at v6.16 81 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <linux/ftrace.h> 33#include <linux/hashtable.h> 34#include <linux/instrumentation.h> 35#include <linux/interval_tree.h> 36#include <linux/rbtree.h> 37#include <linux/xarray.h> 38#include <asm/signal.h> 39 40#include <linux/kvm.h> 41#include <linux/kvm_para.h> 42 43#include <linux/kvm_types.h> 44 45#include <asm/kvm_host.h> 46#include <linux/kvm_dirty_ring.h> 47 48#ifndef KVM_MAX_VCPU_IDS 49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50#endif 51 52/* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57#define KVM_MEMSLOT_INVALID (1UL << 16) 58 59/* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80/* Two fragments for cross MMIO pages. */ 81#define KVM_MAX_MMIO_FRAGMENTS 2 82 83#ifndef KVM_MAX_NR_ADDRESS_SPACES 84#define KVM_MAX_NR_ADDRESS_SPACES 1 85#endif 86 87/* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94#define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102/* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106static inline bool is_error_pfn(kvm_pfn_t pfn) 107{ 108 return !!(pfn & KVM_PFN_ERR_MASK); 109} 110 111/* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116{ 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118} 119 120/* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126{ 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128} 129 130/* noslot pfn indicates that the gfn is not in slot. */ 131static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132{ 133 return pfn == KVM_PFN_NOSLOT; 134} 135 136/* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140#ifndef KVM_HVA_ERR_BAD 141 142#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145static inline bool kvm_is_error_hva(unsigned long addr) 146{ 147 return addr >= PAGE_OFFSET; 148} 149 150#endif 151 152static inline bool kvm_is_error_gpa(gpa_t gpa) 153{ 154 return gpa == INVALID_GPA; 155} 156 157#define KVM_REQUEST_MASK GENMASK(7,0) 158#define KVM_REQUEST_NO_WAKEUP BIT(8) 159#define KVM_REQUEST_WAIT BIT(9) 160#define KVM_REQUEST_NO_ACTION BIT(10) 161/* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167#define KVM_REQ_UNBLOCK 2 168#define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169#define KVM_REQUEST_ARCH_BASE 8 170 171/* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184}) 185#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191#define KVM_USERSPACE_IRQ_SOURCE_ID 0 192#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194extern struct mutex kvm_lock; 195extern struct list_head vm_list; 196 197struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201}; 202 203#define NR_IOBUS_DEVS 1000 204 205struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209}; 210 211enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_IOCSR_BUS, 217 KVM_NR_BUSES 218}; 219 220int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 221 int len, const void *val); 222int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 223 gpa_t addr, int len, const void *val, long cookie); 224int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, void *val); 226int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 227 int len, struct kvm_io_device *dev); 228int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 229 struct kvm_io_device *dev); 230struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 gpa_t addr); 232 233#ifdef CONFIG_KVM_ASYNC_PF 234struct kvm_async_pf { 235 struct work_struct work; 236 struct list_head link; 237 struct list_head queue; 238 struct kvm_vcpu *vcpu; 239 gpa_t cr2_or_gpa; 240 unsigned long addr; 241 struct kvm_arch_async_pf arch; 242 bool wakeup_all; 243 bool notpresent_injected; 244}; 245 246void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 247void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 248bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 249 unsigned long hva, struct kvm_arch_async_pf *arch); 250int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 251#endif 252 253#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 254union kvm_mmu_notifier_arg { 255 unsigned long attributes; 256}; 257 258enum kvm_gfn_range_filter { 259 KVM_FILTER_SHARED = BIT(0), 260 KVM_FILTER_PRIVATE = BIT(1), 261}; 262 263struct kvm_gfn_range { 264 struct kvm_memory_slot *slot; 265 gfn_t start; 266 gfn_t end; 267 union kvm_mmu_notifier_arg arg; 268 enum kvm_gfn_range_filter attr_filter; 269 bool may_block; 270 bool lockless; 271}; 272bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 273bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 274bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 275#endif 276 277enum { 278 OUTSIDE_GUEST_MODE, 279 IN_GUEST_MODE, 280 EXITING_GUEST_MODE, 281 READING_SHADOW_PAGE_TABLES, 282}; 283 284struct kvm_host_map { 285 /* 286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 287 * a 'struct page' for it. When using mem= kernel parameter some memory 288 * can be used as guest memory but they are not managed by host 289 * kernel). 290 */ 291 struct page *pinned_page; 292 struct page *page; 293 void *hva; 294 kvm_pfn_t pfn; 295 kvm_pfn_t gfn; 296 bool writable; 297}; 298 299/* 300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 301 * directly to check for that. 302 */ 303static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 304{ 305 return !!map->hva; 306} 307 308static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 309{ 310 return single_task_running() && !need_resched() && ktime_before(cur, stop); 311} 312 313/* 314 * Sometimes a large or cross-page mmio needs to be broken up into separate 315 * exits for userspace servicing. 316 */ 317struct kvm_mmio_fragment { 318 gpa_t gpa; 319 void *data; 320 unsigned len; 321}; 322 323struct kvm_vcpu { 324 struct kvm *kvm; 325#ifdef CONFIG_PREEMPT_NOTIFIERS 326 struct preempt_notifier preempt_notifier; 327#endif 328 int cpu; 329 int vcpu_id; /* id given by userspace at creation */ 330 int vcpu_idx; /* index into kvm->vcpu_array */ 331 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 332#ifdef CONFIG_PROVE_RCU 333 int srcu_depth; 334#endif 335 int mode; 336 u64 requests; 337 unsigned long guest_debug; 338 339 struct mutex mutex; 340 struct kvm_run *run; 341 342#ifndef __KVM_HAVE_ARCH_WQP 343 struct rcuwait wait; 344#endif 345 struct pid *pid; 346 rwlock_t pid_lock; 347 int sigset_active; 348 sigset_t sigset; 349 unsigned int halt_poll_ns; 350 bool valid_wakeup; 351 352#ifdef CONFIG_HAS_IOMEM 353 int mmio_needed; 354 int mmio_read_completed; 355 int mmio_is_write; 356 int mmio_cur_fragment; 357 int mmio_nr_fragments; 358 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 359#endif 360 361#ifdef CONFIG_KVM_ASYNC_PF 362 struct { 363 u32 queued; 364 struct list_head queue; 365 struct list_head done; 366 spinlock_t lock; 367 } async_pf; 368#endif 369 370#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 371 /* 372 * Cpu relax intercept or pause loop exit optimization 373 * in_spin_loop: set when a vcpu does a pause loop exit 374 * or cpu relax intercepted. 375 * dy_eligible: indicates whether vcpu is eligible for directed yield. 376 */ 377 struct { 378 bool in_spin_loop; 379 bool dy_eligible; 380 } spin_loop; 381#endif 382 bool wants_to_run; 383 bool preempted; 384 bool ready; 385 bool scheduled_out; 386 struct kvm_vcpu_arch arch; 387 struct kvm_vcpu_stat stat; 388 char stats_id[KVM_STATS_NAME_SIZE]; 389 struct kvm_dirty_ring dirty_ring; 390 391 /* 392 * The most recently used memslot by this vCPU and the slots generation 393 * for which it is valid. 394 * No wraparound protection is needed since generations won't overflow in 395 * thousands of years, even assuming 1M memslot operations per second. 396 */ 397 struct kvm_memory_slot *last_used_slot; 398 u64 last_used_slot_gen; 399}; 400 401/* 402 * Start accounting time towards a guest. 403 * Must be called before entering guest context. 404 */ 405static __always_inline void guest_timing_enter_irqoff(void) 406{ 407 /* 408 * This is running in ioctl context so its safe to assume that it's the 409 * stime pending cputime to flush. 410 */ 411 instrumentation_begin(); 412 vtime_account_guest_enter(); 413 instrumentation_end(); 414} 415 416/* 417 * Enter guest context and enter an RCU extended quiescent state. 418 * 419 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 420 * unsafe to use any code which may directly or indirectly use RCU, tracing 421 * (including IRQ flag tracing), or lockdep. All code in this period must be 422 * non-instrumentable. 423 */ 424static __always_inline void guest_context_enter_irqoff(void) 425{ 426 /* 427 * KVM does not hold any references to rcu protected data when it 428 * switches CPU into a guest mode. In fact switching to a guest mode 429 * is very similar to exiting to userspace from rcu point of view. In 430 * addition CPU may stay in a guest mode for quite a long time (up to 431 * one time slice). Lets treat guest mode as quiescent state, just like 432 * we do with user-mode execution. 433 */ 434 if (!context_tracking_guest_enter()) { 435 instrumentation_begin(); 436 rcu_virt_note_context_switch(); 437 instrumentation_end(); 438 } 439} 440 441/* 442 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 443 * guest_state_enter_irqoff(). 444 */ 445static __always_inline void guest_enter_irqoff(void) 446{ 447 guest_timing_enter_irqoff(); 448 guest_context_enter_irqoff(); 449} 450 451/** 452 * guest_state_enter_irqoff - Fixup state when entering a guest 453 * 454 * Entry to a guest will enable interrupts, but the kernel state is interrupts 455 * disabled when this is invoked. Also tell RCU about it. 456 * 457 * 1) Trace interrupts on state 458 * 2) Invoke context tracking if enabled to adjust RCU state 459 * 3) Tell lockdep that interrupts are enabled 460 * 461 * Invoked from architecture specific code before entering a guest. 462 * Must be called with interrupts disabled and the caller must be 463 * non-instrumentable. 