at v6.16 1387 lines 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_CPUMASK_H 3#define __LINUX_CPUMASK_H 4 5/* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPUs in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10#include <linux/cleanup.h> 11#include <linux/kernel.h> 12#include <linux/bitmap.h> 13#include <linux/cpumask_types.h> 14#include <linux/atomic.h> 15#include <linux/bug.h> 16#include <linux/gfp_types.h> 17#include <linux/numa.h> 18 19/** 20 * cpumask_pr_args - printf args to output a cpumask 21 * @maskp: cpumask to be printed 22 * 23 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 24 */ 25#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 26 27#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 28#define nr_cpu_ids ((unsigned int)NR_CPUS) 29#else 30extern unsigned int nr_cpu_ids; 31#endif 32 33static __always_inline void set_nr_cpu_ids(unsigned int nr) 34{ 35#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 36 WARN_ON(nr != nr_cpu_ids); 37#else 38 nr_cpu_ids = nr; 39#endif 40} 41 42/* 43 * We have several different "preferred sizes" for the cpumask 44 * operations, depending on operation. 45 * 46 * For example, the bitmap scanning and operating operations have 47 * optimized routines that work for the single-word case, but only when 48 * the size is constant. So if NR_CPUS fits in one single word, we are 49 * better off using that small constant, in order to trigger the 50 * optimized bit finding. That is 'small_cpumask_size'. 51 * 52 * The clearing and copying operations will similarly perform better 53 * with a constant size, but we limit that size arbitrarily to four 54 * words. We call this 'large_cpumask_size'. 55 * 56 * Finally, some operations just want the exact limit, either because 57 * they set bits or just don't have any faster fixed-sized versions. We 58 * call this just 'nr_cpumask_bits'. 59 * 60 * Note that these optional constants are always guaranteed to be at 61 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 62 * allocations are at least that size (see cpumask_size()). The 63 * optimization comes from being able to potentially use a compile-time 64 * constant instead of a run-time generated exact number of CPUs. 65 */ 66#if NR_CPUS <= BITS_PER_LONG 67 #define small_cpumask_bits ((unsigned int)NR_CPUS) 68 #define large_cpumask_bits ((unsigned int)NR_CPUS) 69#elif NR_CPUS <= 4*BITS_PER_LONG 70 #define small_cpumask_bits nr_cpu_ids 71 #define large_cpumask_bits ((unsigned int)NR_CPUS) 72#else 73 #define small_cpumask_bits nr_cpu_ids 74 #define large_cpumask_bits nr_cpu_ids 75#endif 76#define nr_cpumask_bits nr_cpu_ids 77 78/* 79 * The following particular system cpumasks and operations manage 80 * possible, present, active and online cpus. 81 * 82 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 83 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 84 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online 85 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 86 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 87 * 88 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 89 * 90 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs 91 * that it is possible might ever be plugged in at anytime during the 92 * life of that system boot. The cpu_present_mask is dynamic(*), 93 * representing which CPUs are currently plugged in. And 94 * cpu_online_mask is the dynamic subset of cpu_present_mask, 95 * indicating those CPUs available for scheduling. 96 * 97 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 98 * depending on what ACPI reports as currently plugged in, otherwise 99 * cpu_present_mask is just a copy of cpu_possible_mask. 100 * 101 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 102 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 103 * 104 * Subtleties: 105 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 106 * assumption that their single CPU is online. The UP 107 * cpu_{online,possible,present}_masks are placebos. Changing them 108 * will have no useful affect on the following num_*_cpus() 109 * and cpu_*() macros in the UP case. This ugliness is a UP 110 * optimization - don't waste any instructions or memory references 111 * asking if you're online or how many CPUs there are if there is 112 * only one CPU. 113 */ 114 115extern struct cpumask __cpu_possible_mask; 116extern struct cpumask __cpu_online_mask; 117extern struct cpumask __cpu_enabled_mask; 118extern struct cpumask __cpu_present_mask; 119extern struct cpumask __cpu_active_mask; 120extern struct cpumask __cpu_dying_mask; 121#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 122#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 123#define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask) 124#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 125#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 126#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 127 128extern atomic_t __num_online_cpus; 129 130extern cpumask_t cpus_booted_once_mask; 131 132static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 133{ 134#ifdef CONFIG_DEBUG_PER_CPU_MAPS 135 WARN_ON_ONCE(cpu >= bits); 136#endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 137} 138 139/* verify cpu argument to