Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_MAX_NR_ADDRESS_SPACES
84#define KVM_MAX_NR_ADDRESS_SPACES 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100#define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4)
101
102/*
103 * error pfns indicate that the gfn is in slot but faild to
104 * translate it to pfn on host.
105 */
106static inline bool is_error_pfn(kvm_pfn_t pfn)
107{
108 return !!(pfn & KVM_PFN_ERR_MASK);
109}
110
111/*
112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113 * by a pending signal. Note, the signal may or may not be fatal.
114 */
115static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116{
117 return pfn == KVM_PFN_ERR_SIGPENDING;
118}
119
120/*
121 * error_noslot pfns indicate that the gfn can not be
122 * translated to pfn - it is not in slot or failed to
123 * translate it to pfn.
124 */
125static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126{
127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128}
129
130/* noslot pfn indicates that the gfn is not in slot. */
131static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132{
133 return pfn == KVM_PFN_NOSLOT;
134}
135
136/*
137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138 * provide own defines and kvm_is_error_hva
139 */
140#ifndef KVM_HVA_ERR_BAD
141
142#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
143#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
144
145static inline bool kvm_is_error_hva(unsigned long addr)
146{
147 return addr >= PAGE_OFFSET;
148}
149
150#endif
151
152static inline bool kvm_is_error_gpa(gpa_t gpa)
153{
154 return gpa == INVALID_GPA;
155}
156
157#define KVM_REQUEST_MASK GENMASK(7,0)
158#define KVM_REQUEST_NO_WAKEUP BIT(8)
159#define KVM_REQUEST_WAIT BIT(9)
160#define KVM_REQUEST_NO_ACTION BIT(10)
161/*
162 * Architecture-independent vcpu->requests bit members
163 * Bits 3-7 are reserved for more arch-independent bits.
164 */
165#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167#define KVM_REQ_UNBLOCK 2
168#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
169#define KVM_REQUEST_ARCH_BASE 8
170
171/*
172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177 * guarantee the vCPU received an IPI and has actually exited guest mode.
178 */
179#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180
181#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184})
185#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
186
187bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 unsigned long *vcpu_bitmap);
189bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190
191#define KVM_USERSPACE_IRQ_SOURCE_ID 0
192#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
193
194extern struct mutex kvm_lock;
195extern struct list_head vm_list;
196
197struct kvm_io_range {
198 gpa_t addr;
199 int len;
200 struct kvm_io_device *dev;
201};
202
203#define NR_IOBUS_DEVS 1000
204
205struct kvm_io_bus {
206 int dev_count;
207 int ioeventfd_count;
208 struct kvm_io_range range[];
209};
210
211enum kvm_bus {
212 KVM_MMIO_BUS,
213 KVM_PIO_BUS,
214 KVM_VIRTIO_CCW_NOTIFY_BUS,
215 KVM_FAST_MMIO_BUS,
216 KVM_IOCSR_BUS,
217 KVM_NR_BUSES
218};
219
220int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
221 int len, const void *val);
222int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
223 gpa_t addr, int len, const void *val, long cookie);
224int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 int len, void *val);
226int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
227 int len, struct kvm_io_device *dev);
228int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
229 struct kvm_io_device *dev);
230struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 gpa_t addr);
232
233#ifdef CONFIG_KVM_ASYNC_PF
234struct kvm_async_pf {
235 struct work_struct work;
236 struct list_head link;
237 struct list_head queue;
238 struct kvm_vcpu *vcpu;
239 gpa_t cr2_or_gpa;
240 unsigned long addr;
241 struct kvm_arch_async_pf arch;
242 bool wakeup_all;
243 bool notpresent_injected;
244};
245
246void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
247void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
248bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
249 unsigned long hva, struct kvm_arch_async_pf *arch);
250int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
251#endif
252
253#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
254union kvm_mmu_notifier_arg {
255 unsigned long attributes;
256};
257
258enum kvm_gfn_range_filter {
259 KVM_FILTER_SHARED = BIT(0),
260 KVM_FILTER_PRIVATE = BIT(1),
261};
262
263struct kvm_gfn_range {
264 struct kvm_memory_slot *slot;
265 gfn_t start;
266 gfn_t end;
267 union kvm_mmu_notifier_arg arg;
268 enum kvm_gfn_range_filter attr_filter;
269 bool may_block;
270 bool lockless;
271};
272bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
273bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
274bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
275#endif
276
277enum {
278 OUTSIDE_GUEST_MODE,
279 IN_GUEST_MODE,
280 EXITING_GUEST_MODE,
281 READING_SHADOW_PAGE_TABLES,
282};
283
284struct kvm_host_map {
285 /*
286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 * a 'struct page' for it. When using mem= kernel parameter some memory
288 * can be used as guest memory but they are not managed by host
289 * kernel).
290 */
291 struct page *pinned_page;
292 struct page *page;
293 void *hva;
294 kvm_pfn_t pfn;
295 kvm_pfn_t gfn;
296 bool writable;
297};
298
299/*
300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301 * directly to check for that.
302 */
303static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304{
305 return !!map->hva;
306}
307
308static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309{
310 return single_task_running() && !need_resched() && ktime_before(cur, stop);
311}
312
313/*
314 * Sometimes a large or cross-page mmio needs to be broken up into separate
315 * exits for userspace servicing.
316 */
317struct kvm_mmio_fragment {
318 gpa_t gpa;
319 void *data;
320 unsigned len;
321};
322
323struct kvm_vcpu {
324 struct kvm *kvm;
325#ifdef CONFIG_PREEMPT_NOTIFIERS
326 struct preempt_notifier preempt_notifier;
327#endif
328 int cpu;
329 int vcpu_id; /* id given by userspace at creation */
330 int vcpu_idx; /* index into kvm->vcpu_array */
331 int ____srcu_idx; /* Don't use this directly. You've been warned. */
332#ifdef CONFIG_PROVE_RCU
333 int srcu_depth;
334#endif
335 int mode;
336 u64 requests;
337 unsigned long guest_debug;
338
339 struct mutex mutex;
340 struct kvm_run *run;
341
342#ifndef __KVM_HAVE_ARCH_WQP
343 struct rcuwait wait;
344#endif
345 struct pid *pid;
346 rwlock_t pid_lock;
347 int sigset_active;
348 sigset_t sigset;
349 unsigned int halt_poll_ns;
350 bool valid_wakeup;
351
352#ifdef CONFIG_HAS_IOMEM
353 int mmio_needed;
354 int mmio_read_completed;
355 int mmio_is_write;
356 int mmio_cur_fragment;
357 int mmio_nr_fragments;
358 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
359#endif
360
361#ifdef CONFIG_KVM_ASYNC_PF
362 struct {
363 u32 queued;
364 struct list_head queue;
365 struct list_head done;
366 spinlock_t lock;
367 } async_pf;
368#endif
369
370#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
371 /*
372 * Cpu relax intercept or pause loop exit optimization
373 * in_spin_loop: set when a vcpu does a pause loop exit
374 * or cpu relax intercepted.
375 * dy_eligible: indicates whether vcpu is eligible for directed yield.
376 */
377 struct {
378 bool in_spin_loop;
379 bool dy_eligible;
380 } spin_loop;
381#endif
382 bool wants_to_run;
383 bool preempted;
384 bool ready;
385 bool scheduled_out;
386 struct kvm_vcpu_arch arch;
387 struct kvm_vcpu_stat stat;
388 char stats_id[KVM_STATS_NAME_SIZE];
389 struct kvm_dirty_ring dirty_ring;
390
391 /*
392 * The most recently used memslot by this vCPU and the slots generation
393 * for which it is valid.
394 * No wraparound protection is needed since generations won't overflow in
395 * thousands of years, even assuming 1M memslot operations per second.
396 */
397 struct kvm_memory_slot *last_used_slot;
398 u64 last_used_slot_gen;
399};
400
401/*
402 * Start accounting time towards a guest.
403 * Must be called before entering guest context.
404 */
405static __always_inline void guest_timing_enter_irqoff(void)
406{
407 /*
408 * This is running in ioctl context so its safe to assume that it's the
409 * stime pending cputime to flush.
