at v6.16 695 lines 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HUGE_MM_H 3#define _LINUX_HUGE_MM_H 4 5#include <linux/mm_types.h> 6 7#include <linux/fs.h> /* only for vma_is_dax() */ 8#include <linux/kobject.h> 9 10vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); 11int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 12 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 13 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 14void huge_pmd_set_accessed(struct vm_fault *vmf); 15int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 16 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 17 struct vm_area_struct *vma); 18 19#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 20void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); 21#else 22static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 23{ 24} 25#endif 26 27vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf); 28bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 29 pmd_t *pmd, unsigned long addr, unsigned long next); 30int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, 31 unsigned long addr); 32int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, 33 unsigned long addr); 34bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 35 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd); 36int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 37 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 38 unsigned long cp_flags); 39 40vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write); 41vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write); 42vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio, 43 bool write); 44vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio, 45 bool write); 46 47enum transparent_hugepage_flag { 48 TRANSPARENT_HUGEPAGE_UNSUPPORTED, 49 TRANSPARENT_HUGEPAGE_FLAG, 50 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 51 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 52 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 53 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 54 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 55 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, 56 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, 57}; 58 59struct kobject; 60struct kobj_attribute; 61 62ssize_t single_hugepage_flag_store(struct kobject *kobj, 63 struct kobj_attribute *attr, 64 const char *buf, size_t count, 65 enum transparent_hugepage_flag flag); 66ssize_t single_hugepage_flag_show(struct kobject *kobj, 67 struct kobj_attribute *attr, char *buf, 68 enum transparent_hugepage_flag flag); 69extern struct kobj_attribute shmem_enabled_attr; 70extern struct kobj_attribute thpsize_shmem_enabled_attr; 71 72/* 73 * Mask of all large folio orders supported for anonymous THP; all orders up to 74 * and including PMD_ORDER, except order-0 (which is not "huge") and order-1 75 * (which is a limitation of the THP implementation). 76 */ 77#define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1))) 78 79/* 80 * Mask of all large folio orders supported for file THP. Folios in a DAX 81 * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to 82 * it. Same to PFNMAPs where there's neither page* nor pagecache. 83 */ 84#define THP_ORDERS_ALL_SPECIAL \ 85 (BIT(PMD_ORDER) | BIT(PUD_ORDER)) 86#define THP_ORDERS_ALL_FILE_DEFAULT \ 87 ((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0)) 88 89/* 90 * Mask of all large folio orders supported for THP. 91 */ 92#define THP_ORDERS_ALL \ 93 (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT) 94 95#define TVA_SMAPS (1 << 0) /* Will be used for procfs */ 96#define TVA_IN_PF (1 << 1) /* Page fault handler */ 97#define TVA_ENFORCE_SYSFS (1 << 2) /* Obey sysfs configuration */ 98 99#define thp_vma_allowable_order(vma, vm_flags, tva_flags, order) \ 100 (!!thp_vma_allowable_orders(vma, vm_flags, tva_flags, BIT(order))) 101 102#define split_folio(f) split_folio_to_list(f, NULL) 103 104#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 105#define HPAGE_PMD_SHIFT PMD_SHIFT 106#define HPAGE_PUD_SHIFT PUD_SHIFT 107#else 108#define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) 109#define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; }) 110#endif 111 112#define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) 