_maybe_dma_pinned(struct folio *folio) 1855{ 1856 if (folio_has_pincount(folio)) 1857 return atomic_read(&folio->_pincount) > 0; 1858 1859 /* 1860 * folio_ref_count() is signed. If that refcount overflows, then 1861 * folio_ref_count() returns a negative value, and callers will avoid 1862 * further incrementing the refcount. 1863 * 1864 * Here, for that overflow case, use the sign bit to count a little 1865 * bit higher via unsigned math, and thus still get an accurate result. 1866 */ 1867 return ((unsigned int)folio_ref_count(folio)) >= 1868 GUP_PIN_COUNTING_BIAS; 1869} 1870 1871/* 1872 * This should most likely only be called during fork() to see whether we 1873 * should break the cow immediately for an anon page on the src mm. 1874 * 1875 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1876 */ 1877static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1878 struct folio *folio) 1879{ 1880 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1881 1882 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1883 return false; 1884 1885 return folio_maybe_dma_pinned(folio); 1886} 1887 1888/** 1889 * is_zero_page - Query if a page is a zero page 1890 * @page: The page to query 1891 * 1892 * This returns true if @page is one of the permanent zero pages. 1893 */ 1894static inline bool is_zero_page(const struct page *page) 1895{ 1896 return is_zero_pfn(page_to_pfn(page)); 1897} 1898 1899/** 1900 * is_zero_folio - Query if a folio is a zero page 1901 * @folio: The folio to query 1902 * 1903 * This returns true if @folio is one of the permanent zero pages. 1904 */ 1905static inline bool is_zero_folio(const struct folio *folio) 1906{ 1907 return is_zero_page(&folio->page); 1908} 1909 1910/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1911#ifdef CONFIG_MIGRATION 1912static inline bool folio_is_longterm_pinnable(struct folio *folio) 1913{ 1914#ifdef CONFIG_CMA 1915 int mt = folio_migratetype(folio); 1916 1917 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1918 return false; 1919#endif 1920 /* The zero page can be "pinned" but gets special handling. */ 1921 if (is_zero_folio(folio)) 1922 return true; 1923 1924 /* Coherent device memory must always allow eviction. */ 1925 if (folio_is_device_coherent(folio)) 1926 return false; 1927 1928 /* 1929 * Filesystems can only tolerate transient delays to truncate and 1930 * hole-punch operations 1931 */ 1932 if (folio_is_fsdax(folio)) 1933 return false; 1934 1935 /* Otherwise, non-movable zone folios can be pinned. */ 1936 return !folio_is_zone_movable(folio); 1937 1938} 1939#else 1940static inline bool folio_is_longterm_pinnable(struct folio *folio) 1941{ 1942 return true; 1943} 1944#endif 1945 1946static inline void set_page_zone(struct page *page, enum zone_type zone) 1947{ 1948 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1949 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1950} 1951 1952static inline void set_page_node(struct page *page, unsigned long node) 1953{ 1954 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1955 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1956} 1957 1958static inline void set_page_links(struct page *page, enum zone_type zone, 1959 unsigned long node, unsigned long pfn) 1960{ 1961 set_page_zone(page, zone); 1962 set_page_node(page, node); 1963#ifdef SECTION_IN_PAGE_FLAGS 1964 set_page_section(page, pfn_to_section_nr(pfn)); 1965#endif 1966} 1967 1968/** 1969 * folio_nr_pages - The number of pages in the folio. 1970 * @folio: The folio. 1971 * 1972 * Return: A positive power of two. 1973 */ 1974static inline long folio_nr_pages(const struct folio *folio) 1975{ 1976 if (!folio_test_large(folio)) 1977 return 1; 1978 return folio_large_nr_pages(folio); 1979} 1980 1981/* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 1982#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1983#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 1984#else 1985#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 1986#endif 1987 1988/* 1989 * compound_nr() returns the number of pages in this potentially compound 1990 * page. compound_nr() can be called on a tail page, and is defined to 1991 * return 1 in that case. 1992 */ 1993static inline long compound_nr(struct page *page) 1994{ 1995 struct folio *folio = (struct folio *)page; 1996 1997 if (!test_bit(PG_head, &folio->flags)) 1998 return 1; 1999 return folio_large_nr_pages(folio); 2000} 2001 2002/** 2003 * folio_next - Move to the next physical folio. 2004 * @folio: The folio we're currently operating on. 2005 * 2006 * If you have physically contiguous memory which may span more than 2007 * one folio (eg a &struct bio_vec), use this function to move from one 2008 * folio to the next. Do not use it if the memory is only virtually 2009 * contiguous as the folios are almost certainly not adjacent to each 2010 * other. This is the folio equivalent to writing ``page++``. 2011 * 2012 * Context: We assume that the folios are refcounted and/or locked at a 2013 * higher level and do not adjust the reference counts. 2014 * Return: The next struct folio. 2015 */ 2016static inline struct folio *folio_next(struct folio *folio) 2017{ 2018 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2019} 2020 2021/** 2022 * folio_shift - The size of the memory described by this folio. 2023 * @folio: The folio. 2024 * 2025 * A folio represents a number of bytes which is a power-of-two in size. 2026 * This function tells you which power-of-two the folio is. See also 2027 * folio_size() and folio_order(). 2028 * 2029 * Context: The caller should have a reference on the folio to prevent 2030 * it from being split. It is not necessary for the folio to be locked. 2031 * Return: The base-2 logarithm of the size of this folio. 2032 */ 2033static inline unsigned int folio_shift(const struct folio *folio) 2034{ 2035 return PAGE_SHIFT + folio_order(folio); 2036} 2037 2038/** 2039 * folio_size - The number of bytes in a folio. 2040 * @folio: The folio. 2041 * 2042 * Context: The caller should have a reference on the folio to prevent 2043 * it from being split. It is not necessary for the folio to be locked. 2044 * Return: The number of bytes in this folio. 2045 */ 2046static inline size_t folio_size(const struct folio *folio) 2047{ 2048 return PAGE_SIZE << folio_order(folio); 2049} 2050 2051/** 2052 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2053 * tables of more than one MM 2054 * @folio: The folio. 2055 * 2056 * This function checks if the folio maybe currently mapped into more than one 2057 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2058 * MM ("mapped exclusively"). 2059 * 2060 * For KSM folios, this function also returns "mapped shared" when a folio is 2061 * mapped multiple times into the same MM, because the individual page mappings 2062 * are independent. 2063 * 2064 * For small anonymous folios and anonymous hugetlb folios, the return 2065 * value will be exactly correct: non-KSM folios can only be mapped at most once 2066 * into an MM, and they cannot be partially mapped. KSM folios are 2067 * considered shared even if mapped multiple times into the same MM. 2068 * 2069 * For other folios, the result can be fuzzy: 2070 * #. For partially-mappable large folios (THP), the return value can wrongly 2071 * indicate "mapped shared" (false positive) if a folio was mapped by 2072 * more than two MMs at one point in time. 2073 * #. For pagecache folios (including hugetlb), the return value can wrongly 2074 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2075 * cover the same file range. 2076 * 2077 * Further, this function only considers current page table mappings that 2078 * are tracked using the folio mapcount(s). 2079 * 2080 * This function does not consider: 2081 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2082 * pagecache, temporary unmapping for migration). 2083 * #. If the folio is mapped differently (VM_PFNMAP). 2084 * #. If hugetlb page table sharing applies. Callers might want to check 2085 * hugetlb_pmd_shared(). 2086 * 2087 * Return: Whether the folio is estimated to be mapped into more than one MM. 2088 */ 2089static inline bool folio_maybe_mapped_shared(struct folio *folio) 2090{ 2091 int mapcount = folio_mapcount(folio); 2092 2093 /* Only partially-mappable folios require more care. */ 2094 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2095 return mapcount > 1; 2096 2097 /* 2098 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2099 * simply assume "mapped shared", nobody should really care 2100 * about this for arbitrary kernel allocations. 2101 */ 2102 if (!IS_ENABLED(CONFIG_MM_ID)) 2103 return true; 2104 2105 /* 2106 * A single mapping implies "mapped exclusively", even if the 2107 * folio flag says something different: it's easier to handle this 2108 * case here instead of on the RMAP hot path. 2109 */ 2110 if (mapcount <= 1) 2111 return false; 2112 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 2113} 2114 2115/** 2116 * folio_expected_ref_count - calculate the expected folio refcount 2117 * @folio: the folio 2118 * 2119 * Calculate the expected folio refcount, taking references from the pagecache, 2120 * swapcache, PG_private and page table mappings into account. Useful in 2121 * combination with folio_ref_count() to detect unexpected references (e.g., 2122 * GUP or other temporary references). 2123 * 2124 * Does currently not consider references from the LRU cache. If the folio 2125 * was isolated from the LRU (which is the case during migration or split), 2126 * the LRU cache does not apply. 