464 * The caller has to invoke guest_timing_enter_irqoff() before this. 465 * 466 * Note: this is analogous to exit_to_user_mode(). 467 */ 468static __always_inline void guest_state_enter_irqoff(void) 469{ 470 instrumentation_begin(); 471 trace_hardirqs_on_prepare(); 472 lockdep_hardirqs_on_prepare(); 473 instrumentation_end(); 474 475 guest_context_enter_irqoff(); 476 lockdep_hardirqs_on(CALLER_ADDR0); 477} 478 479/* 480 * Exit guest context and exit an RCU extended quiescent state. 481 * 482 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 483 * unsafe to use any code which may directly or indirectly use RCU, tracing 484 * (including IRQ flag tracing), or lockdep. All code in this period must be 485 * non-instrumentable. 486 */ 487static __always_inline void guest_context_exit_irqoff(void) 488{ 489 /* 490 * Guest mode is treated as a quiescent state, see 491 * guest_context_enter_irqoff() for more details. 492 */ 493 if (!context_tracking_guest_exit()) { 494 instrumentation_begin(); 495 rcu_virt_note_context_switch(); 496 instrumentation_end(); 497 } 498} 499 500/* 501 * Stop accounting time towards a guest. 502 * Must be called after exiting guest context. 503 */ 504static __always_inline void guest_timing_exit_irqoff(void) 505{ 506 instrumentation_begin(); 507 /* Flush the guest cputime we spent on the guest */ 508 vtime_account_guest_exit(); 509 instrumentation_end(); 510} 511 512/* 513 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 514 * guest_timing_exit_irqoff(). 515 */ 516static __always_inline void guest_exit_irqoff(void) 517{ 518 guest_context_exit_irqoff(); 519 guest_timing_exit_irqoff(); 520} 521 522static inline void guest_exit(void) 523{ 524 unsigned long flags; 525 526 local_irq_save(flags); 527 guest_exit_irqoff(); 528 local_irq_restore(flags); 529} 530 531/** 532 * guest_state_exit_irqoff - Establish state when returning from guest mode 533 * 534 * Entry from a guest disables interrupts, but guest mode is traced as 535 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 536 * 537 * 1) Tell lockdep that interrupts are disabled 538 * 2) Invoke context tracking if enabled to reactivate RCU 539 * 3) Trace interrupts off state 540 * 541 * Invoked from architecture specific code after exiting a guest. 542 * Must be invoked with interrupts disabled and the caller must be 543 * non-instrumentable. 544 * The caller has to invoke guest_timing_exit_irqoff() after this. 545 * 546 * Note: this is analogous to enter_from_user_mode(). 547 */ 548static __always_inline void guest_state_exit_irqoff(void) 549{ 550 lockdep_hardirqs_off(CALLER_ADDR0); 551 guest_context_exit_irqoff(); 552 553 instrumentation_begin(); 554 trace_hardirqs_off_finish(); 555 instrumentation_end(); 556} 557 558static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 559{ 560 /* 561 * The memory barrier ensures a previous write to vcpu->requests cannot 562 * be reordered with the read of vcpu->mode. It pairs with the general 563 * memory barrier following the write of vcpu->mode in VCPU RUN. 564 */ 565 smp_mb__before_atomic(); 566 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 567} 568 569/* 570 * Some of the bitops functions do not support too long bitmaps. 571 * This number must be determined not to exceed such limits. 572 */ 573#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 574 575/* 576 * Since at idle each memslot belongs to two memslot sets it has to contain 577 * two embedded nodes for each data structure that it forms a part of. 578 * 579 * Two memslot sets (one active and one inactive) are necessary so the VM 580 * continues to run on one memslot set while the other is being modified. 581 * 582 * These two memslot sets normally point to the same set of memslots. 583 * They can, however, be desynchronized when performing a memslot management 584 * operation by replacing the memslot to be modified by its copy. 585 * After the operation is complete, both memslot sets once again point to 586 * the same, common set of memslot data. 587 * 588 * The memslots themselves are independent of each other so they can be 589 * individually added or deleted. 590 */ 591struct kvm_memory_slot { 592 struct hlist_node id_node[2]; 593 struct interval_tree_node hva_node[2]; 594 struct rb_node gfn_node[2]; 595 gfn_t base_gfn; 596 unsigned long npages; 597 unsigned long *dirty_bitmap; 598 struct kvm_arch_memory_slot arch; 599 unsigned long userspace_addr; 600 u32 flags; 601 short id; 602 u16 as_id; 603 604#ifdef CONFIG_KVM_PRIVATE_MEM 605 struct { 606 /* 607 * Writes protected by kvm->slots_lock. Acquiring a 608 * reference via kvm_gmem_get_file() is protected by 609 * either kvm->slots_lock or kvm->srcu. 610 */ 611 struct file *file; 612 pgoff_t pgoff; 613 } gmem; 614#endif 615}; 616 617static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 618{ 619 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 620} 621 622static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 623{ 624 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 625} 626 627static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 628{ 629 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 630} 631 632static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 633{ 634 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 635 636 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 637} 638 639#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 640#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 641#endif 642 643struct kvm_s390_adapter_int { 644 u64 ind_addr; 645 u64 summary_addr; 646 u64 ind_offset; 647 u32 summary_offset; 648 u32 adapter_id; 649}; 650 651struct kvm_hv_sint { 652 u32 vcpu; 653 u32 sint; 654}; 655 656struct kvm_xen_evtchn { 657 u32 port; 658 u32 vcpu_id; 659 int vcpu_idx; 660 u32 priority; 661}; 662 663struct kvm_kernel_irq_routing_entry { 664 u32 gsi; 665 u32 type; 666 int (*set)(struct kvm_kernel_irq_routing_entry *e, 667 struct kvm *kvm, int irq_source_id, int level, 668 bool line_status); 669 union { 670 struct { 671 unsigned irqchip; 672 unsigned pin; 673 } irqchip; 674 struct { 675 u32 address_lo; 676 u32 address_hi; 677 u32 data; 678 u32 flags; 679 u32 devid; 680 } msi; 681 struct kvm_s390_adapter_int adapter; 682 struct kvm_hv_sint hv_sint; 683 struct kvm_xen_evtchn xen_evtchn; 684 }; 685 struct hlist_node link; 686}; 687 688#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 689struct kvm_irq_routing_table { 690 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 691 u32 nr_rt_entries; 692 /* 693 * Array indexed by gsi. Each entry contains list of irq chips 694 * the gsi is connected to. 695 */ 696 struct hlist_head map[] __counted_by(nr_rt_entries); 697}; 698#endif 699 700bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 701 702#ifndef KVM_INTERNAL_MEM_SLOTS 703#define KVM_INTERNAL_MEM_SLOTS 0 704#endif 705 706#define KVM_MEM_SLOTS_NUM SHRT_MAX 707#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 708 709#if KVM_MAX_NR_ADDRESS_SPACES == 1 710static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 711{ 712 return KVM_MAX_NR_ADDRESS_SPACES; 713} 714 715static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 716{ 717 return 0; 718} 719#endif 720 721/* 722 * Arch code must define kvm_arch_has_private_mem if support for private memory 723 * is enabled. 724 */ 725#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 726static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 727{ 728 return false; 729} 730#endif 731 732#ifndef kvm_arch_has_readonly_mem 733static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 734{ 735 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 736} 737#endif 738 739struct kvm_memslots { 740 u64 generation; 741 atomic_long_t last_used_slot; 742 struct rb_root_cached hva_tree; 743 struct rb_root gfn_tree; 744 /* 745 * The mapping table from slot id to memslot. 746 * 747 * 7-bit bucket count matches the size of the old id to index array for 748 * 512 slots, while giving good performance with this slot count. 749 * Higher bucket counts bring only small performance improvements but 750 * always result in higher memory usage (even for lower memslot counts). 751 */ 752 DECLARE_HASHTABLE(id_hash, 7); 753 int node_idx; 754}; 755 756struct kvm { 757#ifdef KVM_HAVE_MMU_RWLOCK 758 rwlock_t mmu_lock; 759#else 760 spinlock_t mmu_lock; 761#endif /* KVM_HAVE_MMU_RWLOCK */ 762 763 struct mutex slots_lock; 764 765 /* 766 * Protects the arch-specific fields of struct kvm_memory_slots in 767 * use by the VM. To be used under the slots_lock (above) or in a 768 * kvm->srcu critical section where acquiring the slots_lock would 769 * lead to deadlock with the synchronize_srcu in 770 * kvm_swap_active_memslots(). 771 */ 772 struct mutex slots_arch_lock; 773 struct mm_struct *mm; /* userspace tied to this vm */ 774 unsigned long nr_memslot_pages; 775 /* The two memslot sets - active and inactive (per address space) */ 776 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 777 /* The current active memslot set for each address space */ 778 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 779 struct xarray vcpu_array; 780 /* 781 * Protected by slots_lock, but can be read outside if an 782 * incorrect answer is acceptable. 783 */ 784 atomic_t nr_memslots_dirty_logging; 785 786 /* Used to wait for completion of MMU notifiers. */ 787 spinlock_t mn_invalidate_lock; 788 unsigned long mn_active_invalidate_count; 789 struct rcuwait mn_memslots_update_rcuwait; 790 791 /* For management / invalidation of gfn_to_pfn_caches */ 792 spinlock_t gpc_lock; 793 struct list_head gpc_list; 794 795 /* 796 * created_vcpus is protected by kvm->lock, and is incremented 797 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 798 * incremented after storing the kvm_vcpu pointer in vcpus, 799 * and is accessed atomically. 