cpumask_* operators */ 140static __always_inline unsigned int cpumask_check(unsigned int cpu) 141{ 142 cpu_max_bits_warn(cpu, small_cpumask_bits); 143 return cpu; 144} 145 146/** 147 * cpumask_first - get the first cpu in a cpumask 148 * @srcp: the cpumask pointer 149 * 150 * Return: >= nr_cpu_ids if no cpus set. 151 */ 152static __always_inline unsigned int cpumask_first(const struct cpumask *srcp) 153{ 154 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 155} 156 157/** 158 * cpumask_first_zero - get the first unset cpu in a cpumask 159 * @srcp: the cpumask pointer 160 * 161 * Return: >= nr_cpu_ids if all cpus are set. 162 */ 163static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 164{ 165 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 166} 167 168/** 169 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 170 * @srcp1: the first input 171 * @srcp2: the second input 172 * 173 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 174 */ 175static __always_inline 176unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 177{ 178 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 179} 180 181/** 182 * cpumask_first_andnot - return the first cpu from *srcp1 & ~*srcp2 183 * @srcp1: the first input 184 * @srcp2: the second input 185 * 186 * Return: >= nr_cpu_ids if no such cpu found. 187 */ 188static __always_inline 189unsigned int cpumask_first_andnot(const struct cpumask *srcp1, const struct cpumask *srcp2) 190{ 191 return find_first_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 192} 193 194/** 195 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3 196 * @srcp1: the first input 197 * @srcp2: the second input 198 * @srcp3: the third input 199 * 200 * Return: >= nr_cpu_ids if no cpus set in all. 201 */ 202static __always_inline 203unsigned int cpumask_first_and_and(const struct cpumask *srcp1, 204 const struct cpumask *srcp2, 205 const struct cpumask *srcp3) 206{ 207 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 208 cpumask_bits(srcp3), small_cpumask_bits); 209} 210 211/** 212 * cpumask_last - get the last CPU in a cpumask 213 * @srcp: - the cpumask pointer 214 * 215 * Return: >= nr_cpumask_bits if no CPUs set. 216 */ 217static __always_inline unsigned int cpumask_last(const struct cpumask *srcp) 218{ 219 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 220} 221 222/** 223 * cpumask_next - get the next cpu in a cpumask 224 * @n: the cpu prior to the place to search (i.e. return will be > @n) 225 * @srcp: the cpumask pointer 226 * 227 * Return: >= nr_cpu_ids if no further cpus set. 228 */ 229static __always_inline 230unsigned int cpumask_next(int n, const struct cpumask *srcp) 231{ 232 /* -1 is a legal arg here. */ 233 if (n != -1) 234 cpumask_check(n); 235 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 236} 237 238/** 239 * cpumask_next_zero - get the next unset cpu in a cpumask 240 * @n: the cpu prior to the place to search (i.e. return will be > @n) 241 * @srcp: the cpumask pointer 242 * 243 * Return: >= nr_cpu_ids if no further cpus unset. 244 */ 245static __always_inline 246unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 247{ 248 /* -1 is a legal arg here. */ 249 if (n != -1) 250 cpumask_check(n); 251 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 252} 253 254#if NR_CPUS == 1 255/* Uniprocessor: there is only one valid CPU */ 256static __always_inline 257unsigned int cpumask_local_spread(unsigned int i, int node) 258{ 259 return 0; 260} 261 262static __always_inline 263unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 264 const struct cpumask *src2p) 265{ 266 return cpumask_first_and(src1p, src2p); 267} 268 269static __always_inline 270unsigned int cpumask_any_distribute(const struct cpumask *srcp) 271{ 272 return cpumask_first(srcp); 273} 274#else 275unsigned int cpumask_local_spread(unsigned int i, int node); 276unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 277 const struct cpumask *src2p); 278unsigned int cpumask_any_distribute(const struct cpumask *srcp); 279#endif /* NR_CPUS */ 280 281/** 282 * cpumask_next_and - get the next cpu in *src1p & *src2p 283 * @n: the cpu prior to the place to search (i.e. return will be > @n) 284 * @src1p: the first cpumask pointer 285 * @src2p: the second cpumask pointer 286 * 287 * Return: >= nr_cpu_ids if no further cpus set in both. 288 */ 289static __always_inline 290unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 291 const struct cpumask *src2p) 292{ 293 /* -1 is a legal arg here. */ 294 if (n != -1) 295 cpumask_check(n); 296 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 297 small_cpumask_bits, n + 1); 298} 299 300/** 301 * cpumask_next_andnot - get the next cpu in *src1p & ~*src2p 302 * @n: the cpu prior to the place to search (i.e. return will be > @n) 303 * @src1p: the first cpumask pointer 304 * @src2p: the second cpumask pointer 305 * 306 * Return: >= nr_cpu_ids if no further cpus set in both. 307 */ 308static __always_inline 309unsigned int cpumask_next_andnot(int n, const struct cpumask *src1p, 310 const struct cpumask *src2p) 311{ 312 /* -1 is a legal arg here. */ 313 if (n != -1) 314 cpumask_check(n); 315 return find_next_andnot_bit(cpumask_bits(src1p), cpumask_bits(src2p), 316 small_cpumask_bits, n + 1); 317} 318 319/** 320 * cpumask_next_and_wrap - get the next cpu in *src1p & *src2p, starting from 321 * @n+1. If nothing found, wrap around and start from 322 * the beginning 323 * @n: the cpu prior to the place to search (i.e. search starts from @n+1) 324 * @src1p: the first cpumask pointer 325 * @src2p: the second cpumask pointer 326 * 327 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src1p & @src2p is empty. 