2127 * 2128 * Calling this function on an unmapped folio -- !folio_mapped() -- that is 2129 * locked will return a stable result. 2130 * 2131 * Calling this function on a mapped folio will not result in a stable result, 2132 * because nothing stops additional page table mappings from coming (e.g., 2133 * fork()) or going (e.g., munmap()). 2134 * 2135 * Calling this function without the folio lock will also not result in a 2136 * stable result: for example, the folio might get dropped from the swapcache 2137 * concurrently. 2138 * 2139 * However, even when called without the folio lock or on a mapped folio, 2140 * this function can be used to detect unexpected references early (for example, 2141 * if it makes sense to even lock the folio and unmap it). 2142 * 2143 * The caller must add any reference (e.g., from folio_try_get()) it might be 2144 * holding itself to the result. 2145 * 2146 * Returns the expected folio refcount. 2147 */ 2148static inline int folio_expected_ref_count(const struct folio *folio) 2149{ 2150 const int order = folio_order(folio); 2151 int ref_count = 0; 2152 2153 if (WARN_ON_ONCE(folio_test_slab(folio))) 2154 return 0; 2155 2156 if (folio_test_anon(folio)) { 2157 /* One reference per page from the swapcache. */ 2158 ref_count += folio_test_swapcache(folio) << order; 2159 } else if (!((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS)) { 2160 /* One reference per page from the pagecache. */ 2161 ref_count += !!folio->mapping << order; 2162 /* One reference from PG_private. */ 2163 ref_count += folio_test_private(folio); 2164 } 2165 2166 /* One reference per page table mapping. */ 2167 return ref_count + folio_mapcount(folio); 2168} 2169 2170#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2171static inline int arch_make_folio_accessible(struct folio *folio) 2172{ 2173 return 0; 2174} 2175#endif 2176 2177/* 2178 * Some inline functions in vmstat.h depend on page_zone() 2179 */ 2180#include <linux/vmstat.h> 2181 2182#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2183#define HASHED_PAGE_VIRTUAL 2184#endif 2185 2186#if defined(WANT_PAGE_VIRTUAL) 2187static inline void *page_address(const struct page *page) 2188{ 2189 return page->virtual; 2190} 2191static inline void set_page_address(struct page *page, void *address) 2192{ 2193 page->virtual = address; 2194} 2195#define page_address_init() do { } while(0) 2196#endif 2197 2198#if defined(HASHED_PAGE_VIRTUAL) 2199void *page_address(const struct page *page); 2200void set_page_address(struct page *page, void *virtual); 2201void page_address_init(void); 2202#endif 2203 2204static __always_inline void *lowmem_page_address(const struct page *page) 2205{ 2206 return page_to_virt(page); 2207} 2208 2209#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2210#define page_address(page) lowmem_page_address(page) 2211#define set_page_address(page, address) do { } while(0) 2212#define page_address_init() do { } while(0) 2213#endif 2214 2215static inline void *folio_address(const struct folio *folio) 2216{ 2217 return page_address(&folio->page); 2218} 2219 2220/* 2221 * Return true only if the page has been allocated with 2222 * ALLOC_NO_WATERMARKS and the low watermark was not 2223 * met implying that the system is under some pressure. 2224 */ 2225static inline bool page_is_pfmemalloc(const struct page *page) 2226{ 2227 /* 2228 * lru.next has bit 1 set if the page is allocated from the 2229 * pfmemalloc reserves. Callers may simply overwrite it if 2230 * they do not need to preserve that information. 2231 */ 2232 return (uintptr_t)page->lru.next & BIT(1); 2233} 2234 2235/* 2236 * Return true only if the folio has been allocated with 2237 * ALLOC_NO_WATERMARKS and the low watermark was not 2238 * met implying that the system is under some pressure. 2239 */ 2240static inline bool folio_is_pfmemalloc(const struct folio *folio) 2241{ 2242 /* 2243 * lru.next has bit 1 set if the page is allocated from the 2244 * pfmemalloc reserves. Callers may simply overwrite it if 2245 * they do not need to preserve that information. 2246 */ 2247 return (uintptr_t)folio->lru.next & BIT(1); 2248} 2249 2250/* 2251 * Only to be called by the page allocator on a freshly allocated 2252 * page. 2253 */ 2254static inline void set_page_pfmemalloc(struct page *page) 2255{ 2256 page->lru.next = (void *)BIT(1); 2257} 2258 2259static inline void clear_page_pfmemalloc(struct page *page) 2260{ 2261 page->lru.next = NULL; 2262} 2263 2264/* 2265 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2266 */ 2267extern void pagefault_out_of_memory(void); 2268 2269#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2270#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2271 2272/* 2273 * Parameter block passed down to zap_pte_range in exceptional cases. 2274 */ 2275struct zap_details { 2276 struct folio *single_folio; /* Locked folio to be unmapped */ 2277 bool even_cows; /* Zap COWed private pages too? */ 2278 bool reclaim_pt; /* Need reclaim page tables? */ 2279 zap_flags_t zap_flags; /* Extra flags for zapping */ 2280}; 2281 2282/* 2283 * Whether to drop the pte markers, for example, the uffd-wp information for 2284 * file-backed memory. This should only be specified when we will completely 2285 * drop the page in the mm, either by truncation or unmapping of the vma. By 2286 * default, the flag is not set. 2287 */ 2288#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2289/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2290#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2291 2292#ifdef CONFIG_SCHED_MM_CID 2293void sched_mm_cid_before_execve(struct task_struct *t); 2294void sched_mm_cid_after_execve(struct task_struct *t); 2295void sched_mm_cid_fork(struct task_struct *t); 2296void sched_mm_cid_exit_signals(struct task_struct *t); 2297static inline int task_mm_cid(struct task_struct *t) 2298{ 2299 return t->mm_cid; 2300} 2301#else 2302static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2303static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2304static inline void sched_mm_cid_fork(struct task_struct *t) { } 2305static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2306static inline int task_mm_cid(struct task_struct *t) 2307{ 2308 /* 2309 * Use the processor id as a fall-back when the mm cid feature is 2310 * disabled. This provides functional per-cpu data structure accesses 2311 * in user-space, althrough it won't provide the memory usage benefits. 2312 */ 2313 return raw_smp_processor_id(); 2314} 2315#endif 2316 2317#ifdef CONFIG_MMU 2318extern bool can_do_mlock(void); 2319#else 2320static inline bool can_do_mlock(void) { return false; } 2321#endif 2322extern int user_shm_lock(size_t, struct ucounts *); 2323extern void user_shm_unlock(size_t, struct ucounts *); 2324 2325struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2326 pte_t pte); 2327struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2328 pte_t pte); 2329struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2330 unsigned long addr, pmd_t pmd); 2331struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2332 pmd_t pmd); 2333 2334void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2335 unsigned long size); 2336void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2337 unsigned long size, struct zap_details *details); 2338static inline void zap_vma_pages(struct vm_area_struct *vma) 2339{ 2340 zap_page_range_single(vma, vma->vm_start, 2341 vma->vm_end - vma->vm_start, NULL); 2342} 2343void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2344 struct vm_area_struct *start_vma, unsigned long start, 2345 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2346 2347struct mmu_notifier_range; 2348 2349void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2350 unsigned long end, unsigned long floor, unsigned long ceiling); 2351int 2352copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2353int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2354 void *buf, int len, int write); 2355 2356struct follow_pfnmap_args { 2357 /** 2358 * Inputs: 2359 * @vma: Pointer to @vm_area_struct struct 2360 * @address: the virtual address to walk 2361 */ 2362 struct vm_area_struct *vma; 2363 unsigned long address; 2364 /** 2365 * Internals: 2366 * 2367 * The caller shouldn't touch any of these. 