800 */ 801 atomic_t online_vcpus; 802 int max_vcpus; 803 int created_vcpus; 804 int last_boosted_vcpu; 805 struct list_head vm_list; 806 struct mutex lock; 807 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 808#ifdef CONFIG_HAVE_KVM_IRQCHIP 809 struct { 810 spinlock_t lock; 811 struct list_head items; 812 /* resampler_list update side is protected by resampler_lock. */ 813 struct list_head resampler_list; 814 struct mutex resampler_lock; 815 } irqfds; 816#endif 817 struct list_head ioeventfds; 818 struct kvm_vm_stat stat; 819 struct kvm_arch arch; 820 refcount_t users_count; 821#ifdef CONFIG_KVM_MMIO 822 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 823 spinlock_t ring_lock; 824 struct list_head coalesced_zones; 825#endif 826 827 struct mutex irq_lock; 828#ifdef CONFIG_HAVE_KVM_IRQCHIP 829 /* 830 * Update side is protected by irq_lock. 831 */ 832 struct kvm_irq_routing_table __rcu *irq_routing; 833 834 struct hlist_head irq_ack_notifier_list; 835#endif 836 837#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 838 struct mmu_notifier mmu_notifier; 839 unsigned long mmu_invalidate_seq; 840 long mmu_invalidate_in_progress; 841 gfn_t mmu_invalidate_range_start; 842 gfn_t mmu_invalidate_range_end; 843#endif 844 struct list_head devices; 845 u64 manual_dirty_log_protect; 846 struct dentry *debugfs_dentry; 847 struct kvm_stat_data **debugfs_stat_data; 848 struct srcu_struct srcu; 849 struct srcu_struct irq_srcu; 850 pid_t userspace_pid; 851 bool override_halt_poll_ns; 852 unsigned int max_halt_poll_ns; 853 u32 dirty_ring_size; 854 bool dirty_ring_with_bitmap; 855 bool vm_bugged; 856 bool vm_dead; 857 858#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 859 struct notifier_block pm_notifier; 860#endif 861#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 862 /* Protected by slots_locks (for writes) and RCU (for reads) */ 863 struct xarray mem_attr_array; 864#endif 865 char stats_id[KVM_STATS_NAME_SIZE]; 866}; 867 868#define kvm_err(fmt, ...) \ 869 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 870#define kvm_info(fmt, ...) \ 871 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 872#define kvm_debug(fmt, ...) \ 873 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 874#define kvm_debug_ratelimited(fmt, ...) \ 875 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 876 ## __VA_ARGS__) 877#define kvm_pr_unimpl(fmt, ...) \ 878 pr_err_ratelimited("kvm [%i]: " fmt, \ 879 task_tgid_nr(current), ## __VA_ARGS__) 880 881/* The guest did something we don't support. */ 882#define vcpu_unimpl(vcpu, fmt, ...) \ 883 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 884 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 885 886#define vcpu_debug(vcpu, fmt, ...) \ 887 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 888#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 889 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 890 ## __VA_ARGS__) 891#define vcpu_err(vcpu, fmt, ...) \ 892 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 893 894static inline void kvm_vm_dead(struct kvm *kvm) 895{ 896 kvm->vm_dead = true; 897 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 898} 899 900static inline void kvm_vm_bugged(struct kvm *kvm) 901{ 902 kvm->vm_bugged = true; 903 kvm_vm_dead(kvm); 904} 905 906 907#define KVM_BUG(cond, kvm, fmt...) \ 908({ \ 909 bool __ret = !!(cond); \ 910 \ 911 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 912 kvm_vm_bugged(kvm); \ 913 unlikely(__ret); \ 914}) 915 916#define KVM_BUG_ON(cond, kvm) \ 917({ \ 918 bool __ret = !!(cond); \ 919 \ 920 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 921 kvm_vm_bugged(kvm); \ 922 unlikely(__ret); \ 923}) 924 925/* 926 * Note, "data corruption" refers to corruption of host kernel data structures, 927 * not guest data. Guest data corruption, suspected or confirmed, that is tied 928 * and contained to a single VM should *never* BUG() and potentially panic the 929 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 930 * is corrupted and that corruption can have a cascading effect to other parts 931 * of the hosts and/or to other VMs. 932 */ 933#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 934({ \ 935 bool __ret = !!(cond); \ 936 \ 937 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 938 BUG_ON(__ret); \ 939 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 940 kvm_vm_bugged(kvm); \ 941 unlikely(__ret); \ 942}) 943 944static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 945{ 946#ifdef CONFIG_PROVE_RCU 947 WARN_ONCE(vcpu->srcu_depth++, 948 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 949#endif 950 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 951} 952 953static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 954{ 955 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 956 957#ifdef CONFIG_PROVE_RCU 958 WARN_ONCE(--vcpu->srcu_depth, 959 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 960#endif 961} 962 963static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 964{ 965 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 966} 967 968static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 969{ 970 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 971 lockdep_is_held(&kvm->slots_lock) || 972 !refcount_read(&kvm->users_count)); 973} 974 975static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 976{ 977 int num_vcpus = atomic_read(&kvm->online_vcpus); 978 979 /* 980 * Explicitly verify the target vCPU is online, as the anti-speculation 981 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 982 * index, clamping the index to 0 would return vCPU0, not NULL. 983 */ 984 if (i >= num_vcpus) 985 return NULL; 986 987 i = array_index_nospec(i, num_vcpus); 988 989 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 990 smp_rmb(); 991 return xa_load(&kvm->vcpu_array, i); 992} 993 994#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 995 if (atomic_read(&kvm->online_vcpus)) \ 996 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 997 (atomic_read(&kvm->online_vcpus) - 1)) 998 999static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 1000{ 1001 struct kvm_vcpu *vcpu = NULL; 1002 unsigned long i; 1003 1004 if (id < 0) 1005 return NULL; 1006 if (id < KVM_MAX_VCPUS) 1007 vcpu = kvm_get_vcpu(kvm, id); 1008 if (vcpu && vcpu->vcpu_id == id) 1009 return vcpu; 1010 kvm_for_each_vcpu(i, vcpu, kvm) 1011 if (vcpu->vcpu_id == id) 1012 return vcpu; 1013 return NULL; 1014} 1015 1016void kvm_destroy_vcpus(struct kvm *kvm); 1017 1018int kvm_trylock_all_vcpus(struct kvm *kvm); 1019int kvm_lock_all_vcpus(struct kvm *kvm); 1020void kvm_unlock_all_vcpus(struct kvm *kvm); 1021 1022void vcpu_load(struct kvm_vcpu *vcpu); 1023void vcpu_put(struct kvm_vcpu *vcpu); 1024 1025#ifdef __KVM_HAVE_IOAPIC 1026void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1027void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1028#else 1029static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1030{ 1031} 1032static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1033{ 1034} 1035#endif 1036 1037#ifdef CONFIG_HAVE_KVM_IRQCHIP 1038int kvm_irqfd_init(void); 1039void kvm_irqfd_exit(void); 1040#else 1041static inline int kvm_irqfd_init(void) 1042{ 1043 return 0; 1044} 1045 1046static inline void kvm_irqfd_exit(void) 1047{ 1048} 1049#endif 1050int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1051void kvm_exit(void); 1052 1053void kvm_get_kvm(struct kvm *kvm); 1054bool kvm_get_kvm_safe(struct kvm *kvm); 1055void kvm_put_kvm(struct kvm *kvm); 1056bool file_is_kvm(struct file *file); 1057void kvm_put_kvm_no_destroy(struct kvm *kvm); 1058 1059static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1060{ 1061 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1062 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1063 lockdep_is_held(&kvm->slots_lock) || 1064 !refcount_read(&kvm->users_count)); 1065} 1066 1067static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1068{ 1069 return __kvm_memslots(kvm, 0); 1070} 1071 1072static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1073{ 1074 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1075 1076 return __kvm_memslots(vcpu->kvm, as_id); 1077} 1078 1079static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1080{ 1081 return RB_EMPTY_ROOT(&slots->gfn_tree); 1082} 1083 1084bool kvm_are_all_memslots_empty(struct kvm *kvm); 1085 1086#define kvm_for_each_memslot(memslot, bkt, slots) \ 1087 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1088 if (WARN_ON_ONCE(!memslot->npages)) { \ 1089 } else 1090 1091static inline 1092struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1093{ 1094 struct kvm_memory_slot *slot; 1095 int idx = slots->node_idx; 1096 1097 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1098 if (slot->id == id) 1099 return slot; 1100 } 1101 1102 return NULL; 1103} 1104 1105/* Iterator used for walking memslots that overlap a gfn range. */ 1106struct kvm_memslot_iter { 1107 struct kvm_memslots *slots; 1108 struct rb_node *node; 1109 struct kvm_memory_slot *slot; 1110}; 1111 1112static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1113{ 1114 iter->node = rb_next(iter->node); 1115 if (!iter->node) 1116 return; 1117 1118 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1119} 1120 1121static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1122 struct kvm_memslots *slots, 1123 gfn_t start) 1124{ 1125 int idx = slots->node_idx; 1126 struct rb_node *tmp; 1127 struct kvm_memory_slot *slot; 1128 1129 iter->slots = slots; 1130 1131 /* 1132 * Find the so called "upper bound" of a key - the first node that has 1133 * its key strictly greater than the searched one (the start gfn in our case). 1134 */ 1135 iter->node = NULL; 1136 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1137 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1138 if (start < slot->base_gfn) { 1139 iter->node = tmp; 1140 tmp = tmp->rb_left; 1141 } else { 1142 tmp = tmp->rb_right; 1143 } 1144 } 1145 1146 /* 1147 * Find the slot with the lowest gfn that can possibly intersect with 1148 * the range, so we'll ideally have slot start <= range start 1149 */ 1150 if (iter->node) { 1151 /* 1152 * A NULL previous node means that the very first slot 1153 * already has a higher start gfn. 1154 * In this case slot start > range start. 