410 */
411 instrumentation_begin();
412 vtime_account_guest_enter();
413 instrumentation_end();
414}
415
416/*
417 * Enter guest context and enter an RCU extended quiescent state.
418 *
419 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
420 * unsafe to use any code which may directly or indirectly use RCU, tracing
421 * (including IRQ flag tracing), or lockdep. All code in this period must be
422 * non-instrumentable.
423 */
424static __always_inline void guest_context_enter_irqoff(void)
425{
426 /*
427 * KVM does not hold any references to rcu protected data when it
428 * switches CPU into a guest mode. In fact switching to a guest mode
429 * is very similar to exiting to userspace from rcu point of view. In
430 * addition CPU may stay in a guest mode for quite a long time (up to
431 * one time slice). Lets treat guest mode as quiescent state, just like
432 * we do with user-mode execution.
433 */
434 if (!context_tracking_guest_enter()) {
435 instrumentation_begin();
436 rcu_virt_note_context_switch();
437 instrumentation_end();
438 }
439}
440
441/*
442 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
443 * guest_state_enter_irqoff().
444 */
445static __always_inline void guest_enter_irqoff(void)
446{
447 guest_timing_enter_irqoff();
448 guest_context_enter_irqoff();
449}
450
451/**
452 * guest_state_enter_irqoff - Fixup state when entering a guest
453 *
454 * Entry to a guest will enable interrupts, but the kernel state is interrupts
455 * disabled when this is invoked. Also tell RCU about it.
456 *
457 * 1) Trace interrupts on state
458 * 2) Invoke context tracking if enabled to adjust RCU state
459 * 3) Tell lockdep that interrupts are enabled
460 *
461 * Invoked from architecture specific code before entering a guest.
462 * Must be called with interrupts disabled and the caller must be
463 * non-instrumentable.
464 * The caller has to invoke guest_timing_enter_irqoff() before this.
465 *
466 * Note: this is analogous to exit_to_user_mode().
467 */
468static __always_inline void guest_state_enter_irqoff(void)
469{
470 instrumentation_begin();
471 trace_hardirqs_on_prepare();
472 lockdep_hardirqs_on_prepare();
473 instrumentation_end();
474
475 guest_context_enter_irqoff();
476 lockdep_hardirqs_on(CALLER_ADDR0);
477}
478
479/*
480 * Exit guest context and exit an RCU extended quiescent state.
481 *
482 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
483 * unsafe to use any code which may directly or indirectly use RCU, tracing
484 * (including IRQ flag tracing), or lockdep. All code in this period must be
485 * non-instrumentable.
486 */
487static __always_inline void guest_context_exit_irqoff(void)
488{
489 /*
490 * Guest mode is treated as a quiescent state, see
491 * guest_context_enter_irqoff() for more details.
492 */
493 if (!context_tracking_guest_exit()) {
494 instrumentation_begin();
495 rcu_virt_note_context_switch();
496 instrumentation_end();
497 }
498}
499
500/*
501 * Stop accounting time towards a guest.
502 * Must be called after exiting guest context.
503 */
504static __always_inline void guest_timing_exit_irqoff(void)
505{
506 instrumentation_begin();
507 /* Flush the guest cputime we spent on the guest */
508 vtime_account_guest_exit();
509 instrumentation_end();
510}
511
512/*
513 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
514 * guest_timing_exit_irqoff().
515 */
516static __always_inline void guest_exit_irqoff(void)
517{
518 guest_context_exit_irqoff();
519 guest_timing_exit_irqoff();
520}
521
522static inline void guest_exit(void)
523{
524 unsigned long flags;
525
526 local_irq_save(flags);
527 guest_exit_irqoff();
528 local_irq_restore(flags);
529}
530
531/**
532 * guest_state_exit_irqoff - Establish state when returning from guest mode
533 *
534 * Entry from a guest disables interrupts, but guest mode is traced as
535 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
536 *
537 * 1) Tell lockdep that interrupts are disabled
538 * 2) Invoke context tracking if enabled to reactivate RCU
539 * 3) Trace interrupts off state
540 *
541 * Invoked from architecture specific code after exiting a guest.
542 * Must be invoked with interrupts disabled and the caller must be
543 * non-instrumentable.
544 * The caller has to invoke guest_timing_exit_irqoff() after this.
545 *
546 * Note: this is analogous to enter_from_user_mode().
547 */
548static __always_inline void guest_state_exit_irqoff(void)
549{
550 lockdep_hardirqs_off(CALLER_ADDR0);
551 guest_context_exit_irqoff();
552
553 instrumentation_begin();
554 trace_hardirqs_off_finish();
555 instrumentation_end();
556}
557
558static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
559{
560 /*
561 * The memory barrier ensures a previous write to vcpu->requests cannot
562 * be reordered with the read of vcpu->mode. It pairs with the general
563 * memory barrier following the write of vcpu->mode in VCPU RUN.
564 */
565 smp_mb__before_atomic();
566 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
567}
568
569/*
570 * Some of the bitops functions do not support too long bitmaps.
571 * This number must be determined not to exceed such limits.
572 */
573#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
574
575/*
576 * Since at idle each memslot belongs to two memslot sets it has to contain
577 * two embedded nodes for each data structure that it forms a part of.
578 *
579 * Two memslot sets (one active and one inactive) are necessary so the VM
580 * continues to run on one memslot set while the other is being modified.
581 *
582 * These two memslot sets normally point to the same set of memslots.
583 * They can, however, be desynchronized when performing a memslot management
584 * operation by replacing the memslot to be modified by its copy.
585 * After the operation is complete, both memslot sets once again point to
586 * the same, common set of memslot data.
587 *
588 * The memslots themselves are independent of each other so they can be
589 * individually added or deleted.
590 */
591struct kvm_memory_slot {
592 struct hlist_node id_node[2];
593 struct interval_tree_node hva_node[2];
594 struct rb_node gfn_node[2];
595 gfn_t base_gfn;
596 unsigned long npages;
597 unsigned long *dirty_bitmap;
598 struct kvm_arch_memory_slot arch;
599 unsigned long userspace_addr;
600 u32 flags;
601 short id;
602 u16 as_id;
603
604#ifdef CONFIG_KVM_PRIVATE_MEM
605 struct {
606 /*
607 * Writes protected by kvm->slots_lock. Acquiring a
608 * reference via kvm_gmem_get_file() is protected by
609 * either kvm->slots_lock or kvm->srcu.
610 */
611 struct file *file;
612 pgoff_t pgoff;
613 } gmem;
614#endif
615};
616
617static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
618{
619 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
620}
621
622static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
623{
624 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
625}
626
627static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
628{
629 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
630}
631
632static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
633{
634 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
635
636 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
637}
638
639#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
640#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
641#endif
642
643struct kvm_s390_adapter_int {
644 u64 ind_addr;
645 u64 summary_addr;
646 u64 ind_offset;
647 u32 summary_offset;
648 u32 adapter_id;
649};
650
651struct kvm_hv_sint {
652 u32 vcpu;
653 u32 sint;
654};
655
656struct kvm_xen_evtchn {
657 u32 port;
658 u32 vcpu_id;
659 int vcpu_idx;
660 u32 priority;
661};
662
663struct kvm_kernel_irq_routing_entry {
664 u32 gsi;
665 u32 type;
666 int (*set)(struct kvm_kernel_irq_routing_entry *e,
667 struct kvm *kvm, int irq_source_id, int level,
668 bool line_status);
669 union {
670 struct {
671 unsigned irqchip;
672 unsigned pin;
673 } irqchip;
674 struct {
675 u32 address_lo;
676 u32 address_hi;
677 u32 data;
678 u32 flags;
679 u32 devid;
680 } msi;
681 struct kvm_s390_adapter_int adapter;
682 struct kvm_hv_sint hv_sint;
683 struct kvm_xen_evtchn xen_evtchn;
684 };
685 struct hlist_node link;
686};
687
688#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
689struct kvm_irq_routing_table {
690 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
691 u32 nr_rt_entries;
692 /*
693 * Array indexed by gsi. Each entry contains list of irq chips
694 * the gsi is connected to.