2368 */ 2369 spinlock_t *lock; 2370 pte_t *ptep; 2371 /** 2372 * Outputs: 2373 * 2374 * @pfn: the PFN of the address 2375 * @addr_mask: address mask covering pfn 2376 * @pgprot: the pgprot_t of the mapping 2377 * @writable: whether the mapping is writable 2378 * @special: whether the mapping is a special mapping (real PFN maps) 2379 */ 2380 unsigned long pfn; 2381 unsigned long addr_mask; 2382 pgprot_t pgprot; 2383 bool writable; 2384 bool special; 2385}; 2386int follow_pfnmap_start(struct follow_pfnmap_args *args); 2387void follow_pfnmap_end(struct follow_pfnmap_args *args); 2388 2389extern void truncate_pagecache(struct inode *inode, loff_t new); 2390extern void truncate_setsize(struct inode *inode, loff_t newsize); 2391void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2392void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2393int generic_error_remove_folio(struct address_space *mapping, 2394 struct folio *folio); 2395 2396struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2397 unsigned long address, struct pt_regs *regs); 2398 2399#ifdef CONFIG_MMU 2400extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2401 unsigned long address, unsigned int flags, 2402 struct pt_regs *regs); 2403extern int fixup_user_fault(struct mm_struct *mm, 2404 unsigned long address, unsigned int fault_flags, 2405 bool *unlocked); 2406void unmap_mapping_pages(struct address_space *mapping, 2407 pgoff_t start, pgoff_t nr, bool even_cows); 2408void unmap_mapping_range(struct address_space *mapping, 2409 loff_t const holebegin, loff_t const holelen, int even_cows); 2410#else 2411static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2412 unsigned long address, unsigned int flags, 2413 struct pt_regs *regs) 2414{ 2415 /* should never happen if there's no MMU */ 2416 BUG(); 2417 return VM_FAULT_SIGBUS; 2418} 2419static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2420 unsigned int fault_flags, bool *unlocked) 2421{ 2422 /* should never happen if there's no MMU */ 2423 BUG(); 2424 return -EFAULT; 2425} 2426static inline void unmap_mapping_pages(struct address_space *mapping, 2427 pgoff_t start, pgoff_t nr, bool even_cows) { } 2428static inline void unmap_mapping_range(struct address_space *mapping, 2429 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2430#endif 2431 2432static inline void unmap_shared_mapping_range(struct address_space *mapping, 2433 loff_t const holebegin, loff_t const holelen) 2434{ 2435 unmap_mapping_range(mapping, holebegin, holelen, 0); 2436} 2437 2438static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2439 unsigned long addr); 2440 2441extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2442 void *buf, int len, unsigned int gup_flags); 2443extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2444 void *buf, int len, unsigned int gup_flags); 2445 2446#ifdef CONFIG_BPF_SYSCALL 2447extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2448 void *buf, int len, unsigned int gup_flags); 2449#endif 2450 2451long get_user_pages_remote(struct mm_struct *mm, 2452 unsigned long start, unsigned long nr_pages, 2453 unsigned int gup_flags, struct page **pages, 2454 int *locked); 2455long pin_user_pages_remote(struct mm_struct *mm, 2456 unsigned long start, unsigned long nr_pages, 2457 unsigned int gup_flags, struct page **pages, 2458 int *locked); 2459 2460/* 2461 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2462 */ 2463static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2464 unsigned long addr, 2465 int gup_flags, 2466 struct vm_area_struct **vmap) 2467{ 2468 struct page *page; 2469 struct vm_area_struct *vma; 2470 int got; 2471 2472 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2473 return ERR_PTR(-EINVAL); 2474 2475 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2476 2477 if (got < 0) 2478 return ERR_PTR(got); 2479 2480 vma = vma_lookup(mm, addr); 2481 if (WARN_ON_ONCE(!vma)) { 2482 put_page(page); 2483 return ERR_PTR(-EINVAL); 2484 } 2485 2486 *vmap = vma; 2487 return page; 2488} 2489 2490long get_user_pages(unsigned long start, unsigned long nr_pages, 2491 unsigned int gup_flags, struct page **pages); 2492long pin_user_pages(unsigned long start, unsigned long nr_pages, 2493 unsigned int gup_flags, struct page **pages); 2494long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2495 struct page **pages, unsigned int gup_flags); 2496long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2497 struct page **pages, unsigned int gup_flags); 2498long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2499 struct folio **folios, unsigned int max_folios, 2500 pgoff_t *offset); 2501int folio_add_pins(struct folio *folio, unsigned int pins); 2502 2503int get_user_pages_fast(unsigned long start, int nr_pages, 2504 unsigned int gup_flags, struct page **pages); 2505int pin_user_pages_fast(unsigned long start, int nr_pages, 2506 unsigned int gup_flags, struct page **pages); 2507void folio_add_pin(struct folio *folio); 2508 2509int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2510int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2511 struct task_struct *task, bool bypass_rlim); 2512 2513struct kvec; 2514struct page *get_dump_page(unsigned long addr, int *locked); 2515 2516bool folio_mark_dirty(struct folio *folio); 2517bool folio_mark_dirty_lock(struct folio *folio); 2518bool set_page_dirty(struct page *page); 2519int set_page_dirty_lock(struct page *page); 2520 2521int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2522 2523/* 2524 * Flags used by change_protection(). For now we make it a bitmap so 2525 * that we can pass in multiple flags just like parameters. However 2526 * for now all the callers are only use one of the flags at the same 2527 * time. 2528 */ 2529/* 2530 * Whether we should manually check if we can map individual PTEs writable, 2531 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2532 * PTEs automatically in a writable mapping. 2533 */ 2534#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2535/* Whether this protection change is for NUMA hints */ 2536#define MM_CP_PROT_NUMA (1UL << 1) 2537/* Whether this change is for write protecting */ 2538#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2539#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2540#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2541 MM_CP_UFFD_WP_RESOLVE) 2542 2543bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2544 pte_t pte); 2545extern long change_protection(struct mmu_gather *tlb, 2546 struct vm_area_struct *vma, unsigned long start, 2547 unsigned long end, unsigned long cp_flags); 2548extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2549 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2550 unsigned long start, unsigned long end, unsigned long newflags); 2551 2552/* 2553 * doesn't attempt to fault and will return short. 2554 */ 2555int get_user_pages_fast_only(unsigned long start, int nr_pages, 2556 unsigned int gup_flags, struct page **pages); 2557 2558static inline bool get_user_page_fast_only(unsigned long addr, 2559 unsigned int gup_flags, struct page **pagep) 2560{ 2561 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2562} 2563/* 2564 * per-process(per-mm_struct) statistics. 2565 */ 2566static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2567{ 2568 return percpu_counter_read_positive(&mm->rss_stat[member]); 2569} 2570 2571static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) 2572{ 2573 return percpu_counter_sum_positive(&mm->rss_stat[member]); 2574} 2575 2576void mm_trace_rss_stat(struct mm_struct *mm, int member); 2577 2578static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2579{ 2580 percpu_counter_add(&mm->rss_stat[member], value); 2581 2582 mm_trace_rss_stat(mm, member); 2583} 2584 2585static inline void inc_mm_counter(struct mm_struct *mm, int member) 2586{ 2587 percpu_counter_inc(&mm->rss_stat[member]); 2588 2589 mm_trace_rss_stat(mm, member); 2590} 2591 2592static inline void dec_mm_counter(struct mm_struct *mm, int member) 2593{ 2594 percpu_counter_dec(&mm->rss_stat[member]); 2595 2596 mm_trace_rss_stat(mm, member); 2597} 2598 2599/* Optimized variant when folio is already known not to be anon */ 2600static inline int mm_counter_file(struct folio *folio) 2601{ 2602 if (folio_test_swapbacked(folio)) 2603 return MM_SHMEMPAGES; 2604 return MM_FILEPAGES; 2605} 2606 2607static inline int mm_counter(struct folio *folio) 2608{ 2609 if (folio_test_anon(folio)) 2610 return MM_ANONPAGES; 2611 return mm_counter_file(folio); 2612} 2613 2614static inline unsigned long get_mm_rss(struct mm_struct *mm) 2615{ 2616 return get_mm_counter(mm, MM_FILEPAGES) + 2617 get_mm_counter(mm, MM_ANONPAGES) + 2618 get_mm_counter(mm, MM_SHMEMPAGES); 2619} 2620 2621static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2622{ 2623 return max(mm->hiwater_rss, get_mm_rss(mm)); 2624} 2625 2626static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2627{ 2628 return max(mm->hiwater_vm, mm->total_vm); 2629} 2630 2631static inline void update_hiwater_rss(struct mm_struct *mm) 2632{ 2633 unsigned long _rss = get_mm_rss(mm); 2634 2635 if (data_race(mm->hiwater_rss) < _rss) 2636 (mm)->hiwater_rss = _rss; 2637} 2638 2639static inline void update_hiwater_vm(struct mm_struct *mm) 2640{ 2641 if (mm->hiwater_vm < mm->total_vm) 2642 mm->hiwater_vm = mm->total_vm; 2643} 2644 2645static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2646{ 2647 mm->hiwater_rss = get_mm_rss(mm); 2648} 2649 2650static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2651 struct mm_struct *mm) 2652{ 2653 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2654 2655 if (*maxrss < hiwater_rss) 2656 *maxrss = hiwater_rss; 2657} 2658 2659#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2660static inline int pte_special(pte_t pte) 2661{ 2662 return 0; 2663} 2664 2665static inline pte_t pte_mkspecial(pte_t pte) 2666{ 2667 return pte; 2668} 2669#endif 2670 2671#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2672static inline bool pmd_special(pmd_t pmd) 2673{ 2674 return false; 2675} 2676 2677static inline pmd_t pmd_mkspecial(pmd_t pmd) 2678{ 2679 return pmd; 2680} 2681#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2682 2683#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2684static inline bool pud_special(pud_t pud) 2685{ 2686 return false; 2687} 2688 2689static inline pud_t pud_mkspecial(pud_t pud) 2690{ 2691 return pud; 2692} 2693#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2694 2695#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2696static inline int pte_devmap(pte_t pte) 2697{ 2698 return 0; 2699} 2700#endif 2701 2702extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2703 