Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_LIST_H
3#define _LINUX_LIST_H
4
5#include <linux/container_of.h>
6#include <linux/types.h>
7#include <linux/stddef.h>
8#include <linux/poison.h>
9#include <linux/const.h>
10
11#include <asm/barrier.h>
12
13/*
14 * Circular doubly linked list implementation.
15 *
16 * Some of the internal functions ("__xxx") are useful when
17 * manipulating whole lists rather than single entries, as
18 * sometimes we already know the next/prev entries and we can
19 * generate better code by using them directly rather than
20 * using the generic single-entry routines.
21 */
22
23#define LIST_HEAD_INIT(name) { &(name), &(name) }
24
25#define LIST_HEAD(name) \
26 struct list_head name = LIST_HEAD_INIT(name)
27
28/**
29 * INIT_LIST_HEAD - Initialize a list_head structure
30 * @list: list_head structure to be initialized.
31 *
32 * Initializes the list_head to point to itself. If it is a list header,
33 * the result is an empty list.
34 */
35static inline void INIT_LIST_HEAD(struct list_head *list)
36{
37 WRITE_ONCE(list->next, list);
38 WRITE_ONCE(list->prev, list);
39}
40
41#ifdef CONFIG_LIST_HARDENED
42
43#ifdef CONFIG_DEBUG_LIST
44# define __list_valid_slowpath
45#else
46# define __list_valid_slowpath __cold __preserve_most
47#endif
48
49/*
50 * Performs the full set of list corruption checks before __list_add().
51 * On list corruption reports a warning, and returns false.
52 */
53bool __list_valid_slowpath __list_add_valid_or_report(struct list_head *new,
54 struct list_head *prev,
55 struct list_head *next);
56
57/*
58 * Performs list corruption checks before __list_add(). Returns false if a
59 * corruption is detected, true otherwise.
60 *
61 * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
62 * inline to catch non-faulting corruptions, and only if a corruption is
63 * detected calls the reporting function __list_add_valid_or_report().
64 */
65static __always_inline bool __list_add_valid(struct list_head *new,
66 struct list_head *prev,
67 struct list_head *next)
68{
69 bool ret = true;
70
71 if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
72 /*
73 * With the hardening version, elide checking if next and prev
74 * are NULL, since the immediate dereference of them below would
75 * result in a fault if NULL.
76 *
77 * With the reduced set of checks, we can afford to inline the
78 * checks, which also gives the compiler a chance to elide some
79 * of them completely if they can be proven at compile-time. If
80 * one of the pre-conditions does not hold, the slow-path will
81 * show a report which pre-condition failed.
82 */
83 if (likely(next->prev == prev && prev->next == next && new != prev && new != next))
84 return true;
85 ret = false;
86 }
87
88 ret &= __list_add_valid_or_report(new, prev, next);
89 return ret;
90}
91
92/*
93 * Performs the full set of list corruption checks before __list_del_entry().
94 * On list corruption reports a warning, and returns false.
95 */
96bool __list_valid_slowpath __list_del_entry_valid_or_report(struct list_head *entry);
97
98/*
99 * Performs list corruption checks before __list_del_entry(). Returns false if a
100 * corruption is detected, true otherwise.
101 *
102 * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
103 * inline to catch non-faulting corruptions, and only if a corruption is
104 * detected calls the reporting function __list_del_entry_valid_or_report().
105 */
106static __always_inline bool __list_del_entry_valid(struct list_head *entry)
107{
108 bool ret = true;
109
110 if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
111 struct list_head *prev = entry->prev;
112 struct list_head *next = entry->next;
113
114 /*
115 * With the hardening version, elide checking if next and prev
116 * are NULL, LIST_POISON1 or LIST_POISON2, since the immediate
117 * dereference of them below would result in a fault.
118 */
119 if (likely(prev->next == entry && next->prev == entry))
120 return true;
121 ret = false;
122 }
123
124 ret &= __list_del_entry_valid_or_report(entry);
125 return ret;
126}
127#else
128static inline bool __list_add_valid(struct list_head *new,
129 struct list_head *prev,
130 struct list_head *next)
131{
132 return true;
133}
134static inline bool __list_del_entry_valid(struct list_head *entry)
135{
136 return true;
137}
138#endif
139
140/*
141 * Insert a new entry between two known consecutive entries.
142 *
143 * This is only for internal list manipulation where we know
144 * the prev/next entries already!
145 */
146static inline void __list_add(struct list_head *new,
147 struct list_head *prev,
148 struct list_head *next)
149{
150 if (!__list_add_valid(new, prev, next))
151 return;
152
153 next->prev = new;
154 new->next = next;
155 new->prev = prev;
156 WRITE_ONCE(prev->next, new);
157}
158
159/**
160 * list_add - add a new entry
161 * @new: new entry to be added
162 * @head: list head to add it after
163 *
164 * Insert a new entry after the specified head.