1155 */ 1156 tmp = rb_prev(iter->node); 1157 if (tmp) 1158 iter->node = tmp; 1159 } else { 1160 /* a NULL node below means no slots */ 1161 iter->node = rb_last(&slots->gfn_tree); 1162 } 1163 1164 if (iter->node) { 1165 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1166 1167 /* 1168 * It is possible in the slot start < range start case that the 1169 * found slot ends before or at range start (slot end <= range start) 1170 * and so it does not overlap the requested range. 1171 * 1172 * In such non-overlapping case the next slot (if it exists) will 1173 * already have slot start > range start, otherwise the logic above 1174 * would have found it instead of the current slot. 1175 */ 1176 if (iter->slot->base_gfn + iter->slot->npages <= start) 1177 kvm_memslot_iter_next(iter); 1178 } 1179} 1180 1181static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1182{ 1183 if (!iter->node) 1184 return false; 1185 1186 /* 1187 * If this slot starts beyond or at the end of the range so does 1188 * every next one 1189 */ 1190 return iter->slot->base_gfn < end; 1191} 1192 1193/* Iterate over each memslot at least partially intersecting [start, end) range */ 1194#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1195 for (kvm_memslot_iter_start(iter, slots, start); \ 1196 kvm_memslot_iter_is_valid(iter, end); \ 1197 kvm_memslot_iter_next(iter)) 1198 1199struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1200struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1201struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1202 1203/* 1204 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1205 * - create a new memory slot 1206 * - delete an existing memory slot 1207 * - modify an existing memory slot 1208 * -- move it in the guest physical memory space 1209 * -- just change its flags 1210 * 1211 * Since flags can be changed by some of these operations, the following 1212 * differentiation is the best we can do for kvm_set_memory_region(): 1213 */ 1214enum kvm_mr_change { 1215 KVM_MR_CREATE, 1216 KVM_MR_DELETE, 1217 KVM_MR_MOVE, 1218 KVM_MR_FLAGS_ONLY, 1219}; 1220 1221int kvm_set_internal_memslot(struct kvm *kvm, 1222 const struct kvm_userspace_memory_region2 *mem); 1223void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1224void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1225int kvm_arch_prepare_memory_region(struct kvm *kvm, 1226 const struct kvm_memory_slot *old, 1227 struct kvm_memory_slot *new, 1228 enum kvm_mr_change change); 1229void kvm_arch_commit_memory_region(struct kvm *kvm, 1230 struct kvm_memory_slot *old, 1231 const struct kvm_memory_slot *new, 1232 enum kvm_mr_change change); 1233/* flush all memory translations */ 1234void kvm_arch_flush_shadow_all(struct kvm *kvm); 1235/* flush memory translations pointing to 'slot' */ 1236void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1237 struct kvm_memory_slot *slot); 1238 1239int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1240 struct page **pages, int nr_pages); 1241 1242struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1243static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1244{ 1245 return __gfn_to_page(kvm, gfn, true); 1246} 1247 1248unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1249unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1250unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1251unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1252 bool *writable); 1253 1254static inline void kvm_release_page_unused(struct page *page) 1255{ 1256 if (!page) 1257 return; 1258 1259 put_page(page); 1260} 1261 1262void kvm_release_page_clean(struct page *page); 1263void kvm_release_page_dirty(struct page *page); 1264 1265static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1266 bool unused, bool dirty) 1267{ 1268 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1269 1270 if (!page) 1271 return; 1272 1273 /* 1274 * If the page that KVM got from the *primary MMU* is writable, and KVM 1275 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1276 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1277 * the GFN is write-protected. Folios can't be safely marked dirty 1278 * outside of mmu_lock as doing so could race with writeback on the 1279 * folio. As a result, KVM can't mark folios dirty in the fast page 1280 * fault handler, and so KVM must (somewhat) speculatively mark the 1281 * folio dirty if KVM could locklessly make the SPTE writable. 1282 */ 1283 if (unused) 1284 kvm_release_page_unused(page); 1285 else if (dirty) 1286 kvm_release_page_dirty(page); 1287 else 1288 kvm_release_page_clean(page); 1289} 1290 1291kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1292 unsigned int foll, bool *writable, 1293 struct page **refcounted_page); 1294 1295static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1296 bool write, bool *writable, 1297 struct page **refcounted_page) 1298{ 1299 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1300 write ? FOLL_WRITE : 0, writable, refcounted_page); 1301} 1302 1303int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1304 int len); 1305int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1306int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1307 void *data, unsigned long len); 1308int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1309 void *data, unsigned int offset, 1310 unsigned long len); 1311int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1312 int offset, int len); 1313int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1314 unsigned long len); 1315int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1316 void *data, unsigned long len); 1317int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1318 void *data, unsigned int offset, 1319 unsigned long len); 1320int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1321 gpa_t gpa, unsigned long len); 1322 1323#define __kvm_get_guest(kvm, gfn, offset, v) \ 1324({ \ 1325 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1326 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1327 int __ret = -EFAULT; \ 1328 \ 1329 if (!kvm_is_error_hva(__addr)) \ 1330 __ret = get_user(v, __uaddr); \ 1331 __ret; \ 1332}) 1333 1334#define kvm_get_guest(kvm, gpa, v) \ 1335({ \ 1336 gpa_t __gpa = gpa; \ 1337 struct kvm *__kvm = kvm; \ 1338 \ 1339 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1340 offset_in_page(__gpa), v); \ 1341}) 1342 1343#define __kvm_put_guest(kvm, gfn, offset, v) \ 1344({ \ 1345 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1346 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1347 int __ret = -EFAULT; \ 1348 \ 1349 if (!kvm_is_error_hva(__addr)) \ 1350 __ret = put_user(v, __uaddr); \ 1351 if (!__ret) \ 1352 mark_page_dirty(kvm, gfn); \ 1353 __ret; \ 1354}) 1355 1356#define kvm_put_guest(kvm, gpa, v) \ 1357({ \ 1358 gpa_t __gpa = gpa; \ 1359 struct kvm *__kvm = kvm; \ 1360 \ 1361 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1362 offset_in_page(__gpa), v); \ 1363}) 1364 1365int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1366bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1367bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1368unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1369void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1370void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1371 1372int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1373 bool writable); 1374void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1375 1376static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1377 struct kvm_host_map *map) 1378{ 1379 return __kvm_vcpu_map(vcpu, gpa, map, true); 1380} 1381 1382static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1383 struct kvm_host_map *map) 1384{ 1385 return __kvm_vcpu_map(vcpu, gpa, map, false); 1386} 1387 1388unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1389unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1390int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1391 int len); 1392int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1393 unsigned long len); 1394int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1395 unsigned long len); 1396int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1397 int offset, int len); 1398int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1399 unsigned long len); 1400void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1401 1402/** 1403 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1404 * 1405 * @gpc: struct gfn_to_pfn_cache object. 1406 * @kvm: pointer to kvm instance. 1407 * 1408 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1409 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1410 * the caller before init). 1411 */ 1412void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1413 1414/** 1415 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1416 * physical address. 1417 * 1418 * @gpc: struct gfn_to_pfn_cache object. 1419 * @gpa: guest physical address to map. 1420 * @len: sanity check; the range being access must fit a single page. 1421 * 1422 * @return: 0 for success. 1423 * -EINVAL for a mapping which would cross a page boundary. 1424 * -EFAULT for an untranslatable guest physical address. 1425 * 1426 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1427 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1428 * to ensure that the cache is valid before accessing the target page. 1429 */ 1430int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1431 1432/** 1433 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1434 * 1435 * @gpc: struct gfn_to_pfn_cache object. 1436 * @hva: userspace virtual address to map. 1437 * @len: sanity check; the range being access must fit a single page. 1438 * 1439 * @return: 0 for success. 