328 */ 329static __always_inline 330unsigned int cpumask_next_and_wrap(int n, const struct cpumask *src1p, 331 const struct cpumask *src2p) 332{ 333 /* -1 is a legal arg here. */ 334 if (n != -1) 335 cpumask_check(n); 336 return find_next_and_bit_wrap(cpumask_bits(src1p), cpumask_bits(src2p), 337 small_cpumask_bits, n + 1); 338} 339 340/** 341 * cpumask_next_wrap - get the next cpu in *src, starting from @n+1. If nothing 342 * found, wrap around and start from the beginning 343 * @n: the cpu prior to the place to search (i.e. search starts from @n+1) 344 * @src: cpumask pointer 345 * 346 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src is empty. 347 */ 348static __always_inline 349unsigned int cpumask_next_wrap(int n, const struct cpumask *src) 350{ 351 /* -1 is a legal arg here. */ 352 if (n != -1) 353 cpumask_check(n); 354 return find_next_bit_wrap(cpumask_bits(src), small_cpumask_bits, n + 1); 355} 356 357/** 358 * for_each_cpu - iterate over every cpu in a mask 359 * @cpu: the (optionally unsigned) integer iterator 360 * @mask: the cpumask pointer 361 * 362 * After the loop, cpu is >= nr_cpu_ids. 363 */ 364#define for_each_cpu(cpu, mask) \ 365 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 366 367/** 368 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 369 * @cpu: the (optionally unsigned) integer iterator 370 * @mask: the cpumask pointer 371 * @start: the start location 372 * 373 * The implementation does not assume any bit in @mask is set (including @start). 374 * 375 * After the loop, cpu is >= nr_cpu_ids. 376 */ 377#define for_each_cpu_wrap(cpu, mask, start) \ 378 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 379 380/** 381 * for_each_cpu_and - iterate over every cpu in both masks 382 * @cpu: the (optionally unsigned) integer iterator 383 * @mask1: the first cpumask pointer 384 * @mask2: the second cpumask pointer 385 * 386 * This saves a temporary CPU mask in many places. It is equivalent to: 387 * struct cpumask tmp; 388 * cpumask_and(&tmp, &mask1, &mask2); 389 * for_each_cpu(cpu, &tmp) 390 * ... 391 * 392 * After the loop, cpu is >= nr_cpu_ids. 393 */ 394#define for_each_cpu_and(cpu, mask1, mask2) \ 395 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 396 397/** 398 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 399 * those present in another. 400 * @cpu: the (optionally unsigned) integer iterator 401 * @mask1: the first cpumask pointer 402 * @mask2: the second cpumask pointer 403 * 404 * This saves a temporary CPU mask in many places. It is equivalent to: 405 * struct cpumask tmp; 406 * cpumask_andnot(&tmp, &mask1, &mask2); 407 * for_each_cpu(cpu, &tmp) 408 * ... 409 * 410 * After the loop, cpu is >= nr_cpu_ids. 411 */ 412#define for_each_cpu_andnot(cpu, mask1, mask2) \ 413 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 414 415/** 416 * for_each_cpu_or - iterate over every cpu present in either mask 417 * @cpu: the (optionally unsigned) integer iterator 418 * @mask1: the first cpumask pointer 419 * @mask2: the second cpumask pointer 420 * 421 * This saves a temporary CPU mask in many places. It is equivalent to: 422 * struct cpumask tmp; 423 * cpumask_or(&tmp, &mask1, &mask2); 424 * for_each_cpu(cpu, &tmp) 425 * ... 426 * 427 * After the loop, cpu is >= nr_cpu_ids. 428 */ 429#define for_each_cpu_or(cpu, mask1, mask2) \ 430 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 431 432/** 433 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask. 434 * @cpu: the (optionally unsigned) integer iterator 435 * @mask: the cpumask pointer 436 * 437 * After the loop, cpu is >= nr_cpu_ids. 438 */ 439#define for_each_cpu_from(cpu, mask) \ 440 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits) 441 442/** 443 * cpumask_any_but - return an arbitrary cpu in a cpumask, but not this one. 444 * @mask: the cpumask to search 445 * @cpu: the cpu to ignore. 446 * 447 * Often used to find any cpu but smp_processor_id() in a mask. 448 * If @cpu == -1, the function is equivalent to cpumask_any(). 449 * Return: >= nr_cpu_ids if no cpus set. 450 */ 451static __always_inline 452unsigned int cpumask_any_but(const struct cpumask *mask, int cpu) 453{ 454 unsigned int i; 455 456 /* -1 is a legal arg here. */ 457 if (cpu != -1) 458 cpumask_check(cpu); 459 460 for_each_cpu(i, mask) 461 if (i != cpu) 462 break; 463 return i; 464} 465 466/** 467 * cpumask_any_and_but - pick an arbitrary cpu from *mask1 & *mask2, but not this one. 468 * @mask1: the first input cpumask 469 * @mask2: the second input cpumask 470 * @cpu: the cpu to ignore 471 * 472 * If @cpu == -1, the function is equivalent to cpumask_any_and(). 