spinlock_t **ptl); 2704static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2705 spinlock_t **ptl) 2706{ 2707 pte_t *ptep; 2708 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2709 return ptep; 2710} 2711 2712#ifdef __PAGETABLE_P4D_FOLDED 2713static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2714 unsigned long address) 2715{ 2716 return 0; 2717} 2718#else 2719int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2720#endif 2721 2722#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2723static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2724 unsigned long address) 2725{ 2726 return 0; 2727} 2728static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2729static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2730 2731#else 2732int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2733 2734static inline void mm_inc_nr_puds(struct mm_struct *mm) 2735{ 2736 if (mm_pud_folded(mm)) 2737 return; 2738 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2739} 2740 2741static inline void mm_dec_nr_puds(struct mm_struct *mm) 2742{ 2743 if (mm_pud_folded(mm)) 2744 return; 2745 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2746} 2747#endif 2748 2749#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2750static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2751 unsigned long address) 2752{ 2753 return 0; 2754} 2755 2756static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2757static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2758 2759#else 2760int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2761 2762static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2763{ 2764 if (mm_pmd_folded(mm)) 2765 return; 2766 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2767} 2768 2769static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2770{ 2771 if (mm_pmd_folded(mm)) 2772 return; 2773 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2774} 2775#endif 2776 2777#ifdef CONFIG_MMU 2778static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2779{ 2780 atomic_long_set(&mm->pgtables_bytes, 0); 2781} 2782 2783static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2784{ 2785 return atomic_long_read(&mm->pgtables_bytes); 2786} 2787 2788static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2789{ 2790 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2791} 2792 2793static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2794{ 2795 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2796} 2797#else 2798 2799static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2800static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2801{ 2802 return 0; 2803} 2804 2805static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2806static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2807#endif 2808 2809int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2810int __pte_alloc_kernel(pmd_t *pmd); 2811 2812#if defined(CONFIG_MMU) 2813 2814static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2815 unsigned long address) 2816{ 2817 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2818 NULL : p4d_offset(pgd, address); 2819} 2820 2821static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2822 unsigned long address) 2823{ 2824 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2825 NULL : pud_offset(p4d, address); 2826} 2827 2828static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2829{ 2830 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2831 NULL: pmd_offset(pud, address); 2832} 2833#endif /* CONFIG_MMU */ 2834 2835static inline struct ptdesc *virt_to_ptdesc(const void *x) 2836{ 2837 return page_ptdesc(virt_to_page(x)); 2838} 2839 2840static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2841{ 2842 return page_to_virt(ptdesc_page(pt)); 2843} 2844 2845static inline void *ptdesc_address(const struct ptdesc *pt) 2846{ 2847 return folio_address(ptdesc_folio(pt)); 2848} 2849 2850static inline bool pagetable_is_reserved(struct ptdesc *pt) 2851{ 2852 return folio_test_reserved(ptdesc_folio(pt)); 2853} 2854 2855/** 2856 * pagetable_alloc - Allocate pagetables 2857 * @gfp: GFP flags 2858 * @order: desired pagetable order 2859 * 2860 * pagetable_alloc allocates memory for page tables as well as a page table 2861 * descriptor to describe that memory. 2862 * 2863 * Return: The ptdesc describing the allocated page tables. 2864 */ 2865static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2866{ 2867 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2868 2869 return page_ptdesc(page); 2870} 2871#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2872 2873/** 2874 * pagetable_free - Free pagetables 2875 * @pt: The page table descriptor 2876 * 2877 * pagetable_free frees the memory of all page tables described by a page 2878 * table descriptor and the memory for the descriptor itself. 2879 */ 2880static inline void pagetable_free(struct ptdesc *pt) 2881{ 2882 struct page *page = ptdesc_page(pt); 2883 2884 __free_pages(page, compound_order(page)); 2885} 2886 2887#if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2888#if ALLOC_SPLIT_PTLOCKS 2889void __init ptlock_cache_init(void); 2890bool ptlock_alloc(struct ptdesc *ptdesc); 2891void ptlock_free(struct ptdesc *ptdesc); 2892 2893static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2894{ 2895 return ptdesc->ptl; 2896} 2897#else /* ALLOC_SPLIT_PTLOCKS */ 2898static inline void ptlock_cache_init(void) 2899{ 2900} 2901 2902static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2903{ 2904 return true; 2905} 2906 2907static inline void ptlock_free(struct ptdesc *ptdesc) 2908{ 2909} 2910 2911static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2912{ 2913 return &ptdesc->ptl; 2914} 2915#endif /* ALLOC_SPLIT_PTLOCKS */ 2916 2917static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2918{ 2919 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2920} 2921 2922static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2923{ 2924 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2925 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2926 return ptlock_ptr(virt_to_ptdesc(pte)); 2927} 2928 2929static inline bool ptlock_init(struct ptdesc *ptdesc) 2930{ 2931 /* 2932 * prep_new_page() initialize page->private (and therefore page->ptl) 2933 * with 0. Make sure nobody took it in use in between. 2934 * 2935 * It can happen if arch try to use slab for page table allocation: 2936 * slab code uses page->slab_cache, which share storage with page->ptl. 2937 */ 2938 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2939 if (!ptlock_alloc(ptdesc)) 2940 return false; 2941 spin_lock_init(ptlock_ptr(ptdesc)); 2942 return true; 2943} 2944 2945#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2946/* 2947 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2948 */ 2949static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2950{ 2951 return &mm->page_table_lock; 2952} 2953static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2954{ 2955 return &mm->page_table_lock; 2956} 2957static inline void ptlock_cache_init(void) {} 2958static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2959static inline void ptlock_free(struct ptdesc *ptdesc) {} 2960#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2961 2962static inline void __pagetable_ctor(struct ptdesc *ptdesc) 2963{ 2964 struct folio *folio = ptdesc_folio(ptdesc); 2965 2966 __folio_set_pgtable(folio); 2967 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2968} 2969 2970static inline void pagetable_dtor(struct ptdesc *ptdesc) 2971{ 2972 struct folio *folio = ptdesc_folio(ptdesc); 2973 2974 ptlock_free(ptdesc); 2975 __folio_clear_pgtable(folio); 2976 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2977} 2978 2979static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 2980{ 2981 pagetable_dtor(ptdesc); 2982 pagetable_free(ptdesc); 2983} 2984 2985static inline bool pagetable_pte_ctor(struct mm_struct *mm, 2986 struct ptdesc *ptdesc) 2987{ 2988 if (mm != &init_mm && !ptlock_init(ptdesc)) 2989 return false; 2990 __pagetable_ctor(ptdesc); 2991 return true; 2992} 2993 2994pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2995static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 2996 pmd_t *pmdvalp) 2997{ 2998 pte_t *pte; 2999 3000 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3001 return pte; 3002} 3003static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3004{ 3005 return __pte_offset_map(pmd, addr, NULL); 3006} 3007 3008pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3009 unsigned long addr, spinlock_t **ptlp); 3010static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3011 unsigned long addr, spinlock_t **ptlp) 3012{ 3013 pte_t *pte; 3014 3015 __cond_lock(RCU, __cond_lock(*ptlp, 3016 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3017 return pte; 3018} 3019 3020pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3021 unsigned long addr, spinlock_t **ptlp); 3022pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3023 unsigned long addr, pmd_t *pmdvalp, 3024 spinlock_t **ptlp); 3025 3026#define pte_unmap_unlock(pte, ptl) do { \ 3027 spin_unlock(ptl); \ 3028 pte_unmap(pte); \ 3029} while (0) 3030 3031#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3032 3033#define pte_alloc_map(mm, pmd, address) \ 3034 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3035 3036#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3037 (pte_alloc(mm, pmd) ? \ 