1440 * -EINVAL for a mapping which would cross a page boundary. 1441 * -EFAULT for an untranslatable guest physical address. 1442 * 1443 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1444 * merely bypasses a layer of address translation. 1445 */ 1446int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1447 1448/** 1449 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1450 * 1451 * @gpc: struct gfn_to_pfn_cache object. 1452 * @len: sanity check; the range being access must fit a single page. 1453 * 1454 * @return: %true if the cache is still valid and the address matches. 1455 * %false if the cache is not valid. 1456 * 1457 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1458 * while calling this function, and then continue to hold the lock until the 1459 * access is complete. 1460 * 1461 * Callers in IN_GUEST_MODE may do so without locking, although they should 1462 * still hold a read lock on kvm->scru for the memslot checks. 1463 */ 1464bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1465 1466/** 1467 * kvm_gpc_refresh - update a previously initialized cache. 1468 * 1469 * @gpc: struct gfn_to_pfn_cache object. 1470 * @len: sanity check; the range being access must fit a single page. 1471 * 1472 * @return: 0 for success. 1473 * -EINVAL for a mapping which would cross a page boundary. 1474 * -EFAULT for an untranslatable guest physical address. 1475 * 1476 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1477 * return from this function does not mean the page can be immediately 1478 * accessed because it may have raced with an invalidation. Callers must 1479 * still lock and check the cache status, as this function does not return 1480 * with the lock still held to permit access. 1481 */ 1482int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1483 1484/** 1485 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1486 * 1487 * @gpc: struct gfn_to_pfn_cache object. 1488 * 1489 * This removes a cache from the VM's list to be processed on MMU notifier 1490 * invocation. 1491 */ 1492void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1493 1494static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1495{ 1496 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1497} 1498 1499static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1500{ 1501 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1502} 1503 1504void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1505void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1506 1507void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1508bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1509void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1510void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1511bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1512 1513#ifndef CONFIG_S390 1514void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait); 1515 1516static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1517{ 1518 __kvm_vcpu_kick(vcpu, false); 1519} 1520#endif 1521 1522int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1523void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1524 1525void kvm_flush_remote_tlbs(struct kvm *kvm); 1526void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1527void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1528 const struct kvm_memory_slot *memslot); 1529 1530#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1531int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1532int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1533int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1534void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1535void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1536#endif 1537 1538void kvm_mmu_invalidate_begin(struct kvm *kvm); 1539void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1540void kvm_mmu_invalidate_end(struct kvm *kvm); 1541bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1542 1543long kvm_arch_dev_ioctl(struct file *filp, 1544 unsigned int ioctl, unsigned long arg); 1545long kvm_arch_vcpu_ioctl(struct file *filp, 1546 unsigned int ioctl, unsigned long arg); 1547vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1548 1549int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1550 1551void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1552 struct kvm_memory_slot *slot, 1553 gfn_t gfn_offset, 1554 unsigned long mask); 1555void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1556 1557#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1558int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1559int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1560 int *is_dirty, struct kvm_memory_slot **memslot); 1561#endif 1562 1563int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1564 bool line_status); 1565int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1566 struct kvm_enable_cap *cap); 1567int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1568long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1569 unsigned long arg); 1570 1571int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1572int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1573 1574int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1575 struct kvm_translation *tr); 1576 1577int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1578int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1579int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1580 struct kvm_sregs *sregs); 1581int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1582 struct kvm_sregs *sregs); 1583int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1584 struct kvm_mp_state *mp_state); 1585int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1586 struct kvm_mp_state *mp_state); 1587int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1588 struct kvm_guest_debug *dbg); 1589int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1590 1591void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1592void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1593int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1594int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1595void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1596void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1597 1598#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1599int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1600#endif 1601 1602#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1603void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1604#else 1605static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1606#endif 1607 1608#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1609/* 1610 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1611 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1612 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1613 * sequence, and at the end of the generic hardware disabling sequence. 1614 */ 1615void kvm_arch_enable_virtualization(void); 1616void kvm_arch_disable_virtualization(void); 1617/* 1618 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1619 * do the actual twiddling of hardware bits. The hooks are called on all 1620 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1621 * when that CPU is onlined/offlined (including for Resume/Suspend). 1622 */ 1623int kvm_arch_enable_virtualization_cpu(void); 1624void kvm_arch_disable_virtualization_cpu(void); 1625#endif 1626bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu); 1627int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1628bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1629int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1630bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1631bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1632bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1633void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1634void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1635 1636#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1637/* 1638 * All architectures that want to use vzalloc currently also 1639 * need their own kvm_arch_alloc_vm implementation. 1640 */ 1641static inline struct kvm *kvm_arch_alloc_vm(void) 1642{ 1643 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1644} 1645#endif 1646 1647static inline void __kvm_arch_free_vm(struct kvm *kvm) 1648{ 1649 kvfree(kvm); 1650} 1651 1652#ifndef __KVM_HAVE_ARCH_VM_FREE 1653static inline void kvm_arch_free_vm(struct kvm *kvm) 1654{ 1655 __kvm_arch_free_vm(kvm); 1656} 1657#endif 1658 1659#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1660static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1661{ 1662 return -ENOTSUPP; 1663} 1664#else 1665int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1666#endif 1667 1668#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1669static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1670 gfn_t gfn, u64 nr_pages) 1671{ 1672 return -EOPNOTSUPP; 1673} 1674#else 1675int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1676#endif 1677 1678#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1679void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1680void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1681bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1682#else 1683static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1684{ 1685} 1686 1687static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1688{ 1689} 1690 1691static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1692{ 1693 return false; 1694} 1695#endif 1696#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1697void kvm_arch_start_assignment(struct kvm *kvm); 1698void kvm_arch_end_assignment(struct kvm *kvm); 1699bool kvm_arch_has_assigned_device(struct kvm *kvm); 1700#else 1701static inline void kvm_arch_start_assignment(struct kvm *kvm) 1702{ 1703} 1704 1705static inline void kvm_arch_end_assignment(struct kvm *kvm) 1706{ 1707} 1708 1709static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1710{ 1711 return false; 1712} 1713#endif 1714 1715static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1716{ 1717#ifdef __KVM_HAVE_ARCH_WQP 1718 return vcpu->arch.waitp; 1719#else 1720 return &vcpu->wait; 1721#endif 1722} 1723 1724/* 1725 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1726 * true if the vCPU was blocking and was awakened, false otherwise. 