695 */
696 struct hlist_head map[] __counted_by(nr_rt_entries);
697};
698#endif
699
700bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
701
702#ifndef KVM_INTERNAL_MEM_SLOTS
703#define KVM_INTERNAL_MEM_SLOTS 0
704#endif
705
706#define KVM_MEM_SLOTS_NUM SHRT_MAX
707#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
708
709#if KVM_MAX_NR_ADDRESS_SPACES == 1
710static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
711{
712 return KVM_MAX_NR_ADDRESS_SPACES;
713}
714
715static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
716{
717 return 0;
718}
719#endif
720
721/*
722 * Arch code must define kvm_arch_has_private_mem if support for private memory
723 * is enabled.
724 */
725#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
726static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
727{
728 return false;
729}
730#endif
731
732#ifndef kvm_arch_has_readonly_mem
733static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
734{
735 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
736}
737#endif
738
739struct kvm_memslots {
740 u64 generation;
741 atomic_long_t last_used_slot;
742 struct rb_root_cached hva_tree;
743 struct rb_root gfn_tree;
744 /*
745 * The mapping table from slot id to memslot.
746 *
747 * 7-bit bucket count matches the size of the old id to index array for
748 * 512 slots, while giving good performance with this slot count.
749 * Higher bucket counts bring only small performance improvements but
750 * always result in higher memory usage (even for lower memslot counts).
751 */
752 DECLARE_HASHTABLE(id_hash, 7);
753 int node_idx;
754};
755
756struct kvm {
757#ifdef KVM_HAVE_MMU_RWLOCK
758 rwlock_t mmu_lock;
759#else
760 spinlock_t mmu_lock;
761#endif /* KVM_HAVE_MMU_RWLOCK */
762
763 struct mutex slots_lock;
764
765 /*
766 * Protects the arch-specific fields of struct kvm_memory_slots in
767 * use by the VM. To be used under the slots_lock (above) or in a
768 * kvm->srcu critical section where acquiring the slots_lock would
769 * lead to deadlock with the synchronize_srcu in
770 * kvm_swap_active_memslots().
771 */
772 struct mutex slots_arch_lock;
773 struct mm_struct *mm; /* userspace tied to this vm */
774 unsigned long nr_memslot_pages;
775 /* The two memslot sets - active and inactive (per address space) */
776 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
777 /* The current active memslot set for each address space */
778 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
779 struct xarray vcpu_array;
780 /*
781 * Protected by slots_lock, but can be read outside if an
782 * incorrect answer is acceptable.
783 */
784 atomic_t nr_memslots_dirty_logging;
785
786 /* Used to wait for completion of MMU notifiers. */
787 spinlock_t mn_invalidate_lock;
788 unsigned long mn_active_invalidate_count;
789 struct rcuwait mn_memslots_update_rcuwait;
790
791 /* For management / invalidation of gfn_to_pfn_caches */
792 spinlock_t gpc_lock;
793 struct list_head gpc_list;
794
795 /*
796 * created_vcpus is protected by kvm->lock, and is incremented
797 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
798 * incremented after storing the kvm_vcpu pointer in vcpus,
799 * and is accessed atomically.
800 */
801 atomic_t online_vcpus;
802 int max_vcpus;
803 int created_vcpus;
804 int last_boosted_vcpu;
805 struct list_head vm_list;
806 struct mutex lock;
807 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
808#ifdef CONFIG_HAVE_KVM_IRQCHIP
809 struct {
810 spinlock_t lock;
811 struct list_head items;
812 /* resampler_list update side is protected by resampler_lock. */
813 struct list_head resampler_list;
814 struct mutex resampler_lock;
815 } irqfds;
816#endif
817 struct list_head ioeventfds;
818 struct kvm_vm_stat stat;
819 struct kvm_arch arch;
820 refcount_t users_count;
821#ifdef CONFIG_KVM_MMIO
822 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
823 spinlock_t ring_lock;
824 struct list_head coalesced_zones;
825#endif
826
827 struct mutex irq_lock;
828#ifdef CONFIG_HAVE_KVM_IRQCHIP
829 /*
830 * Update side is protected by irq_lock.
831 */
832 struct kvm_irq_routing_table __rcu *irq_routing;
833
834 struct hlist_head irq_ack_notifier_list;
835#endif
836
837#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
838 struct mmu_notifier mmu_notifier;
839 unsigned long mmu_invalidate_seq;
840 long mmu_invalidate_in_progress;
841 gfn_t mmu_invalidate_range_start;
842 gfn_t mmu_invalidate_range_end;
843#endif
844 struct list_head devices;
845 u64 manual_dirty_log_protect;
846 struct dentry *debugfs_dentry;
847 struct kvm_stat_data **debugfs_stat_data;
848 struct srcu_struct srcu;
849 struct srcu_struct irq_srcu;
850 pid_t userspace_pid;
851 bool override_halt_poll_ns;
852 unsigned int max_halt_poll_ns;
853 u32 dirty_ring_size;
854 bool dirty_ring_with_bitmap;
855 bool vm_bugged;
856 bool vm_dead;
857
858#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
859 struct notifier_block pm_notifier;
860#endif
861#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
862 /* Protected by slots_locks (for writes) and RCU (for reads) */
863 struct xarray mem_attr_array;
864#endif
865 char stats_id[KVM_STATS_NAME_SIZE];
866};
867
868#define kvm_err(fmt, ...) \
869 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
870#define kvm_info(fmt, ...) \
871 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
872#define kvm_debug(fmt, ...) \
873 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
874#define kvm_debug_ratelimited(fmt, ...) \
875 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
876 ## __VA_ARGS__)
877#define kvm_pr_unimpl(fmt, ...) \
878 pr_err_ratelimited("kvm [%i]: " fmt, \
879 task_tgid_nr(current), ## __VA_ARGS__)
880
881/* The guest did something we don't support. */
882#define vcpu_unimpl(vcpu, fmt, ...) \
883 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
884 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
885
886#define vcpu_debug(vcpu, fmt, ...) \
887 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
888#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
889 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
890 ## __VA_ARGS__)
891#define vcpu_err(vcpu, fmt, ...) \
892 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
893
894static inline void kvm_vm_dead(struct kvm *kvm)
895{
896 kvm->vm_dead = true;
897 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
898}
899
900static inline void kvm_vm_bugged(struct kvm *kvm)
901{
902 kvm->vm_bugged = true;
903 kvm_vm_dead(kvm);
904}
905
906
907#define KVM_BUG(cond, kvm, fmt...) \
908({ \
909 bool __ret = !!(cond); \
910 \
911 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
912 kvm_vm_bugged(kvm); \
913 unlikely(__ret); \
914})
915
916#define KVM_BUG_ON(cond, kvm) \
917({ \
918 bool __ret = !!(cond); \
919 \
920 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
921 kvm_vm_bugged(kvm); \
922 unlikely(__ret); \
923})
924
925/*
926 * Note, "data corruption" refers to corruption of host kernel data structures,
927 * not guest data. Guest data corruption, suspected or confirmed, that is tied
928 * and contained to a single VM should *never* BUG() and potentially panic the
929 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
930 * is corrupted and that corruption can have a cascading effect to other parts
931 * of the hosts and/or to other VMs.
932 */
933#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
934({ \
935 bool __ret = !!(cond); \
936 \
937 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
938 BUG_ON(__ret); \
939 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
940 kvm_vm_bugged(kvm); \
941 unlikely(__ret); \
942})
943
944static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
945{
946#ifdef CONFIG_PROVE_RCU
947 WARN_ONCE(vcpu->srcu_depth++,
948 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
949#endif
950 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
951}
952
953static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
954{
955 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
956
957#ifdef CONFIG_PROVE_RCU
958 WARN_ONCE(--vcpu->srcu_depth,
959 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
960#endif
961}
962
963static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
964{
965 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
966}
967
968static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
969{
970 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
971 lockdep_is_held(&kvm->slots_lock) ||
972 !refcount_read(&kvm->users_count));
973}
974
975static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
976{
977 int num_vcpus = atomic_read(&kvm->online_vcpus);
978
979 /*
980 * Explicitly verify the target vCPU is online, as the anti-speculation
981 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
982 * index, clamping the index to 0 would return vCPU0, not NULL.