3038 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3039 3040#define pte_alloc_kernel(pmd, address) \ 3041 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3042 NULL: pte_offset_kernel(pmd, address)) 3043 3044#if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3045 3046static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3047{ 3048 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3049 return virt_to_page((void *)((unsigned long) pmd & mask)); 3050} 3051 3052static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3053{ 3054 return page_ptdesc(pmd_pgtable_page(pmd)); 3055} 3056 3057static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3058{ 3059 return ptlock_ptr(pmd_ptdesc(pmd)); 3060} 3061 3062static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3063{ 3064#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3065 ptdesc->pmd_huge_pte = NULL; 3066#endif 3067 return ptlock_init(ptdesc); 3068} 3069 3070#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3071 3072#else 3073 3074static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3075{ 3076 return &mm->page_table_lock; 3077} 3078 3079static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3080 3081#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3082 3083#endif 3084 3085static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3086{ 3087 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3088 spin_lock(ptl); 3089 return ptl; 3090} 3091 3092static inline bool pagetable_pmd_ctor(struct mm_struct *mm, 3093 struct ptdesc *ptdesc) 3094{ 3095 if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) 3096 return false; 3097 ptdesc_pmd_pts_init(ptdesc); 3098 __pagetable_ctor(ptdesc); 3099 return true; 3100} 3101 3102/* 3103 * No scalability reason to split PUD locks yet, but follow the same pattern 3104 * as the PMD locks to make it easier if we decide to. The VM should not be 3105 * considered ready to switch to split PUD locks yet; there may be places 3106 * which need to be converted from page_table_lock. 3107 */ 3108static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3109{ 3110 return &mm->page_table_lock; 3111} 3112 3113static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3114{ 3115 spinlock_t *ptl = pud_lockptr(mm, pud); 3116 3117 spin_lock(ptl); 3118 return ptl; 3119} 3120 3121static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3122{ 3123 __pagetable_ctor(ptdesc); 3124} 3125 3126static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3127{ 3128 __pagetable_ctor(ptdesc); 3129} 3130 3131static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3132{ 3133 __pagetable_ctor(ptdesc); 3134} 3135 3136extern void __init pagecache_init(void); 3137extern void free_initmem(void); 3138 3139/* 3140 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3141 * into the buddy system. The freed pages will be poisoned with pattern 3142 * "poison" if it's within range [0, UCHAR_MAX]. 3143 * Return pages freed into the buddy system. 3144 */ 3145extern unsigned long free_reserved_area(void *start, void *end, 3146 int poison, const char *s); 3147 3148extern void adjust_managed_page_count(struct page *page, long count); 3149 3150extern void reserve_bootmem_region(phys_addr_t start, 3151 phys_addr_t end, int nid); 3152 3153/* Free the reserved page into the buddy system, so it gets managed. */ 3154void free_reserved_page(struct page *page); 3155 3156static inline void mark_page_reserved(struct page *page) 3157{ 3158 SetPageReserved(page); 3159 adjust_managed_page_count(page, -1); 3160} 3161 3162static inline void free_reserved_ptdesc(struct ptdesc *pt) 3163{ 3164 free_reserved_page(ptdesc_page(pt)); 3165} 3166 3167/* 3168 * Default method to free all the __init memory into the buddy system. 3169 * The freed pages will be poisoned with pattern "poison" if it's within 3170 * range [0, UCHAR_MAX]. 3171 * Return pages freed into the buddy system. 3172 */ 3173static inline unsigned long free_initmem_default(int poison) 3174{ 3175 extern char __init_begin[], __init_end[]; 3176 3177 return free_reserved_area(&__init_begin, &__init_end, 3178 poison, "unused kernel image (initmem)"); 3179} 3180 3181static inline unsigned long get_num_physpages(void) 3182{ 3183 int nid; 3184 unsigned long phys_pages = 0; 3185 3186 for_each_online_node(nid) 3187 phys_pages += node_present_pages(nid); 3188 3189 return phys_pages; 3190} 3191 3192/* 3193 * Using memblock node mappings, an architecture may initialise its 3194 * zones, allocate the backing mem_map and account for memory holes in an 3195 * architecture independent manner. 3196 * 3197 * An architecture is expected to register range of page frames backed by 3198 * physical memory with memblock_add[_node]() before calling 3199 * free_area_init() passing in the PFN each zone ends at. At a basic 3200 * usage, an architecture is expected to do something like 3201 * 3202 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3203 * max_highmem_pfn}; 3204 * for_each_valid_physical_page_range() 3205 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3206 * free_area_init(max_zone_pfns); 3207 */ 3208void free_area_init(unsigned long *max_zone_pfn); 3209unsigned long node_map_pfn_alignment(void); 3210extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3211 unsigned long end_pfn); 3212extern void get_pfn_range_for_nid(unsigned int nid, 3213 unsigned long *start_pfn, unsigned long *end_pfn); 3214 3215#ifndef CONFIG_NUMA 3216static inline int early_pfn_to_nid(unsigned long pfn) 3217{ 3218 return 0; 3219} 3220#else 3221/* please see mm/page_alloc.c */ 3222extern int __meminit early_pfn_to_nid(unsigned long pfn); 3223#endif 3224 3225extern void mem_init(void); 3226extern void __init mmap_init(void); 3227 3228extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3229static inline void show_mem(void) 3230{ 3231 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3232} 3233extern long si_mem_available(void); 3234extern void si_meminfo(struct sysinfo * val); 3235extern void si_meminfo_node(struct sysinfo *val, int nid); 3236 3237extern __printf(3, 4) 3238void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3239 3240extern void setup_per_cpu_pageset(void); 3241 3242/* nommu.c */ 3243extern atomic_long_t mmap_pages_allocated; 3244extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3245 3246/* interval_tree.c */ 3247void vma_interval_tree_insert(struct vm_area_struct *node, 3248 struct rb_root_cached *root); 3249void vma_interval_tree_insert_after(struct vm_area_struct *node, 3250 struct vm_area_struct *prev, 3251 struct rb_root_cached *root); 3252void vma_interval_tree_remove(struct vm_area_struct *node, 3253 struct rb_root_cached *root); 3254struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3255 unsigned long start, unsigned long last); 3256struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3257 unsigned long start, unsigned long last); 3258 3259#define vma_interval_tree_foreach(vma, root, start, last) \ 3260 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3261 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3262 3263void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3264 struct rb_root_cached *root); 3265void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3266 struct rb_root_cached *root); 3267struct anon_vma_chain * 3268anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3269 unsigned long start, unsigned long last); 3270struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3271 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3272#ifdef CONFIG_DEBUG_VM_RB 3273void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3274#endif 3275 3276#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3277 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3278 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3279 3280/* mmap.c */ 3281extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3282extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3283extern void exit_mmap(struct mm_struct *); 3284bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3285 unsigned long addr, bool write); 3286 3287static inline int check_data_rlimit(unsigned long rlim, 3288 unsigned long new, 3289 unsigned long start, 3290 unsigned long end_data, 3291 unsigned long start_data) 3292{ 3293 if (rlim < RLIM_INFINITY) { 3294 if (((new - start) + (end_data - start_data)) > rlim) 3295 return -ENOSPC; 3296 } 3297 3298 return 0; 3299} 3300 3301extern int mm_take_all_locks(struct mm_struct *mm); 3302extern void mm_drop_all_locks(struct mm_struct *mm); 3303 3304extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3305extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3306extern struct file *get_mm_exe_file(struct mm_struct *mm); 3307extern struct file *get_task_exe_file(struct task_struct *task); 3308 3309extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3310extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3311 3312extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3313 const struct vm_special_mapping *sm); 3314extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3315 unsigned long addr, unsigned long len, 3316 unsigned long flags, 3317 const struct vm_special_mapping *spec); 3318 3319unsigned long randomize_stack_top(unsigned long stack_top); 3320unsigned long randomize_page(unsigned long start, unsigned long range); 3321 3322unsigned long 3323__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3324 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3325 3326static