113#define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) 114#define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) 115#define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) 116 117#define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT) 118#define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER) 119#define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1)) 120#define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT) 121 122enum mthp_stat_item { 123 MTHP_STAT_ANON_FAULT_ALLOC, 124 MTHP_STAT_ANON_FAULT_FALLBACK, 125 MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE, 126 MTHP_STAT_ZSWPOUT, 127 MTHP_STAT_SWPIN, 128 MTHP_STAT_SWPIN_FALLBACK, 129 MTHP_STAT_SWPIN_FALLBACK_CHARGE, 130 MTHP_STAT_SWPOUT, 131 MTHP_STAT_SWPOUT_FALLBACK, 132 MTHP_STAT_SHMEM_ALLOC, 133 MTHP_STAT_SHMEM_FALLBACK, 134 MTHP_STAT_SHMEM_FALLBACK_CHARGE, 135 MTHP_STAT_SPLIT, 136 MTHP_STAT_SPLIT_FAILED, 137 MTHP_STAT_SPLIT_DEFERRED, 138 MTHP_STAT_NR_ANON, 139 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 140 __MTHP_STAT_COUNT 141}; 142 143#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 144struct mthp_stat { 145 unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT]; 146}; 147 148DECLARE_PER_CPU(struct mthp_stat, mthp_stats); 149 150static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 151{ 152 if (order <= 0 || order > PMD_ORDER) 153 return; 154 155 this_cpu_add(mthp_stats.stats[order][item], delta); 156} 157 158static inline void count_mthp_stat(int order, enum mthp_stat_item item) 159{ 160 mod_mthp_stat(order, item, 1); 161} 162 163#else 164static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 165{ 166} 167 168static inline void count_mthp_stat(int order, enum mthp_stat_item item) 169{ 170} 171#endif 172 173#ifdef CONFIG_TRANSPARENT_HUGEPAGE 174 175extern unsigned long transparent_hugepage_flags; 176extern unsigned long huge_anon_orders_always; 177extern unsigned long huge_anon_orders_madvise; 178extern unsigned long huge_anon_orders_inherit; 179 180static inline bool hugepage_global_enabled(void) 181{ 182 return transparent_hugepage_flags & 183 ((1<<TRANSPARENT_HUGEPAGE_FLAG) | 184 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)); 185} 186 187static inline bool hugepage_global_always(void) 188{ 189 return transparent_hugepage_flags & 190 (1<<TRANSPARENT_HUGEPAGE_FLAG); 191} 192 193static inline int highest_order(unsigned long orders) 194{ 195 return fls_long(orders) - 1; 196} 197 198static inline int next_order(unsigned long *orders, int prev) 199{ 200 *orders &= ~BIT(prev); 201 return highest_order(*orders); 202} 203 204/* 205 * Do the below checks: 206 * - For file vma, check if the linear page offset of vma is 207 * order-aligned within the file. The hugepage is 208 * guaranteed to be order-aligned within the file, but we must 209 * check that the order-aligned addresses in the VMA map to 210 * order-aligned offsets within the file, else the hugepage will 211 * not be mappable. 212 * - For all vmas, check if the haddr is in an aligned hugepage 213 * area. 214 */ 215static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 216 unsigned long addr, int order) 217{ 218 unsigned long hpage_size = PAGE_SIZE << order; 219 unsigned long haddr; 220 221 /* Don't have to check pgoff for anonymous vma */ 222 if (!vma_is_anonymous(vma)) { 223 if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, 224 hpage_size >> PAGE_SHIFT)) 225 return false; 226 } 227 228 haddr = ALIGN_DOWN(addr, hpage_size); 229 230 if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end) 231 return false; 232 return true; 233} 234 235/* 236 * Filter the bitfield of input orders to the ones suitable for use in the vma. 237 * See thp_vma_suitable_order(). 238 * All orders that pass the checks are returned as a bitfield. 239 */ 240static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 241 unsigned long addr, unsigned long orders) 242{ 243 int order; 244 245 /* 246 * Iterate over orders, highest to lowest, removing orders that don't 247 * meet alignment requirements from the set. Exit loop at first order 248 * that meets requirements, since all lower orders must also meet 249 * requirements. 