at v6.16 115 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_H 5#define _LINUX_BPF_H 1 6 7#include <uapi/linux/bpf.h> 8#include <uapi/linux/filter.h> 9 10#include <linux/workqueue.h> 11#include <linux/file.h> 12#include <linux/percpu.h> 13#include <linux/err.h> 14#include <linux/rbtree_latch.h> 15#include <linux/numa.h> 16#include <linux/mm_types.h> 17#include <linux/wait.h> 18#include <linux/refcount.h> 19#include <linux/mutex.h> 20#include <linux/module.h> 21#include <linux/kallsyms.h> 22#include <linux/capability.h> 23#include <linux/sched/mm.h> 24#include <linux/slab.h> 25#include <linux/percpu-refcount.h> 26#include <linux/stddef.h> 27#include <linux/bpfptr.h> 28#include <linux/btf.h> 29#include <linux/rcupdate_trace.h> 30#include <linux/static_call.h> 31#include <linux/memcontrol.h> 32#include <linux/cfi.h> 33#include <asm/rqspinlock.h> 34 35struct bpf_verifier_env; 36struct bpf_verifier_log; 37struct perf_event; 38struct bpf_prog; 39struct bpf_prog_aux; 40struct bpf_map; 41struct bpf_arena; 42struct sock; 43struct seq_file; 44struct btf; 45struct btf_type; 46struct exception_table_entry; 47struct seq_operations; 48struct bpf_iter_aux_info; 49struct bpf_local_storage; 50struct bpf_local_storage_map; 51struct kobject; 52struct mem_cgroup; 53struct module; 54struct bpf_func_state; 55struct ftrace_ops; 56struct cgroup; 57struct bpf_token; 58struct user_namespace; 59struct super_block; 60struct inode; 61 62extern struct idr btf_idr; 63extern spinlock_t btf_idr_lock; 64extern struct kobject *btf_kobj; 65extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 66extern bool bpf_global_ma_set; 67 68typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 69typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 70 struct bpf_iter_aux_info *aux); 71typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 72typedef unsigned int (*bpf_func_t)(const void *, 73 const struct bpf_insn *); 74struct bpf_iter_seq_info { 75 const struct seq_operations *seq_ops; 76 bpf_iter_init_seq_priv_t init_seq_private; 77 bpf_iter_fini_seq_priv_t fini_seq_private; 78 u32 seq_priv_size; 79}; 80 81/* map is generic key/value storage optionally accessible by eBPF programs */ 82struct bpf_map_ops { 83 /* funcs callable from userspace (via syscall) */ 84 int (*map_alloc_check)(union bpf_attr *attr); 85 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 86 void (*map_release)(struct bpf_map *map, struct file *map_file); 87 void (*map_free)(struct bpf_map *map); 88 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 89 void (*map_release_uref)(struct bpf_map *map); 90 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 91 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 92 union bpf_attr __user *uattr); 93 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 94 void *value, u64 flags); 95 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 96 const union bpf_attr *attr, 97 union bpf_attr __user *uattr); 98 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 99 const union bpf_attr *attr, 100 union bpf_attr __user *uattr); 101 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 102 union bpf_attr __user *uattr); 103 104 /* funcs callable from userspace and from eBPF programs */ 105 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 106 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 107 long (*map_delete_elem)(struct bpf_map *map, void *key); 108 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 109 long (*map_pop_elem)(struct bpf_map *map, void *value); 110 long (*map_peek_elem)(struct bpf_map *map, void *value); 111 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 112 113 /* funcs called by prog_array and perf_event_array map */ 114 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 115 int fd); 116 /* If need_defer is true, the implementation should guarantee that 117 * the to-be-put element is still alive before the bpf program, which 118 * may manipulate it, exists. 119 */ 120 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 121 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 122 u32 (*map_fd_sys_lookup_elem)(void *ptr); 123 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 124 struct seq_file *m); 125 int (*map_check_btf)(const struct bpf_map *map, 126 const struct btf *btf, 127 const struct btf_type *key_type, 128 const struct btf_type *value_type); 129 130 /* Prog poke tracking helpers. */ 131 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 133 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 134 struct bpf_prog *new); 135 136 /* Direct value access helpers. */ 137 int (*map_direct_value_addr)(const struct bpf_map *map, 138 u64 *imm, u32 off); 139 int (*map_direct_value_meta)(const struct bpf_map *map, 140 u64 imm, u32 *off); 141 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 142 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 143 struct poll_table_struct *pts); 144 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 145 unsigned long len, unsigned long pgoff, 146 unsigned long flags); 147 148 /* Functions called by bpf_local_storage maps */ 149 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 150 void *owner, u32 size); 151 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 152 void *owner, u32 size); 153 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 154 155 /* Misc helpers.*/ 156 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 157 158 /* map_meta_equal must be implemented for maps that can be 159 * used as an inner map. It is a runtime check to ensure 160 * an inner map can be inserted to an outer map. 161 * 162 * Some properties of the inner map has been used during the 163 * verification time. When inserting an inner map at the runtime, 164 * map_meta_equal has to ensure the inserting map has the same 165 * properties that the verifier has used earlier. 166 */ 167 bool (*map_meta_equal)(const struct bpf_map *meta0, 168 const struct bpf_map *meta1); 169 170 171 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 172 struct bpf_func_state *caller, 173 struct bpf_func_state *callee); 174 long (*map_for_each_callback)(struct bpf_map *map, 175 bpf_callback_t callback_fn, 176 void *callback_ctx, u64 flags); 177 178 u64 (*map_mem_usage)(const struct bpf_map *map); 179 180 /* BTF id of struct allocated by map_alloc */ 181 int *map_btf_id; 182 183 /* bpf_iter info used to open a seq_file */ 184 const struct bpf_iter_seq_info *iter_seq_info; 185}; 186 187enum { 188 /* Support at most 11 fields in a BTF type */ 189 BTF_FIELDS_MAX = 11, 190}; 191 192enum btf_field_type { 193 BPF_SPIN_LOCK = (1 << 0), 194 BPF_TIMER = (1 << 1), 195 BPF_KPTR_UNREF = (1 << 2), 196 BPF_KPTR_REF = (1 << 3), 197 BPF_KPTR_PERCPU = (1 << 4), 198 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 199 BPF_LIST_HEAD = (1 << 5), 200 BPF_LIST_NODE = (1 << 6), 201 BPF_RB_ROOT = (1 << 7), 202 BPF_RB_NODE = (1 << 8), 203 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 204 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 205 BPF_REFCOUNT = (1 << 9), 206 BPF_WORKQUEUE = (1 << 10), 207 BPF_UPTR = (1 << 11), 208 BPF_RES_SPIN_LOCK = (1 << 12), 209}; 210 211typedef void (*btf_dtor_kfunc_t)(void *); 212 213struct btf_field_kptr { 214 struct btf *btf; 215 struct module *module; 216 /* dtor used if btf_is_kernel(btf), otherwise the type is 217 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 218 */ 219 btf_dtor_kfunc_t dtor; 220 u32 btf_id; 221}; 222 223struct btf_field_graph_root { 224 struct btf *btf; 225 u32 value_btf_id; 226 u32 node_offset; 227 struct btf_record *value_rec; 228}; 229 230struct btf_field { 231 u32 offset; 232 u32 size; 233 enum btf_field_type type; 234 union { 235 struct btf_field_kptr kptr; 236 struct btf_field_graph_root graph_root; 237 }; 238}; 239 240struct btf_record { 241 u32 cnt; 242 u32 field_mask; 243 int spin_lock_off; 244 int res_spin_lock_off; 245 int timer_off; 246 int wq_off; 247 int refcount_off; 248 struct btf_field fields[]; 249}; 250 251/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 252struct bpf_rb_node_kern { 253 struct rb_node rb_node; 254 void *owner; 255} __attribute__((aligned(8))); 256 257/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 258struct bpf_list_node_kern { 259 struct list_head list_head; 260 void *owner; 261} __attribute__((aligned(8))); 262 263struct bpf_map { 264 const struct bpf_map_ops *ops; 265 struct bpf_map *inner_map_meta; 266#ifdef CONFIG_SECURITY 267 void *security; 268#endif 269 enum bpf_map_type map_type; 270 u32 key_size; 271 u32 value_size; 272 u32 max_entries; 273 u64 map_extra; /* any per-map-type extra fields */ 274 u32 map_flags; 275 u32 id; 276 struct btf_record *record; 277 int numa_node; 278 u32 btf_key_type_id; 279 u32 btf_value_type_id; 280 u32 btf_vmlinux_value_type_id; 281 struct btf *btf; 282#ifdef CONFIG_MEMCG 283 struct obj_cgroup *objcg; 284#endif 285 char name[BPF_OBJ_NAME_LEN]; 286 struct mutex freeze_mutex; 287 atomic64_t refcnt; 288 atomic64_t usercnt; 289 /* rcu is used before freeing and work is only used during freeing */ 290 union { 291 struct work_struct work; 292 struct rcu_head rcu; 293 }; 294 atomic64_t writecnt; 295 /* 'Ownership' of program-containing map is claimed by the first program 296 * that is going to use this map or by the first program which FD is 297 * stored in the map to make sure that all callers and callees have the 298 * same prog type, JITed flag and xdp_has_frags flag. 299 */ 300 struct { 301 const struct btf_type *attach_func_proto; 302 spinlock_t lock; 303 enum bpf_prog_type type; 304 bool jited; 305 bool xdp_has_frags; 306 } owner; 307 bool bypass_spec_v1; 308 bool frozen; /* write-once; write-protected by freeze_mutex */ 309 bool free_after_mult_rcu_gp; 310 bool free_after_rcu_gp; 311 atomic64_t sleepable_refcnt; 312 s64 __percpu *elem_count; 313}; 314 315static inline const char *btf_field_type_name(enum btf_field_type type) 316{ 317 switch (type) { 318 case BPF_SPIN_LOCK: 319 return "bpf_spin_lock"; 320 case BPF_RES_SPIN_LOCK: 321 return "bpf_res_spin_lock"; 322 case BPF_TIMER: 323 return "bpf_timer"; 324 case BPF_WORKQUEUE: 325 return "bpf_wq"; 326 case BPF_KPTR_UNREF: 327 case BPF_KPTR_REF: 328 return "kptr"; 329 case BPF_KPTR_PERCPU: 330 return "percpu_kptr"; 331 case BPF_UPTR: 332 return "uptr"; 333 case BPF_LIST_HEAD: 