165 * This is good for implementing stacks.
166 */
167static inline void list_add(struct list_head *new, struct list_head *head)
168{
169 __list_add(new, head, head->next);
170}
171
172
173/**
174 * list_add_tail - add a new entry
175 * @new: new entry to be added
176 * @head: list head to add it before
177 *
178 * Insert a new entry before the specified head.
179 * This is useful for implementing queues.
180 */
181static inline void list_add_tail(struct list_head *new, struct list_head *head)
182{
183 __list_add(new, head->prev, head);
184}
185
186/*
187 * Delete a list entry by making the prev/next entries
188 * point to each other.
189 *
190 * This is only for internal list manipulation where we know
191 * the prev/next entries already!
192 */
193static inline void __list_del(struct list_head * prev, struct list_head * next)
194{
195 next->prev = prev;
196 WRITE_ONCE(prev->next, next);
197}
198
199/*
200 * Delete a list entry and clear the 'prev' pointer.
201 *
202 * This is a special-purpose list clearing method used in the networking code
203 * for lists allocated as per-cpu, where we don't want to incur the extra
204 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
205 * needs to check the node 'prev' pointer instead of calling list_empty().
206 */
207static inline void __list_del_clearprev(struct list_head *entry)
208{
209 __list_del(entry->prev, entry->next);
210 entry->prev = NULL;
211}
212
213static inline void __list_del_entry(struct list_head *entry)
214{
215 if (!__list_del_entry_valid(entry))
216 return;
217
218 __list_del(entry->prev, entry->next);
219}
220
221/**
222 * list_del - deletes entry from list.
223 * @entry: the element to delete from the list.
224 * Note: list_empty() on entry does not return true after this, the entry is
225 * in an undefined state.
226 */
227static inline void list_del(struct list_head *entry)
228{
229 __list_del_entry(entry);
230 entry->next = LIST_POISON1;
231 entry->prev = LIST_POISON2;
232}
233
234/**
235 * list_replace - replace old entry by new one
236 * @old : the element to be replaced
237 * @new : the new element to insert
238 *
239 * If @old was empty, it will be overwritten.
240 */
241static inline void list_replace(struct list_head *old,
242 struct list_head *new)
243{
244 new->next = old->next;
245 new->next->prev = new;
246 new->prev = old->prev;
247 new->prev->next = new;
248}
249
250/**
251 * list_replace_init - replace old entry by new one and initialize the old one
252 * @old : the element to be replaced
253 * @new : the new element to insert
254 *
255 * If @old was empty, it will be overwritten.
256 */
257static inline void list_replace_init(struct list_head *old,
258 struct list_head *new)
259{
260 list_replace(old, new);
261 INIT_LIST_HEAD(old);
262}
263
264/**
265 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
266 * @entry1: the location to place entry2
267 * @entry2: the location to place entry1
268 */
269static inline void list_swap(struct list_head *entry1,
270 struct list_head *entry2)
271{
272 struct list_head *pos = entry2->prev;
273
274 list_del(entry2);
275 list_replace(entry1, entry2);
276 if (pos == entry1)
277 pos = entry2;
278 list_add(entry1, pos);
279}
280
281/**
282 * list_del_init - deletes entry from list and reinitialize it.
283 * @entry: the element to delete from the list.
284 */
285static inline void list_del_init(struct list_head *entry)
286{
287 __list_del_entry(entry);
288 INIT_LIST_HEAD(entry);
289}
290
291/**
292 * list_move - delete from one list and add as another's head
293 * @list: the entry to move
294 * @head: the head that will precede our entry
295 */
296static inline void list_move(struct list_head *list, struct list_head *head)
297{
298 __list_del_entry(list);
299 list_add(list, head);
300}
301
302/**
303 * list_move_tail - delete from one list and add as another's tail
304 * @list: the entry to move
305 * @head: the head that will follow our entry
306 */
307static inline void list_move_tail(struct list_head *list,
308 struct list_head *head)
309{
310 __list_del_entry(list);
311 list_add_tail(list, head);
312}
313
314/**
315 * list_bulk_move_tail - move a subsection of a list to its tail
316 * @head: the head that will follow our entry
317 * @first: first entry to move
318 * @last: last entry to move, can be the same as first
319 *
320 * Move all entries between @first and including @last before @head.
321 * All three entries must belong to the same linked list.