1727 */ 1728static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1729{ 1730 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1731} 1732 1733static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1734{ 1735 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1736} 1737 1738#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1739/* 1740 * returns true if the virtual interrupt controller is initialized and 1741 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1742 * controller is dynamically instantiated and this is not always true. 1743 */ 1744bool kvm_arch_intc_initialized(struct kvm *kvm); 1745#else 1746static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1747{ 1748 return true; 1749} 1750#endif 1751 1752#ifdef CONFIG_GUEST_PERF_EVENTS 1753unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1754 1755void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1756void kvm_unregister_perf_callbacks(void); 1757#else 1758static inline void kvm_register_perf_callbacks(void *ign) {} 1759static inline void kvm_unregister_perf_callbacks(void) {} 1760#endif /* CONFIG_GUEST_PERF_EVENTS */ 1761 1762int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1763void kvm_arch_destroy_vm(struct kvm *kvm); 1764 1765int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1766 1767struct kvm_irq_ack_notifier { 1768 struct hlist_node link; 1769 unsigned gsi; 1770 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1771}; 1772 1773int kvm_irq_map_gsi(struct kvm *kvm, 1774 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1775int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1776 1777int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1778 bool line_status); 1779int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1780 int irq_source_id, int level, bool line_status); 1781int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1782 struct kvm *kvm, int irq_source_id, 1783 int level, bool line_status); 1784bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1785void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1786void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1787void kvm_register_irq_ack_notifier(struct kvm *kvm, 1788 struct kvm_irq_ack_notifier *kian); 1789void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1790 struct kvm_irq_ack_notifier *kian); 1791int kvm_request_irq_source_id(struct kvm *kvm); 1792void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1793bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1794 1795/* 1796 * Returns a pointer to the memslot if it contains gfn. 1797 * Otherwise returns NULL. 1798 */ 1799static inline struct kvm_memory_slot * 1800try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1801{ 1802 if (!slot) 1803 return NULL; 1804 1805 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1806 return slot; 1807 else 1808 return NULL; 1809} 1810 1811/* 1812 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1813 * 1814 * With "approx" set returns the memslot also when the address falls 1815 * in a hole. In that case one of the memslots bordering the hole is 1816 * returned. 1817 */ 1818static inline struct kvm_memory_slot * 1819search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1820{ 1821 struct kvm_memory_slot *slot; 1822 struct rb_node *node; 1823 int idx = slots->node_idx; 1824 1825 slot = NULL; 1826 for (node = slots->gfn_tree.rb_node; node; ) { 1827 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1828 if (gfn >= slot->base_gfn) { 1829 if (gfn < slot->base_gfn + slot->npages) 1830 return slot; 1831 node = node->rb_right; 1832 } else 1833 node = node->rb_left; 1834 } 1835 1836 return approx ? slot : NULL; 1837} 1838 1839static inline struct kvm_memory_slot * 1840____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1841{ 1842 struct kvm_memory_slot *slot; 1843 1844 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1845 slot = try_get_memslot(slot, gfn); 1846 if (slot) 1847 return slot; 1848 1849 slot = search_memslots(slots, gfn, approx); 1850 if (slot) { 1851 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1852 return slot; 1853 } 1854 1855 return NULL; 1856} 1857 1858/* 1859 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1860 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1861 * because that would bloat other code too much. 1862 */ 1863static inline struct kvm_memory_slot * 1864__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1865{ 1866 return ____gfn_to_memslot(slots, gfn, false); 1867} 1868 1869static inline unsigned long 1870__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1871{ 1872 /* 1873 * The index was checked originally in search_memslots. To avoid 1874 * that a malicious guest builds a Spectre gadget out of e.g. page 1875 * table walks, do not let the processor speculate loads outside 1876 * the guest's registered memslots. 1877 */ 1878 unsigned long offset = gfn - slot->base_gfn; 1879 offset = array_index_nospec(offset, slot->npages); 1880 return slot->userspace_addr + offset * PAGE_SIZE; 1881} 1882 1883static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1884{ 1885 return gfn_to_memslot(kvm, gfn)->id; 1886} 1887 1888static inline gfn_t 1889hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1890{ 1891 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1892 1893 return slot->base_gfn + gfn_offset; 1894} 1895 1896static inline gpa_t gfn_to_gpa(gfn_t gfn) 1897{ 1898 return (gpa_t)gfn << PAGE_SHIFT; 1899} 1900 1901static inline gfn_t gpa_to_gfn(gpa_t gpa) 1902{ 1903 return (gfn_t)(gpa >> PAGE_SHIFT); 1904} 1905 1906static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1907{ 1908 return (hpa_t)pfn << PAGE_SHIFT; 1909} 1910 1911static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1912{ 1913 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1914 1915 return !kvm_is_error_hva(hva); 1916} 1917 1918static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1919{ 1920 lockdep_assert_held(&gpc->lock); 1921 1922 if (!gpc->memslot) 1923 return; 1924 1925 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1926} 1927 1928enum kvm_stat_kind { 1929 KVM_STAT_VM, 1930 KVM_STAT_VCPU, 1931}; 1932 1933struct kvm_stat_data { 1934 struct kvm *kvm; 1935 const struct _kvm_stats_desc *desc; 1936 enum kvm_stat_kind kind; 1937}; 1938 1939struct _kvm_stats_desc { 1940 struct kvm_stats_desc desc; 1941 char name[KVM_STATS_NAME_SIZE]; 1942}; 1943 1944#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1945 .flags = type | unit | base | \ 1946 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1947 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1948 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1949 .exponent = exp, \ 1950 .size = sz, \ 1951 .bucket_size = bsz 1952 1953#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1954 { \ 1955 { \ 1956 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1957 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1958 }, \ 1959 .name = #stat, \ 1960 } 1961#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1962 { \ 1963 { \ 1964 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1965 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1966 }, \ 1967 .name = #stat, \ 1968 } 1969#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1970 { \ 1971 { \ 1972 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1973 .offset = offsetof(struct kvm_vm_stat, stat) \ 1974 }, \ 1975 .name = #stat, \ 1976 } 1977#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1978 { \ 1979 { \ 1980 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1981 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1982 }, \ 1983 .name = #stat, \ 1984 } 1985/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1986#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1987 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1988 1989#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1990 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1991 unit, base, exponent, 1, 0) 1992#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1993 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1994 unit, base, exponent, 1, 0) 1995#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1996 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1997 unit, base, exponent, 1, 0) 1998#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1999 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 2000 unit, base, exponent, sz, bsz) 2001#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 2002 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 2003 unit, base, exponent, sz, 0) 2004 2005/* Cumulative counter, read/write */ 2006#define STATS_DESC_COUNTER(SCOPE, name) \ 2007 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2008 KVM_STATS_BASE_POW10, 0) 2009/* Instantaneous counter, read only */ 2010#define STATS_DESC_ICOUNTER(SCOPE, name) \ 2011 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2012 KVM_STATS_BASE_POW10, 0) 2013/* Peak counter, read/write */ 2014#define STATS_DESC_PCOUNTER(SCOPE, name) \ 2015 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2016 KVM_STATS_BASE_POW10, 0) 2017 2018/* Instantaneous boolean value, read only */ 2019#define STATS_DESC_IBOOLEAN(SCOPE, name) \ 2020 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2021 KVM_STATS_BASE_POW10, 0) 2022/* Peak (sticky) boolean value, read/write */ 2023#define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2024 