334 return "bpf_list_head"; 335 case BPF_LIST_NODE: 336 return "bpf_list_node"; 337 case BPF_RB_ROOT: 338 return "bpf_rb_root"; 339 case BPF_RB_NODE: 340 return "bpf_rb_node"; 341 case BPF_REFCOUNT: 342 return "bpf_refcount"; 343 default: 344 WARN_ON_ONCE(1); 345 return "unknown"; 346 } 347} 348 349#if IS_ENABLED(CONFIG_DEBUG_KERNEL) 350#define BPF_WARN_ONCE(cond, format...) WARN_ONCE(cond, format) 351#else 352#define BPF_WARN_ONCE(cond, format...) BUILD_BUG_ON_INVALID(cond) 353#endif 354 355static inline u32 btf_field_type_size(enum btf_field_type type) 356{ 357 switch (type) { 358 case BPF_SPIN_LOCK: 359 return sizeof(struct bpf_spin_lock); 360 case BPF_RES_SPIN_LOCK: 361 return sizeof(struct bpf_res_spin_lock); 362 case BPF_TIMER: 363 return sizeof(struct bpf_timer); 364 case BPF_WORKQUEUE: 365 return sizeof(struct bpf_wq); 366 case BPF_KPTR_UNREF: 367 case BPF_KPTR_REF: 368 case BPF_KPTR_PERCPU: 369 case BPF_UPTR: 370 return sizeof(u64); 371 case BPF_LIST_HEAD: 372 return sizeof(struct bpf_list_head); 373 case BPF_LIST_NODE: 374 return sizeof(struct bpf_list_node); 375 case BPF_RB_ROOT: 376 return sizeof(struct bpf_rb_root); 377 case BPF_RB_NODE: 378 return sizeof(struct bpf_rb_node); 379 case BPF_REFCOUNT: 380 return sizeof(struct bpf_refcount); 381 default: 382 WARN_ON_ONCE(1); 383 return 0; 384 } 385} 386 387static inline u32 btf_field_type_align(enum btf_field_type type) 388{ 389 switch (type) { 390 case BPF_SPIN_LOCK: 391 return __alignof__(struct bpf_spin_lock); 392 case BPF_RES_SPIN_LOCK: 393 return __alignof__(struct bpf_res_spin_lock); 394 case BPF_TIMER: 395 return __alignof__(struct bpf_timer); 396 case BPF_WORKQUEUE: 397 return __alignof__(struct bpf_wq); 398 case BPF_KPTR_UNREF: 399 case BPF_KPTR_REF: 400 case BPF_KPTR_PERCPU: 401 case BPF_UPTR: 402 return __alignof__(u64); 403 case BPF_LIST_HEAD: 404 return __alignof__(struct bpf_list_head); 405 case BPF_LIST_NODE: 406 return __alignof__(struct bpf_list_node); 407 case BPF_RB_ROOT: 408 return __alignof__(struct bpf_rb_root); 409 case BPF_RB_NODE: 410 return __alignof__(struct bpf_rb_node); 411 case BPF_REFCOUNT: 412 return __alignof__(struct bpf_refcount); 413 default: 414 WARN_ON_ONCE(1); 415 return 0; 416 } 417} 418 419static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 420{ 421 memset(addr, 0, field->size); 422 423 switch (field->type) { 424 case BPF_REFCOUNT: 425 refcount_set((refcount_t *)addr, 1); 426 break; 427 case BPF_RB_NODE: 428 RB_CLEAR_NODE((struct rb_node *)addr); 429 break; 430 case BPF_LIST_HEAD: 431 case BPF_LIST_NODE: 432 INIT_LIST_HEAD((struct list_head *)addr); 433 break; 434 case BPF_RB_ROOT: 435 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 436 case BPF_SPIN_LOCK: 437 case BPF_RES_SPIN_LOCK: 438 case BPF_TIMER: 439 case BPF_WORKQUEUE: 440 case BPF_KPTR_UNREF: 441 case BPF_KPTR_REF: 442 case BPF_KPTR_PERCPU: 443 case BPF_UPTR: 444 break; 445 default: 446 WARN_ON_ONCE(1); 447 return; 448 } 449} 450 451static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 452{ 453 if (IS_ERR_OR_NULL(rec)) 454 return false; 455 return rec->field_mask & type; 456} 457 458static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 459{ 460 int i; 461 462 if (IS_ERR_OR_NULL(rec)) 463 return; 464 for (i = 0; i < rec->cnt; i++) 465 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 466} 467 468/* 'dst' must be a temporary buffer and should not point to memory that is being 469 * used in parallel by a bpf program or bpf syscall, otherwise the access from 470 * the bpf program or bpf syscall may be corrupted by the reinitialization, 471 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 472 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 473 * program or bpf syscall. 474 */ 475static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 476{ 477 bpf_obj_init(map->record, dst); 478} 479 480/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 481 * forced to use 'long' read/writes to try to atomically copy long counters. 482 * Best-effort only. No barriers here, since it _will_ race with concurrent 483 * updates from BPF programs. Called from bpf syscall and mostly used with 484 * size 8 or 16 bytes, so ask compiler to inline it. 485 */ 486static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 487{ 488 const long *lsrc = src; 489 long *ldst = dst; 490 491 size /= sizeof(long); 492 while (size--) 493 data_race(*ldst++ = *lsrc++); 494} 495 496/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 497static inline void bpf_obj_memcpy(struct btf_record *rec, 498 void *dst, void *src, u32 size, 499 bool long_memcpy) 500{ 501 u32 curr_off = 0; 502 int i; 503 504 if (IS_ERR_OR_NULL(rec)) { 505 if (long_memcpy) 506 bpf_long_memcpy(dst, src, round_up(size, 8)); 507 else 508 memcpy(dst, src, size); 509 return; 510 } 511 512 for (i = 0; i < rec->cnt; i++) { 513 u32 next_off = rec->fields[i].offset; 514 u32 sz = next_off - curr_off; 515 516 memcpy(dst + curr_off, src + curr_off, sz); 517 curr_off += rec->fields[i].size + sz; 518 } 519 memcpy(dst + curr_off, src + curr_off, size - curr_off); 520} 521 522static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 523{ 524 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 525} 526 527static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 528{ 529 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 530} 531 532static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src) 533{ 534 unsigned long *src_uptr, *dst_uptr; 535 const struct btf_field *field; 536 int i; 537 538 if (!btf_record_has_field(rec, BPF_UPTR)) 539 return; 540 541 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { 542 if (field->type != BPF_UPTR) 543 continue; 544 545 src_uptr = src + field->offset; 546 dst_uptr = dst + field->offset; 547 swap(*src_uptr, *dst_uptr); 548 } 549} 550 551static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 552{ 553 u32 curr_off = 0; 554 int i; 555 556 if (IS_ERR_OR_NULL(rec)) { 557 memset(dst, 0, size); 558 return; 559 } 560 561 for (i = 0; i < rec->cnt; i++) { 562 u32 next_off = rec->fields[i].offset; 563 u32 sz = next_off - curr_off; 564 565 memset(dst + curr_off, 0, sz); 566 curr_off += rec->fields[i].size + sz; 567 } 568 memset(dst + curr_off, 0, size - curr_off); 569} 570 571static inline void zero_map_value(struct bpf_map *map, void *dst) 572{ 573 bpf_obj_memzero(map->record, dst, map->value_size); 574} 575 576void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 577 bool lock_src); 578void bpf_timer_cancel_and_free(void *timer); 579void bpf_wq_cancel_and_free(void *timer); 580void bpf_list_head_free(const struct btf_field *field, void *list_head, 581 struct bpf_spin_lock *spin_lock); 582void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 583 struct bpf_spin_lock *spin_lock); 584u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 585u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 586int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 587 588struct bpf_offload_dev; 589struct bpf_offloaded_map; 590 591struct bpf_map_dev_ops { 592 int (*map_get_next_key)(struct bpf_offloaded_map *map, 593 void *key, void *next_key); 594 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 595 void *key, void *value); 596 int (*map_update_elem)(struct bpf_offloaded_map *map, 597 void *key, void *value, u64 flags); 598 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 599}; 600 601struct bpf_offloaded_map { 602 struct bpf_map map; 603 struct net_device *netdev; 604 const struct bpf_map_dev_ops *dev_ops; 605 void *dev_priv; 606 struct list_head offloads; 607}; 608 609static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 610{ 611 return container_of(map, struct bpf_offloaded_map, map); 612} 613 614static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 615{ 616 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 617} 618 619static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 620{ 621 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 622 map->ops->map_seq_show_elem; 623} 624 625int map_check_no_btf(const struct bpf_map *map, 626 const struct btf *btf, 627 const struct btf_type *key_type, 628 const struct btf_type *value_type); 629 630bool bpf_map_meta_equal(const struct bpf_map *meta0, 631 const struct bpf_map *meta1); 632 633extern const struct bpf_map_ops bpf_map_offload_ops; 634 635/* bpf_type_flag contains a set of flags that are applicable to the values of 636 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 637 * or a memory is read-only. We classify types into two categories: base types 638 * and extended types. Extended types are base types combined with a type flag. 639 * 640 * Currently there are no more than 32 base types in arg_type, ret_type and 641 * reg_types. 642 */ 643#define BPF_BASE_TYPE_BITS 8 644 645enum bpf_type_flag { 646 /* PTR may be NULL. */ 647 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 648 649 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 650 * compatible with both mutable and immutable memory. 651 */ 652 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 653 654 /* MEM points to BPF ring buffer reservation. */ 655 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 656 657 /* MEM is in user address space. */ 658 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 659 660 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 661 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 662 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 663 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 664 * to the specified cpu. 665 */ 666 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 667 668 /* Indicates that the argument will be released. */ 669 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 670 671 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 672 * unreferenced and referenced kptr loaded from map value using a load 673 * instruction, so that they can only be dereferenced but not escape the 674 * BPF program into the kernel (i.e. cannot be passed as arguments to 675 * kfunc or bpf helpers). 