322 */
323static inline void list_bulk_move_tail(struct list_head *head,
324 struct list_head *first,
325 struct list_head *last)
326{
327 first->prev->next = last->next;
328 last->next->prev = first->prev;
329
330 head->prev->next = first;
331 first->prev = head->prev;
332
333 last->next = head;
334 head->prev = last;
335}
336
337/**
338 * list_is_first -- tests whether @list is the first entry in list @head
339 * @list: the entry to test
340 * @head: the head of the list
341 */
342static inline int list_is_first(const struct list_head *list, const struct list_head *head)
343{
344 return list->prev == head;
345}
346
347/**
348 * list_is_last - tests whether @list is the last entry in list @head
349 * @list: the entry to test
350 * @head: the head of the list
351 */
352static inline int list_is_last(const struct list_head *list, const struct list_head *head)
353{
354 return list->next == head;
355}
356
357/**
358 * list_is_head - tests whether @list is the list @head
359 * @list: the entry to test
360 * @head: the head of the list
361 */
362static inline int list_is_head(const struct list_head *list, const struct list_head *head)
363{
364 return list == head;
365}
366
367/**
368 * list_empty - tests whether a list is empty
369 * @head: the list to test.
370 */
371static inline int list_empty(const struct list_head *head)
372{
373 return READ_ONCE(head->next) == head;
374}
375
376/**
377 * list_del_init_careful - deletes entry from list and reinitialize it.
378 * @entry: the element to delete from the list.
379 *
380 * This is the same as list_del_init(), except designed to be used
381 * together with list_empty_careful() in a way to guarantee ordering
382 * of other memory operations.
383 *
384 * Any memory operations done before a list_del_init_careful() are
385 * guaranteed to be visible after a list_empty_careful() test.
386 */
387static inline void list_del_init_careful(struct list_head *entry)
388{
389 __list_del_entry(entry);
390 WRITE_ONCE(entry->prev, entry);
391 smp_store_release(&entry->next, entry);
392}
393
394/**
395 * list_empty_careful - tests whether a list is empty and not being modified
396 * @head: the list to test
397 *
398 * Description:
399 * tests whether a list is empty _and_ checks that no other CPU might be
400 * in the process of modifying either member (next or prev)
401 *
402 * NOTE: using list_empty_careful() without synchronization
403 * can only be safe if the only activity that can happen
404 * to the list entry is list_del_init(). Eg. it cannot be used
405 * if another CPU could re-list_add() it.
406 */
407static inline int list_empty_careful(const struct list_head *head)
408{
409 struct list_head *next = smp_load_acquire(&head->next);
410 return list_is_head(next, head) && (next == READ_ONCE(head->prev));
411}
412
413/**
414 * list_rotate_left - rotate the list to the left
415 * @head: the head of the list
416 */
417static inline void list_rotate_left(struct list_head *head)
418{
419 struct list_head *first;
420
421 if (!list_empty(head)) {
422 first = head->next;
423 list_move_tail(first, head);
424 }
425}
426
427/**
428 * list_rotate_to_front() - Rotate list to specific item.
429 * @list: The desired new front of the list.
430 * @head: The head of the list.
431 *
432 * Rotates list so that @list becomes the new front of the list.
433 */
434static inline void list_rotate_to_front(struct list_head *list,
435 struct list_head *head)
436{
437 /*
438 * Deletes the list head from the list denoted by @head and
439 * places it as the tail of @list, this effectively rotates the
440 * list so that @list is at the front.
441 */
442 list_move_tail(head, list);
443}
444
445/**
446 * list_is_singular - tests whether a list has just one entry.
447 * @head: the list to test.
448 */
449static inline int list_is_singular(const struct list_head *head)
450{
451 return !list_empty(head) && (head->next == head->prev);
452}
453
454static inline void __list_cut_position(struct list_head *list,
455 struct list_head *head, struct list_head *entry)
456{
457 struct list_head *new_first = entry->next;
458 list->next = head->next;
459 list->next->prev = list;
460 list->prev = entry;
461 entry->next = list;
462 head->next = new_first;
463 new_first->prev = head;
464}
465
466/**
467 * list_cut_position - cut a list into two
468 * @list: a new list to add all removed entries
469 * @head: a list with entries
470 * @entry: an entry within head, could be the head itself
471 * and if so we won't cut the list
472 *
473 * This helper moves the initial part of @head, up to and
474 * including @entry, from @head to @list. You should
475 * pass on @entry an element you know is on @head. @list
476 * should be an empty list or a list you do not care about
477 * losing its data.