473 * Returns >= nr_cpu_ids if no cpus set. 474 */ 475static __always_inline 476unsigned int cpumask_any_and_but(const struct cpumask *mask1, 477 const struct cpumask *mask2, 478 int cpu) 479{ 480 unsigned int i; 481 482 /* -1 is a legal arg here. */ 483 if (cpu != -1) 484 cpumask_check(cpu); 485 486 i = cpumask_first_and(mask1, mask2); 487 if (i != cpu) 488 return i; 489 490 return cpumask_next_and(cpu, mask1, mask2); 491} 492 493/** 494 * cpumask_any_andnot_but - pick an arbitrary cpu from *mask1 & ~*mask2, but not this one. 495 * @mask1: the first input cpumask 496 * @mask2: the second input cpumask 497 * @cpu: the cpu to ignore 498 * 499 * If @cpu == -1, the function returns the first matching cpu. 500 * Returns >= nr_cpu_ids if no cpus set. 501 */ 502static __always_inline 503unsigned int cpumask_any_andnot_but(const struct cpumask *mask1, 504 const struct cpumask *mask2, 505 int cpu) 506{ 507 unsigned int i; 508 509 /* -1 is a legal arg here. */ 510 if (cpu != -1) 511 cpumask_check(cpu); 512 513 i = cpumask_first_andnot(mask1, mask2); 514 if (i != cpu) 515 return i; 516 517 return cpumask_next_andnot(cpu, mask1, mask2); 518} 519 520/** 521 * cpumask_nth - get the Nth cpu in a cpumask 522 * @srcp: the cpumask pointer 523 * @cpu: the Nth cpu to find, starting from 0 524 * 525 * Return: >= nr_cpu_ids if such cpu doesn't exist. 526 */ 527static __always_inline 528unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 529{ 530 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 531} 532 533/** 534 * cpumask_nth_and - get the Nth cpu in 2 cpumasks 535 * @srcp1: the cpumask pointer 536 * @srcp2: the cpumask pointer 537 * @cpu: the Nth cpu to find, starting from 0 538 * 539 * Return: >= nr_cpu_ids if such cpu doesn't exist. 540 */ 541static __always_inline 542unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 543 const struct cpumask *srcp2) 544{ 545 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 546 small_cpumask_bits, cpumask_check(cpu)); 547} 548 549/** 550 * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd. 551 * @srcp1: the cpumask pointer 552 * @srcp2: the cpumask pointer 553 * @cpu: the Nth cpu to find, starting from 0 554 * 555 * Return: >= nr_cpu_ids if such cpu doesn't exist. 556 */ 557static __always_inline 558unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, 559 const struct cpumask *srcp2) 560{ 561 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 562 small_cpumask_bits, cpumask_check(cpu)); 563} 564 565/** 566 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 567 * @srcp1: the cpumask pointer 568 * @srcp2: the cpumask pointer 569 * @srcp3: the cpumask pointer 570 * @cpu: the Nth cpu to find, starting from 0 571 * 572 * Return: >= nr_cpu_ids if such cpu doesn't exist. 573 */ 574static __always_inline 575unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 576 const struct cpumask *srcp2, 577 const struct cpumask *srcp3) 578{ 579 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 580 cpumask_bits(srcp2), 581 cpumask_bits(srcp3), 582 small_cpumask_bits, cpumask_check(cpu)); 583} 584 585#define CPU_BITS_NONE \ 586{ \ 587 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 588} 589 590#define CPU_BITS_CPU0 \ 591{ \ 592 [0] = 1UL \ 593} 594 595/** 596 * cpumask_set_cpu - set a cpu in a cpumask 597 * @cpu: cpu number (< nr_cpu_ids) 598 * @dstp: the cpumask pointer 599 */ 600static __always_inline 601void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 602{ 603 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 604} 605 606static __always_inline 607void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 608{ 609 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 610} 611 612 613/** 614 * cpumask_clear_cpu - clear a cpu in a cpumask 615 * @cpu: cpu number (< nr_cpu_ids) 616 * @dstp: the cpumask pointer 617 */ 618static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 619{ 620 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 621} 622 623static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 624{ 625 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 626} 627 628/** 629 * cpumask_test_cpu - test for a cpu in a cpumask 630 * @cpu: cpu number (< nr_cpu_ids) 631 * @cpumask: the cpumask pointer 632 * 633 * Return: true if @cpu is set in @cpumask, else returns false 634 */ 635static __always_inline 636bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 637{ 638 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 639} 640 641/** 642 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 643 * @cpu: cpu number (< nr_cpu_ids) 644 * @cpumask: the cpumask pointer 645 * 646 * test_and_set_bit wrapper for cpumasks. 647 * 648 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 649 */ 650static __always_inline 651bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 652{ 653 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 654} 655 656/** 657 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 658 * @cpu: cpu number (< nr_cpu_ids) 659 * @cpumask: the cpumask pointer 660 * 661 * test_and_clear_bit wrapper for cpumasks. 