676 */ 677 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 678 679 /* MEM can be uninitialized. */ 680 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 681 682 /* DYNPTR points to memory local to the bpf program. */ 683 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 684 685 /* DYNPTR points to a kernel-produced ringbuf record. */ 686 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 687 688 /* Size is known at compile time. */ 689 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 690 691 /* MEM is of an allocated object of type in program BTF. This is used to 692 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 693 */ 694 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 695 696 /* PTR was passed from the kernel in a trusted context, and may be 697 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 698 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 699 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 700 * without invoking bpf_kptr_xchg(). What we really need to know is 701 * whether a pointer is safe to pass to a kfunc or BPF helper function. 702 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 703 * helpers, they do not cover all possible instances of unsafe 704 * pointers. For example, a pointer that was obtained from walking a 705 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 706 * fact that it may be NULL, invalid, etc. This is due to backwards 707 * compatibility requirements, as this was the behavior that was first 708 * introduced when kptrs were added. The behavior is now considered 709 * deprecated, and PTR_UNTRUSTED will eventually be removed. 710 * 711 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 712 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 713 * For example, pointers passed to tracepoint arguments are considered 714 * PTR_TRUSTED, as are pointers that are passed to struct_ops 715 * callbacks. As alluded to above, pointers that are obtained from 716 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 717 * struct task_struct *task is PTR_TRUSTED, then accessing 718 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 719 * in a BPF register. Similarly, pointers passed to certain programs 720 * types such as kretprobes are not guaranteed to be valid, as they may 721 * for example contain an object that was recently freed. 722 */ 723 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 724 725 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 726 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 727 728 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 729 * Currently only valid for linked-list and rbtree nodes. If the nodes 730 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 731 */ 732 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 733 734 /* DYNPTR points to sk_buff */ 735 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 736 737 /* DYNPTR points to xdp_buff */ 738 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 739 740 /* Memory must be aligned on some architectures, used in combination with 741 * MEM_FIXED_SIZE. 742 */ 743 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 744 745 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence 746 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the 747 * MEM_UNINIT means that memory needs to be initialized since it is also 748 * read. 749 */ 750 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), 751 752 __BPF_TYPE_FLAG_MAX, 753 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 754}; 755 756#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 757 | DYNPTR_TYPE_XDP) 758 759/* Max number of base types. */ 760#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 761 762/* Max number of all types. */ 763#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 764 765/* function argument constraints */ 766enum bpf_arg_type { 767 ARG_DONTCARE = 0, /* unused argument in helper function */ 768 769 /* the following constraints used to prototype 770 * bpf_map_lookup/update/delete_elem() functions 771 */ 772 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 773 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 774 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 775 776 /* Used to prototype bpf_memcmp() and other functions that access data 777 * on eBPF program stack 778 */ 779 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 780 ARG_PTR_TO_ARENA, 781 782 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 783 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 784 785 ARG_PTR_TO_CTX, /* pointer to context */ 786 ARG_ANYTHING, /* any (initialized) argument is ok */ 787 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 788 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 789 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 790 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 791 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 792 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 793 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 794 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 795 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 796 ARG_PTR_TO_STACK, /* pointer to stack */ 797 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 798 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 799 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 800 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 801 __BPF_ARG_TYPE_MAX, 802 803 /* Extended arg_types. */ 804 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 805 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 806 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 807 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 808 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 809 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 810 /* Pointer to memory does not need to be initialized, since helper function 811 * fills all bytes or clears them in error case. 812 */ 813 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, 814 /* Pointer to valid memory of size known at compile time. */ 815 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 816 817 /* This must be the last entry. Its purpose is to ensure the enum is 818 * wide enough to hold the higher bits reserved for bpf_type_flag. 819 */ 820 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 821}; 822static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 823 824/* type of values returned from helper functions */ 825enum bpf_return_type { 826 RET_INTEGER, /* function returns integer */ 827 RET_VOID, /* function doesn't return anything */ 828 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 829 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 830 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 831 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 832 RET_PTR_TO_MEM, /* returns a pointer to memory */ 833 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 834 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 835 __BPF_RET_TYPE_MAX, 836 837 /* Extended ret_types. */ 838 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 839 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 840 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 841 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 842 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 843 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 844 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 845 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 846 847 /* This must be the last entry. Its purpose is to ensure the enum is 848 * wide enough to hold the higher bits reserved for bpf_type_flag. 849 */ 850 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 851}; 852static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 853 854/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 855 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 856 * instructions after verifying 857 */ 858struct bpf_func_proto { 859 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 860 bool gpl_only; 861 bool pkt_access; 862 bool might_sleep; 863 /* set to true if helper follows contract for llvm 864 * attribute bpf_fastcall: 865 * - void functions do not scratch r0 866 * - functions taking N arguments scratch only registers r1-rN 867 */ 868 bool allow_fastcall; 869 enum bpf_return_type ret_type; 870 union { 871 struct { 872 enum bpf_arg_type arg1_type; 873 enum bpf_arg_type arg2_type; 874 enum bpf_arg_type arg3_type; 875 enum bpf_arg_type arg4_type; 876 enum bpf_arg_type arg5_type; 877 }; 878 enum bpf_arg_type arg_type[5]; 879 }; 880 union { 881 struct { 882 u32 *arg1_btf_id; 883 u32 *arg2_btf_id; 884 u32 *arg3_btf_id; 885 u32 *arg4_btf_id; 886 u32 *arg5_btf_id; 887 }; 888 u32 *arg_btf_id[5]; 889 struct { 890 size_t arg1_size; 891 size_t arg2_size; 892 size_t arg3_size; 893 size_t arg4_size; 894 size_t arg5_size; 895 }; 896 size_t arg_size[5]; 897 }; 898 int *ret_btf_id; /* return value btf_id */ 899 bool (*allowed)(const struct bpf_prog *prog); 900}; 901 902/* bpf_context is intentionally undefined structure. Pointer to bpf_context is 903 * the first argument to eBPF programs. 904 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 905 */ 906struct bpf_context; 907 908enum bpf_access_type { 909 BPF_READ = 1, 910 BPF_WRITE = 2 911}; 912 913/* types of values stored in eBPF registers */ 914/* Pointer types represent: 915 * pointer 916 * pointer + imm 917 * pointer + (u16) var 918 * pointer + (u16) var + imm 919 * if (range > 0) then [ptr, ptr + range - off) is safe to access 920 * if (id > 0) means that some 'var' was added 921 * if (off > 0) means that 'imm' was added 922 */ 923enum bpf_reg_type { 924 NOT_INIT = 0, /* nothing was written into register */ 925 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 926 PTR_TO_CTX, /* reg points to bpf_context */ 927 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 928 PTR_TO_MAP_VALUE, /* reg points to map element value */ 929 PTR_TO_MAP_KEY, /* reg points to a map element key */ 930 PTR_TO_STACK, /* reg == frame_pointer + offset */ 931 PTR_TO_PACKET_META, /* skb->data - meta_len */ 932 PTR_TO_PACKET, /* reg points to skb->data */ 933 PTR_TO_PACKET_END, /* skb->data + headlen */ 934 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 935 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 936 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 937 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 938 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 939 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 940 /* PTR_TO_BTF_ID points to a kernel struct that does not need 941 * to be null checked by the BPF program. This does not imply the 942 * pointer is _not_ null and in practice this can easily be a null 943 * pointer when reading pointer chains. The assumption is program 944 * context will handle null pointer dereference typically via fault 945 * handling. The verifier must keep this in mind and can make no 946 * assumptions about null or non-null when doing branch analysis. 