478 *
479 */
480static inline void list_cut_position(struct list_head *list,
481 struct list_head *head, struct list_head *entry)
482{
483 if (list_empty(head))
484 return;
485 if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
486 return;
487 if (list_is_head(entry, head))
488 INIT_LIST_HEAD(list);
489 else
490 __list_cut_position(list, head, entry);
491}
492
493/**
494 * list_cut_before - cut a list into two, before given entry
495 * @list: a new list to add all removed entries
496 * @head: a list with entries
497 * @entry: an entry within head, could be the head itself
498 *
499 * This helper moves the initial part of @head, up to but
500 * excluding @entry, from @head to @list. You should pass
501 * in @entry an element you know is on @head. @list should
502 * be an empty list or a list you do not care about losing
503 * its data.
504 * If @entry == @head, all entries on @head are moved to
505 * @list.
506 */
507static inline void list_cut_before(struct list_head *list,
508 struct list_head *head,
509 struct list_head *entry)
510{
511 if (head->next == entry) {
512 INIT_LIST_HEAD(list);
513 return;
514 }
515 list->next = head->next;
516 list->next->prev = list;
517 list->prev = entry->prev;
518 list->prev->next = list;
519 head->next = entry;
520 entry->prev = head;
521}
522
523static inline void __list_splice(const struct list_head *list,
524 struct list_head *prev,
525 struct list_head *next)
526{
527 struct list_head *first = list->next;
528 struct list_head *last = list->prev;
529
530 first->prev = prev;
531 prev->next = first;
532
533 last->next = next;
534 next->prev = last;
535}
536
537/**
538 * list_splice - join two lists, this is designed for stacks
539 * @list: the new list to add.
540 * @head: the place to add it in the first list.
541 */
542static inline void list_splice(const struct list_head *list,
543 struct list_head *head)
544{
545 if (!list_empty(list))
546 __list_splice(list, head, head->next);
547}
548
549/**
550 * list_splice_tail - join two lists, each list being a queue
551 * @list: the new list to add.
552 * @head: the place to add it in the first list.
553 */
554static inline void list_splice_tail(struct list_head *list,
555 struct list_head *head)
556{
557 if (!list_empty(list))
558 __list_splice(list, head->prev, head);
559}
560
561/**
562 * list_splice_init - join two lists and reinitialise the emptied list.
563 * @list: the new list to add.
564 * @head: the place to add it in the first list.
565 *
566 * The list at @list is reinitialised
567 */
568static inline void list_splice_init(struct list_head *list,
569 struct list_head *head)
570{
571 if (!list_empty(list)) {
572 __list_splice(list, head, head->next);
573 INIT_LIST_HEAD(list);
574 }
575}
576
577/**
578 * list_splice_tail_init - join two lists and reinitialise the emptied list
579 * @list: the new list to add.
580 * @head: the place to add it in the first list.
581 *
582 * Each of the lists is a queue.
583 * The list at @list is reinitialised
584 */
585static inline void list_splice_tail_init(struct list_head *list,
586 struct list_head *head)
587{
588 if (!list_empty(list)) {
589 __list_splice(list, head->prev, head);
590 INIT_LIST_HEAD(list);
591 }
592}
593
594/**
595 * list_entry - get the struct for this entry
596 * @ptr: the &struct list_head pointer.
597 * @type: the type of the struct this is embedded in.
598 * @member: the name of the list_head within the struct.
599 */
600#define list_entry(ptr, type, member) \
601 container_of(ptr, type, member)
602
603/**
604 * list_first_entry - get the first element from a list
605 * @ptr: the list head to take the element from.
606 * @type: the type of the struct this is embedded in.
607 * @member: the name of the list_head within the struct.
608 *
609 * Note, that list is expected to be not empty.
610 */
611#define list_first_entry(ptr, type, member) \
612 list_entry((ptr)->next, type, member)
613
614/**
615 * list_last_entry - get the last element from a list
616 * @ptr: the list head to take the element from.
617 * @type: the type of the struct this is embedded in.
618 * @member: the name of the list_head within the struct.
619 *
620 * Note, that list is expected to be not empty.
621 */
622#define list_last_entry(ptr, type, member) \
623 list_entry((ptr)->prev, type, member)
624
625/**
626 * list_first_entry_or_null - get the first element from a list
627 * @ptr: the list head to take the element from.
628 * @type: the type of the struct this is embedded in.
629 * @member: the name of the list_head within the struct.
630 *
631 * Note that if the list is empty, it returns NULL.
632 */
633#define list_first_entry_or_null(ptr, type, member) ({ \
634 struct list_head *head__ = (ptr); \
635 struct list_head *pos__ = READ_ONCE(head__->next); \
636 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
637})
638
639/**
640 * list_next_entry - get the next element in list
641 * @pos: the type * to cursor
642 * @member: the name of the list_head within the struct.
643 */
644#define list_next_entry(pos, member) \
645 list_entry((pos)->member.next, typeof(*(pos)), member)
646
647/**
648 * list_next_entry_circular - get the next element in list
649 * @pos: the type * to cursor.