662 * 663 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 664 */ 665static __always_inline 666bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 667{ 668 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 669} 670 671/** 672 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 673 * @dstp: the cpumask pointer 674 */ 675static __always_inline void cpumask_setall(struct cpumask *dstp) 676{ 677 if (small_const_nbits(small_cpumask_bits)) { 678 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 679 return; 680 } 681 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 682} 683 684/** 685 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 686 * @dstp: the cpumask pointer 687 */ 688static __always_inline void cpumask_clear(struct cpumask *dstp) 689{ 690 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 691} 692 693/** 694 * cpumask_and - *dstp = *src1p & *src2p 695 * @dstp: the cpumask result 696 * @src1p: the first input 697 * @src2p: the second input 698 * 699 * Return: false if *@dstp is empty, else returns true 700 */ 701static __always_inline 702bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, 703 const struct cpumask *src2p) 704{ 705 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 706 cpumask_bits(src2p), small_cpumask_bits); 707} 708 709/** 710 * cpumask_or - *dstp = *src1p | *src2p 711 * @dstp: the cpumask result 712 * @src1p: the first input 713 * @src2p: the second input 714 */ 715static __always_inline 716void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 717 const struct cpumask *src2p) 718{ 719 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 720 cpumask_bits(src2p), small_cpumask_bits); 721} 722 723/** 724 * cpumask_xor - *dstp = *src1p ^ *src2p 725 * @dstp: the cpumask result 726 * @src1p: the first input 727 * @src2p: the second input 728 */ 729static __always_inline 730void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, 731 const struct cpumask *src2p) 732{ 733 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 734 cpumask_bits(src2p), small_cpumask_bits); 735} 736 737/** 738 * cpumask_andnot - *dstp = *src1p & ~*src2p 739 * @dstp: the cpumask result 740 * @src1p: the first input 741 * @src2p: the second input 742 * 743 * Return: false if *@dstp is empty, else returns true 744 */ 745static __always_inline 746bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, 747 const struct cpumask *src2p) 748{ 749 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 750 cpumask_bits(src2p), small_cpumask_bits); 751} 752 753/** 754 * cpumask_equal - *src1p == *src2p 755 * @src1p: the first input 756 * @src2p: the second input 757 * 758 * Return: true if the cpumasks are equal, false if not 759 */ 760static __always_inline 761bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) 762{ 763 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 764 small_cpumask_bits); 765} 766 767/** 768 * cpumask_or_equal - *src1p | *src2p == *src3p 769 * @src1p: the first input 770 * @src2p: the second input 771 * @src3p: the third input 772 * 773 * Return: true if first cpumask ORed with second cpumask == third cpumask, 774 * otherwise false 775 */ 776static __always_inline 777bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, 778 const struct cpumask *src3p) 779{ 780 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 781 cpumask_bits(src3p), small_cpumask_bits); 782} 783 784/** 785 * cpumask_intersects - (*src1p & *src2p) != 0 786 * @src1p: the first input 787 * @src2p: the second input 788 * 789 * Return: true if first cpumask ANDed with second cpumask is non-empty, 790 * otherwise false 791 */ 792static __always_inline 793bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) 794{ 795 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 796 small_cpumask_bits); 797} 798 799/** 800 * cpumask_subset - (*src1p & ~*src2p) == 0 801 * @src1p: the first input 802 * @src2p: the second input 803 * 804 * Return: true if *@src1p is a subset of *@src2p, else returns false 805 */ 806static __always_inline 807bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) 808{ 809 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 810 small_cpumask_bits); 811} 812 813/** 814 * cpumask_empty - *srcp == 0 815 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 816 * 817 * Return: true if srcp is empty (has no bits set), else false 818 */ 819static __always_inline bool cpumask_empty(const struct cpumask *srcp) 820{ 821 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 822} 823 824/** 825 * cpumask_full - *srcp == 0xFFFFFFFF... 826 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 827 * 828 * Return: true if srcp is full (has all bits set), else false 829 */ 830static __always_inline bool cpumask_full(const struct cpumask *srcp) 831{ 832 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 833} 834 835/** 836 * cpumask_weight - Count of bits in *srcp 837 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 838 * 839 * Return: count of bits set in *srcp 840 */ 841static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp) 842{ 843 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 844} 845 846/** 847 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 848 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 849 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 850 * 851 * Return: count of bits set in both *srcp1 and *srcp2 852 */ 853static __always_inline 854unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 855{ 856 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 857} 858 859/** 860 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2) 861 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 