947 * Further, when passed into helpers the helpers can not, without 948 * additional context, assume the value is non-null. 949 */ 950 PTR_TO_BTF_ID, 951 PTR_TO_MEM, /* reg points to valid memory region */ 952 PTR_TO_ARENA, 953 PTR_TO_BUF, /* reg points to a read/write buffer */ 954 PTR_TO_FUNC, /* reg points to a bpf program function */ 955 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 956 __BPF_REG_TYPE_MAX, 957 958 /* Extended reg_types. */ 959 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 960 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 961 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 962 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 963 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 964 * been checked for null. Used primarily to inform the verifier 965 * an explicit null check is required for this struct. 966 */ 967 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 968 969 /* This must be the last entry. Its purpose is to ensure the enum is 970 * wide enough to hold the higher bits reserved for bpf_type_flag. 971 */ 972 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 973}; 974static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 975 976/* The information passed from prog-specific *_is_valid_access 977 * back to the verifier. 978 */ 979struct bpf_insn_access_aux { 980 enum bpf_reg_type reg_type; 981 bool is_ldsx; 982 union { 983 int ctx_field_size; 984 struct { 985 struct btf *btf; 986 u32 btf_id; 987 u32 ref_obj_id; 988 }; 989 }; 990 struct bpf_verifier_log *log; /* for verbose logs */ 991 bool is_retval; /* is accessing function return value ? */ 992}; 993 994static inline void 995bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 996{ 997 aux->ctx_field_size = size; 998} 999 1000static bool bpf_is_ldimm64(const struct bpf_insn *insn) 1001{ 1002 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 1003} 1004 1005static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 1006{ 1007 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 1008} 1009 1010/* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an 1011 * atomic load or store, and false if it is a read-modify-write instruction. 1012 */ 1013static inline bool 1014bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn) 1015{ 1016 switch (atomic_insn->imm) { 1017 case BPF_LOAD_ACQ: 1018 case BPF_STORE_REL: 1019 return true; 1020 default: 1021 return false; 1022 } 1023} 1024 1025struct bpf_prog_ops { 1026 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 1027 union bpf_attr __user *uattr); 1028}; 1029 1030struct bpf_reg_state; 1031struct bpf_verifier_ops { 1032 /* return eBPF function prototype for verification */ 1033 const struct bpf_func_proto * 1034 (*get_func_proto)(enum bpf_func_id func_id, 1035 const struct bpf_prog *prog); 1036 1037 /* return true if 'size' wide access at offset 'off' within bpf_context 1038 * with 'type' (read or write) is allowed 1039 */ 1040 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 1041 const struct bpf_prog *prog, 1042 struct bpf_insn_access_aux *info); 1043 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 1044 const struct bpf_prog *prog); 1045 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 1046 s16 ctx_stack_off); 1047 int (*gen_ld_abs)(const struct bpf_insn *orig, 1048 struct bpf_insn *insn_buf); 1049 u32 (*convert_ctx_access)(enum bpf_access_type type, 1050 const struct bpf_insn *src, 1051 struct bpf_insn *dst, 1052 struct bpf_prog *prog, u32 *target_size); 1053 int (*btf_struct_access)(struct bpf_verifier_log *log, 1054 const struct bpf_reg_state *reg, 1055 int off, int size); 1056}; 1057 1058struct bpf_prog_offload_ops { 1059 /* verifier basic callbacks */ 1060 int (*insn_hook)(struct bpf_verifier_env *env, 1061 int insn_idx, int prev_insn_idx); 1062 int (*finalize)(struct bpf_verifier_env *env); 1063 /* verifier optimization callbacks (called after .finalize) */ 1064 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1065 struct bpf_insn *insn); 1066 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1067 /* program management callbacks */ 1068 int (*prepare)(struct bpf_prog *prog); 1069 int (*translate)(struct bpf_prog *prog); 1070 void (*destroy)(struct bpf_prog *prog); 1071}; 1072 1073struct bpf_prog_offload { 1074 struct bpf_prog *prog; 1075 struct net_device *netdev; 1076 struct bpf_offload_dev *offdev; 1077 void *dev_priv; 1078 struct list_head offloads; 1079 bool dev_state; 1080 bool opt_failed; 1081 void *jited_image; 1082 u32 jited_len; 1083}; 1084 1085enum bpf_cgroup_storage_type { 1086 BPF_CGROUP_STORAGE_SHARED, 1087 BPF_CGROUP_STORAGE_PERCPU, 1088 __BPF_CGROUP_STORAGE_MAX 1089}; 1090 1091#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1092 1093/* The longest tracepoint has 12 args. 1094 * See include/trace/bpf_probe.h 1095 */ 1096#define MAX_BPF_FUNC_ARGS 12 1097 1098/* The maximum number of arguments passed through registers 1099 * a single function may have. 1100 */ 1101#define MAX_BPF_FUNC_REG_ARGS 5 1102 1103/* The argument is a structure. */ 1104#define BTF_FMODEL_STRUCT_ARG BIT(0) 1105 1106/* The argument is signed. */ 1107#define BTF_FMODEL_SIGNED_ARG BIT(1) 1108 1109struct btf_func_model { 1110 u8 ret_size; 1111 u8 ret_flags; 1112 u8 nr_args; 1113 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1114 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1115}; 1116 1117/* Restore arguments before returning from trampoline to let original function 1118 * continue executing. This flag is used for fentry progs when there are no 1119 * fexit progs. 1120 */ 1121#define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1122/* Call original function after fentry progs, but before fexit progs. 1123 * Makes sense for fentry/fexit, normal calls and indirect calls. 1124 */ 1125#define BPF_TRAMP_F_CALL_ORIG BIT(1) 1126/* Skip current frame and return to parent. Makes sense for fentry/fexit 1127 * programs only. Should not be used with normal calls and indirect calls. 1128 */ 1129#define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1130/* Store IP address of the caller on the trampoline stack, 1131 * so it's available for trampoline's programs. 1132 */ 1133#define BPF_TRAMP_F_IP_ARG BIT(3) 1134/* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1135#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1136 1137/* Get original function from stack instead of from provided direct address. 1138 * Makes sense for trampolines with fexit or fmod_ret programs. 1139 */ 1140#define BPF_TRAMP_F_ORIG_STACK BIT(5) 1141 1142/* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1143 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1144 */ 1145#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1146 1147/* Indicate that current trampoline is in a tail call context. Then, it has to 1148 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1149 */ 1150#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1151 1152/* 1153 * Indicate the trampoline should be suitable to receive indirect calls; 1154 * without this indirectly calling the generated code can result in #UD/#CP, 1155 * depending on the CFI options. 1156 * 1157 * Used by bpf_struct_ops. 1158 * 1159 * Incompatible with FENTRY usage, overloads @func_addr argument. 1160 */ 1161#define BPF_TRAMP_F_INDIRECT BIT(8) 1162 1163/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1164 * bytes on x86. 1165 */ 1166enum { 1167#if defined(__s390x__) 1168 BPF_MAX_TRAMP_LINKS = 27, 1169#else 1170 BPF_MAX_TRAMP_LINKS = 38, 1171#endif 1172}; 1173 1174struct bpf_tramp_links { 1175 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1176 int nr_links; 1177}; 1178 1179struct bpf_tramp_run_ctx; 1180 1181/* Different use cases for BPF trampoline: 1182 * 1. replace nop at the function entry (kprobe equivalent) 1183 * flags = BPF_TRAMP_F_RESTORE_REGS 1184 * fentry = a set of programs to run before returning from trampoline 1185 * 1186 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1187 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1188 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1189 * fentry = a set of program to run before calling original function 1190 * fexit = a set of program to run after original function 1191 * 1192 * 3. replace direct call instruction anywhere in the function body 1193 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1194 * With flags = 0 1195 * fentry = a set of programs to run before returning from trampoline 1196 * With flags = BPF_TRAMP_F_CALL_ORIG 1197 * orig_call = original callback addr or direct function addr 1198 * fentry = a set of program to run before calling original function 1199 * fexit = a set of program to run after original function 1200 */ 1201struct bpf_tramp_image; 1202int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1203 const struct btf_func_model *m, u32 flags, 1204 struct bpf_tramp_links *tlinks, 1205 void *func_addr); 1206void *arch_alloc_bpf_trampoline(unsigned int size); 1207void arch_free_bpf_trampoline(void *image, unsigned int size); 1208int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1209int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1210 struct bpf_tramp_links *tlinks, void *func_addr); 1211 1212u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1213 struct bpf_tramp_run_ctx *run_ctx); 1214void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1215 struct bpf_tramp_run_ctx *run_ctx); 1216void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1217void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1218typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1219 struct bpf_tramp_run_ctx *run_ctx); 1220typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1221 struct bpf_tramp_run_ctx *run_ctx); 1222bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1223bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1224 1225struct bpf_ksym { 1226 unsigned long start; 1227 unsigned long end; 1228 char name[KSYM_NAME_LEN]; 1229 struct list_head lnode; 1230 struct latch_tree_node tnode; 1231 bool prog; 1232}; 1233 1234enum bpf_tramp_prog_type { 1235 BPF_TRAMP_FENTRY, 1236 BPF_TRAMP_FEXIT, 1237 BPF_TRAMP_MODIFY_RETURN, 1238 BPF_TRAMP_MAX, 1239 BPF_TRAMP_REPLACE, /* more than MAX */ 1240}; 1241 1242struct bpf_tramp_image { 1243 void *image; 1244 int size; 1245 struct bpf_ksym ksym; 1246 struct percpu_ref pcref; 1247 void *ip_after_call; 1248 void *ip_epilogue; 1249 union { 1250 struct rcu_head rcu; 1251 struct work_struct work; 1252 }; 1253}; 1254 1255struct bpf_trampoline { 1256 /* hlist for trampoline_table */ 1257 struct hlist_node hlist; 1258 struct ftrace_ops *fops; 1259 /* serializes access to fields of this trampoline */ 1260 struct mutex mutex; 1261 refcount_t refcnt; 1262 u32 flags; 1263 u64 key; 1264 struct { 1265 struct btf_func_model model; 1266 void *addr; 1267 bool ftrace_managed; 1268 } func; 1269 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1270 * program by replacing one of its functions. func.addr is the address 1271 * of the function it replaced. 