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2025 KVM_STATS_BASE_POW10, 0) 2026 2027/* Cumulative time in nanosecond */ 2028#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2029 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2030 KVM_STATS_BASE_POW10, -9) 2031/* Linear histogram for time in nanosecond */ 2032#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2033 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2034 KVM_STATS_BASE_POW10, -9, sz, bsz) 2035/* Logarithmic histogram for time in nanosecond */ 2036#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2037 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2038 KVM_STATS_BASE_POW10, -9, sz) 2039 2040#define KVM_GENERIC_VM_STATS() \ 2041 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2042 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2043 2044#define KVM_GENERIC_VCPU_STATS() \ 2045 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2046 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2047 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2048 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2049 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2050 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2051 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2052 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2053 HALT_POLL_HIST_COUNT), \ 2054 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2055 HALT_POLL_HIST_COUNT), \ 2056 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2057 HALT_POLL_HIST_COUNT), \ 2058 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2059 2060ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2061 const struct _kvm_stats_desc *desc, 2062 void *stats, size_t size_stats, 2063 char __user *user_buffer, size_t size, loff_t *offset); 2064 2065/** 2066 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2067 * statistics data. 2068 * 2069 * @data: start address of the stats data 2070 * @size: the number of bucket of the stats data 2071 * @value: the new value used to update the linear histogram's bucket 2072 * @bucket_size: the size (width) of a bucket 2073 */ 2074static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2075 u64 value, size_t bucket_size) 2076{ 2077 size_t index = div64_u64(value, bucket_size); 2078 2079 index = min(index, size - 1); 2080 ++data[index]; 2081} 2082 2083/** 2084 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2085 * statistics data. 2086 * 2087 * @data: start address of the stats data 2088 * @size: the number of bucket of the stats data 2089 * @value: the new value used to update the logarithmic histogram's bucket 2090 */ 2091static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2092{ 2093 size_t index = fls64(value); 2094 2095 index = min(index, size - 1); 2096 ++data[index]; 2097} 2098 2099#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2100 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2101#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2102 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2103 2104 2105extern const struct kvm_stats_header kvm_vm_stats_header; 2106extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2107extern const struct kvm_stats_header kvm_vcpu_stats_header; 2108extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2109 2110#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2111static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2112{ 2113 if (unlikely(kvm->mmu_invalidate_in_progress)) 2114 return 1; 2115 /* 2116 * Ensure the read of mmu_invalidate_in_progress happens before 2117 * the read of mmu_invalidate_seq. This interacts with the 2118 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2119 * that the caller either sees the old (non-zero) value of 2120 * mmu_invalidate_in_progress or the new (incremented) value of 2121 * mmu_invalidate_seq. 2122 * 2123 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2124 * than under kvm->mmu_lock, for scalability, so can't rely on 2125 * kvm->mmu_lock to keep things ordered. 2126 */ 2127 smp_rmb(); 2128 if (kvm->mmu_invalidate_seq != mmu_seq) 2129 return 1; 2130 return 0; 2131} 2132 2133static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2134 unsigned long mmu_seq, 2135 gfn_t gfn) 2136{ 2137 lockdep_assert_held(&kvm->mmu_lock); 2138 /* 2139 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2140 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2141 * that might be being invalidated. Note that it may include some false 2142 * positives, due to shortcuts when handing concurrent invalidations. 2143 */ 2144 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2145 /* 2146 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2147 * but before updating the range is a KVM bug. 2148 */ 2149 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2150 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2151 return 1; 2152 2153 if (gfn >= kvm->mmu_invalidate_range_start && 2154 gfn < kvm->mmu_invalidate_range_end) 2155 return 1; 2156 } 2157 2158 if (kvm->mmu_invalidate_seq != mmu_seq) 2159 return 1; 2160 return 0; 2161} 2162 2163/* 2164 * This lockless version of the range-based retry check *must* be paired with a 2165 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2166 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2167 * get false negatives and false positives. 2168 */ 2169static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2170 unsigned long mmu_seq, 2171 gfn_t gfn) 2172{ 2173 /* 2174 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2175 * are always read from memory, e.g. so that checking for retry in a 2176 * loop won't result in an infinite retry loop. Don't force loads for 2177 * start+end, as the key to avoiding infinite retry loops is observing 2178 * the 1=>0 transition of in-progress, i.e. getting false negatives 2179 * due to stale start+end values is acceptable. 2180 */ 2181 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2182 gfn >= kvm->mmu_invalidate_range_start && 2183 gfn < kvm->mmu_invalidate_range_end) 2184 return true; 2185 2186 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2187} 2188#endif 2189 2190#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2191 2192#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2193 2194bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2195int kvm_set_irq_routing(struct kvm *kvm, 2196 const struct kvm_irq_routing_entry *entries, 2197 unsigned nr, 2198 unsigned flags); 2199int kvm_init_irq_routing(struct kvm *kvm); 2200int kvm_set_routing_entry(struct kvm *kvm, 2201 struct kvm_kernel_irq_routing_entry *e, 2202 const struct kvm_irq_routing_entry *ue); 2203void kvm_free_irq_routing(struct kvm *kvm); 2204 2205#else 2206 2207static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2208 2209static inline int kvm_init_irq_routing(struct kvm *kvm) 2210{ 2211 return 0; 2212} 2213 2214#endif 2215 2216int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2217 2218void kvm_eventfd_init(struct kvm *kvm); 2219int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2220 2221#ifdef CONFIG_HAVE_KVM_IRQCHIP 2222int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2223void kvm_irqfd_release(struct kvm *kvm); 2224bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2225 unsigned int irqchip, 2226 unsigned int pin); 2227void kvm_irq_routing_update(struct kvm *); 2228#else 2229static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2230{ 2231 return -EINVAL; 2232} 2233 2234static inline void kvm_irqfd_release(struct kvm *kvm) {} 2235 2236static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2237 unsigned int irqchip, 2238 unsigned int pin) 2239{ 2240 return false; 2241} 2242#endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2243 2244void kvm_arch_irq_routing_update(struct kvm *kvm); 2245 2246static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2247{ 2248 /* 2249 * Ensure the rest of the request is published to kvm_check_request's 2250 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2251 */ 2252 smp_wmb(); 2253 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2254} 2255 2256static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2257{ 2258 /* 2259 * Request that don't require vCPU action should never be logged in 2260 * vcpu->requests. The vCPU won't clear the request, so it will stay 2261 * logged indefinitely and prevent the vCPU from entering the guest. 2262 */ 2263 BUILD_BUG_ON(!__builtin_constant_p(req) || 2264 (req & KVM_REQUEST_NO_ACTION)); 2265 2266 __kvm_make_request(req, vcpu); 2267} 2268 2269#ifndef CONFIG_S390 2270static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu) 2271{ 2272 kvm_make_request(req, vcpu); 2273 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT); 2274} 2275#endif 2276 2277static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2278{ 2279 return READ_ONCE(vcpu->requests); 2280} 2281 2282static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2283{ 2284 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2285} 2286 2287static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2288{ 2289 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2290} 2291 2292static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2293{ 2294 if (kvm_test_request(req, vcpu)) { 2295 kvm_clear_request(req, vcpu); 2296 2297 /* 2298 * Ensure the rest of the request is visible to kvm_check_request's 2299 * caller. Paired with the smp_wmb in kvm_make_request. 2300 */ 2301 smp_mb__after_atomic(); 2302 return true; 2303 } else { 2304 return false; 2305 } 2306} 2307 2308#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2309extern bool enable_virt_at_load; 2310extern bool kvm_rebooting; 2311#endif 2312 2313extern unsigned int halt_poll_ns; 2314extern unsigned int halt_poll_ns_grow; 2315extern unsigned int halt_poll_ns_grow_start; 2316extern unsigned int halt_poll_ns_shrink; 2317 2318struct kvm_device { 2319 const struct kvm_device_ops *ops; 2320 struct kvm *kvm; 2321 void *private; 2322 struct list_head vm_node; 2323}; 2324 2325/* create, destroy, and name are mandatory */ 2326struct kvm_device_ops { 2327 const char *name; 2328 2329 /* 2330 * create is called holding kvm->lock and any operations not suitable 2331 * to do while holding the lock should be deferred to init (see 2332 * below). 