983 */
984 if (i >= num_vcpus)
985 return NULL;
986
987 i = array_index_nospec(i, num_vcpus);
988
989 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
990 smp_rmb();
991 return xa_load(&kvm->vcpu_array, i);
992}
993
994#define kvm_for_each_vcpu(idx, vcpup, kvm) \
995 if (atomic_read(&kvm->online_vcpus)) \
996 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
997 (atomic_read(&kvm->online_vcpus) - 1))
998
999static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1000{
1001 struct kvm_vcpu *vcpu = NULL;
1002 unsigned long i;
1003
1004 if (id < 0)
1005 return NULL;
1006 if (id < KVM_MAX_VCPUS)
1007 vcpu = kvm_get_vcpu(kvm, id);
1008 if (vcpu && vcpu->vcpu_id == id)
1009 return vcpu;
1010 kvm_for_each_vcpu(i, vcpu, kvm)
1011 if (vcpu->vcpu_id == id)
1012 return vcpu;
1013 return NULL;
1014}
1015
1016void kvm_destroy_vcpus(struct kvm *kvm);
1017
1018int kvm_trylock_all_vcpus(struct kvm *kvm);
1019int kvm_lock_all_vcpus(struct kvm *kvm);
1020void kvm_unlock_all_vcpus(struct kvm *kvm);
1021
1022void vcpu_load(struct kvm_vcpu *vcpu);
1023void vcpu_put(struct kvm_vcpu *vcpu);
1024
1025#ifdef __KVM_HAVE_IOAPIC
1026void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1027void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1028#else
1029static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1030{
1031}
1032static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1033{
1034}
1035#endif
1036
1037#ifdef CONFIG_HAVE_KVM_IRQCHIP
1038int kvm_irqfd_init(void);
1039void kvm_irqfd_exit(void);
1040#else
1041static inline int kvm_irqfd_init(void)
1042{
1043 return 0;
1044}
1045
1046static inline void kvm_irqfd_exit(void)
1047{
1048}
1049#endif
1050int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1051void kvm_exit(void);
1052
1053void kvm_get_kvm(struct kvm *kvm);
1054bool kvm_get_kvm_safe(struct kvm *kvm);
1055void kvm_put_kvm(struct kvm *kvm);
1056bool file_is_kvm(struct file *file);
1057void kvm_put_kvm_no_destroy(struct kvm *kvm);
1058
1059static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1060{
1061 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1062 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1063 lockdep_is_held(&kvm->slots_lock) ||
1064 !refcount_read(&kvm->users_count));
1065}
1066
1067static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1068{
1069 return __kvm_memslots(kvm, 0);
1070}
1071
1072static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1073{
1074 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1075
1076 return __kvm_memslots(vcpu->kvm, as_id);
1077}
1078
1079static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1080{
1081 return RB_EMPTY_ROOT(&slots->gfn_tree);
1082}
1083
1084bool kvm_are_all_memslots_empty(struct kvm *kvm);
1085
1086#define kvm_for_each_memslot(memslot, bkt, slots) \
1087 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1088 if (WARN_ON_ONCE(!memslot->npages)) { \
1089 } else
1090
1091static inline
1092struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1093{
1094 struct kvm_memory_slot *slot;
1095 int idx = slots->node_idx;
1096
1097 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1098 if (slot->id == id)
1099 return slot;
1100 }
1101
1102 return NULL;
1103}
1104
1105/* Iterator used for walking memslots that overlap a gfn range. */
1106struct kvm_memslot_iter {
1107 struct kvm_memslots *slots;
1108 struct rb_node *node;
1109 struct kvm_memory_slot *slot;
1110};
1111
1112static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1113{
1114 iter->node = rb_next(iter->node);
1115 if (!iter->node)
1116 return;
1117
1118 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1119}
1120
1121static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1122 struct kvm_memslots *slots,
1123 gfn_t start)
1124{
1125 int idx = slots->node_idx;
1126 struct rb_node *tmp;
1127 struct kvm_memory_slot *slot;
1128
1129 iter->slots = slots;
1130
1131 /*
1132 * Find the so called "upper bound" of a key - the first node that has
1133 * its key strictly greater than the searched one (the start gfn in our case).
1134 */
1135 iter->node = NULL;
1136 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1137 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1138 if (start < slot->base_gfn) {
1139 iter->node = tmp;
1140 tmp = tmp->rb_left;
1141 } else {
1142 tmp = tmp->rb_right;
1143 }
1144 }
1145
1146 /*
1147 * Find the slot with the lowest gfn that can possibly intersect with
1148 * the range, so we'll ideally have slot start <= range start
1149 */
1150 if (iter->node) {
1151 /*
1152 * A NULL previous node means that the very first slot
1153 * already has a higher start gfn.
1154 * In this case slot start > range start.
1155 */
1156 tmp = rb_prev(iter->node);
1157 if (tmp)
1158 iter->node = tmp;
1159 } else {
1160 /* a NULL node below means no slots */
1161 iter->node = rb_last(&slots->gfn_tree);
1162 }
1163
1164 if (iter->node) {
1165 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1166
1167 /*
1168 * It is possible in the slot start < range start case that the
1169 * found slot ends before or at range start (slot end <= range start)
1170 * and so it does not overlap the requested range.
1171 *
1172 * In such non-overlapping case the next slot (if it exists) will
1173 * already have slot start > range start, otherwise the logic above
1174 * would have found it instead of the current slot.
1175 */
1176 if (iter->slot->base_gfn + iter->slot->npages <= start)
1177 kvm_memslot_iter_next(iter);
1178 }
1179}
1180
1181static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1182{
1183 if (!iter->node)
1184 return false;
1185
1186 /*
1187 * If this slot starts beyond or at the end of the range so does
1188 * every next one
1189 */
1190 return iter->slot->base_gfn < end;
1191}
1192
1193/* Iterate over each memslot at least partially intersecting [start, end) range */
1194#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1195 for (kvm_memslot_iter_start(iter, slots, start); \
1196 kvm_memslot_iter_is_valid(iter, end); \
1197 kvm_memslot_iter_next(iter))
1198
1199struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1200struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1201struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1202
1203/*
1204 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1205 * - create a new memory slot
1206 * - delete an existing memory slot
1207 * - modify an existing memory slot
1208 * -- move it in the guest physical memory space
1209 * -- just change its flags
1210 *
1211 * Since flags can be changed by some of these operations, the following
1212 * differentiation is the best we can do for kvm_set_memory_region():
1213 */
1214enum kvm_mr_change {
1215 KVM_MR_CREATE,
1216 KVM_MR_DELETE,
1217 KVM_MR_MOVE,
1218 KVM_MR_FLAGS_ONLY,
1219};
1220
1221int kvm_set_internal_memslot(struct kvm *kvm,
1222 const struct kvm_userspace_memory_region2 *mem);
1223void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1224void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1225int kvm_arch_prepare_memory_region(struct kvm *kvm,
1226 const struct kvm_memory_slot *old,
1227 struct kvm_memory_slot *new,
1228 enum kvm_mr_change change);
1229void kvm_arch_commit_memory_region(struct kvm *kvm,
1230 struct kvm_memory_slot *old,
1231 const struct kvm_memory_slot *new,
1232 enum kvm_mr_change change);
1233/* flush all memory translations */
1234void kvm_arch_flush_shadow_all(struct kvm *kvm);
1235/* flush memory translations pointing to 'slot' */
1236void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1237 struct kvm_memory_slot *slot);
1238
1239int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1240 struct page **pages, int nr_pages);
1241
1242struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
1243static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1244{
1245 return __gfn_to_page(kvm, gfn, true);
1246}
1247
1248unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1249unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1250unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1251unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1252 bool *writable);
1253
1254static inline void kvm_release_page_unused(struct page *page)
1255{
1256 if (!page)
1257 return;
1258
1259 put_page(page);
1260}
1261
1262void kvm_release_page_clean(struct page *page);
1263void kvm_release_page_dirty(struct page *page);
1264
1265static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1266 bool unused, bool dirty)
1267{
1268 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1269
1270 if (!page)
1271 return;
1272
1273 /*
1274 * If the page that KVM got from the *primary MMU* is writable, and KVM
1275 * installed or reused a SPTE, mark the page/folio dirty. Note, this
1276 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1277 * the GFN is write-protected. Folios can't be safely marked dirty
1278 * outside of mmu_lock as doing so could race with writeback on the
1279 * folio. As a result, KVM can't mark folios dirty in the fast page
1280 * fault handler, and so KVM must (somewhat) speculatively mark the
1281 * folio dirty if KVM could locklessly make the SPTE writable.