862 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 863 * 864 * Return: count of bits set in both *srcp1 and *srcp2 865 */ 866static __always_inline 867unsigned int cpumask_weight_andnot(const struct cpumask *srcp1, 868 const struct cpumask *srcp2) 869{ 870 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 871} 872 873/** 874 * cpumask_shift_right - *dstp = *srcp >> n 875 * @dstp: the cpumask result 876 * @srcp: the input to shift 877 * @n: the number of bits to shift by 878 */ 879static __always_inline 880void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) 881{ 882 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 883 small_cpumask_bits); 884} 885 886/** 887 * cpumask_shift_left - *dstp = *srcp << n 888 * @dstp: the cpumask result 889 * @srcp: the input to shift 890 * @n: the number of bits to shift by 891 */ 892static __always_inline 893void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) 894{ 895 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 896 nr_cpumask_bits); 897} 898 899/** 900 * cpumask_copy - *dstp = *srcp 901 * @dstp: the result 902 * @srcp: the input cpumask 903 */ 904static __always_inline 905void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) 906{ 907 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 908} 909 910/** 911 * cpumask_any - pick an arbitrary cpu from *srcp 912 * @srcp: the input cpumask 913 * 914 * Return: >= nr_cpu_ids if no cpus set. 915 */ 916#define cpumask_any(srcp) cpumask_first(srcp) 917 918/** 919 * cpumask_any_and - pick an arbitrary cpu from *mask1 & *mask2 920 * @mask1: the first input cpumask 921 * @mask2: the second input cpumask 922 * 923 * Return: >= nr_cpu_ids if no cpus set. 924 */ 925#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 926 927/** 928 * cpumask_of - the cpumask containing just a given cpu 929 * @cpu: the cpu (<= nr_cpu_ids) 930 */ 931#define cpumask_of(cpu) (get_cpu_mask(cpu)) 932 933/** 934 * cpumask_parse_user - extract a cpumask from a user string 935 * @buf: the buffer to extract from 936 * @len: the length of the buffer 937 * @dstp: the cpumask to set. 938 * 939 * Return: -errno, or 0 for success. 940 */ 941static __always_inline 942int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) 943{ 944 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 945} 946 947/** 948 * cpumask_parselist_user - extract a cpumask from a user string 949 * @buf: the buffer to extract from 950 * @len: the length of the buffer 951 * @dstp: the cpumask to set. 952 * 953 * Return: -errno, or 0 for success. 954 */ 955static __always_inline 956int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) 957{ 958 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 959 nr_cpumask_bits); 960} 961 962/** 963 * cpumask_parse - extract a cpumask from a string 964 * @buf: the buffer to extract from 965 * @dstp: the cpumask to set. 966 * 967 * Return: -errno, or 0 for success. 968 */ 969static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp) 970{ 971 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 972} 973 974/** 975 * cpulist_parse - extract a cpumask from a user string of ranges 976 * @buf: the buffer to extract from 977 * @dstp: the cpumask to set. 978 * 979 * Return: -errno, or 0 for success. 980 */ 981static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp) 982{ 983 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 984} 985 986/** 987 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes 988 * 989 * Return: size to allocate for a &struct cpumask in bytes 990 */ 991static __always_inline unsigned int cpumask_size(void) 992{ 993 return bitmap_size(large_cpumask_bits); 994} 995 996#ifdef CONFIG_CPUMASK_OFFSTACK 997 998#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 999#define __cpumask_var_read_mostly __read_mostly 1000 1001bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 1002 1003static __always_inline 1004bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 1005{ 1006 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 1007} 1008 1009/** 1010 * alloc_cpumask_var - allocate a struct cpumask 1011 * @mask: pointer to cpumask_var_t where the cpumask is returned 1012 * @flags: GFP_ flags 1013 * 1014 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 1015 * a nop returning a constant 1 (in <linux/cpumask.h>). 1016 * 1017 * See alloc_cpumask_var_node. 1018 * 1019 * Return: %true if allocation succeeded, %false if not 1020 */ 1021static __always_inline 1022bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1023{ 1024 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 1025} 1026 1027static __always_inline 1028bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1029{ 1030 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 1031} 1032 1033void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 1034void free_cpumask_var(cpumask_var_t mask); 1035void free_bootmem_cpumask_var(cpumask_var_t mask); 1036 1037static __always_inline bool cpumask_available(cpumask_var_t mask) 1038{ 1039 return mask != NULL; 1040} 1041 1042#else 1043 1044#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 1045#define __cpumask_var_read_mostly 1046 1047static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1048{ 1049 return true; 1050} 1051 