2333 */ 2334 int (*create)(struct kvm_device *dev, u32 type); 2335 2336 /* 2337 * init is called after create if create is successful and is called 2338 * outside of holding kvm->lock. 2339 */ 2340 void (*init)(struct kvm_device *dev); 2341 2342 /* 2343 * Destroy is responsible for freeing dev. 2344 * 2345 * Destroy may be called before or after destructors are called 2346 * on emulated I/O regions, depending on whether a reference is 2347 * held by a vcpu or other kvm component that gets destroyed 2348 * after the emulated I/O. 2349 */ 2350 void (*destroy)(struct kvm_device *dev); 2351 2352 /* 2353 * Release is an alternative method to free the device. It is 2354 * called when the device file descriptor is closed. Once 2355 * release is called, the destroy method will not be called 2356 * anymore as the device is removed from the device list of 2357 * the VM. kvm->lock is held. 2358 */ 2359 void (*release)(struct kvm_device *dev); 2360 2361 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2362 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2363 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2364 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2365 unsigned long arg); 2366 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2367}; 2368 2369struct kvm_device *kvm_device_from_filp(struct file *filp); 2370int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2371void kvm_unregister_device_ops(u32 type); 2372 2373extern struct kvm_device_ops kvm_mpic_ops; 2374extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2375extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2376 2377#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2378 2379static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2380{ 2381 vcpu->spin_loop.in_spin_loop = val; 2382} 2383static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2384{ 2385 vcpu->spin_loop.dy_eligible = val; 2386} 2387 2388#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2389 2390static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2391{ 2392} 2393 2394static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2395{ 2396} 2397#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2398 2399static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2400{ 2401 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2402 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2403} 2404 2405struct kvm_vcpu *kvm_get_running_vcpu(void); 2406struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2407 2408#if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS) 2409bool kvm_arch_has_irq_bypass(void); 2410int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2411 struct irq_bypass_producer *); 2412void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2413 struct irq_bypass_producer *); 2414void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2415void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2416int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2417 uint32_t guest_irq, bool set); 2418bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2419 struct kvm_kernel_irq_routing_entry *); 2420#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2421 2422#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2423/* If we wakeup during the poll time, was it a sucessful poll? */ 2424static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2425{ 2426 return vcpu->valid_wakeup; 2427} 2428 2429#else 2430static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2431{ 2432 return true; 2433} 2434#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2435 2436#ifdef CONFIG_HAVE_KVM_NO_POLL 2437/* Callback that tells if we must not poll */ 2438bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2439#else 2440static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2441{ 2442 return false; 2443} 2444#endif /* CONFIG_HAVE_KVM_NO_POLL */ 2445 2446#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2447long kvm_arch_vcpu_async_ioctl(struct file *filp, 2448 unsigned int ioctl, unsigned long arg); 2449#else 2450static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2451 unsigned int ioctl, 2452 unsigned long arg) 2453{ 2454 return -ENOIOCTLCMD; 2455} 2456#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2457 2458void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2459 2460#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2461int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2462#else 2463static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2464{ 2465 return 0; 2466} 2467#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2468 2469#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2470static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2471{ 2472 vcpu->run->exit_reason = KVM_EXIT_INTR; 2473 vcpu->stat.signal_exits++; 2474} 2475#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2476 2477/* 2478 * If more than one page is being (un)accounted, @virt must be the address of 2479 * the first page of a block of pages what were allocated together (i.e 2480 * accounted together). 2481 * 2482 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2483 * is thread-safe. 2484 */ 2485static inline void kvm_account_pgtable_pages(void *virt, int nr) 2486{ 2487 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2488} 2489 2490/* 2491 * This defines how many reserved entries we want to keep before we 2492 * kick the vcpu to the userspace to avoid dirty ring full. This 2493 * value can be tuned to higher if e.g. PML is enabled on the host. 2494 */ 2495#define KVM_DIRTY_RING_RSVD_ENTRIES 64 2496 2497/* Max number of entries allowed for each kvm dirty ring */ 2498#define KVM_DIRTY_RING_MAX_ENTRIES 65536 2499 2500static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2501 gpa_t gpa, gpa_t size, 2502 bool is_write, bool is_exec, 2503 bool is_private) 2504{ 2505 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2506 vcpu->run->memory_fault.gpa = gpa; 2507 vcpu->run->memory_fault.size = size; 2508 2509 /* RWX flags are not (yet) defined or communicated to userspace. */ 2510 vcpu->run->memory_fault.flags = 0; 2511 if (is_private) 2512 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2513} 2514 2515#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2516static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2517{ 2518 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2519} 2520 2521bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2522 unsigned long mask, unsigned long attrs); 2523bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2524 struct kvm_gfn_range *range); 2525bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2526 struct kvm_gfn_range *range); 2527 2528static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2529{ 2530 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2531 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2532} 2533#else 2534static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2535{ 2536 return false; 2537} 2538#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2539 2540#ifdef CONFIG_KVM_PRIVATE_MEM 2541int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2542 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2543 int *max_order); 2544#else 2545static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2546 struct kvm_memory_slot *slot, gfn_t gfn, 2547 kvm_pfn_t *pfn, struct page **page, 2548 int *max_order) 2549{ 2550 KVM_BUG_ON(1, kvm); 2551 return -EIO; 2552} 2553#endif /* CONFIG_KVM_PRIVATE_MEM */ 2554 2555#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2556int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2557#endif 2558 2559#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2560/** 2561 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2562 * 2563 * @kvm: KVM instance 2564 * @gfn: starting GFN to be populated 2565 * @src: userspace-provided buffer containing data to copy into GFN range 2566 * (passed to @post_populate, and incremented on each iteration 2567 * if not NULL) 2568 * @npages: number of pages to copy from userspace-buffer 2569 * @post_populate: callback to issue for each gmem page that backs the GPA 2570 * range 2571 * @opaque: opaque data to pass to @post_populate callback 2572 * 2573 * This is primarily intended for cases where a gmem-backed GPA range needs 2574 * to be initialized with userspace-provided data prior to being mapped into 2575 * the guest as a private page. This should be called with the slots->lock 2576 * held so that caller-enforced invariants regarding the expected memory 2577 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2578 * 2579 * Returns the number of pages that were populated. 2580 */ 2581typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2582 void __user *src, int order, void *opaque); 2583 2584long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2585 kvm_gmem_populate_cb post_populate, void *opaque); 2586#endif 2587 2588#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2589void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2590#endif 2591 2592#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2593long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2594 struct kvm_pre_fault_memory *range); 2595#endif 2596 2597#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2598int kvm_enable_virtualization(void); 2599void kvm_disable_virtualization(void); 2600#else 2601static inline int kvm_enable_virtualization(void) { return 0; } 2602static inline void kvm_disable_virtualization(void) { } 2603#endif 2604 2605#endif