250 */ 251 252 order = highest_order(orders); 253 254 while (orders) { 255 if (thp_vma_suitable_order(vma, addr, order)) 256 break; 257 order = next_order(&orders, order); 258 } 259 260 return orders; 261} 262 263unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 264 unsigned long vm_flags, 265 unsigned long tva_flags, 266 unsigned long orders); 267 268/** 269 * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma 270 * @vma: the vm area to check 271 * @vm_flags: use these vm_flags instead of vma->vm_flags 272 * @tva_flags: Which TVA flags to honour 273 * @orders: bitfield of all orders to consider 274 * 275 * Calculates the intersection of the requested hugepage orders and the allowed 276 * hugepage orders for the provided vma. Permitted orders are encoded as a set 277 * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3 278 * corresponds to order-3, etc). Order-0 is never considered a hugepage order. 279 * 280 * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage 281 * orders are allowed. 282 */ 283static inline 284unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 285 unsigned long vm_flags, 286 unsigned long tva_flags, 287 unsigned long orders) 288{ 289 /* Optimization to check if required orders are enabled early. */ 290 if ((tva_flags & TVA_ENFORCE_SYSFS) && vma_is_anonymous(vma)) { 291 unsigned long mask = READ_ONCE(huge_anon_orders_always); 292 293 if (vm_flags & VM_HUGEPAGE) 294 mask |= READ_ONCE(huge_anon_orders_madvise); 295 if (hugepage_global_always() || 296 ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled())) 297 mask |= READ_ONCE(huge_anon_orders_inherit); 298 299 orders &= mask; 300 if (!orders) 301 return 0; 302 } 303 304 return __thp_vma_allowable_orders(vma, vm_flags, tva_flags, orders); 305} 306 307struct thpsize { 308 struct kobject kobj; 309 struct list_head node; 310 int order; 311}; 312 313#define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 314 315#define transparent_hugepage_use_zero_page() \ 316 (transparent_hugepage_flags & \ 317 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) 318 319static inline bool vma_thp_disabled(struct vm_area_struct *vma, 320 unsigned long vm_flags) 321{ 322 /* 323 * Explicitly disabled through madvise or prctl, or some 324 * architectures may disable THP for some mappings, for 325 * example, s390 kvm. 326 */ 327 return (vm_flags & VM_NOHUGEPAGE) || 328 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags); 329} 330 331static inline bool thp_disabled_by_hw(void) 332{ 333 /* If the hardware/firmware marked hugepage support disabled. */ 334 return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED); 335} 336 337unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 338 unsigned long len, unsigned long pgoff, unsigned long flags); 339unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 340 unsigned long len, unsigned long pgoff, unsigned long flags, 341 vm_flags_t vm_flags); 342 343bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins); 344int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 345 unsigned int new_order); 346int min_order_for_split(struct folio *folio); 347int split_folio_to_list(struct folio *folio, struct list_head *list); 348bool uniform_split_supported(struct folio *folio, unsigned int new_order, 349 bool warns); 350bool non_uniform_split_supported(struct folio *folio, unsigned int new_order, 351 bool warns); 352int folio_split(struct folio *folio, unsigned int new_order, struct page *page, 353 struct list_head *list); 354/* 355 * try_folio_split - try to split a @folio at @page using non uniform split. 356 * @folio: folio to be split 357 * @page: split to order-0 at the given page 358 * @list: store the after-split folios 359 * 360 * Try to split a @folio at @page using non uniform split to order-0, if 361 * non uniform split is not supported, fall back to uniform split. 362 * 363 * Return: 0: split is successful, otherwise split failed. 364 */ 365static inline int try_folio_split(struct folio *folio, struct page *page, 366 struct list_head *list) 367{ 368 int ret = min_order_for_split(folio); 369 370 if (ret < 0) 371 return ret; 372 373 if (!non_uniform_split_supported(folio, 0, false)) 374 return split_huge_page_to_list_to_order(&folio->page, list, 375 ret); 376 return folio_split(folio, ret, page, list); 377} 378static inline int split_huge_page(struct page *page) 379{ 380 struct folio *folio = page_folio(page); 381 int ret = min_order_for_split(folio); 382 383 if (ret < 0) 384 return ret; 385 386 /* 387 * split_huge_page() locks the page before splitting and 388 * expects the same page that has been split to be locked when 389 * returned. split_folio(page_folio(page)) cannot be used here 390 * because it converts the page to folio and passes the head 391 * page to be split. 