650 * @head: the list head to take the element from.
651 * @member: the name of the list_head within the struct.
652 *
653 * Wraparound if pos is the last element (return the first element).
654 * Note, that list is expected to be not empty.
655 */
656#define list_next_entry_circular(pos, head, member) \
657 (list_is_last(&(pos)->member, head) ? \
658 list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member))
659
660/**
661 * list_prev_entry - get the prev element in list
662 * @pos: the type * to cursor
663 * @member: the name of the list_head within the struct.
664 */
665#define list_prev_entry(pos, member) \
666 list_entry((pos)->member.prev, typeof(*(pos)), member)
667
668/**
669 * list_prev_entry_circular - get the prev element in list
670 * @pos: the type * to cursor.
671 * @head: the list head to take the element from.
672 * @member: the name of the list_head within the struct.
673 *
674 * Wraparound if pos is the first element (return the last element).
675 * Note, that list is expected to be not empty.
676 */
677#define list_prev_entry_circular(pos, head, member) \
678 (list_is_first(&(pos)->member, head) ? \
679 list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member))
680
681/**
682 * list_for_each - iterate over a list
683 * @pos: the &struct list_head to use as a loop cursor.
684 * @head: the head for your list.
685 */
686#define list_for_each(pos, head) \
687 for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
688
689/**
690 * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
691 * @pos: the &struct list_head to use as a loop cursor.
692 * @head: the head for your list.
693 */
694#define list_for_each_rcu(pos, head) \
695 for (pos = rcu_dereference((head)->next); \
696 !list_is_head(pos, (head)); \
697 pos = rcu_dereference(pos->next))
698
699/**
700 * list_for_each_continue - continue iteration over a list
701 * @pos: the &struct list_head to use as a loop cursor.
702 * @head: the head for your list.
703 *
704 * Continue to iterate over a list, continuing after the current position.
705 */
706#define list_for_each_continue(pos, head) \
707 for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
708
709/**
710 * list_for_each_prev - iterate over a list backwards
711 * @pos: the &struct list_head to use as a loop cursor.
712 * @head: the head for your list.
713 */
714#define list_for_each_prev(pos, head) \
715 for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
716
717/**
718 * list_for_each_safe - iterate over a list safe against removal of list entry
719 * @pos: the &struct list_head to use as a loop cursor.
720 * @n: another &struct list_head to use as temporary storage
721 * @head: the head for your list.
722 */
723#define list_for_each_safe(pos, n, head) \
724 for (pos = (head)->next, n = pos->next; \
725 !list_is_head(pos, (head)); \
726 pos = n, n = pos->next)
727
728/**
729 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
730 * @pos: the &struct list_head to use as a loop cursor.
731 * @n: another &struct list_head to use as temporary storage
732 * @head: the head for your list.
733 */
734#define list_for_each_prev_safe(pos, n, head) \
735 for (pos = (head)->prev, n = pos->prev; \
736 !list_is_head(pos, (head)); \
737 pos = n, n = pos->prev)
738
739/**
740 * list_count_nodes - count nodes in the list
741 * @head: the head for your list.
742 */
743static inline size_t list_count_nodes(struct list_head *head)
744{
745 struct list_head *pos;
746 size_t count = 0;
747
748 list_for_each(pos, head)
749 count++;
750
751 return count;
752}
753
754/**
755 * list_entry_is_head - test if the entry points to the head of the list
756 * @pos: the type * to cursor
757 * @head: the head for your list.
758 * @member: the name of the list_head within the struct.
759 */
760#define list_entry_is_head(pos, head, member) \
761 list_is_head(&pos->member, (head))
762
763/**
764 * list_for_each_entry - iterate over list of given type
765 * @pos: the type * to use as a loop cursor.
766 * @head: the head for your list.
767 * @member: the name of the list_head within the struct.
768 */
769#define list_for_each_entry(pos, head, member) \
770 for (pos = list_first_entry(head, typeof(*pos), member); \
771 !list_entry_is_head(pos, head, member); \
772 pos = list_next_entry(pos, member))
773
774/**
775 * list_for_each_entry_reverse - iterate backwards over list of given type.
776 * @pos: the type * to use as a loop cursor.
777 * @head: the head for your list.
778 * @member: the name of the list_head within the struct.
779 */
780#define list_for_each_entry_reverse(pos, head, member) \
781 for (pos = list_last_entry(head, typeof(*pos), member); \
782 !list_entry_is_head(pos, head, member); \
783 pos = list_prev_entry(pos, member))
784
785/**
786 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
787 * @pos: the type * to use as a start point
788 * @head: the head of the list
789 * @member: the name of the list_head within the struct.