inline unsigned long 3327get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3328 unsigned long pgoff, unsigned long flags) 3329{ 3330 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3331} 3332 3333extern unsigned long do_mmap(struct file *file, unsigned long addr, 3334 unsigned long len, unsigned long prot, unsigned long flags, 3335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3336 struct list_head *uf); 3337extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3338 unsigned long start, size_t len, struct list_head *uf, 3339 bool unlock); 3340int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3341 struct mm_struct *mm, unsigned long start, 3342 unsigned long end, struct list_head *uf, bool unlock); 3343extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3344 struct list_head *uf); 3345extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3346 3347#ifdef CONFIG_MMU 3348extern int __mm_populate(unsigned long addr, unsigned long len, 3349 int ignore_errors); 3350static inline void mm_populate(unsigned long addr, unsigned long len) 3351{ 3352 /* Ignore errors */ 3353 (void) __mm_populate(addr, len, 1); 3354} 3355#else 3356static inline void mm_populate(unsigned long addr, unsigned long len) {} 3357#endif 3358 3359/* This takes the mm semaphore itself */ 3360extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3361extern int vm_munmap(unsigned long, size_t); 3362extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3363 unsigned long, unsigned long, 3364 unsigned long, unsigned long); 3365 3366struct vm_unmapped_area_info { 3367#define VM_UNMAPPED_AREA_TOPDOWN 1 3368 unsigned long flags; 3369 unsigned long length; 3370 unsigned long low_limit; 3371 unsigned long high_limit; 3372 unsigned long align_mask; 3373 unsigned long align_offset; 3374 unsigned long start_gap; 3375}; 3376 3377extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3378 3379/* truncate.c */ 3380extern void truncate_inode_pages(struct address_space *, loff_t); 3381extern void truncate_inode_pages_range(struct address_space *, 3382 loff_t lstart, loff_t lend); 3383extern void truncate_inode_pages_final(struct address_space *); 3384 3385/* generic vm_area_ops exported for stackable file systems */ 3386extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3387extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3388 pgoff_t start_pgoff, pgoff_t end_pgoff); 3389extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3390 3391extern unsigned long stack_guard_gap; 3392/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3393int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3394struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3395 3396/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3397extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3398extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3399 struct vm_area_struct **pprev); 3400 3401/* 3402 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3403 * NULL if none. Assume start_addr < end_addr. 3404 */ 3405struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3406 unsigned long start_addr, unsigned long end_addr); 3407 3408/** 3409 * vma_lookup() - Find a VMA at a specific address 3410 * @mm: The process address space. 3411 * @addr: The user address. 3412 * 3413 * Return: The vm_area_struct at the given address, %NULL otherwise. 3414 */ 3415static inline 3416struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3417{ 3418 return mtree_load(&mm->mm_mt, addr); 3419} 3420 3421static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3422{ 3423 if (vma->vm_flags & VM_GROWSDOWN) 3424 return stack_guard_gap; 3425 3426 /* See reasoning around the VM_SHADOW_STACK definition */ 3427 if (vma->vm_flags & VM_SHADOW_STACK) 3428 return PAGE_SIZE; 3429 3430 return 0; 3431} 3432 3433static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3434{ 3435 unsigned long gap = stack_guard_start_gap(vma); 3436 unsigned long vm_start = vma->vm_start; 3437 3438 vm_start -= gap; 3439 if (vm_start > vma->vm_start) 3440 vm_start = 0; 3441 return vm_start; 3442} 3443 3444static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3445{ 3446 unsigned long vm_end = vma->vm_end; 3447 3448 if (vma->vm_flags & VM_GROWSUP) { 3449 vm_end += stack_guard_gap; 3450 if (vm_end < vma->vm_end) 3451 vm_end = -PAGE_SIZE; 3452 } 3453 return vm_end; 3454} 3455 3456static inline unsigned long vma_pages(struct vm_area_struct *vma) 3457{ 3458 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3459} 3460 3461/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3462static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3463 unsigned long vm_start, unsigned long vm_end) 3464{ 3465 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3466 3467 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3468 vma = NULL; 3469 3470 return vma; 3471} 3472 3473static inline bool range_in_vma(struct vm_area_struct *vma, 3474 unsigned long start, unsigned long end) 3475{ 3476 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3477} 3478 3479#ifdef CONFIG_MMU 3480pgprot_t vm_get_page_prot(unsigned long vm_flags); 3481void vma_set_page_prot(struct vm_area_struct *vma); 3482#else 3483static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3484{ 3485 return __pgprot(0); 3486} 3487static inline void vma_set_page_prot(struct vm_area_struct *vma) 3488{ 3489 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3490} 3491#endif 3492 3493void vma_set_file(struct vm_area_struct *vma, struct file *file); 3494 3495#ifdef CONFIG_NUMA_BALANCING 3496unsigned long change_prot_numa(struct vm_area_struct *vma, 3497 unsigned long start, unsigned long end); 3498#endif 3499 3500struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3501 unsigned long addr); 3502int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3503 unsigned long pfn, unsigned long size, pgprot_t); 3504int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3505 unsigned long pfn, unsigned long size, pgprot_t prot); 3506int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3507int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3508 struct page **pages, unsigned long *num); 3509int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3510 unsigned long num); 3511int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3512 unsigned long num); 3513vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3514 bool write); 3515vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3516 unsigned long pfn); 3517vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3518 unsigned long pfn, pgprot_t pgprot); 3519vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3520 pfn_t pfn); 3521vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3522 unsigned long addr, pfn_t pfn); 3523int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3524 3525static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3526 unsigned long addr, struct page *page) 3527{ 3528 int err = vm_insert_page(vma, addr, page); 3529 3530 if (err == -ENOMEM) 3531 return VM_FAULT_OOM; 3532 if (err < 0 && err != -EBUSY) 3533 return VM_FAULT_SIGBUS; 3534 3535 return VM_FAULT_NOPAGE; 3536} 3537 3538#ifndef io_remap_pfn_range 3539static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3540 unsigned long addr, unsigned long pfn, 3541 unsigned long size, pgprot_t prot) 3542{ 3543 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3544} 3545#endif 3546 3547static inline vm_fault_t vmf_error(int err) 3548{ 3549 if (err == -ENOMEM) 3550 return VM_FAULT_OOM; 3551 else if (err == -EHWPOISON) 3552 return VM_FAULT_HWPOISON; 3553 return VM_FAULT_SIGBUS; 3554} 3555 3556/* 3557 * Convert errno to return value for ->page_mkwrite() calls. 3558 * 3559 * This should eventually be merged with vmf_error() above, but will need a 3560 * careful audit of all vmf_error() callers. 3561 */ 3562static inline vm_fault_t vmf_fs_error(int err) 3563{ 3564 if (err == 0) 3565 return VM_FAULT_LOCKED; 3566 if (err == -EFAULT || err == -EAGAIN) 3567 return VM_FAULT_NOPAGE; 3568 if (err == -ENOMEM) 3569 return VM_FAULT_OOM; 3570 /* -ENOSPC, -EDQUOT, -EIO ... */ 3571 return VM_FAULT_SIGBUS; 3572} 3573 3574static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3575{ 3576 if (vm_fault & VM_FAULT_OOM) 3577 return -ENOMEM; 3578 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3579 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3580 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3581 return -EFAULT; 3582 return 0; 3583} 3584 3585/* 3586 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3587 * a (NUMA hinting) fault is required. 3588 */ 3589static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3590 unsigned int flags) 3591{ 3592 /* 3593 * If callers don't want to honor NUMA hinting faults, no need to 3594 * determine if we would actually have to trigger a NUMA hinting fault. 