at v6.16 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HIGHMEM_H 3#define _LINUX_HIGHMEM_H 4 5#include <linux/fs.h> 6#include <linux/kernel.h> 7#include <linux/bug.h> 8#include <linux/cacheflush.h> 9#include <linux/kmsan.h> 10#include <linux/mm.h> 11#include <linux/uaccess.h> 12#include <linux/hardirq.h> 13 14#include "highmem-internal.h" 15 16/** 17 * kmap - Map a page for long term usage 18 * @page: Pointer to the page to be mapped 19 * 20 * Returns: The virtual address of the mapping 21 * 22 * Can only be invoked from preemptible task context because on 32bit 23 * systems with CONFIG_HIGHMEM enabled this function might sleep. 24 * 25 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area 26 * this returns the virtual address of the direct kernel mapping. 27 * 28 * The returned virtual address is globally visible and valid up to the 29 * point where it is unmapped via kunmap(). The pointer can be handed to 30 * other contexts. 31 * 32 * For highmem pages on 32bit systems this can be slow as the mapping space 33 * is limited and protected by a global lock. In case that there is no 34 * mapping slot available the function blocks until a slot is released via 35 * kunmap(). 36 */ 37static inline void *kmap(struct page *page); 38 39/** 40 * kunmap - Unmap the virtual address mapped by kmap() 41 * @page: Pointer to the page which was mapped by kmap() 42 * 43 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of 44 * pages in the low memory area. 45 */ 46static inline void kunmap(struct page *page); 47 48/** 49 * kmap_to_page - Get the page for a kmap'ed address 50 * @addr: The address to look up 51 * 52 * Returns: The page which is mapped to @addr. 53 */ 54static inline struct page *kmap_to_page(void *addr); 55 56/** 57 * kmap_flush_unused - Flush all unused kmap mappings in order to 58 * remove stray mappings 59 */ 60static inline void kmap_flush_unused(void); 61 62/** 63 * kmap_local_page - Map a page for temporary usage 64 * @page: Pointer to the page to be mapped 65 * 66 * Returns: The virtual address of the mapping 67 * 68 * Can be invoked from any context, including interrupts. 69 * 70 * Requires careful handling when nesting multiple mappings because the map 71 * management is stack based. The unmap has to be in the reverse order of 72 * the map operation: 73 * 74 * addr1 = kmap_local_page(page1); 75 * addr2 = kmap_local_page(page2); 76 * ... 77 * kunmap_local(addr2); 78 * kunmap_local(addr1); 79 * 80 * Unmapping addr1 before addr2 is invalid and causes malfunction. 81 * 82 * Contrary to kmap() mappings the mapping is only valid in the context of 83 * the caller and cannot be handed to other contexts. 84 * 85 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 86 * virtual address of the direct mapping. Only real highmem pages are 87 * temporarily mapped. 88 * 89 * While kmap_local_page() is significantly faster than kmap() for the highmem 90 * case it comes with restrictions about the pointer validity. 91 * 92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 93 * disabling migration in order to keep the virtual address stable across 94 * preemption. No caller of kmap_local_page() can rely on this side effect. 95 */ 96static inline void *kmap_local_page(struct page *page); 97 98/** 99 * kmap_local_folio - Map a page in this folio for temporary usage 100 * @folio: The folio containing the page. 101 * @offset: The byte offset within the folio which identifies the page. 102 * 103 * Requires careful handling when nesting multiple mappings because the map 104 * management is stack based. The unmap has to be in the reverse order of 105 * the map operation:: 106 * 107 * addr1 = kmap_local_folio(folio1, offset1); 108 * addr2 = kmap_local_folio(folio2, offset2); 109 * ... 110 * kunmap_local(addr2); 111 * kunmap_local(addr1); 112 * 113 * Unmapping addr1 before addr2 is invalid and causes malfunction. 114 * 115 * Contrary to kmap() mappings the mapping is only valid in the context of 116 * the caller and cannot be handed to other contexts. 117 * 118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 119 * virtual address of the direct mapping. Only real highmem pages are 120 * temporarily mapped. 121 * 122 * While it is significantly faster than kmap() for the highmem case it 123 * comes with restrictions about the pointer validity. 