790 *
791 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
792 */
793#define list_prepare_entry(pos, head, member) \
794 ((pos) ? : list_entry(head, typeof(*pos), member))
795
796/**
797 * list_for_each_entry_continue - continue iteration over list of given type
798 * @pos: the type * to use as a loop cursor.
799 * @head: the head for your list.
800 * @member: the name of the list_head within the struct.
801 *
802 * Continue to iterate over list of given type, continuing after
803 * the current position.
804 */
805#define list_for_each_entry_continue(pos, head, member) \
806 for (pos = list_next_entry(pos, member); \
807 !list_entry_is_head(pos, head, member); \
808 pos = list_next_entry(pos, member))
809
810/**
811 * list_for_each_entry_continue_reverse - iterate backwards from the given point
812 * @pos: the type * to use as a loop cursor.
813 * @head: the head for your list.
814 * @member: the name of the list_head within the struct.
815 *
816 * Start to iterate over list of given type backwards, continuing after
817 * the current position.
818 */
819#define list_for_each_entry_continue_reverse(pos, head, member) \
820 for (pos = list_prev_entry(pos, member); \
821 !list_entry_is_head(pos, head, member); \
822 pos = list_prev_entry(pos, member))
823
824/**
825 * list_for_each_entry_from - iterate over list of given type from the current point
826 * @pos: the type * to use as a loop cursor.
827 * @head: the head for your list.
828 * @member: the name of the list_head within the struct.
829 *
830 * Iterate over list of given type, continuing from current position.
831 */
832#define list_for_each_entry_from(pos, head, member) \
833 for (; !list_entry_is_head(pos, head, member); \
834 pos = list_next_entry(pos, member))
835
836/**
837 * list_for_each_entry_from_reverse - iterate backwards over list of given type
838 * from the current point
839 * @pos: the type * to use as a loop cursor.
840 * @head: the head for your list.
841 * @member: the name of the list_head within the struct.
842 *
843 * Iterate backwards over list of given type, continuing from current position.
844 */
845#define list_for_each_entry_from_reverse(pos, head, member) \
846 for (; !list_entry_is_head(pos, head, member); \
847 pos = list_prev_entry(pos, member))
848
849/**
850 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
851 * @pos: the type * to use as a loop cursor.
852 * @n: another type * to use as temporary storage
853 * @head: the head for your list.
854 * @member: the name of the list_head within the struct.
855 */
856#define list_for_each_entry_safe(pos, n, head, member) \
857 for (pos = list_first_entry(head, typeof(*pos), member), \
858 n = list_next_entry(pos, member); \
859 !list_entry_is_head(pos, head, member); \
860 pos = n, n = list_next_entry(n, member))
861
862/**
863 * list_for_each_entry_safe_continue - continue list iteration safe against removal
864 * @pos: the type * to use as a loop cursor.
865 * @n: another type * to use as temporary storage
866 * @head: the head for your list.
867 * @member: the name of the list_head within the struct.
868 *
869 * Iterate over list of given type, continuing after current point,
870 * safe against removal of list entry.
871 */
872#define list_for_each_entry_safe_continue(pos, n, head, member) \
873 for (pos = list_next_entry(pos, member), \
874 n = list_next_entry(pos, member); \
875 !list_entry_is_head(pos, head, member); \
876 pos = n, n = list_next_entry(n, member))
877
878/**
879 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
880 * @pos: the type * to use as a loop cursor.
881 * @n: another type * to use as temporary storage
882 * @head: the head for your list.
883 * @member: the name of the list_head within the struct.
884 *
885 * Iterate over list of given type from current point, safe against
886 * removal of list entry.
887 */
888#define list_for_each_entry_safe_from(pos, n, head, member) \
889 for (n = list_next_entry(pos, member); \
890 !list_entry_is_head(pos, head, member); \
891 pos = n, n = list_next_entry(n, member))
892
893/**
894 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
895 * @pos: the type * to use as a loop cursor.
896 * @n: another type * to use as temporary storage
897 * @head: the head for your list.
898 * @member: the name of the list_head within the struct.
899 *
900 * Iterate backwards over list of given type, safe against removal
901 * of list entry.
902 */
903#define list_for_each_entry_safe_reverse(pos, n, head, member) \
904 for (pos = list_last_entry(head, typeof(*pos), member), \
905 n = list_prev_entry(pos, member); \
906 !list_entry_is_head(pos, head, member); \
907 pos = n, n = list_prev_entry(n, member))
908
909/**
910 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
911 * @pos: the loop cursor used in the list_for_each_entry_safe loop
912 * @n: temporary storage used in list_for_each_entry_safe
913 * @member: the name of the list_head within the struct.