3595 */ 3596 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3597 return true; 3598 3599 /* 3600 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3601 * 3602 * Requiring a fault here even for inaccessible VMAs would mean that 3603 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3604 * refuses to process NUMA hinting faults in inaccessible VMAs. 3605 */ 3606 return !vma_is_accessible(vma); 3607} 3608 3609typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3610extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3611 unsigned long size, pte_fn_t fn, void *data); 3612extern int apply_to_existing_page_range(struct mm_struct *mm, 3613 unsigned long address, unsigned long size, 3614 pte_fn_t fn, void *data); 3615 3616#ifdef CONFIG_PAGE_POISONING 3617extern void __kernel_poison_pages(struct page *page, int numpages); 3618extern void __kernel_unpoison_pages(struct page *page, int numpages); 3619extern bool _page_poisoning_enabled_early; 3620DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3621static inline bool page_poisoning_enabled(void) 3622{ 3623 return _page_poisoning_enabled_early; 3624} 3625/* 3626 * For use in fast paths after init_mem_debugging() has run, or when a 3627 * false negative result is not harmful when called too early. 3628 */ 3629static inline bool page_poisoning_enabled_static(void) 3630{ 3631 return static_branch_unlikely(&_page_poisoning_enabled); 3632} 3633static inline void kernel_poison_pages(struct page *page, int numpages) 3634{ 3635 if (page_poisoning_enabled_static()) 3636 __kernel_poison_pages(page, numpages); 3637} 3638static inline void kernel_unpoison_pages(struct page *page, int numpages) 3639{ 3640 if (page_poisoning_enabled_static()) 3641 __kernel_unpoison_pages(page, numpages); 3642} 3643#else 3644static inline bool page_poisoning_enabled(void) { return false; } 3645static inline bool page_poisoning_enabled_static(void) { return false; } 3646static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3647static inline void kernel_poison_pages(struct page *page, int numpages) { } 3648static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3649#endif 3650 3651DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3652static inline bool want_init_on_alloc(gfp_t flags) 3653{ 3654 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3655 &init_on_alloc)) 3656 return true; 3657 return flags & __GFP_ZERO; 3658} 3659 3660DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3661static inline bool want_init_on_free(void) 3662{ 3663 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3664 &init_on_free); 3665} 3666 3667extern bool _debug_pagealloc_enabled_early; 3668DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3669 3670static inline bool debug_pagealloc_enabled(void) 3671{ 3672 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3673 _debug_pagealloc_enabled_early; 3674} 3675 3676/* 3677 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3678 * or when a false negative result is not harmful when called too early. 3679 */ 3680static inline bool debug_pagealloc_enabled_static(void) 3681{ 3682 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3683 return false; 3684 3685 return static_branch_unlikely(&_debug_pagealloc_enabled); 3686} 3687 3688/* 3689 * To support DEBUG_PAGEALLOC architecture must ensure that 3690 * __kernel_map_pages() never fails 3691 */ 3692extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3693#ifdef CONFIG_DEBUG_PAGEALLOC 3694static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3695{ 3696 if (debug_pagealloc_enabled_static()) 3697 __kernel_map_pages(page, numpages, 1); 3698} 3699 3700static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3701{ 3702 if (debug_pagealloc_enabled_static()) 3703 __kernel_map_pages(page, numpages, 0); 3704} 3705 3706extern unsigned int _debug_guardpage_minorder; 3707DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3708 3709static inline unsigned int debug_guardpage_minorder(void) 3710{ 3711 return _debug_guardpage_minorder; 3712} 3713 3714static inline bool debug_guardpage_enabled(void) 3715{ 3716 return static_branch_unlikely(&_debug_guardpage_enabled); 3717} 3718 3719static inline bool page_is_guard(struct page *page) 3720{ 3721 if (!debug_guardpage_enabled()) 3722 return false; 3723 3724 return PageGuard(page); 3725} 3726 3727bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3728static inline bool set_page_guard(struct zone *zone, struct page *page, 3729 unsigned int order) 3730{ 3731 if (!debug_guardpage_enabled()) 3732 return false; 3733 return __set_page_guard(zone, page, order); 3734} 3735 3736void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3737static inline void clear_page_guard(struct zone *zone, struct page *page, 3738 unsigned int order) 3739{ 3740 if (!debug_guardpage_enabled()) 3741 return; 3742 __clear_page_guard(zone, page, order); 3743} 3744 3745#else /* CONFIG_DEBUG_PAGEALLOC */ 3746static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3747static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3748static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3749static inline bool debug_guardpage_enabled(void) { return false; } 3750static inline bool page_is_guard(struct page *page) { return false; } 3751static inline bool set_page_guard(struct zone *zone, struct page *page, 3752 unsigned int order) { return false; } 3753static inline void clear_page_guard(struct zone *zone, struct page *page, 3754 unsigned int order) {} 3755#endif /* CONFIG_DEBUG_PAGEALLOC */ 3756 3757#ifdef __HAVE_ARCH_GATE_AREA 3758extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3759extern int in_gate_area_no_mm(unsigned long addr); 3760extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3761#else 3762static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3763{ 3764 return NULL; 3765} 3766static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3767static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3768{ 3769 return 0; 3770} 3771#endif /* __HAVE_ARCH_GATE_AREA */ 3772 3773extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3774 3775void drop_slab(void); 3776 3777#ifndef CONFIG_MMU 3778#define randomize_va_space 0 3779#else 3780extern int randomize_va_space; 3781#endif 3782 3783const char * arch_vma_name(struct vm_area_struct *vma); 3784#ifdef CONFIG_MMU 3785void print_vma_addr(char *prefix, unsigned long rip); 3786#else 3787static inline void print_vma_addr(char *prefix, unsigned long rip) 3788{ 3789} 3790#endif 3791 3792void *sparse_buffer_alloc(unsigned long size); 3793unsigned long section_map_size(void); 3794struct page * __populate_section_memmap(unsigned long pfn, 3795 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3796 struct dev_pagemap *pgmap); 3797pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3798p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3799pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3800pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3801pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3802 struct vmem_altmap *altmap, unsigned long ptpfn, 3803 unsigned long flags); 3804void *vmemmap_alloc_block(unsigned long size, int node); 3805struct vmem_altmap; 3806void *vmemmap_alloc_block_buf(unsigned long size, int node, 3807 struct vmem_altmap *altmap); 3808void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3809void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3810 unsigned long addr, unsigned long next); 3811int vmemmap_check_pmd(pmd_t *pmd, int node, 3812 unsigned long addr, unsigned long next); 3813int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3814 int node, struct vmem_altmap *altmap); 3815int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3816 int node, struct vmem_altmap *altmap); 3817int vmemmap_populate(unsigned long start, unsigned long end, int node, 3818 struct vmem_altmap *altmap); 3819int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3820 unsigned long headsize); 3821int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3822 unsigned long headsize); 3823void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3824 unsigned long headsize); 3825void vmemmap_populate_print_last(void); 3826#ifdef CONFIG_MEMORY_HOTPLUG 3827void vmemmap_free(unsigned long start, unsigned long end, 3828 struct vmem_altmap *altmap); 3829#endif 3830 3831#ifdef CONFIG_SPARSEMEM_VMEMMAP 3832static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3833{ 3834 /* number of pfns from base where pfn_to_page() is valid */ 3835 if (altmap) 3836 return altmap->reserve + altmap->free; 3837 return 0; 3838} 3839 3840static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3841 unsigned long nr_pfns) 3842{ 3843 altmap->alloc -= nr_pfns; 3844} 3845#else 3846static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3847{ 3848 return 0; 3849} 3850 3851static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3852 unsigned long nr_pfns) 3853{ 3854} 3855#endif 3856 3857#define VMEMMAP_RESERVE_NR 2 3858#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3859static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3860 struct dev_pagemap *pgmap) 3861{ 3862 unsigned long nr_pages; 3863 unsigned long nr_vmemmap_pages; 3864 3865 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3866 return false; 3867 3868 nr_pages = pgmap_vmemmap_nr(pgmap); 3869 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3870 /* 3871 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3872 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3873 */ 3874 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3875} 3876/* 3877 * If we don't have an architecture override, use the generic rule 3878 */ 3879#ifndef vmemmap_can_optimize 3880#define vmemmap_can_optimize __vmemmap_can_optimize 3881#endif 3882 3883#else 3884static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3885 struct dev_pagemap *pgmap) 3886{ 3887 return false; 3888} 3889#endif 3890 3891enum mf_flags { 3892 MF_COUNT_INCREASED = 1 << 0, 3893 MF_ACTION_REQUIRED = 1 << 1, 3894 MF_MUST_KILL = 1 << 2, 3895 MF_SOFT_OFFLINE = 1 << 3, 3896 MF_UNPOISON = 1 << 4, 3897 MF_SW_SIMULATED = 1 << 5, 3898 MF_NO_RETRY = 1 << 6, 3899 MF_MEM_PRE_REMOVE = 1 << 7, 3900}; 3901int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3902 unsigned long count, int mf_flags); 3903extern int memory_failure(unsigned long pfn, int flags); 3904extern void memory_failure_queue_kick(int cpu); 3905extern int unpoison_memory(unsigned long pfn); 3906extern atomic_long_t num_poisoned_pages __read_mostly; 3907extern int soft_offline_page(unsigned long pfn, int flags); 3908#ifdef CONFIG_MEMORY_FAILURE 3909/* 3910 * Sysfs entries for memory failure handling statistics. 