124 * 125 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 126 * disabling migration in order to keep the virtual address stable across 127 * preemption. No caller of kmap_local_folio() can rely on this side effect. 128 * 129 * Context: Can be invoked from any context. 130 * Return: The virtual address of @offset. 131 */ 132static inline void *kmap_local_folio(struct folio *folio, size_t offset); 133 134/** 135 * kmap_atomic - Atomically map a page for temporary usage - Deprecated! 136 * @page: Pointer to the page to be mapped 137 * 138 * Returns: The virtual address of the mapping 139 * 140 * In fact a wrapper around kmap_local_page() which also disables pagefaults 141 * and, depending on PREEMPT_RT configuration, also CPU migration and 142 * preemption. Therefore users should not count on the latter two side effects. 143 * 144 * Mappings should always be released by kunmap_atomic(). 145 * 146 * Do not use in new code. Use kmap_local_page() instead. 147 * 148 * It is used in atomic context when code wants to access the contents of a 149 * page that might be allocated from high memory (see __GFP_HIGHMEM), for 150 * example a page in the pagecache. The API has two functions, and they 151 * can be used in a manner similar to the following:: 152 * 153 * // Find the page of interest. 154 * struct page *page = find_get_page(mapping, offset); 155 * 156 * // Gain access to the contents of that page. 157 * void *vaddr = kmap_atomic(page); 158 * 159 * // Do something to the contents of that page. 160 * memset(vaddr, 0, PAGE_SIZE); 161 * 162 * // Unmap that page. 163 * kunmap_atomic(vaddr); 164 * 165 * Note that the kunmap_atomic() call takes the result of the kmap_atomic() 166 * call, not the argument. 167 * 168 * If you need to map two pages because you want to copy from one page to 169 * another you need to keep the kmap_atomic calls strictly nested, like: 170 * 171 * vaddr1 = kmap_atomic(page1); 172 * vaddr2 = kmap_atomic(page2); 173 * 174 * memcpy(vaddr1, vaddr2, PAGE_SIZE); 175 * 176 * kunmap_atomic(vaddr2); 177 * kunmap_atomic(vaddr1); 178 */ 179static inline void *kmap_atomic(struct page *page); 180 181/* Highmem related interfaces for management code */ 182static inline unsigned long nr_free_highpages(void); 183static inline unsigned long totalhigh_pages(void); 184 185#ifndef ARCH_HAS_FLUSH_ANON_PAGE 186static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 187{ 188} 189#endif 190 191#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 192static inline void flush_kernel_vmap_range(void *vaddr, int size) 193{ 194} 195static inline void invalidate_kernel_vmap_range(void *vaddr, int size) 196{ 197} 198#endif 199 200/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ 201#ifndef clear_user_highpage 202static inline void clear_user_highpage(struct page *page, unsigned long vaddr) 203{ 204 void *addr = kmap_local_page(page); 205 clear_user_page(addr, vaddr, page); 206 kunmap_local(addr); 207} 208#endif 209 210#ifndef vma_alloc_zeroed_movable_folio 211/** 212 * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA. 213 * @vma: The VMA the page is to be allocated for. 214 * @vaddr: The virtual address the page will be inserted into. 215 * 216 * This function will allocate a page suitable for inserting into this 217 * VMA at this virtual address. It may be allocated from highmem or 218 * the movable zone. An architecture may provide its own implementation. 219 * 220 * Return: A folio containing one allocated and zeroed page or NULL if 221 * we are out of memory. 222 */ 223static inline 224struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 225 unsigned long vaddr) 226{ 227 struct folio *folio; 228 229 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr); 230 if (folio && user_alloc_needs_zeroing()) 231 clear_user_highpage(&folio->page, vaddr); 232 233 return folio; 234} 235#endif 236 237static inline void clear_highpage(struct page *page) 238{ 239 void *kaddr = kmap_local_page(page); 240 clear_page(kaddr); 241 kunmap_local(kaddr); 242} 243 244static inline void clear_highpage_kasan_tagged(struct page *page) 245{ 246 void *kaddr = kmap_local_page(page); 247 248 clear_page(kasan_reset_tag(kaddr)); 249 kunmap_local(kaddr); 250} 251 252#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE 253 254static inline void tag_clear_highpage(struct page *page) 255{ 256} 257 258#endif 259 260/* 261 * If we pass in a base or tail page, we can zero up to PAGE_SIZE. 262 * If we pass in a head page, we can zero up to the size of the compound page. 263 */ 264#ifdef CONFIG_HIGHMEM 265void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 266 unsigned start2, unsigned end2); 267#else 268static inline void zero_user_segments(struct page *page, 269 unsigned start1, unsigned end1, 270 unsigned start2, unsigned end2) 271{ 272 void *kaddr = kmap_local_page(page); 273 unsigned int i; 274 275 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 276 277 if (end1 > start1) 278 memset(kaddr + start1, 0, end1 - start1); 279 280 if (end2 > start2) 281 memset(kaddr + start2, 0, end2 - start2); 282 283 kunmap_local(kaddr); 284 for (i = 0; i < compound_nr(page); i++) 285 flush_dcache_page(page + i); 286} 287#endif 288 289static inline void zero_user_segment(struct page *page, 290 unsigned start, unsigned end) 291{ 292 zero_user_segments(page, start, end, 0, 0); 293} 294 295static inline void zero_user(struct page *page, 296 unsigned start, unsigned size) 297{ 298 zero_user_segments(page, start, start + size, 0, 0); 299} 300 301#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE 302 303static inline void copy_user_highpage(struct page *to, struct page *from, 304 unsigned long vaddr, struct vm_area_struct *vma) 305{ 306 char *vfrom, *vto; 307 308 vfrom = kmap_local_page(from); 309 vto = kmap_local_page(to); 310 copy_user_page(vto, vfrom, vaddr, to); 311 kmsan_unpoison_memory(page_address(to), PAGE_SIZE); 312 kunmap_local(vto); 313 kunmap_local(vfrom); 314} 315 316#endif 317 318#ifndef __HAVE_ARCH_COPY_HIGHPAGE 319 320static inline void copy_highpage(struct page *to, struct page *from) 321{ 322 char *vfrom, *vto; 323 324 vfrom = kmap_local_page(from); 325 vto = kmap_local_page(to); 326 copy_page(vto, vfrom); 327 kmsan_copy_page_meta(to, from); 328 kunmap_local(vto); 329 kunmap_local(vfrom); 330} 331 332#endif 333 334#ifdef copy_mc_to_kernel 335/* 336 * If architecture supports machine check exception handling, define the 337 * #MC versions of copy_user_highpage and copy_highpage. They copy a memory 338 * page with #MC in source page (@from) handled, and return the number 339 * of bytes not copied if there was a #MC, otherwise 0 for success. 340 */ 341static inline int copy_mc_user_highpage(struct page *to, struct page *from, 342 unsigned long vaddr, struct vm_area_struct *vma) 343{ 344 unsigned long ret; 345 char *vfrom, *vto; 346 347 vfrom = kmap_local_page(from); 348 vto = kmap_local_page(to); 349 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); 350 if (!ret) 351 kmsan_unpoison_memory(page_address(to), PAGE_SIZE); 352 kunmap_local(vto); 353 kunmap_local(vfrom); 354 355 if (ret) 356 memory_failure_queue(page_to_pfn(from), 0); 357 358 return ret; 359} 360 361static inline int copy_mc_highpage(struct page *to, struct page *from) 362{ 363 unsigned long ret; 364 char *vfrom, *vto; 365 366 vfrom = kmap_local_page(from); 367 vto = kmap_local_page(to); 368 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); 369 if (!ret) 370 kmsan_copy_page_meta(to, from); 371 kunmap_local(vto); 372 kunmap_local(vfrom); 373 374 if (ret) 375 memory_failure_queue(page_to_pfn(from), 0); 376 377 return ret; 378} 379#else 380static inline int copy_mc_user_highpage(struct page *to, struct page *from, 381 unsigned long vaddr, struct vm_area_struct *vma) 382{ 383 copy_user_highpage(to, from, vaddr, vma); 384 return 0; 385} 386 387static inline int copy_mc_highpage(struct page *to, struct page *from) 388{ 389 copy_highpage(to, from); 390 return 0; 391} 392#endif 393 394static inline void memcpy_page(struct page *dst_page, size_t dst_off, 395 struct page *src_page, size_t src_off, 396 size_t len) 397{ 398 char *dst = kmap_local_page(dst_page); 399 char *src = kmap_local_page(src_page); 400 401 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 402 memcpy(dst + dst_off, src + src_off, len); 403 kunmap_local(src); 404 kunmap_local(dst); 405} 406 407static inline void memcpy_folio(struct folio *dst_folio, size_t dst_off, 408 struct folio *src_folio, size_t src_off, size_t len) 409{ 410 VM_BUG_ON(dst_off + len > folio_size(dst_folio)); 