914 *
915 * list_safe_reset_next is not safe to use in general if the list may be
916 * modified concurrently (eg. the lock is dropped in the loop body). An
917 * exception to this is if the cursor element (pos) is pinned in the list,
918 * and list_safe_reset_next is called after re-taking the lock and before
919 * completing the current iteration of the loop body.
920 */
921#define list_safe_reset_next(pos, n, member) \
922 n = list_next_entry(pos, member)
923
924/*
925 * Double linked lists with a single pointer list head.
926 * Mostly useful for hash tables where the two pointer list head is
927 * too wasteful.
928 * You lose the ability to access the tail in O(1).
929 */
930
931#define HLIST_HEAD_INIT { .first = NULL }
932#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
933#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
934static inline void INIT_HLIST_NODE(struct hlist_node *h)
935{
936 h->next = NULL;
937 h->pprev = NULL;
938}
939
940/**
941 * hlist_unhashed - Has node been removed from list and reinitialized?
942 * @h: Node to be checked
943 *
944 * Not that not all removal functions will leave a node in unhashed
945 * state. For example, hlist_nulls_del_init_rcu() does leave the
946 * node in unhashed state, but hlist_nulls_del() does not.
947 */
948static inline int hlist_unhashed(const struct hlist_node *h)
949{
950 return !h->pprev;
951}
952
953/**
954 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
955 * @h: Node to be checked
956 *
957 * This variant of hlist_unhashed() must be used in lockless contexts
958 * to avoid potential load-tearing. The READ_ONCE() is paired with the
959 * various WRITE_ONCE() in hlist helpers that are defined below.
960 */
961static inline int hlist_unhashed_lockless(const struct hlist_node *h)
962{
963 return !READ_ONCE(h->pprev);
964}
965
966/**
967 * hlist_empty - Is the specified hlist_head structure an empty hlist?
968 * @h: Structure to check.
969 */
970static inline int hlist_empty(const struct hlist_head *h)
971{
972 return !READ_ONCE(h->first);
973}
974
975static inline void __hlist_del(struct hlist_node *n)
976{
977 struct hlist_node *next = n->next;
978 struct hlist_node **pprev = n->pprev;
979
980 WRITE_ONCE(*pprev, next);
981 if (next)
982 WRITE_ONCE(next->pprev, pprev);
983}
984
985/**
986 * hlist_del - Delete the specified hlist_node from its list
987 * @n: Node to delete.
988 *
989 * Note that this function leaves the node in hashed state. Use
990 * hlist_del_init() or similar instead to unhash @n.
991 */
992static inline void hlist_del(struct hlist_node *n)
993{
994 __hlist_del(n);
995 n->next = LIST_POISON1;
996 n->pprev = LIST_POISON2;
997}
998
999/**
1000 * hlist_del_init - Delete the specified hlist_node from its list and initialize
1001 * @n: Node to delete.
1002 *
1003 * Note that this function leaves the node in unhashed state.
1004 */
1005static inline void hlist_del_init(struct hlist_node *n)
1006{
1007 if (!hlist_unhashed(n)) {
1008 __hlist_del(n);
1009 INIT_HLIST_NODE(n);
1010 }
1011}
1012
1013/**
1014 * hlist_add_head - add a new entry at the beginning of the hlist
1015 * @n: new entry to be added
1016 * @h: hlist head to add it after
1017 *
1018 * Insert a new entry after the specified head.
1019 * This is good for implementing stacks.
1020 */
1021static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
1022{
1023 struct hlist_node *first = h->first;
1024 WRITE_ONCE(n->next, first);
1025 if (first)
1026 WRITE_ONCE(first->pprev, &n->next);
1027 WRITE_ONCE(h->first, n);
1028 WRITE_ONCE(n->pprev, &h->first);
1029}
1030
1031/**
1032 * hlist_add_before - add a new entry before the one specified
1033 * @n: new entry to be added
1034 * @next: hlist node to add it before, which must be non-NULL
1035 */
1036static inline void hlist_add_before(struct hlist_node *n,
1037 struct hlist_node *next)
1038{
1039 WRITE_ONCE(n->pprev, next->pprev);
1040 WRITE_ONCE(n->next, next);
1041 WRITE_ONCE(next->pprev, &n->next);
1042 WRITE_ONCE(*(n->pprev), n);
1043}
1044
1045/**
1046 * hlist_add_behind - add a new entry after the one specified
1047 * @n: new entry to be added
1048 * @prev: hlist node to add it after, which must be non-NULL
1049 */
1050static inline void hlist_add_behind(struct hlist_node *n,
1051 struct hlist_node *prev)
1052{
1053 WRITE_ONCE(n->next, prev->next);
1054 WRITE_ONCE(prev->next, n);
1055 WRITE_ONCE(n->pprev, &prev->next);
1056
1057 if (n->next)
1058 WRITE_ONCE(n->next->pprev, &n->next);
1059}
1060
1061/**
1062 * hlist_add_fake - create a fake hlist consisting of a single headless node
1063 * @n: Node to make a fake list out of
1064 *
1065 * This makes @n appear to be its own predecessor on a headless hlist.