392 */ 393 return split_huge_page_to_list_to_order(page, NULL, ret); 394} 395void deferred_split_folio(struct folio *folio, bool partially_mapped); 396 397void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 398 unsigned long address, bool freeze); 399 400#define split_huge_pmd(__vma, __pmd, __address) \ 401 do { \ 402 pmd_t *____pmd = (__pmd); \ 403 if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \ 404 || pmd_devmap(*____pmd)) \ 405 __split_huge_pmd(__vma, __pmd, __address, \ 406 false); \ 407 } while (0) 408 409void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 410 bool freeze); 411 412void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 413 unsigned long address); 414 415#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 416int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 417 pud_t *pudp, unsigned long addr, pgprot_t newprot, 418 unsigned long cp_flags); 419#else 420static inline int 421change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 422 pud_t *pudp, unsigned long addr, pgprot_t newprot, 423 unsigned long cp_flags) { return 0; } 424#endif 425 426#define split_huge_pud(__vma, __pud, __address) \ 427 do { \ 428 pud_t *____pud = (__pud); \ 429 if (pud_trans_huge(*____pud) \ 430 || pud_devmap(*____pud)) \ 431 __split_huge_pud(__vma, __pud, __address); \ 432 } while (0) 433 434int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, 435 int advice); 436int madvise_collapse(struct vm_area_struct *vma, 437 struct vm_area_struct **prev, 438 unsigned long start, unsigned long end); 439void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, 440 unsigned long end, struct vm_area_struct *next); 441spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma); 442spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma); 443 444static inline int is_swap_pmd(pmd_t pmd) 445{ 446 return !pmd_none(pmd) && !pmd_present(pmd); 447} 448 449/* mmap_lock must be held on entry */ 450static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 451 struct vm_area_struct *vma) 452{ 453 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) 454 return __pmd_trans_huge_lock(pmd, vma); 455 else 456 return NULL; 457} 458static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 459 struct vm_area_struct *vma) 460{ 461 if (pud_trans_huge(*pud) || pud_devmap(*pud)) 462 return __pud_trans_huge_lock(pud, vma); 463 else 464 return NULL; 465} 466 467/** 468 * folio_test_pmd_mappable - Can we map this folio with a PMD? 469 * @folio: The folio to test 470 */ 471static inline bool folio_test_pmd_mappable(struct folio *folio) 472{ 473 return folio_order(folio) >= HPAGE_PMD_ORDER; 474} 475 476struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 477 pmd_t *pmd, int flags, struct dev_pagemap **pgmap); 478 479vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf); 480 481extern struct folio *huge_zero_folio; 482extern unsigned long huge_zero_pfn; 483 484static inline bool is_huge_zero_folio(const struct folio *folio) 485{ 486 return READ_ONCE(huge_zero_folio) == folio; 487} 488 489static inline bool is_huge_zero_pmd(pmd_t pmd) 490{ 491 return pmd_present(pmd) && READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd); 492} 493 494struct folio *mm_get_huge_zero_folio(struct mm_struct *mm); 495void mm_put_huge_zero_folio(struct mm_struct *mm); 496 497static inline bool thp_migration_supported(void) 498{ 499 return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION); 500} 501 502void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 503 pmd_t *pmd, bool freeze); 504bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 505 pmd_t *pmdp, struct folio *folio); 506 507#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 508 509static inline bool folio_test_pmd_mappable(struct folio *folio) 510{ 511 return false; 512} 513 514static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 515 unsigned long