411 VM_BUG_ON(src_off + len > folio_size(src_folio)); 412 413 do { 414 char *dst = kmap_local_folio(dst_folio, dst_off); 415 const char *src = kmap_local_folio(src_folio, src_off); 416 size_t chunk = len; 417 418 if (folio_test_highmem(dst_folio) && 419 chunk > PAGE_SIZE - offset_in_page(dst_off)) 420 chunk = PAGE_SIZE - offset_in_page(dst_off); 421 if (folio_test_highmem(src_folio) && 422 chunk > PAGE_SIZE - offset_in_page(src_off)) 423 chunk = PAGE_SIZE - offset_in_page(src_off); 424 memcpy(dst, src, chunk); 425 kunmap_local(src); 426 kunmap_local(dst); 427 428 dst_off += chunk; 429 src_off += chunk; 430 len -= chunk; 431 } while (len > 0); 432} 433 434static inline void memset_page(struct page *page, size_t offset, int val, 435 size_t len) 436{ 437 char *addr = kmap_local_page(page); 438 439 VM_BUG_ON(offset + len > PAGE_SIZE); 440 memset(addr + offset, val, len); 441 kunmap_local(addr); 442} 443 444static inline void memcpy_from_page(char *to, struct page *page, 445 size_t offset, size_t len) 446{ 447 char *from = kmap_local_page(page); 448 449 VM_BUG_ON(offset + len > PAGE_SIZE); 450 memcpy(to, from + offset, len); 451 kunmap_local(from); 452} 453 454static inline void memcpy_to_page(struct page *page, size_t offset, 455 const char *from, size_t len) 456{ 457 char *to = kmap_local_page(page); 458 459 VM_BUG_ON(offset + len > PAGE_SIZE); 460 memcpy(to + offset, from, len); 461 flush_dcache_page(page); 462 kunmap_local(to); 463} 464 465static inline void memzero_page(struct page *page, size_t offset, size_t len) 466{ 467 char *addr = kmap_local_page(page); 468 469 VM_BUG_ON(offset + len > PAGE_SIZE); 470 memset(addr + offset, 0, len); 471 flush_dcache_page(page); 472 kunmap_local(addr); 473} 474 475/** 476 * memcpy_from_folio - Copy a range of bytes from a folio. 477 * @to: The memory to copy to. 478 * @folio: The folio to read from. 479 * @offset: The first byte in the folio to read. 480 * @len: The number of bytes to copy. 481 */ 482static inline void memcpy_from_folio(char *to, struct folio *folio, 483 size_t offset, size_t len) 484{ 485 VM_BUG_ON(offset + len > folio_size(folio)); 486 487 do { 488 const char *from = kmap_local_folio(folio, offset); 489 size_t chunk = len; 490 491 if (folio_test_partial_kmap(folio) && 492 chunk > PAGE_SIZE - offset_in_page(offset)) 493 chunk = PAGE_SIZE - offset_in_page(offset); 494 memcpy(to, from, chunk); 495 kunmap_local(from); 496 497 to += chunk; 498 offset += chunk; 499 len -= chunk; 500 } while (len > 0); 501} 502 503/** 504 * memcpy_to_folio - Copy a range of bytes to a folio. 505 * @folio: The folio to write to. 506 * @offset: The first byte in the folio to store to. 507 * @from: The memory to copy from. 508 * @len: The number of bytes to copy. 509 */ 510static inline void memcpy_to_folio(struct folio *folio, size_t offset, 511 const char *from, size_t len) 512{ 513 VM_BUG_ON(offset + len > folio_size(folio)); 514 515 do { 516 char *to = kmap_local_folio(folio, offset); 517 size_t chunk = len; 518 519 if (folio_test_partial_kmap(folio) && 520 chunk > PAGE_SIZE - offset_in_page(offset)) 521 chunk = PAGE_SIZE - offset_in_page(offset); 522 memcpy(to, from, chunk); 523 kunmap_local(to); 524 525 from += chunk; 526 offset += chunk; 527 len -= chunk; 528 } while (len > 0); 529 530 flush_dcache_folio(folio); 531} 532 533/** 534 * folio_zero_tail - Zero the tail of a folio. 535 * @folio: The folio to zero. 536 * @offset: The byte offset in the folio to start zeroing at. 537 * @kaddr: The address the folio is currently mapped to. 538 * 539 * If you have already used kmap_local_folio() to map a folio, written 540 * some data to it and now need to zero the end of the folio (and flush 541 * the dcache), you can use this function. If you do not have the 542 * folio kmapped (eg the folio has been partially populated by DMA), 543 * use folio_zero_range() or folio_zero_segment() instead. 544 * 545 * Return: An address which can be passed to kunmap_local(). 546 */ 547static inline __must_check void *folio_zero_tail(struct folio *folio, 548 size_t offset, void *kaddr) 549{ 550 size_t len = folio_size(folio) - offset; 551 552 if (folio_test_partial_kmap(folio)) { 553 size_t max = PAGE_SIZE - offset_in_page(offset); 554 555 while (len > max) { 556 memset(kaddr, 0, max); 557 kunmap_local(kaddr); 558 len -= max; 559 offset += max; 560 max = PAGE_SIZE; 561 kaddr = kmap_local_folio(folio, offset); 562 } 563 } 564 565 memset(kaddr, 0, len); 566 flush_dcache_folio(folio); 567 568 return kaddr; 569} 570 571/** 572 * folio_fill_tail - Copy some data to a folio and pad with zeroes. 