1282 */
1283 if (unused)
1284 kvm_release_page_unused(page);
1285 else if (dirty)
1286 kvm_release_page_dirty(page);
1287 else
1288 kvm_release_page_clean(page);
1289}
1290
1291kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1292 unsigned int foll, bool *writable,
1293 struct page **refcounted_page);
1294
1295static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1296 bool write, bool *writable,
1297 struct page **refcounted_page)
1298{
1299 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1300 write ? FOLL_WRITE : 0, writable, refcounted_page);
1301}
1302
1303int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1304 int len);
1305int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1306int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1307 void *data, unsigned long len);
1308int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1309 void *data, unsigned int offset,
1310 unsigned long len);
1311int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1312 int offset, int len);
1313int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1314 unsigned long len);
1315int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1316 void *data, unsigned long len);
1317int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1318 void *data, unsigned int offset,
1319 unsigned long len);
1320int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1321 gpa_t gpa, unsigned long len);
1322
1323#define __kvm_get_guest(kvm, gfn, offset, v) \
1324({ \
1325 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1326 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1327 int __ret = -EFAULT; \
1328 \
1329 if (!kvm_is_error_hva(__addr)) \
1330 __ret = get_user(v, __uaddr); \
1331 __ret; \
1332})
1333
1334#define kvm_get_guest(kvm, gpa, v) \
1335({ \
1336 gpa_t __gpa = gpa; \
1337 struct kvm *__kvm = kvm; \
1338 \
1339 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1340 offset_in_page(__gpa), v); \
1341})
1342
1343#define __kvm_put_guest(kvm, gfn, offset, v) \
1344({ \
1345 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1346 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1347 int __ret = -EFAULT; \
1348 \
1349 if (!kvm_is_error_hva(__addr)) \
1350 __ret = put_user(v, __uaddr); \
1351 if (!__ret) \
1352 mark_page_dirty(kvm, gfn); \
1353 __ret; \
1354})
1355
1356#define kvm_put_guest(kvm, gpa, v) \
1357({ \
1358 gpa_t __gpa = gpa; \
1359 struct kvm *__kvm = kvm; \
1360 \
1361 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1362 offset_in_page(__gpa), v); \
1363})
1364
1365int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1366bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1367bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1368unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1369void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1370void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1371
1372int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1373 bool writable);
1374void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1375
1376static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1377 struct kvm_host_map *map)
1378{
1379 return __kvm_vcpu_map(vcpu, gpa, map, true);
1380}
1381
1382static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1383 struct kvm_host_map *map)
1384{
1385 return __kvm_vcpu_map(vcpu, gpa, map, false);
1386}
1387
1388unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1389unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1390int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1391 int len);
1392int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1393 unsigned long len);
1394int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1395 unsigned long len);
1396int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1397 int offset, int len);
1398int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1399 unsigned long len);
1400void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1401
1402/**
1403 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1404 *
1405 * @gpc: struct gfn_to_pfn_cache object.
1406 * @kvm: pointer to kvm instance.
1407 *
1408 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1409 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1410 * the caller before init).
1411 */
1412void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1413
1414/**
1415 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1416 * physical address.
1417 *
1418 * @gpc: struct gfn_to_pfn_cache object.
1419 * @gpa: guest physical address to map.
1420 * @len: sanity check; the range being access must fit a single page.
1421 *
1422 * @return: 0 for success.
1423 * -EINVAL for a mapping which would cross a page boundary.
1424 * -EFAULT for an untranslatable guest physical address.
1425 *
1426 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1427 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1428 * to ensure that the cache is valid before accessing the target page.
1429 */
1430int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1431
1432/**
1433 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1434 *
1435 * @gpc: struct gfn_to_pfn_cache object.
1436 * @hva: userspace virtual address to map.
1437 * @len: sanity check; the range being access must fit a single page.
1438 *
1439 * @return: 0 for success.
1440 * -EINVAL for a mapping which would cross a page boundary.
1441 * -EFAULT for an untranslatable guest physical address.
1442 *
1443 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1444 * merely bypasses a layer of address translation.
1445 */
1446int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1447
1448/**
1449 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1450 *
1451 * @gpc: struct gfn_to_pfn_cache object.
1452 * @len: sanity check; the range being access must fit a single page.
1453 *
1454 * @return: %true if the cache is still valid and the address matches.
1455 * %false if the cache is not valid.
1456 *
1457 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1458 * while calling this function, and then continue to hold the lock until the
1459 * access is complete.
1460 *
1461 * Callers in IN_GUEST_MODE may do so without locking, although they should
1462 * still hold a read lock on kvm->scru for the memslot checks.
1463 */
1464bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1465
1466/**
1467 * kvm_gpc_refresh - update a previously initialized cache.
1468 *
1469 * @gpc: struct gfn_to_pfn_cache object.
1470 * @len: sanity check; the range being access must fit a single page.
1471 *
1472 * @return: 0 for success.
1473 * -EINVAL for a mapping which would cross a page boundary.
1474 * -EFAULT for an untranslatable guest physical address.
1475 *
1476 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1477 * return from this function does not mean the page can be immediately
1478 * accessed because it may have raced with an invalidation. Callers must
1479 * still lock and check the cache status, as this function does not return
1480 * with the lock still held to permit access.
1481 */
1482int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1483
1484/**
1485 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1486 *
1487 * @gpc: struct gfn_to_pfn_cache object.
1488 *
1489 * This removes a cache from the VM's list to be processed on MMU notifier
1490 * invocation.
1491 */
1492void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1493
1494static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1495{
1496 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1497}
1498
1499static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1500{
1501 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1502}
1503
1504void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1505void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1506
1507void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1508bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1509void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1510void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1511bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1512
1513#ifndef CONFIG_S390
1514void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1515
1516static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1517{
1518 __kvm_vcpu_kick(vcpu, false);
1519}
1520#endif
1521
1522int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1523void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1524
1525void kvm_flush_remote_tlbs(struct kvm *kvm);
1526void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1527void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1528 const struct kvm_memory_slot *memslot);
1529
1530#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1531int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1532int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1533int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1534void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1535void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1536#endif
1537
1538void kvm_mmu_invalidate_begin(struct kvm *kvm);
1539void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1540void kvm_mmu_invalidate_end(struct kvm *kvm);
1541bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1542
1543long kvm_arch_dev_ioctl(struct file *filp,
1544 unsigned int ioctl, unsigned long arg);
1545long kvm_arch_vcpu_ioctl(struct file *filp,
1546 unsigned int ioctl, unsigned long arg);
1547vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1548
1549int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1550
1551void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1552 struct kvm_memory_slot *slot,
1553 gfn_t gfn_offset,
1554 unsigned long mask);
1555void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1556
1557#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1558int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1559int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1560 int *is_dirty, struct kvm_memory_slot **memslot);
1561#endif
1562
1563int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1564 bool line_status);
1565int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1566 struct kvm_enable_cap *cap);
1567int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1568long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1569 unsigned long arg);
1570
1571int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1572int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1573
1574int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1575 struct kvm_translation *tr);
1576
1577int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1578int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1579int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1580 struct kvm_sregs *sregs);
1581int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1582 struct kvm_sregs *sregs);
1583int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1584 struct kvm_mp_state *mp_state);
1585int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1586 struct kvm_mp_state *mp_state);
1587int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1588 struct kvm_guest_debug *dbg);
1589int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1590
1591void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1592void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1593int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1594int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1595void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1596void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1597
1598#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1599int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1600#endif
1601
1602#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1603void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1604#else
1605static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1606#endif
1607
1608#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1609/*
1610 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1611 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1612 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1613 * sequence, and at the end of the generic hardware disabling sequence.
1614 */
1615void kvm_arch_enable_virtualization(void);
1616void kvm_arch_disable_virtualization(void);
1617/*
1618 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1619 * do the actual twiddling of hardware bits. The hooks are called on all
1620 * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1621 * when that CPU is onlined/offlined (including for Resume/Suspend).