addr, int order) 516{ 517 return false; 518} 519 520static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 521 unsigned long addr, unsigned long orders) 522{ 523 return 0; 524} 525 526static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 527 unsigned long vm_flags, 528 unsigned long tva_flags, 529 unsigned long orders) 530{ 531 return 0; 532} 533 534#define transparent_hugepage_flags 0UL 535 536#define thp_get_unmapped_area NULL 537 538static inline unsigned long 539thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 540 unsigned long len, unsigned long pgoff, 541 unsigned long flags, vm_flags_t vm_flags) 542{ 543 return 0; 544} 545 546static inline bool 547can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 548{ 549 return false; 550} 551static inline int 552split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 553 unsigned int new_order) 554{ 555 return 0; 556} 557static inline int split_huge_page(struct page *page) 558{ 559 return 0; 560} 561 562static inline int split_folio_to_list(struct folio *folio, struct list_head *list) 563{ 564 return 0; 565} 566 567static inline int try_folio_split(struct folio *folio, struct page *page, 568 struct list_head *list) 569{ 570 return 0; 571} 572 573static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {} 574#define split_huge_pmd(__vma, __pmd, __address) \ 575 do { } while (0) 576 577static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 578 unsigned long address, bool freeze) {} 579static inline void split_huge_pmd_address(struct vm_area_struct *vma, 580 unsigned long address, bool freeze) {} 581static inline void split_huge_pmd_locked(struct vm_area_struct *vma, 582 unsigned long address, pmd_t *pmd, 583 bool freeze) {} 584 585static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma, 586 unsigned long addr, pmd_t *pmdp, 587 struct folio *folio) 588{ 589 return false; 590} 591 592#define split_huge_pud(__vma, __pmd, __address) \ 593 do { } while (0) 594 595static inline int hugepage_madvise(struct vm_area_struct *vma, 596 unsigned long *vm_flags, int advice) 597{ 598 return -EINVAL; 599} 600 601static inline int madvise_collapse(struct vm_area_struct *vma, 602 struct vm_area_struct **prev, 603 unsigned long start, unsigned long end) 604{ 605 return -EINVAL; 606} 607 608static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 609 unsigned long start, 610 unsigned long end, 611 struct vm_area_struct *next) 612{ 613} 614static inline int is_swap_pmd(pmd_t pmd) 615{ 616 return 0; 617} 618static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 619 struct vm_area_struct *vma) 620{ 621 return NULL; 622} 623static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 624 struct vm_area_struct *vma) 625{ 626 return NULL; 627} 628 629static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 630{ 631 return 0; 632} 633 634static inline bool is_huge_zero_folio(const struct folio *folio) 635{ 636 return false; 637} 638 639static inline bool is_huge_zero_pmd(pmd_t pmd) 640{ 641 return false; 642} 643 644static inline void mm_put_huge_zero_folio(struct mm_struct *mm) 645{ 646 return; 647} 648 649static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma, 650 unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 651{ 652 return NULL; 653} 654 655static inline bool thp_migration_supported(void) 656{ 657 return false; 658} 659 660static inline int highest_order(unsigned long orders) 661{ 662 return 0; 663} 664 665static inline int next_order(unsigned long *orders, int prev) 666{ 667 return 0; 668} 669 670static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 671 unsigned long address) 672{ 673} 674 675static inline int change_huge_pud(struct mmu_gather *tlb, 676 struct vm_area_struct *vma, pud_t *pudp, 677 unsigned long addr, pgprot_t newprot, 678 unsigned long cp_flags) 679{ 680 return 0; 681} 682#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 683 684static inline int split_folio_to_list_to_order(struct folio *folio, 685 struct list_head *list, int new_order) 686{ 687 return split_huge_page_to_list_to_order(&folio->page, list, new_order); 688} 689 690static inline int split_folio_to_order(struct folio *folio, int new_order) 691{ 692 return split_folio_to_list_to_order(folio, NULL, new_order); 693} 694 695#endif /* _LINUX_HUGE_MM_H */