3911 */ 3912extern const struct attribute_group memory_failure_attr_group; 3913extern void memory_failure_queue(unsigned long pfn, int flags); 3914extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3915 bool *migratable_cleared); 3916void num_poisoned_pages_inc(unsigned long pfn); 3917void num_poisoned_pages_sub(unsigned long pfn, long i); 3918#else 3919static inline void memory_failure_queue(unsigned long pfn, int flags) 3920{ 3921} 3922 3923static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3924 bool *migratable_cleared) 3925{ 3926 return 0; 3927} 3928 3929static inline void num_poisoned_pages_inc(unsigned long pfn) 3930{ 3931} 3932 3933static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3934{ 3935} 3936#endif 3937 3938#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3939extern void memblk_nr_poison_inc(unsigned long pfn); 3940extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3941#else 3942static inline void memblk_nr_poison_inc(unsigned long pfn) 3943{ 3944} 3945 3946static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3947{ 3948} 3949#endif 3950 3951#ifndef arch_memory_failure 3952static inline int arch_memory_failure(unsigned long pfn, int flags) 3953{ 3954 return -ENXIO; 3955} 3956#endif 3957 3958#ifndef arch_is_platform_page 3959static inline bool arch_is_platform_page(u64 paddr) 3960{ 3961 return false; 3962} 3963#endif 3964 3965/* 3966 * Error handlers for various types of pages. 3967 */ 3968enum mf_result { 3969 MF_IGNORED, /* Error: cannot be handled */ 3970 MF_FAILED, /* Error: handling failed */ 3971 MF_DELAYED, /* Will be handled later */ 3972 MF_RECOVERED, /* Successfully recovered */ 3973}; 3974 3975enum mf_action_page_type { 3976 MF_MSG_KERNEL, 3977 MF_MSG_KERNEL_HIGH_ORDER, 3978 MF_MSG_DIFFERENT_COMPOUND, 3979 MF_MSG_HUGE, 3980 MF_MSG_FREE_HUGE, 3981 MF_MSG_GET_HWPOISON, 3982 MF_MSG_UNMAP_FAILED, 3983 MF_MSG_DIRTY_SWAPCACHE, 3984 MF_MSG_CLEAN_SWAPCACHE, 3985 MF_MSG_DIRTY_MLOCKED_LRU, 3986 MF_MSG_CLEAN_MLOCKED_LRU, 3987 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3988 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3989 MF_MSG_DIRTY_LRU, 3990 MF_MSG_CLEAN_LRU, 3991 MF_MSG_TRUNCATED_LRU, 3992 MF_MSG_BUDDY, 3993 MF_MSG_DAX, 3994 MF_MSG_UNSPLIT_THP, 3995 MF_MSG_ALREADY_POISONED, 3996 MF_MSG_UNKNOWN, 3997}; 3998 3999#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4000void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4001int copy_user_large_folio(struct folio *dst, struct folio *src, 4002 unsigned long addr_hint, 4003 struct vm_area_struct *vma); 4004long copy_folio_from_user(struct folio *dst_folio, 4005 const void __user *usr_src, 4006 bool allow_pagefault); 4007 4008/** 4009 * vma_is_special_huge - Are transhuge page-table entries considered special? 4010 * @vma: Pointer to the struct vm_area_struct to consider 4011 * 4012 * Whether transhuge page-table entries are considered "special" following 4013 * the definition in vm_normal_page(). 4014 * 4015 * Return: true if transhuge page-table entries should be considered special, 4016 * false otherwise. 4017 */ 4018static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4019{ 4020 return vma_is_dax(vma) || (vma->vm_file && 4021 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4022} 4023 4024#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4025 4026#if MAX_NUMNODES > 1 4027void __init setup_nr_node_ids(void); 4028#else 4029static inline void setup_nr_node_ids(void) {} 4030#endif 4031 4032extern int memcmp_pages(struct page *page1, struct page *page2); 4033 4034static inline int pages_identical(struct page *page1, struct page *page2) 4035{ 4036 return !memcmp_pages(page1, page2); 4037} 4038 4039#ifdef CONFIG_MAPPING_DIRTY_HELPERS 4040unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4041 pgoff_t first_index, pgoff_t nr, 4042 pgoff_t bitmap_pgoff, 4043 unsigned long *bitmap, 4044 pgoff_t *start, 4045 pgoff_t *end); 4046 4047unsigned long wp_shared_mapping_range(struct address_space *mapping, 4048 pgoff_t first_index, pgoff_t nr); 4049#endif 4050 4051#ifdef CONFIG_ANON_VMA_NAME 4052int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4053 unsigned long len_in, 4054 struct anon_vma_name *anon_name); 4055#else 4056static inline int 4057madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4058 unsigned long len_in, struct anon_vma_name *anon_name) { 4059 return 0; 4060} 4061#endif 4062 4063#ifdef CONFIG_UNACCEPTED_MEMORY 4064 4065bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4066void accept_memory(phys_addr_t start, unsigned long size); 4067 4068#else 4069 4070static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4071 unsigned long size) 4072{ 4073 return false; 4074} 4075 4076static inline void accept_memory(phys_addr_t start, unsigned long size) 4077{ 4078} 4079 4080#endif 4081 4082static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4083{ 4084 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4085} 4086 4087void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4088void vma_pgtable_walk_end(struct vm_area_struct *vma); 4089 4090int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4091int reserve_mem_release_by_name(const char *name); 4092 4093#ifdef CONFIG_64BIT 4094int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4095#else 4096static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4097{ 4098 /* noop on 32 bit */ 4099 return 0; 4100} 4101#endif 4102 4103/* 4104 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4105 * be zeroed or not. 4106 */ 4107static inline bool user_alloc_needs_zeroing(void) 4108{ 4109 /* 4110 * for user folios, arch with cache aliasing requires cache flush and 4111 * arc changes folio->flags to make icache coherent with dcache, so 4112 * always return false to make caller use 4113 * clear_user_page()/clear_user_highpage(). 4114 */ 4115 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4116 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4117 &init_on_alloc); 4118} 4119 4120int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4121int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4122int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4123 4124 4125/* 4126 * mseal of userspace process's system mappings. 4127 */ 4128#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 4129#define VM_SEALED_SYSMAP VM_SEALED 4130#else 4131#define VM_SEALED_SYSMAP VM_NONE 4132#endif 4133 4134/* 4135 * DMA mapping IDs for page_pool 4136 * 4137 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and 4138 * stashes it in the upper bits of page->pp_magic. We always want to be able to 4139 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP 4140 * pages can have arbitrary kernel pointers stored in the same field as pp_magic 4141 * (since it overlaps with page->lru.next), so we must ensure that we cannot 4142 * mistake a valid kernel pointer with any of the values we write into this 4143 * field. 4144 * 4145 * On architectures that set POISON_POINTER_DELTA, this is already ensured, 4146 * since this value becomes part of PP_SIGNATURE; meaning we can just use the 4147 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the 4148 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is 4149 * 0, we make sure that we leave the two topmost bits empty, as that guarantees 4150 * we won't mistake a valid kernel pointer for a value we set, regardless of the 4151 * VMSPLIT setting. 4152 * 4153 * Altogether, this means that the number of bits available is constrained by 4154 * the size of an unsigned long (at the upper end, subtracting two bits per the 4155 * above), and the definition of PP_SIGNATURE (with or without 4156 * POISON_POINTER_DELTA). 4157 */ 4158#define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) 4159#if POISON_POINTER_DELTA > 0 4160/* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA 4161 * index to not overlap with that if set 4162 */ 4163#define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) 4164#else 4165/* Always leave out the topmost two; see above. */ 4166#define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2) 4167#endif 4168 4169#define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ 4170 PP_DMA_INDEX_SHIFT) 4171 4172/* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is 4173 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for 4174 * the head page of compound page and bit 1 for pfmemalloc page, as well as the 4175 * bits used for the DMA index. page_is_pfmemalloc() is checked in 4176 * __page_pool_put_page() to avoid recycling the pfmemalloc page. 4177 */ 4178#define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) 4179 4180#ifdef CONFIG_PAGE_POOL 4181static inline bool page_pool_page_is_pp(struct page *page) 4182{ 4183 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; 4184} 4185#else 4186static inline bool page_pool_page_is_pp(struct page *page) 4187{ 4188 return false; 4189} 4190#endif 4191 4192#endif /* _LINUX_MM_H */