1272 */ 1273 struct bpf_prog *extension_prog; 1274 /* list of BPF programs using this trampoline */ 1275 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1276 /* Number of attached programs. A counter per kind. */ 1277 int progs_cnt[BPF_TRAMP_MAX]; 1278 /* Executable image of trampoline */ 1279 struct bpf_tramp_image *cur_image; 1280}; 1281 1282struct bpf_attach_target_info { 1283 struct btf_func_model fmodel; 1284 long tgt_addr; 1285 struct module *tgt_mod; 1286 const char *tgt_name; 1287 const struct btf_type *tgt_type; 1288}; 1289 1290#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1291 1292struct bpf_dispatcher_prog { 1293 struct bpf_prog *prog; 1294 refcount_t users; 1295}; 1296 1297struct bpf_dispatcher { 1298 /* dispatcher mutex */ 1299 struct mutex mutex; 1300 void *func; 1301 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1302 int num_progs; 1303 void *image; 1304 void *rw_image; 1305 u32 image_off; 1306 struct bpf_ksym ksym; 1307#ifdef CONFIG_HAVE_STATIC_CALL 1308 struct static_call_key *sc_key; 1309 void *sc_tramp; 1310#endif 1311}; 1312 1313#ifndef __bpfcall 1314#define __bpfcall __nocfi 1315#endif 1316 1317static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1318 const void *ctx, 1319 const struct bpf_insn *insnsi, 1320 bpf_func_t bpf_func) 1321{ 1322 return bpf_func(ctx, insnsi); 1323} 1324 1325/* the implementation of the opaque uapi struct bpf_dynptr */ 1326struct bpf_dynptr_kern { 1327 void *data; 1328 /* Size represents the number of usable bytes of dynptr data. 1329 * If for example the offset is at 4 for a local dynptr whose data is 1330 * of type u64, the number of usable bytes is 4. 1331 * 1332 * The upper 8 bits are reserved. It is as follows: 1333 * Bits 0 - 23 = size 1334 * Bits 24 - 30 = dynptr type 1335 * Bit 31 = whether dynptr is read-only 1336 */ 1337 u32 size; 1338 u32 offset; 1339} __aligned(8); 1340 1341enum bpf_dynptr_type { 1342 BPF_DYNPTR_TYPE_INVALID, 1343 /* Points to memory that is local to the bpf program */ 1344 BPF_DYNPTR_TYPE_LOCAL, 1345 /* Underlying data is a ringbuf record */ 1346 BPF_DYNPTR_TYPE_RINGBUF, 1347 /* Underlying data is a sk_buff */ 1348 BPF_DYNPTR_TYPE_SKB, 1349 /* Underlying data is a xdp_buff */ 1350 BPF_DYNPTR_TYPE_XDP, 1351}; 1352 1353int bpf_dynptr_check_size(u32 size); 1354u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1355const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1356void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1357bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1358int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, 1359 void *src, u32 len, u64 flags); 1360void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset, 1361 void *buffer__opt, u32 buffer__szk); 1362 1363static inline int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1364{ 1365 u32 size = __bpf_dynptr_size(ptr); 1366 1367 if (len > size || offset > size - len) 1368 return -E2BIG; 1369 1370 return 0; 1371} 1372 1373#ifdef CONFIG_BPF_JIT 1374int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1375 struct bpf_trampoline *tr, 1376 struct bpf_prog *tgt_prog); 1377int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1378 struct bpf_trampoline *tr, 1379 struct bpf_prog *tgt_prog); 1380struct bpf_trampoline *bpf_trampoline_get(u64 key, 1381 struct bpf_attach_target_info *tgt_info); 1382void bpf_trampoline_put(struct bpf_trampoline *tr); 1383int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1384 1385/* 1386 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1387 * indirection with a direct call to the bpf program. If the architecture does 1388 * not have STATIC_CALL, avoid a double-indirection. 1389 */ 1390#ifdef CONFIG_HAVE_STATIC_CALL 1391 1392#define __BPF_DISPATCHER_SC_INIT(_name) \ 1393 .sc_key = &STATIC_CALL_KEY(_name), \ 1394 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1395 1396#define __BPF_DISPATCHER_SC(name) \ 1397 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1398 1399#define __BPF_DISPATCHER_CALL(name) \ 1400 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1401 1402#define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1403 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1404 1405#else 1406#define __BPF_DISPATCHER_SC_INIT(name) 1407#define __BPF_DISPATCHER_SC(name) 1408#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1409#define __BPF_DISPATCHER_UPDATE(_d, _new) 1410#endif 1411 1412#define BPF_DISPATCHER_INIT(_name) { \ 1413 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1414 .func = &_name##_func, \ 1415 .progs = {}, \ 1416 .num_progs = 0, \ 1417 .image = NULL, \ 1418 .image_off = 0, \ 1419 .ksym = { \ 1420 .name = #_name, \ 1421 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1422 }, \ 1423 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1424} 1425 1426#define DEFINE_BPF_DISPATCHER(name) \ 1427 __BPF_DISPATCHER_SC(name); \ 1428 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1429 const void *ctx, \ 1430 const struct bpf_insn *insnsi, \ 1431 bpf_func_t bpf_func) \ 1432 { \ 1433 return __BPF_DISPATCHER_CALL(name); \ 1434 } \ 1435 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1436 struct bpf_dispatcher bpf_dispatcher_##name = \ 1437 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1438 1439#define DECLARE_BPF_DISPATCHER(name) \ 1440 unsigned int bpf_dispatcher_##name##_func( \ 1441 const void *ctx, \ 1442 const struct bpf_insn *insnsi, \ 1443 bpf_func_t bpf_func); \ 1444 extern struct bpf_dispatcher bpf_dispatcher_##name; 1445 1446#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1447#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1448void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1449 struct bpf_prog *to); 1450/* Called only from JIT-enabled code, so there's no need for stubs. */ 1451void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym); 1452void bpf_image_ksym_add(struct bpf_ksym *ksym); 1453void bpf_image_ksym_del(struct bpf_ksym *ksym); 1454void bpf_ksym_add(struct bpf_ksym *ksym); 1455void bpf_ksym_del(struct bpf_ksym *ksym); 1456int bpf_jit_charge_modmem(u32 size); 1457void bpf_jit_uncharge_modmem(u32 size); 1458bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1459#else 1460static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1461 struct bpf_trampoline *tr, 1462 struct bpf_prog *tgt_prog) 1463{ 1464 return -ENOTSUPP; 1465} 1466static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1467 struct bpf_trampoline *tr, 1468 struct bpf_prog *tgt_prog) 1469{ 1470 return -ENOTSUPP; 1471} 1472static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1473 struct bpf_attach_target_info *tgt_info) 1474{ 1475 return NULL; 1476} 1477static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1478#define DEFINE_BPF_DISPATCHER(name) 1479#define DECLARE_BPF_DISPATCHER(name) 1480#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1481#define BPF_DISPATCHER_PTR(name) NULL 1482static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1483 struct bpf_prog *from, 1484 struct bpf_prog *to) {} 1485static inline bool is_bpf_image_address(unsigned long address) 1486{ 1487 return false; 1488} 1489static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1490{ 1491 return false; 1492} 1493#endif 1494 1495struct bpf_func_info_aux { 1496 u16 linkage; 1497 bool unreliable; 1498 bool called : 1; 1499 bool verified : 1; 1500}; 1501 1502enum bpf_jit_poke_reason { 1503 BPF_POKE_REASON_TAIL_CALL, 1504}; 1505 1506/* Descriptor of pokes pointing /into/ the JITed image. */ 1507struct bpf_jit_poke_descriptor { 1508 void *tailcall_target; 1509 void *tailcall_bypass; 1510 void *bypass_addr; 1511 void *aux; 1512 union { 1513 struct { 1514 struct bpf_map *map; 1515 u32 key; 1516 } tail_call; 1517 }; 1518 bool tailcall_target_stable; 1519 u8 adj_off; 1520 u16 reason; 1521 u32 insn_idx; 1522}; 1523 1524/* reg_type info for ctx arguments */ 1525struct bpf_ctx_arg_aux { 1526 u32 offset; 1527 enum bpf_reg_type reg_type; 1528 struct btf *btf; 1529 u32 btf_id; 1530 u32 ref_obj_id; 1531 bool refcounted; 1532}; 1533 1534struct btf_mod_pair { 1535 struct btf *btf; 1536 struct module *module; 1537}; 1538 1539struct bpf_kfunc_desc_tab; 1540 1541struct bpf_prog_aux { 1542 atomic64_t refcnt; 1543 u32 used_map_cnt; 1544 u32 used_btf_cnt; 1545 u32 max_ctx_offset; 1546 u32 max_pkt_offset; 1547 u32 max_tp_access; 1548 u32 stack_depth; 1549 u32 id; 1550 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1551 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1552 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1553 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1554 u32 attach_st_ops_member_off; 1555 u32 ctx_arg_info_size; 1556 u32 max_rdonly_access; 1557 u32 max_rdwr_access; 1558 struct btf *attach_btf; 1559 struct bpf_ctx_arg_aux *ctx_arg_info; 1560 void __percpu *priv_stack_ptr; 1561 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1562 struct bpf_prog *dst_prog; 1563 struct bpf_trampoline *dst_trampoline; 1564 enum bpf_prog_type