1052static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 1053 int node) 1054{ 1055 return true; 1056} 1057 1058static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 1059{ 1060 cpumask_clear(*mask); 1061 return true; 1062} 1063 1064static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 1065 int node) 1066{ 1067 cpumask_clear(*mask); 1068 return true; 1069} 1070 1071static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 1072{ 1073} 1074 1075static __always_inline void free_cpumask_var(cpumask_var_t mask) 1076{ 1077} 1078 1079static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask) 1080{ 1081} 1082 1083static __always_inline bool cpumask_available(cpumask_var_t mask) 1084{ 1085 return true; 1086} 1087#endif /* CONFIG_CPUMASK_OFFSTACK */ 1088 1089DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T)); 1090 1091/* It's common to want to use cpu_all_mask in struct member initializers, 1092 * so it has to refer to an address rather than a pointer. */ 1093extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 1094#define cpu_all_mask to_cpumask(cpu_all_bits) 1095 1096/* First bits of cpu_bit_bitmap are in fact unset. */ 1097#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 1098 1099#if NR_CPUS == 1 1100/* Uniprocessor: the possible/online/present masks are always "1" */ 1101#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1102#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1103#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1104 1105#define for_each_possible_cpu_wrap(cpu, start) \ 1106 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++) 1107#define for_each_online_cpu_wrap(cpu, start) \ 1108 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++) 1109#else 1110#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 1111#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 1112#define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask) 1113#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 1114 1115#define for_each_possible_cpu_wrap(cpu, start) \ 1116 for_each_cpu_wrap((cpu), cpu_possible_mask, (start)) 1117#define for_each_online_cpu_wrap(cpu, start) \ 1118 for_each_cpu_wrap((cpu), cpu_online_mask, (start)) 1119#endif 1120 1121/* Wrappers for arch boot code to manipulate normally-constant masks */ 1122void init_cpu_present(const struct cpumask *src); 1123void init_cpu_possible(const struct cpumask *src); 1124 1125#define assign_cpu(cpu, mask, val) \ 1126 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) 1127 1128#define __assign_cpu(cpu, mask, val) \ 1129 __assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) 1130 1131#define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible)) 1132#define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled)) 1133#define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present)) 1134#define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active)) 1135#define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying)) 1136 1137void set_cpu_online(unsigned int cpu, bool online); 1138 1139/** 1140 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * 1141 * @bitmap: the bitmap 1142 * 1143 * There are a few places where cpumask_var_t isn't appropriate and 1144 * static cpumasks must be used (eg. very early boot), yet we don't 1145 * expose the definition of 'struct cpumask'. 1146 * 1147 * This does the conversion, and can be used as a constant initializer. 1148 */ 1149#define to_cpumask(bitmap) \ 1150 ((struct cpumask *)(1 ? (bitmap) \ 1151 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1152 1153static __always_inline int __check_is_bitmap(const unsigned long *bitmap) 1154{ 1155 return 1; 1156} 1157 1158/* 1159 * Special-case data structure for "single bit set only" constant CPU masks. 1160 * 1161 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1162 * padding to the left and the right, and return the constant pointer 1163 * appropriately offset. 1164 */ 1165extern const unsigned long 1166 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1167 1168static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1169{ 1170 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1171 p -= cpu / BITS_PER_LONG; 1172 return to_cpumask(p); 1173} 1174 1175#if NR_CPUS > 1 1176/** 1177 * num_online_cpus() - Read the number of online CPUs 1178 * 1179 * Despite the fact that __num_online_cpus is of type atomic_t, this 1180 * interface gives only a momentary snapshot and is not protected against 1181 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1182 * region. 