1622 */
1623int kvm_arch_enable_virtualization_cpu(void);
1624void kvm_arch_disable_virtualization_cpu(void);
1625#endif
1626bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1627int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1628bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1629int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1630bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1631bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1632bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1633void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1634void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1635
1636#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1637/*
1638 * All architectures that want to use vzalloc currently also
1639 * need their own kvm_arch_alloc_vm implementation.
1640 */
1641static inline struct kvm *kvm_arch_alloc_vm(void)
1642{
1643 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1644}
1645#endif
1646
1647static inline void __kvm_arch_free_vm(struct kvm *kvm)
1648{
1649 kvfree(kvm);
1650}
1651
1652#ifndef __KVM_HAVE_ARCH_VM_FREE
1653static inline void kvm_arch_free_vm(struct kvm *kvm)
1654{
1655 __kvm_arch_free_vm(kvm);
1656}
1657#endif
1658
1659#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1660static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1661{
1662 return -ENOTSUPP;
1663}
1664#else
1665int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1666#endif
1667
1668#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1669static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1670 gfn_t gfn, u64 nr_pages)
1671{
1672 return -EOPNOTSUPP;
1673}
1674#else
1675int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1676#endif
1677
1678#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1679void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1680void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1681bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1682#else
1683static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1684{
1685}
1686
1687static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1688{
1689}
1690
1691static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1692{
1693 return false;
1694}
1695#endif
1696#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1697void kvm_arch_start_assignment(struct kvm *kvm);
1698void kvm_arch_end_assignment(struct kvm *kvm);
1699bool kvm_arch_has_assigned_device(struct kvm *kvm);
1700#else
1701static inline void kvm_arch_start_assignment(struct kvm *kvm)
1702{
1703}
1704
1705static inline void kvm_arch_end_assignment(struct kvm *kvm)
1706{
1707}
1708
1709static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1710{
1711 return false;
1712}
1713#endif
1714
1715static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1716{
1717#ifdef __KVM_HAVE_ARCH_WQP
1718 return vcpu->arch.waitp;
1719#else
1720 return &vcpu->wait;
1721#endif
1722}
1723
1724/*
1725 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1726 * true if the vCPU was blocking and was awakened, false otherwise.
1727 */
1728static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1729{
1730 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1731}
1732
1733static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1734{
1735 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1736}
1737
1738#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1739/*
1740 * returns true if the virtual interrupt controller is initialized and
1741 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1742 * controller is dynamically instantiated and this is not always true.
1743 */
1744bool kvm_arch_intc_initialized(struct kvm *kvm);
1745#else
1746static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1747{
1748 return true;
1749}
1750#endif
1751
1752#ifdef CONFIG_GUEST_PERF_EVENTS
1753unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1754
1755void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1756void kvm_unregister_perf_callbacks(void);
1757#else
1758static inline void kvm_register_perf_callbacks(void *ign) {}
1759static inline void kvm_unregister_perf_callbacks(void) {}
1760#endif /* CONFIG_GUEST_PERF_EVENTS */
1761
1762int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1763void kvm_arch_destroy_vm(struct kvm *kvm);
1764
1765int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1766
1767struct kvm_irq_ack_notifier {
1768 struct hlist_node link;
1769 unsigned gsi;
1770 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1771};
1772
1773int kvm_irq_map_gsi(struct kvm *kvm,
1774 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1775int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1776
1777int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1778 bool line_status);
1779int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1780 int irq_source_id, int level, bool line_status);
1781int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1782 struct kvm *kvm, int irq_source_id,
1783 int level, bool line_status);
1784bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1785void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1786void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1787void kvm_register_irq_ack_notifier(struct kvm *kvm,
1788 struct kvm_irq_ack_notifier *kian);
1789void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1790 struct kvm_irq_ack_notifier *kian);
1791int kvm_request_irq_source_id(struct kvm *kvm);
1792void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1793bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1794
1795/*
1796 * Returns a pointer to the memslot if it contains gfn.
1797 * Otherwise returns NULL.
1798 */
1799static inline struct kvm_memory_slot *
1800try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1801{
1802 if (!slot)
1803 return NULL;
1804
1805 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1806 return slot;
1807 else
1808 return NULL;
1809}
1810
1811/*
1812 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1813 *
1814 * With "approx" set returns the memslot also when the address falls
1815 * in a hole. In that case one of the memslots bordering the hole is
1816 * returned.
1817 */
1818static inline struct kvm_memory_slot *
1819search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1820{
1821 struct kvm_memory_slot *slot;
1822 struct rb_node *node;
1823 int idx = slots->node_idx;
1824
1825 slot = NULL;
1826 for (node = slots->gfn_tree.rb_node; node; ) {
1827 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1828 if (gfn >= slot->base_gfn) {
1829 if (gfn < slot->base_gfn + slot->npages)
1830 return slot;
1831 node = node->rb_right;
1832 } else
1833 node = node->rb_left;
1834 }
1835
1836 return approx ? slot : NULL;
1837}
1838
1839static inline struct kvm_memory_slot *
1840____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1841{
1842 struct kvm_memory_slot *slot;
1843
1844 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1845 slot = try_get_memslot(slot, gfn);
1846 if (slot)
1847 return slot;
1848
1849 slot = search_memslots(slots, gfn, approx);
1850 if (slot) {
1851 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1852 return slot;
1853 }
1854
1855 return NULL;
1856}
1857
1858/*
1859 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1860 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1861 * because that would bloat other code too much.
1862 */
1863static inline struct kvm_memory_slot *
1864__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1865{
1866 return ____gfn_to_memslot(slots, gfn, false);
1867}
1868
1869static inline unsigned long
1870__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1871{
1872 /*
1873 * The index was checked originally in search_memslots. To avoid
1874 * that a malicious guest builds a Spectre gadget out of e.g. page
1875 * table walks, do not let the processor speculate loads outside
1876 * the guest's registered memslots.