saved_dst_prog_type; 1565 enum bpf_attach_type saved_dst_attach_type; 1566 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1567 bool dev_bound; /* Program is bound to the netdev. */ 1568 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1569 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1570 bool attach_tracing_prog; /* true if tracing another tracing program */ 1571 bool func_proto_unreliable; 1572 bool tail_call_reachable; 1573 bool xdp_has_frags; 1574 bool exception_cb; 1575 bool exception_boundary; 1576 bool is_extended; /* true if extended by freplace program */ 1577 bool jits_use_priv_stack; 1578 bool priv_stack_requested; 1579 bool changes_pkt_data; 1580 bool might_sleep; 1581 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ 1582 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ 1583 struct bpf_arena *arena; 1584 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */ 1585 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1586 const struct btf_type *attach_func_proto; 1587 /* function name for valid attach_btf_id */ 1588 const char *attach_func_name; 1589 struct bpf_prog **func; 1590 void *jit_data; /* JIT specific data. arch dependent */ 1591 struct bpf_jit_poke_descriptor *poke_tab; 1592 struct bpf_kfunc_desc_tab *kfunc_tab; 1593 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1594 u32 size_poke_tab; 1595#ifdef CONFIG_FINEIBT 1596 struct bpf_ksym ksym_prefix; 1597#endif 1598 struct bpf_ksym ksym; 1599 const struct bpf_prog_ops *ops; 1600 const struct bpf_struct_ops *st_ops; 1601 struct bpf_map **used_maps; 1602 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1603 struct btf_mod_pair *used_btfs; 1604 struct bpf_prog *prog; 1605 struct user_struct *user; 1606 u64 load_time; /* ns since boottime */ 1607 u32 verified_insns; 1608 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1609 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1610 char name[BPF_OBJ_NAME_LEN]; 1611 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1612#ifdef CONFIG_SECURITY 1613 void *security; 1614#endif 1615 struct bpf_token *token; 1616 struct bpf_prog_offload *offload; 1617 struct btf *btf; 1618 struct bpf_func_info *func_info; 1619 struct bpf_func_info_aux *func_info_aux; 1620 /* bpf_line_info loaded from userspace. linfo->insn_off 1621 * has the xlated insn offset. 1622 * Both the main and sub prog share the same linfo. 1623 * The subprog can access its first linfo by 1624 * using the linfo_idx. 1625 */ 1626 struct bpf_line_info *linfo; 1627 /* jited_linfo is the jited addr of the linfo. It has a 1628 * one to one mapping to linfo: 1629 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1630 * Both the main and sub prog share the same jited_linfo. 1631 * The subprog can access its first jited_linfo by 1632 * using the linfo_idx. 1633 */ 1634 void **jited_linfo; 1635 u32 func_info_cnt; 1636 u32 nr_linfo; 1637 /* subprog can use linfo_idx to access its first linfo and 1638 * jited_linfo. 1639 * main prog always has linfo_idx == 0 1640 */ 1641 u32 linfo_idx; 1642 struct module *mod; 1643 u32 num_exentries; 1644 struct exception_table_entry *extable; 1645 union { 1646 struct work_struct work; 1647 struct rcu_head rcu; 1648 }; 1649}; 1650 1651struct bpf_prog { 1652 u16 pages; /* Number of allocated pages */ 1653 u16 jited:1, /* Is our filter JIT'ed? */ 1654 jit_requested:1,/* archs need to JIT the prog */ 1655 gpl_compatible:1, /* Is filter GPL compatible? */ 1656 cb_access:1, /* Is control block accessed? */ 1657 dst_needed:1, /* Do we need dst entry? */ 1658 blinding_requested:1, /* needs constant blinding */ 1659 blinded:1, /* Was blinded */ 1660 is_func:1, /* program is a bpf function */ 1661 kprobe_override:1, /* Do we override a kprobe? */ 1662 has_callchain_buf:1, /* callchain buffer allocated? */ 1663 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1664 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1665 call_get_func_ip:1, /* Do we call get_func_ip() */ 1666 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1667 sleepable:1; /* BPF program is sleepable */ 1668 enum bpf_prog_type type; /* Type of BPF program */ 1669 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1670 u32 len; /* Number of filter blocks */ 1671 u32 jited_len; /* Size of jited insns in bytes */ 1672 u8 tag[BPF_TAG_SIZE]; 1673 struct bpf_prog_stats __percpu *stats; 1674 int __percpu *active; 1675 unsigned int (*bpf_func)(const void *ctx, 1676 const struct bpf_insn *insn); 1677 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1678 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1679 /* Instructions for interpreter */ 1680 union { 1681 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1682 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1683 }; 1684}; 1685 1686struct bpf_array_aux { 1687 /* Programs with direct jumps into programs part of this array. */ 1688 struct list_head poke_progs; 1689 struct bpf_map *map; 1690 struct mutex poke_mutex; 1691 struct work_struct work; 1692}; 1693 1694struct bpf_link { 1695 atomic64_t refcnt; 1696 u32 id; 1697 enum bpf_link_type type; 1698 const struct bpf_link_ops *ops; 1699 struct bpf_prog *prog; 1700 /* whether BPF link itself has "sleepable" semantics, which can differ 1701 * from underlying BPF program having a "sleepable" semantics, as BPF 1702 * link's semantics is determined by target attach hook 1703 */ 1704 bool sleepable; 1705 /* rcu is used before freeing, work can be used to schedule that 1706 * RCU-based freeing before that, so they never overlap 1707 */ 1708 union { 1709 struct rcu_head rcu; 1710 struct work_struct work; 1711 }; 1712}; 1713 1714struct bpf_link_ops { 1715 void (*release)(struct bpf_link *link); 1716 /* deallocate link resources callback, called without RCU grace period 1717 * waiting 1718 */ 1719 void (*dealloc)(struct bpf_link *link); 1720 /* deallocate link resources callback, called after RCU grace period; 1721 * if either the underlying BPF program is sleepable or BPF link's 1722 * target hook is sleepable, we'll go through tasks trace RCU GP and 1723 * then "classic" RCU GP; this need for chaining tasks trace and 1724 * classic RCU GPs is designated by setting bpf_link->sleepable flag 1725 */ 1726 void (*dealloc_deferred)(struct bpf_link *link); 1727 int (*detach)(struct bpf_link *link); 1728 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1729 struct bpf_prog *old_prog); 1730 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1731 int (*fill_link_info)(const struct bpf_link *link, 1732 struct bpf_link_info *info); 1733 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1734 struct bpf_map *old_map); 1735 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1736}; 1737 1738struct bpf_tramp_link { 1739 struct bpf_link link; 1740 struct hlist_node tramp_hlist; 1741 u64 cookie; 1742}; 1743 1744struct bpf_shim_tramp_link { 1745 struct bpf_tramp_link link; 1746 struct bpf_trampoline *trampoline; 1747}; 1748 1749struct bpf_tracing_link { 1750 struct bpf_tramp_link link; 1751 enum bpf_attach_type attach_type; 1752 struct bpf_trampoline *trampoline; 1753 struct bpf_prog *tgt_prog; 1754}; 1755 1756struct bpf_raw_tp_link { 1757 struct bpf_link link; 1758 struct bpf_raw_event_map *btp; 1759 u64 cookie; 1760}; 1761 1762struct bpf_link_primer { 1763 struct bpf_link *link; 1764 struct file *file; 1765 int fd; 1766 u32 id; 1767}; 1768 1769struct bpf_mount_opts { 1770 kuid_t uid; 1771 kgid_t gid; 1772 umode_t mode; 1773 1774 /* BPF token-related delegation options */ 1775 u64 delegate_cmds; 1776 u64 delegate_maps; 1777 u64 delegate_progs; 1778 u64 delegate_attachs; 1779}; 1780 1781struct bpf_token { 1782 struct work_struct work; 1783 atomic64_t refcnt; 1784 struct user_namespace *userns; 1785 u64 allowed_cmds; 1786 u64 allowed_maps; 1787 u64 allowed_progs; 1788 u64 allowed_attachs; 1789#ifdef CONFIG_SECURITY 1790 void *security; 1791#endif 1792}; 1793 1794struct bpf_struct_ops_value; 1795struct btf_member; 1796 1797#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1798/** 1799 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1800 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1801 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1802 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1803 * when determining whether the struct_ops progs in the 1804 * struct_ops map are valid. 1805 * @init: A callback that is invoked a single time, and before any other 1806 * callback, to initialize the structure. A nonzero return value means 1807 * the subsystem could not be initialized. 1808 * @check_member: When defined, a callback invoked by the verifier to allow 1809 * the subsystem to determine if an entry in the struct_ops map 1810 * is valid. A nonzero return value means that the map is 1811 * invalid and should be rejected by the verifier. 1812 * @init_member: A callback that is invoked for each member of the struct_ops 1813 * map to allow the subsystem to initialize the member. A nonzero 1814 * value means the member could not be initialized. This callback 1815 * is exclusive with the @type, @type_id, @value_type, and 1816 * @value_id fields. 1817 * @reg: A callback that is invoked when the struct_ops map has been 1818 * initialized and is being attached to. Zero means the struct_ops map 1819 * has been successfully registered and is live. A nonzero return value 1820 * means the struct_ops map could not be registered. 1821 * @unreg: A callback that is invoked when the struct_ops map should be 1822 * unregistered. 1823 * @update: A callback that is invoked when the live struct_ops map is being 1824 * updated to contain new values. This callback is only invoked when 1825 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1826 * it is assumed that the struct_ops map cannot be updated. 1827 * @validate: A callback that is invoked after all of the members have been 1828 * initialized. This callback should perform static checks on the 1829 * map, meaning that it should either fail or succeed 1830 * deterministically. A struct_ops map that has been validated may 1831 * not necessarily succeed in being registered if the call to @reg 1832 * fails. For example, a valid struct_ops map may be loaded, but 1833 * then fail to be registered due to there being another active 1834 * struct_ops map on the system in the subsystem already. For this 1835 * reason, if this callback is not defined, the check is skipped as 1836 * the struct_ops map will have final verification performed in 1837 * @reg. 1838 * @type: BTF type. 1839 * @value_type: Value type. 1840 * @name: The name of the struct bpf_struct_ops object. 