1066 * The point of this is to allow things like hlist_del() to work correctly
1067 * in cases where there is no list.
1068 */
1069static inline void hlist_add_fake(struct hlist_node *n)
1070{
1071 n->pprev = &n->next;
1072}
1073
1074/**
1075 * hlist_fake: Is this node a fake hlist?
1076 * @h: Node to check for being a self-referential fake hlist.
1077 */
1078static inline bool hlist_fake(struct hlist_node *h)
1079{
1080 return h->pprev == &h->next;
1081}
1082
1083/**
1084 * hlist_is_singular_node - is node the only element of the specified hlist?
1085 * @n: Node to check for singularity.
1086 * @h: Header for potentially singular list.
1087 *
1088 * Check whether the node is the only node of the head without
1089 * accessing head, thus avoiding unnecessary cache misses.
1090 */
1091static inline bool
1092hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
1093{
1094 return !n->next && n->pprev == &h->first;
1095}
1096
1097/**
1098 * hlist_move_list - Move an hlist
1099 * @old: hlist_head for old list.
1100 * @new: hlist_head for new list.
1101 *
1102 * Move a list from one list head to another. Fixup the pprev
1103 * reference of the first entry if it exists.
1104 */
1105static inline void hlist_move_list(struct hlist_head *old,
1106 struct hlist_head *new)
1107{
1108 new->first = old->first;
1109 if (new->first)
1110 new->first->pprev = &new->first;
1111 old->first = NULL;
1112}
1113
1114/**
1115 * hlist_splice_init() - move all entries from one list to another
1116 * @from: hlist_head from which entries will be moved
1117 * @last: last entry on the @from list
1118 * @to: hlist_head to which entries will be moved
1119 *
1120 * @to can be empty, @from must contain at least @last.
1121 */
1122static inline void hlist_splice_init(struct hlist_head *from,
1123 struct hlist_node *last,
1124 struct hlist_head *to)
1125{
1126 if (to->first)
1127 to->first->pprev = &last->next;
1128 last->next = to->first;
1129 to->first = from->first;
1130 from->first->pprev = &to->first;
1131 from->first = NULL;
1132}
1133
1134#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1135
1136#define hlist_for_each(pos, head) \
1137 for (pos = (head)->first; pos ; pos = pos->next)
1138
1139#define hlist_for_each_safe(pos, n, head) \
1140 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1141 pos = n)
1142
1143#define hlist_entry_safe(ptr, type, member) \
1144 ({ typeof(ptr) ____ptr = (ptr); \
1145 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
1146 })
1147
1148/**
1149 * hlist_for_each_entry - iterate over list of given type
1150 * @pos: the type * to use as a loop cursor.
1151 * @head: the head for your list.
1152 * @member: the name of the hlist_node within the struct.
1153 */
1154#define hlist_for_each_entry(pos, head, member) \
1155 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1156 pos; \
1157 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1158
1159/**
1160 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1161 * @pos: the type * to use as a loop cursor.
1162 * @member: the name of the hlist_node within the struct.
1163 */
1164#define hlist_for_each_entry_continue(pos, member) \
1165 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1166 pos; \
1167 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1168
1169/**
1170 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1171 * @pos: the type * to use as a loop cursor.
1172 * @member: the name of the hlist_node within the struct.
1173 */
1174#define hlist_for_each_entry_from(pos, member) \
1175 for (; pos; \
1176 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1177
1178/**
1179 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1180 * @pos: the type * to use as a loop cursor.
1181 * @n: a &struct hlist_node to use as temporary storage
1182 * @head: the head for your list.
1183 * @member: the name of the hlist_node within the struct.
1184 */
1185#define hlist_for_each_entry_safe(pos, n, head, member) \
1186 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1187 pos && ({ n = pos->member.next; 1; }); \
1188 pos = hlist_entry_safe(n, typeof(*pos), member))
1189
1190/**
1191 * hlist_count_nodes - count nodes in the hlist
1192 * @head: the head for your hlist.
1193 */
1194static inline size_t hlist_count_nodes(struct hlist_head *head)
1195{
1196 struct hlist_node *pos;
1197 size_t count = 0;
1198
1199 hlist_for_each(pos, head)
1200 count++;
1201
1202 return count;
1203}
1204
1205#endif