1877 */
1878 unsigned long offset = gfn - slot->base_gfn;
1879 offset = array_index_nospec(offset, slot->npages);
1880 return slot->userspace_addr + offset * PAGE_SIZE;
1881}
1882
1883static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1884{
1885 return gfn_to_memslot(kvm, gfn)->id;
1886}
1887
1888static inline gfn_t
1889hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1890{
1891 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1892
1893 return slot->base_gfn + gfn_offset;
1894}
1895
1896static inline gpa_t gfn_to_gpa(gfn_t gfn)
1897{
1898 return (gpa_t)gfn << PAGE_SHIFT;
1899}
1900
1901static inline gfn_t gpa_to_gfn(gpa_t gpa)
1902{
1903 return (gfn_t)(gpa >> PAGE_SHIFT);
1904}
1905
1906static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1907{
1908 return (hpa_t)pfn << PAGE_SHIFT;
1909}
1910
1911static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1912{
1913 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1914
1915 return !kvm_is_error_hva(hva);
1916}
1917
1918static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1919{
1920 lockdep_assert_held(&gpc->lock);
1921
1922 if (!gpc->memslot)
1923 return;
1924
1925 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1926}
1927
1928enum kvm_stat_kind {
1929 KVM_STAT_VM,
1930 KVM_STAT_VCPU,
1931};
1932
1933struct kvm_stat_data {
1934 struct kvm *kvm;
1935 const struct _kvm_stats_desc *desc;
1936 enum kvm_stat_kind kind;
1937};
1938
1939struct _kvm_stats_desc {
1940 struct kvm_stats_desc desc;
1941 char name[KVM_STATS_NAME_SIZE];
1942};
1943
1944#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1945 .flags = type | unit | base | \
1946 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1947 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1948 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1949 .exponent = exp, \
1950 .size = sz, \
1951 .bucket_size = bsz
1952
1953#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1954 { \
1955 { \
1956 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1957 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1958 }, \
1959 .name = #stat, \
1960 }
1961#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1962 { \
1963 { \
1964 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1965 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1966 }, \
1967 .name = #stat, \
1968 }
1969#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1970 { \
1971 { \
1972 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1973 .offset = offsetof(struct kvm_vm_stat, stat) \
1974 }, \
1975 .name = #stat, \
1976 }
1977#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1978 { \
1979 { \
1980 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1981 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1982 }, \
1983 .name = #stat, \
1984 }
1985/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1986#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1987 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1988
1989#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1990 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1991 unit, base, exponent, 1, 0)
1992#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1993 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1994 unit, base, exponent, 1, 0)
1995#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1996 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1997 unit, base, exponent, 1, 0)
1998#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1999 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
2000 unit, base, exponent, sz, bsz)
2001#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
2002 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
2003 unit, base, exponent, sz, 0)
2004
2005/* Cumulative counter, read/write */
2006#define STATS_DESC_COUNTER(SCOPE, name) \
2007 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
2008 KVM_STATS_BASE_POW10, 0)
2009/* Instantaneous counter, read only */
2010#define STATS_DESC_ICOUNTER(SCOPE, name) \
2011 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
2012 KVM_STATS_BASE_POW10, 0)
2013/* Peak counter, read/write */
2014#define STATS_DESC_PCOUNTER(SCOPE, name) \
2015 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
2016 KVM_STATS_BASE_POW10, 0)
2017
2018/* Instantaneous boolean value, read only */
2019#define STATS_DESC_IBOOLEAN(SCOPE, name) \
2020 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
2021 KVM_STATS_BASE_POW10, 0)
2022/* Peak (sticky) boolean value, read/write */
2023#define STATS_DESC_PBOOLEAN(SCOPE, name) \
2024 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
2025 KVM_STATS_BASE_POW10, 0)
2026
2027/* Cumulative time in nanosecond */
2028#define STATS_DESC_TIME_NSEC(SCOPE, name) \
2029 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2030 KVM_STATS_BASE_POW10, -9)
2031/* Linear histogram for time in nanosecond */
2032#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
2033 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2034 KVM_STATS_BASE_POW10, -9, sz, bsz)
2035/* Logarithmic histogram for time in nanosecond */
2036#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
2037 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2038 KVM_STATS_BASE_POW10, -9, sz)
2039
2040#define KVM_GENERIC_VM_STATS() \
2041 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
2042 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2043
2044#define KVM_GENERIC_VCPU_STATS() \
2045 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
2046 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
2047 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
2048 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
2049 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
2050 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
2051 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
2052 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
2053 HALT_POLL_HIST_COUNT), \
2054 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
2055 HALT_POLL_HIST_COUNT), \
2056 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
2057 HALT_POLL_HIST_COUNT), \
2058 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2059
2060ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2061 const struct _kvm_stats_desc *desc,
2062 void *stats, size_t size_stats,
2063 char __user *user_buffer, size_t size, loff_t *offset);
2064
2065/**
2066 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2067 * statistics data.
2068 *
2069 * @data: start address of the stats data
2070 * @size: the number of bucket of the stats data
2071 * @value: the new value used to update the linear histogram's bucket
2072 * @bucket_size: the size (width) of a bucket
2073 */
2074static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2075 u64 value, size_t bucket_size)
2076{
2077 size_t index = div64_u64(value, bucket_size);
2078
2079 index = min(index, size - 1);
2080 ++data[index];
2081}
2082
2083/**
2084 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2085 * statistics data.
2086 *
2087 * @data: start address of the stats data
2088 * @size: the number of bucket of the stats data
2089 * @value: the new value used to update the logarithmic histogram's bucket
2090 */
2091static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2092{
2093 size_t index = fls64(value);
2094
2095 index = min(index, size - 1);
2096 ++data[index];
2097}
2098
2099#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2100 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2101#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2102 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2103
2104
2105extern const struct kvm_stats_header kvm_vm_stats_header;
2106extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2107extern const struct kvm_stats_header kvm_vcpu_stats_header;
2108extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2109
2110#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2111static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2112{
2113 if (unlikely(kvm->mmu_invalidate_in_progress))
2114 return 1;
2115 /*
2116 * Ensure the read of mmu_invalidate_in_progress happens before
2117 * the read of mmu_invalidate_seq. This interacts with the
2118 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2119 * that the caller either sees the old (non-zero) value of
2120 * mmu_invalidate_in_progress or the new (incremented) value of
2121 * mmu_invalidate_seq.
2122 *
2123 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2124 * than under kvm->mmu_lock, for scalability, so can't rely on
2125 * kvm->mmu_lock to keep things ordered.
2126 */
2127 smp_rmb();
2128 if (kvm->mmu_invalidate_seq != mmu_seq)
2129 return 1;
2130 return 0;
2131}
2132
2133static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2134 unsigned long mmu_seq,
2135 gfn_t gfn)
2136{
2137 lockdep_assert_held(&kvm->mmu_lock);
2138 /*
2139 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2140 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2141 * that might be being invalidated. Note that it may include some false
2142 * positives, due to shortcuts when handing concurrent invalidations.
2143 */
2144 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2145 /*
2146 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2147 * but before updating the range is a KVM bug.
2148 */
2149 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2150 kvm->mmu_invalidate_range_end == INVALID_GPA))
2151 return 1;
2152
2153 if (gfn >= kvm->mmu_invalidate_range_start &&
2154 gfn < kvm->mmu_invalidate_range_end)
2155 return 1;
2156 }
2157
2158 if (kvm->mmu_invalidate_seq != mmu_seq)
2159 return 1;
2160 return 0;
2161}
2162
2163/*
2164 * This lockless version of the range-based retry check *must* be paired with a
2165 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2166 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2167 * get false negatives and false positives.
2168 */
2169static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2170 unsigned long mmu_seq,
2171 gfn_t gfn)
2172{
2173 /*
2174 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2175 * are always read from memory, e.g. so that checking for retry in a
2176 * loop won't result in an infinite retry loop. Don't force loads for
2177 * start+end, as the key to avoiding infinite retry loops is observing
2178 * the 1=>0 transition of in-progress, i.e. getting false negatives
2179 * due to stale start+end values is acceptable.
2180 */
2181 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2182 gfn >= kvm->mmu_invalidate_range_start &&
2183 gfn < kvm->mmu_invalidate_range_end)
2184 return true;
2185
2186 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2187}
2188#endif
2189
2190#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2191
2192#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2193
2194bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2195int kvm_set_irq_routing(struct kvm *kvm,
2196 const struct kvm_irq_routing_entry *entries,
2197 unsigned nr,
2198 unsigned flags);
2199int kvm_init_irq_routing(struct kvm *kvm);
2200int kvm_set_routing_entry(struct kvm *kvm,
2201 struct kvm_kernel_irq_routing_entry *e,
2202 const struct kvm_irq_routing_entry *ue);
2203void kvm_free_irq_routing(struct kvm *kvm);
2204
2205#else
2206
2207static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2208
2209static inline int kvm_init_irq_routing(struct kvm *kvm)
2210{
2211 return 0;
2212}
2213
2214#endif
2215
2216int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2217
2218void kvm_eventfd_init(struct kvm *kvm);
2219int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2220
2221#ifdef CONFIG_HAVE_KVM_IRQCHIP
2222int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2223void kvm_irqfd_release(struct kvm *kvm);
2224bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2225 unsigned int irqchip,
2226 unsigned int pin);
2227void kvm_irq_routing_update(struct kvm *);
2228#else
2229static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2230{
2231 return -EINVAL;
2232}
2233
2234static inline void kvm_irqfd_release(struct kvm *kvm) {}
2235
2236static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2237 unsigned int irqchip,
2238 unsigned int pin)
2239{
2240 return false;
2241}
2242#endif /* CONFIG_HAVE_KVM_IRQCHIP */
2243
2244void kvm_arch_irq_routing_update(struct kvm *kvm);
2245
2246static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2247{
2248 /*
2249 * Ensure the rest of the request is published to kvm_check_request's
2250 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2251 */
2252 smp_wmb();
2253 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2254}
2255
2256static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2257{
2258 /*
2259 * Request that don't require vCPU action should never be logged in
2260 * vcpu->requests. The vCPU won't clear the request, so it will stay
2261 * logged indefinitely and prevent the vCPU from entering the guest.