1841 * @func_models: Func models 1842 * @type_id: BTF type id. 1843 * @value_id: BTF value id. 1844 */ 1845struct bpf_struct_ops { 1846 const struct bpf_verifier_ops *verifier_ops; 1847 int (*init)(struct btf *btf); 1848 int (*check_member)(const struct btf_type *t, 1849 const struct btf_member *member, 1850 const struct bpf_prog *prog); 1851 int (*init_member)(const struct btf_type *t, 1852 const struct btf_member *member, 1853 void *kdata, const void *udata); 1854 int (*reg)(void *kdata, struct bpf_link *link); 1855 void (*unreg)(void *kdata, struct bpf_link *link); 1856 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1857 int (*validate)(void *kdata); 1858 void *cfi_stubs; 1859 struct module *owner; 1860 const char *name; 1861 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1862}; 1863 1864/* Every member of a struct_ops type has an instance even a member is not 1865 * an operator (function pointer). The "info" field will be assigned to 1866 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1867 * argument information required by the verifier to verify the program. 1868 * 1869 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1870 * corresponding entry for an given argument. 1871 */ 1872struct bpf_struct_ops_arg_info { 1873 struct bpf_ctx_arg_aux *info; 1874 u32 cnt; 1875}; 1876 1877struct bpf_struct_ops_desc { 1878 struct bpf_struct_ops *st_ops; 1879 1880 const struct btf_type *type; 1881 const struct btf_type *value_type; 1882 u32 type_id; 1883 u32 value_id; 1884 1885 /* Collection of argument information for each member */ 1886 struct bpf_struct_ops_arg_info *arg_info; 1887}; 1888 1889enum bpf_struct_ops_state { 1890 BPF_STRUCT_OPS_STATE_INIT, 1891 BPF_STRUCT_OPS_STATE_INUSE, 1892 BPF_STRUCT_OPS_STATE_TOBEFREE, 1893 BPF_STRUCT_OPS_STATE_READY, 1894}; 1895 1896struct bpf_struct_ops_common_value { 1897 refcount_t refcnt; 1898 enum bpf_struct_ops_state state; 1899}; 1900 1901#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1902/* This macro helps developer to register a struct_ops type and generate 1903 * type information correctly. Developers should use this macro to register 1904 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1905 */ 1906#define register_bpf_struct_ops(st_ops, type) \ 1907 ({ \ 1908 struct bpf_struct_ops_##type { \ 1909 struct bpf_struct_ops_common_value common; \ 1910 struct type data ____cacheline_aligned_in_smp; \ 1911 }; \ 1912 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1913 __register_bpf_struct_ops(st_ops); \ 1914 }) 1915#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1916bool bpf_struct_ops_get(const void *kdata); 1917void bpf_struct_ops_put(const void *kdata); 1918int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1919int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1920 void *value); 1921int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1922 struct bpf_tramp_link *link, 1923 const struct btf_func_model *model, 1924 void *stub_func, 1925 void **image, u32 *image_off, 1926 bool allow_alloc); 1927void bpf_struct_ops_image_free(void *image); 1928static inline bool bpf_try_module_get(const void *data, struct module *owner) 1929{ 1930 if (owner == BPF_MODULE_OWNER) 1931 return bpf_struct_ops_get(data); 1932 else 1933 return try_module_get(owner); 1934} 1935static inline void bpf_module_put(const void *data, struct module *owner) 1936{ 1937 if (owner == BPF_MODULE_OWNER) 1938 bpf_struct_ops_put(data); 1939 else 1940 module_put(owner); 1941} 1942int bpf_struct_ops_link_create(union bpf_attr *attr); 1943 1944#ifdef CONFIG_NET 1945/* Define it here to avoid the use of forward declaration */ 1946struct bpf_dummy_ops_state { 1947 int val; 1948}; 1949 1950struct bpf_dummy_ops { 1951 int (*test_1)(struct bpf_dummy_ops_state *cb); 1952 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1953 char a3, unsigned long a4); 1954 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1955}; 1956 1957int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1958 union bpf_attr __user *uattr); 1959#endif 1960int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1961 struct btf *btf, 1962 struct bpf_verifier_log *log); 1963void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1964void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1965#else 1966#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1967static inline bool bpf_try_module_get(const void *data, struct module *owner) 1968{ 1969 return try_module_get(owner); 1970} 1971static inline void bpf_module_put(const void *data, struct module *owner) 1972{ 1973 module_put(owner); 1974} 1975static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1976{ 1977 return -ENOTSUPP; 1978} 1979static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1980 void *key, 1981 void *value) 1982{ 1983 return -EINVAL; 1984} 1985static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1986{ 1987 return -EOPNOTSUPP; 1988} 1989static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1990{ 1991} 1992 1993static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1994{ 1995} 1996 1997#endif 1998 1999int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 2000 const struct bpf_ctx_arg_aux *info, u32 cnt); 2001 2002#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 2003int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 2004 int cgroup_atype); 2005void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 2006#else 2007static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 2008 int cgroup_atype) 2009{ 2010 return -EOPNOTSUPP; 2011} 2012static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 2013{ 2014} 2015#endif 2016 2017struct bpf_array { 2018 struct bpf_map map; 2019 u32 elem_size; 2020 u32 index_mask; 2021 struct bpf_array_aux *aux; 2022 union { 2023 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 2024 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 2025 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 2026 }; 2027}; 2028 2029#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 2030#define MAX_TAIL_CALL_CNT 33 2031 2032/* Maximum number of loops for bpf_loop and bpf_iter_num. 2033 * It's enum to expose it (and thus make it discoverable) through BTF. 2034 */ 2035enum { 2036 BPF_MAX_LOOPS = 8 * 1024 * 1024, 2037 BPF_MAX_TIMED_LOOPS = 0xffff, 2038}; 2039 2040#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 2041 BPF_F_RDONLY_PROG | \ 2042 BPF_F_WRONLY | \ 2043 BPF_F_WRONLY_PROG) 2044 2045#define BPF_MAP_CAN_READ BIT(0) 2046#define BPF_MAP_CAN_WRITE BIT(1) 2047 2048/* Maximum number of user-producer ring buffer samples that can be drained in 2049 * a call to bpf_user_ringbuf_drain(). 2050 */ 2051#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 2052 2053static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 2054{ 2055 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2056 2057 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 2058 * not possible. 2059 */ 2060 if (access_flags & BPF_F_RDONLY_PROG) 2061 return BPF_MAP_CAN_READ; 2062 else if (access_flags & BPF_F_WRONLY_PROG) 2063 return BPF_MAP_CAN_WRITE; 2064 else 2065 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 2066} 2067 2068static inline bool bpf_map_flags_access_ok(u32 access_flags) 2069{ 2070 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 2071 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2072} 2073 2074struct bpf_event_entry { 2075 struct perf_event *event; 2076 struct file *perf_file; 2077 struct file *map_file; 2078 struct rcu_head rcu; 2079}; 2080 2081static inline bool map_type_contains_progs(struct bpf_map *map) 2082{ 2083 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 2084 map->map_type == BPF_MAP_TYPE_DEVMAP || 2085 map->map_type == BPF_MAP_TYPE_CPUMAP; 2086} 2087 2088bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 2089int bpf_prog_calc_tag(struct bpf_prog *fp); 2090 2091const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 2092const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 2093 2094const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void); 2095 2096typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 2097 unsigned long off, unsigned long len); 2098typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 2099 const struct bpf_insn *src, 2100 struct bpf_insn *dst, 2101 struct bpf_prog *prog, 2102 u32 *target_size); 2103 2104u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2105 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2106 2107/* an array of programs to be executed under rcu_lock. 2108 * 2109 * Typical usage: 2110 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2111 * 2112 * the structure returned by bpf_prog_array_alloc() should be populated 2113 * with program pointers and the last pointer must be NULL. 2114 * The user has to keep refcnt on the program and make sure the program 2115 * is removed from the array before bpf_prog_put(). 2116 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2117 * since other cpus are walking the array of pointers in parallel. 