1183 * 1184 * Return: momentary snapshot of the number of online CPUs 1185 */ 1186static __always_inline unsigned int num_online_cpus(void) 1187{ 1188 return raw_atomic_read(&__num_online_cpus); 1189} 1190#define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1191#define num_enabled_cpus() cpumask_weight(cpu_enabled_mask) 1192#define num_present_cpus() cpumask_weight(cpu_present_mask) 1193#define num_active_cpus() cpumask_weight(cpu_active_mask) 1194 1195static __always_inline bool cpu_online(unsigned int cpu) 1196{ 1197 return cpumask_test_cpu(cpu, cpu_online_mask); 1198} 1199 1200static __always_inline bool cpu_enabled(unsigned int cpu) 1201{ 1202 return cpumask_test_cpu(cpu, cpu_enabled_mask); 1203} 1204 1205static __always_inline bool cpu_possible(unsigned int cpu) 1206{ 1207 return cpumask_test_cpu(cpu, cpu_possible_mask); 1208} 1209 1210static __always_inline bool cpu_present(unsigned int cpu) 1211{ 1212 return cpumask_test_cpu(cpu, cpu_present_mask); 1213} 1214 1215static __always_inline bool cpu_active(unsigned int cpu) 1216{ 1217 return cpumask_test_cpu(cpu, cpu_active_mask); 1218} 1219 1220static __always_inline bool cpu_dying(unsigned int cpu) 1221{ 1222 return cpumask_test_cpu(cpu, cpu_dying_mask); 1223} 1224 1225#else 1226 1227#define num_online_cpus() 1U 1228#define num_possible_cpus() 1U 1229#define num_enabled_cpus() 1U 1230#define num_present_cpus() 1U 1231#define num_active_cpus() 1U 1232 1233static __always_inline bool cpu_online(unsigned int cpu) 1234{ 1235 return cpu == 0; 1236} 1237 1238static __always_inline bool cpu_possible(unsigned int cpu) 1239{ 1240 return cpu == 0; 1241} 1242 1243static __always_inline bool cpu_enabled(unsigned int cpu) 1244{ 1245 return cpu == 0; 1246} 1247 1248static __always_inline bool cpu_present(unsigned int cpu) 1249{ 1250 return cpu == 0; 1251} 1252 1253static __always_inline bool cpu_active(unsigned int cpu) 1254{ 1255 return cpu == 0; 1256} 1257 1258static __always_inline bool cpu_dying(unsigned int cpu) 1259{ 1260 return false; 1261} 1262 1263#endif /* NR_CPUS > 1 */ 1264 1265#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1266 1267#if NR_CPUS <= BITS_PER_LONG 1268#define CPU_BITS_ALL \ 1269{ \ 1270 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1271} 1272 1273#else /* NR_CPUS > BITS_PER_LONG */ 1274 1275#define CPU_BITS_ALL \ 1276{ \ 1277 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1278 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1279} 1280#endif /* NR_CPUS > BITS_PER_LONG */ 1281 1282/** 1283 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1284 * as comma-separated list of cpus or hex values of cpumask 1285 * @list: indicates whether the cpumap must be list 1286 * @mask: the cpumask to copy 1287 * @buf: the buffer to copy into 1288 * 1289 * Return: the length of the (null-terminated) @buf string, zero if 1290 * nothing is copied. 1291 */ 1292static __always_inline ssize_t 1293cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1294{ 1295 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1296 nr_cpu_ids); 1297} 1298 1299/** 1300 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1301 * hex values of cpumask 1302 * 1303 * @buf: the buffer to copy into 1304 * @mask: the cpumask to copy 1305 * @off: in the string from which we are copying, we copy to @buf 1306 * @count: the maximum number of bytes to print 1307 * 1308 * The function prints the cpumask into the buffer as hex values of 1309 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1310 * ABI. 1311 * 1312 * Return: the length of how many bytes have been copied, excluding 1313 * terminating '\0'. 1314 */ 1315static __always_inline 1316ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1317 loff_t off, size_t count) 1318{ 1319 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1320 nr_cpu_ids, off, count) - 1; 1321} 1322 1323/** 1324 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1325 * comma-separated list of cpus 1326 * @buf: the buffer to copy into 1327 * @mask: the cpumask to copy 1328 * @off: in the string from which we are copying, we copy to @buf 1329 * @count: the maximum number of bytes to print 1330 * 1331 * Everything is same with the above cpumap_print_bitmask_to_buf() 1332 * except the print format. 1333 * 1334 * Return: the length of how many bytes have been copied, excluding 1335 * terminating '\0'. 1336 */ 1337static __always_inline 1338ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1339 loff_t off, size_t count) 1340{ 1341 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1342 nr_cpu_ids, off, count) - 1; 1343} 1344 1345#if NR_CPUS <= BITS_PER_LONG 1346#define CPU_MASK_ALL \ 1347(cpumask_t) { { \ 1348 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1349} } 1350#else 1351#define CPU_MASK_ALL \ 1352(cpumask_t) { { \ 1353 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1354 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1355} } 1356#endif /* NR_CPUS > BITS_PER_LONG */ 1357 1358#define CPU_MASK_NONE \ 1359(cpumask_t) { { \ 1360 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1361} } 1362 1363#define CPU_MASK_CPU0 \ 1364(cpumask_t) { { \ 1365 [0] = 1UL \ 1366} } 1367 1368/* 1369 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1370 * to avoid breaking userspace which may allocate a buffer based on the size 1371 * reported by e.g. fstat. 1372 * 1373 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1374 * 1375 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1376 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1377 * cover a worst-case of every other cpu being on one of two nodes for a 1378 * very large NR_CPUS. 1379 * 1380 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1381 * unsigned comparison to -1. 1382 */ 1383#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1384 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1385#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1386 1387#endif /* __LINUX_CPUMASK_H */