2262 */
2263 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2264 (req & KVM_REQUEST_NO_ACTION));
2265
2266 __kvm_make_request(req, vcpu);
2267}
2268
2269#ifndef CONFIG_S390
2270static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2271{
2272 kvm_make_request(req, vcpu);
2273 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2274}
2275#endif
2276
2277static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2278{
2279 return READ_ONCE(vcpu->requests);
2280}
2281
2282static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2283{
2284 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2285}
2286
2287static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2288{
2289 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2290}
2291
2292static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2293{
2294 if (kvm_test_request(req, vcpu)) {
2295 kvm_clear_request(req, vcpu);
2296
2297 /*
2298 * Ensure the rest of the request is visible to kvm_check_request's
2299 * caller. Paired with the smp_wmb in kvm_make_request.
2300 */
2301 smp_mb__after_atomic();
2302 return true;
2303 } else {
2304 return false;
2305 }
2306}
2307
2308#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2309extern bool enable_virt_at_load;
2310extern bool kvm_rebooting;
2311#endif
2312
2313extern unsigned int halt_poll_ns;
2314extern unsigned int halt_poll_ns_grow;
2315extern unsigned int halt_poll_ns_grow_start;
2316extern unsigned int halt_poll_ns_shrink;
2317
2318struct kvm_device {
2319 const struct kvm_device_ops *ops;
2320 struct kvm *kvm;
2321 void *private;
2322 struct list_head vm_node;
2323};
2324
2325/* create, destroy, and name are mandatory */
2326struct kvm_device_ops {
2327 const char *name;
2328
2329 /*
2330 * create is called holding kvm->lock and any operations not suitable
2331 * to do while holding the lock should be deferred to init (see
2332 * below).
2333 */
2334 int (*create)(struct kvm_device *dev, u32 type);
2335
2336 /*
2337 * init is called after create if create is successful and is called
2338 * outside of holding kvm->lock.
2339 */
2340 void (*init)(struct kvm_device *dev);
2341
2342 /*
2343 * Destroy is responsible for freeing dev.
2344 *
2345 * Destroy may be called before or after destructors are called
2346 * on emulated I/O regions, depending on whether a reference is
2347 * held by a vcpu or other kvm component that gets destroyed
2348 * after the emulated I/O.
2349 */
2350 void (*destroy)(struct kvm_device *dev);
2351
2352 /*
2353 * Release is an alternative method to free the device. It is
2354 * called when the device file descriptor is closed. Once
2355 * release is called, the destroy method will not be called
2356 * anymore as the device is removed from the device list of
2357 * the VM. kvm->lock is held.
2358 */
2359 void (*release)(struct kvm_device *dev);
2360
2361 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2362 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2363 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2364 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2365 unsigned long arg);
2366 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2367};
2368
2369struct kvm_device *kvm_device_from_filp(struct file *filp);
2370int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2371void kvm_unregister_device_ops(u32 type);
2372
2373extern struct kvm_device_ops kvm_mpic_ops;
2374extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2375extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2376
2377#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2378
2379static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2380{
2381 vcpu->spin_loop.in_spin_loop = val;
2382}
2383static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2384{
2385 vcpu->spin_loop.dy_eligible = val;
2386}
2387
2388#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2389
2390static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2391{
2392}
2393
2394static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2395{
2396}
2397#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2398
2399static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2400{
2401 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2402 !(memslot->flags & KVM_MEMSLOT_INVALID));
2403}
2404
2405struct kvm_vcpu *kvm_get_running_vcpu(void);
2406struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2407
2408#if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2409bool kvm_arch_has_irq_bypass(void);
2410int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2411 struct irq_bypass_producer *);
2412void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2413 struct irq_bypass_producer *);
2414void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2415void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2416int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2417 uint32_t guest_irq, bool set);
2418bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2419 struct kvm_kernel_irq_routing_entry *);
2420#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2421
2422#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2423/* If we wakeup during the poll time, was it a sucessful poll? */
2424static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2425{
2426 return vcpu->valid_wakeup;
2427}
2428
2429#else
2430static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2431{
2432 return true;
2433}
2434#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2435
2436#ifdef CONFIG_HAVE_KVM_NO_POLL
2437/* Callback that tells if we must not poll */
2438bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2439#else
2440static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2441{
2442 return false;
2443}
2444#endif /* CONFIG_HAVE_KVM_NO_POLL */
2445
2446#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2447long kvm_arch_vcpu_async_ioctl(struct file *filp,
2448 unsigned int ioctl, unsigned long arg);
2449#else
2450static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2451 unsigned int ioctl,
2452 unsigned long arg)
2453{
2454 return -ENOIOCTLCMD;
2455}
2456#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2457
2458void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2459
2460#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2461int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2462#else
2463static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2464{
2465 return 0;
2466}
2467#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2468
2469#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2470static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2471{
2472 vcpu->run->exit_reason = KVM_EXIT_INTR;
2473 vcpu->stat.signal_exits++;
2474}
2475#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2476
2477/*
2478 * If more than one page is being (un)accounted, @virt must be the address of
2479 * the first page of a block of pages what were allocated together (i.e
2480 * accounted together).
2481 *
2482 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2483 * is thread-safe.
2484 */
2485static inline void kvm_account_pgtable_pages(void *virt, int nr)
2486{
2487 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2488}
2489
2490/*
2491 * This defines how many reserved entries we want to keep before we
2492 * kick the vcpu to the userspace to avoid dirty ring full. This
2493 * value can be tuned to higher if e.g. PML is enabled on the host.
2494 */
2495#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2496
2497/* Max number of entries allowed for each kvm dirty ring */
2498#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2499
2500static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2501 gpa_t gpa, gpa_t size,
2502 bool is_write, bool is_exec,
2503 bool is_private)
2504{
2505 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2506 vcpu->run->memory_fault.gpa = gpa;
2507 vcpu->run->memory_fault.size = size;
2508
2509 /* RWX flags are not (yet) defined or communicated to userspace. */
2510 vcpu->run->memory_fault.flags = 0;
2511 if (is_private)
2512 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2513}
2514
2515#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2516static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2517{
2518 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2519}
2520
2521bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2522 unsigned long mask, unsigned long attrs);
2523bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2524 struct kvm_gfn_range *range);
2525bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2526 struct kvm_gfn_range *range);
2527
2528static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2529{
2530 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2531 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2532}
2533#else
2534static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2535{
2536 return false;
2537}
2538#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2539
2540#ifdef CONFIG_KVM_PRIVATE_MEM
2541int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2542 gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2543 int *max_order);
2544#else
2545static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2546 struct kvm_memory_slot *slot, gfn_t gfn,
2547 kvm_pfn_t *pfn, struct page **page,
2548 int *max_order)
2549{
2550 KVM_BUG_ON(1, kvm);
2551 return -EIO;
2552}
2553#endif /* CONFIG_KVM_PRIVATE_MEM */
2554
2555#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2556int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2557#endif
2558
2559#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2560/**
2561 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2562 *
2563 * @kvm: KVM instance
2564 * @gfn: starting GFN to be populated
2565 * @src: userspace-provided buffer containing data to copy into GFN range
2566 * (passed to @post_populate, and incremented on each iteration
2567 * if not NULL)
2568 * @npages: number of pages to copy from userspace-buffer
2569 * @post_populate: callback to issue for each gmem page that backs the GPA
2570 * range
2571 * @opaque: opaque data to pass to @post_populate callback
2572 *
2573 * This is primarily intended for cases where a gmem-backed GPA range needs
2574 * to be initialized with userspace-provided data prior to being mapped into
2575 * the guest as a private page. This should be called with the slots->lock
2576 * held so that caller-enforced invariants regarding the expected memory
2577 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2578 *
2579 * Returns the number of pages that were populated.
2580 */
2581typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2582 void __user *src, int order, void *opaque);
2583
2584long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2585 kvm_gmem_populate_cb post_populate, void *opaque);
2586#endif
2587
2588#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2589void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2590#endif
2591
2592#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2593long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2594 struct kvm_pre_fault_memory *range);
2595#endif
2596
2597#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2598int kvm_enable_virtualization(void);
2599void kvm_disable_virtualization(void);
2600#else
2601static inline int kvm_enable_virtualization(void) { return 0; }
2602static inline void kvm_disable_virtualization(void) { }
2603#endif
2604
2605#endif