573 * @folio: The destination folio. 574 * @offset: The offset into @folio at which to start copying. 575 * @from: The data to copy. 576 * @len: How many bytes of data to copy. 577 * 578 * This function is most useful for filesystems which support inline data. 579 * When they want to copy data from the inode into the page cache, this 580 * function does everything for them. It supports large folios even on 581 * HIGHMEM configurations. 582 */ 583static inline void folio_fill_tail(struct folio *folio, size_t offset, 584 const char *from, size_t len) 585{ 586 char *to = kmap_local_folio(folio, offset); 587 588 VM_BUG_ON(offset + len > folio_size(folio)); 589 590 if (folio_test_partial_kmap(folio)) { 591 size_t max = PAGE_SIZE - offset_in_page(offset); 592 593 while (len > max) { 594 memcpy(to, from, max); 595 kunmap_local(to); 596 len -= max; 597 from += max; 598 offset += max; 599 max = PAGE_SIZE; 600 to = kmap_local_folio(folio, offset); 601 } 602 } 603 604 memcpy(to, from, len); 605 to = folio_zero_tail(folio, offset + len, to + len); 606 kunmap_local(to); 607} 608 609/** 610 * memcpy_from_file_folio - Copy some bytes from a file folio. 611 * @to: The destination buffer. 612 * @folio: The folio to copy from. 613 * @pos: The position in the file. 614 * @len: The maximum number of bytes to copy. 615 * 616 * Copy up to @len bytes from this folio. This may be limited by PAGE_SIZE 617 * if the folio comes from HIGHMEM, and by the size of the folio. 618 * 619 * Return: The number of bytes copied from the folio. 620 */ 621static inline size_t memcpy_from_file_folio(char *to, struct folio *folio, 622 loff_t pos, size_t len) 623{ 624 size_t offset = offset_in_folio(folio, pos); 625 char *from = kmap_local_folio(folio, offset); 626 627 if (folio_test_partial_kmap(folio)) { 628 offset = offset_in_page(offset); 629 len = min_t(size_t, len, PAGE_SIZE - offset); 630 } else 631 len = min(len, folio_size(folio) - offset); 632 633 memcpy(to, from, len); 634 kunmap_local(from); 635 636 return len; 637} 638 639/** 640 * folio_zero_segments() - Zero two byte ranges in a folio. 641 * @folio: The folio to write to. 642 * @start1: The first byte to zero. 643 * @xend1: One more than the last byte in the first range. 644 * @start2: The first byte to zero in the second range. 645 * @xend2: One more than the last byte in the second range. 646 */ 647static inline void folio_zero_segments(struct folio *folio, 648 size_t start1, size_t xend1, size_t start2, size_t xend2) 649{ 650 zero_user_segments(&folio->page, start1, xend1, start2, xend2); 651} 652 653/** 654 * folio_zero_segment() - Zero a byte range in a folio. 655 * @folio: The folio to write to. 656 * @start: The first byte to zero. 657 * @xend: One more than the last byte to zero. 658 */ 659static inline void folio_zero_segment(struct folio *folio, 660 size_t start, size_t xend) 661{ 662 zero_user_segments(&folio->page, start, xend, 0, 0); 663} 664 665/** 666 * folio_zero_range() - Zero a byte range in a folio. 667 * @folio: The folio to write to. 668 * @start: The first byte to zero. 669 * @length: The number of bytes to zero. 670 */ 671static inline void folio_zero_range(struct folio *folio, 672 size_t start, size_t length) 673{ 674 zero_user_segments(&folio->page, start, start + length, 0, 0); 675} 676 677/** 678 * folio_release_kmap - Unmap a folio and drop a refcount. 679 * @folio: The folio to release. 680 * @addr: The address previously returned by a call to kmap_local_folio(). 681 * 682 * It is common, eg in directory handling to kmap a folio. This function 683 * unmaps the folio and drops the refcount that was being held to keep the 684 * folio alive while we accessed it. 685 */ 686static inline void folio_release_kmap(struct folio *folio, void *addr) 687{ 688 kunmap_local(addr); 689 folio_put(folio); 690} 691 692static inline void unmap_and_put_page(struct page *page, void *addr) 693{ 694 folio_release_kmap(page_folio(page), addr); 695} 696 697#endif /* _LINUX_HIGHMEM_H */