2118 */ 2119struct bpf_prog_array_item { 2120 struct bpf_prog *prog; 2121 union { 2122 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2123 u64 bpf_cookie; 2124 }; 2125}; 2126 2127struct bpf_prog_array { 2128 struct rcu_head rcu; 2129 struct bpf_prog_array_item items[]; 2130}; 2131 2132struct bpf_empty_prog_array { 2133 struct bpf_prog_array hdr; 2134 struct bpf_prog *null_prog; 2135}; 2136 2137/* to avoid allocating empty bpf_prog_array for cgroups that 2138 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2139 * It will not be modified the caller of bpf_prog_array_alloc() 2140 * (since caller requested prog_cnt == 0) 2141 * that pointer should be 'freed' by bpf_prog_array_free() 2142 */ 2143extern struct bpf_empty_prog_array bpf_empty_prog_array; 2144 2145struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2146void bpf_prog_array_free(struct bpf_prog_array *progs); 2147/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2148void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2149int bpf_prog_array_length(struct bpf_prog_array *progs); 2150bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2151int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2152 __u32 __user *prog_ids, u32 cnt); 2153 2154void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2155 struct bpf_prog *old_prog); 2156int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2157int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2158 struct bpf_prog *prog); 2159int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2160 u32 *prog_ids, u32 request_cnt, 2161 u32 *prog_cnt); 2162int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2163 struct bpf_prog *exclude_prog, 2164 struct bpf_prog *include_prog, 2165 u64 bpf_cookie, 2166 struct bpf_prog_array **new_array); 2167 2168struct bpf_run_ctx {}; 2169 2170struct bpf_cg_run_ctx { 2171 struct bpf_run_ctx run_ctx; 2172 const struct bpf_prog_array_item *prog_item; 2173 int retval; 2174}; 2175 2176struct bpf_trace_run_ctx { 2177 struct bpf_run_ctx run_ctx; 2178 u64 bpf_cookie; 2179 bool is_uprobe; 2180}; 2181 2182struct bpf_tramp_run_ctx { 2183 struct bpf_run_ctx run_ctx; 2184 u64 bpf_cookie; 2185 struct bpf_run_ctx *saved_run_ctx; 2186}; 2187 2188static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2189{ 2190 struct bpf_run_ctx *old_ctx = NULL; 2191 2192#ifdef CONFIG_BPF_SYSCALL 2193 old_ctx = current->bpf_ctx; 2194 current->bpf_ctx = new_ctx; 2195#endif 2196 return old_ctx; 2197} 2198 2199static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2200{ 2201#ifdef CONFIG_BPF_SYSCALL 2202 current->bpf_ctx = old_ctx; 2203#endif 2204} 2205 2206/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2207#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2208/* BPF program asks to set CN on the packet. */ 2209#define BPF_RET_SET_CN (1 << 0) 2210 2211typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2212 2213static __always_inline u32 2214bpf_prog_run_array(const struct bpf_prog_array *array, 2215 const void *ctx, bpf_prog_run_fn run_prog) 2216{ 2217 const struct bpf_prog_array_item *item; 2218 const struct bpf_prog *prog; 2219 struct bpf_run_ctx *old_run_ctx; 2220 struct bpf_trace_run_ctx run_ctx; 2221 u32 ret = 1; 2222 2223 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2224 2225 if (unlikely(!array)) 2226 return ret; 2227 2228 run_ctx.is_uprobe = false; 2229 2230 migrate_disable(); 2231 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2232 item = &array->items[0]; 2233 while ((prog = READ_ONCE(item->prog))) { 2234 run_ctx.bpf_cookie = item->bpf_cookie; 2235 ret &= run_prog(prog, ctx); 2236 item++; 2237 } 2238 bpf_reset_run_ctx(old_run_ctx); 2239 migrate_enable(); 2240 return ret; 2241} 2242 2243/* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2244 * 2245 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2246 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2247 * in order to use the tasks_trace rcu grace period. 2248 * 2249 * When a non-sleepable program is inside the array, we take the rcu read 2250 * section and disable preemption for that program alone, so it can access 2251 * rcu-protected dynamically sized maps. 2252 */ 2253static __always_inline u32 2254bpf_prog_run_array_uprobe(const struct bpf_prog_array *array, 2255 const void *ctx, bpf_prog_run_fn run_prog) 2256{ 2257 const struct bpf_prog_array_item *item; 2258 const struct bpf_prog *prog; 2259 struct bpf_run_ctx *old_run_ctx; 2260 struct bpf_trace_run_ctx run_ctx; 2261 u32 ret = 1; 2262 2263 might_fault(); 2264 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held"); 2265 2266 if (unlikely(!array)) 2267 return ret; 2268 2269 migrate_disable(); 2270 2271 run_ctx.is_uprobe = true; 2272 2273 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2274 item = &array->items[0]; 2275 while ((prog = READ_ONCE(item->prog))) { 2276 if (!prog->sleepable) 2277 rcu_read_lock(); 2278 2279 run_ctx.bpf_cookie = item->bpf_cookie; 2280 ret &= run_prog(prog, ctx); 2281 item++; 2282 2283 if (!prog->sleepable) 2284 rcu_read_unlock(); 2285 } 2286 bpf_reset_run_ctx(old_run_ctx); 2287 migrate_enable(); 2288 return ret; 2289} 2290 2291#ifdef CONFIG_BPF_SYSCALL 2292DECLARE_PER_CPU(int, bpf_prog_active); 2293extern struct mutex bpf_stats_enabled_mutex; 2294 2295/* 2296 * Block execution of BPF programs attached to instrumentation (perf, 2297 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2298 * these events can happen inside a region which holds a map bucket lock 2299 * and can deadlock on it. 2300 */ 2301static inline void bpf_disable_instrumentation(void) 2302{ 2303 migrate_disable(); 2304 this_cpu_inc(bpf_prog_active); 2305} 2306 2307static inline void bpf_enable_instrumentation(void) 2308{ 2309 this_cpu_dec(bpf_prog_active); 2310 migrate_enable(); 2311} 2312 2313extern const struct super_operations bpf_super_ops; 2314extern const struct file_operations bpf_map_fops; 2315extern const struct file_operations bpf_prog_fops; 2316extern const struct file_operations bpf_iter_fops; 2317 2318#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2319 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2320 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2321#define BPF_MAP_TYPE(_id, _ops) \ 2322 extern const struct bpf_map_ops _ops; 2323#define BPF_LINK_TYPE(_id, _name) 2324#include <linux/bpf_types.h> 2325#undef BPF_PROG_TYPE 2326#undef BPF_MAP_TYPE 2327#undef BPF_LINK_TYPE 2328 2329extern const struct bpf_prog_ops bpf_offload_prog_ops; 2330extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2331extern const struct bpf_verifier_ops xdp_analyzer_ops; 2332 2333struct bpf_prog *bpf_prog_get(u32 ufd); 2334struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2335 bool attach_drv); 2336void bpf_prog_add(struct bpf_prog *prog, int i); 2337void bpf_prog_sub(struct bpf_prog *prog, int i); 2338void bpf_prog_inc(struct bpf_prog *prog); 2339struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2340void bpf_prog_put(struct bpf_prog *prog); 2341 2342void bpf_prog_free_id(struct bpf_prog *prog); 2343void bpf_map_free_id(struct bpf_map *map); 2344 2345struct btf_field *btf_record_find(const struct btf_record *rec, 2346 u32 offset, u32 field_mask); 2347void btf_record_free(struct btf_record *rec); 2348void bpf_map_free_record(struct bpf_map *map); 2349struct btf_record *btf_record_dup(const struct btf_record *rec); 2350bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2351void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2352void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2353void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2354void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2355 2356struct bpf_map *bpf_map_get(u32 ufd); 2357struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2358 2359/* 2360 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file 2361 * descriptor and return a corresponding map or btf object. 2362 * Their names are double underscored to emphasize the fact that they 2363 * do not increase refcnt. To also increase refcnt use corresponding 2364 * bpf_map_get() and btf_get_by_fd() functions. 2365 */ 2366 2367static inline struct bpf_map *__bpf_map_get(struct fd f) 2368{ 2369 if (fd_empty(f)) 2370 return ERR_PTR(-EBADF); 2371 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2372 return ERR_PTR(-EINVAL); 2373 return fd_file(f)->private_data; 2374} 2375 2376static inline struct btf *__btf_get_by_fd(struct fd f) 2377{ 2378 if (fd_empty(f)) 2379 return ERR_PTR(-EBADF); 2380 if (unlikely(fd_file(f)->f_op != &btf_fops)) 2381 return ERR_PTR(-EINVAL); 2382 return fd_file(f)->private_data; 2383} 2384 2385void bpf_map_inc(struct bpf_map *map); 2386void bpf_map_inc_with_uref(struct bpf_map *map); 2387struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2388struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2389void bpf_map_put_with_uref(struct bpf_map *map); 2390void bpf_map_put(struct bpf_map *map); 2391void *bpf_map_area_alloc(u64 size, int numa_node); 2392void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2393void bpf_map_area_free(void *base); 2394bool bpf_map_write_active(const struct bpf_map *map); 2395void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2396int generic_map_lookup_batch(struct bpf_map *map, 2397 const union bpf_attr *attr, 2398 union bpf_attr __user *uattr); 2399int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2400 const union bpf_attr *attr, 2401 union bpf_attr __user *uattr); 2402int generic_map_delete_batch(struct bpf_map *map, 2403 const union bpf_attr *attr, 2404 union bpf_attr __user *uattr); 2405struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2406struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2407 2408int bpf_map_alloc_pages(const struct bpf_map *map, int nid, 2409 unsigned long nr_pages, struct page **page_array); 2410#ifdef CONFIG_MEMCG 2411void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2412 int node); 2413void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2414void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2415 gfp_t flags); 2416void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2417 size_t align, gfp_t flags); 2418#else 2419/* 2420 * These specialized allocators have to be macros for their allocations to be 2421 * accounted separately (to have separate alloc_tag). 2422 */ 2423#define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2424 kmalloc_node(_size, _flags, _node) 2425#define bpf_map_kzalloc(_map, _size, _flags) \ 2426 kzalloc(_size, _flags) 2427#define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2428 kvcalloc(_n, _size, _flags) 2429#define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2430 __alloc_percpu_gfp(_size, _align, _flags) 2431#endif 2432 2433static inline int 2434bpf_map_init_elem_count(struct bpf_map *map) 2435{ 2436 size_t size = sizeof(*map->elem_count), align = size; 2437 gfp_t flags = GFP_USER | __GFP_NOWARN; 2438 2439 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2440 if (!map->elem_count) 2441 return -ENOMEM; 2442 2443 return 0; 2444} 2445 2446static inline void 2447bpf_map_free_elem_count(struct bpf_map *map) 2448{ 2449 free_percpu(map->elem_count); 2450} 2451 2452static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2453{ 2454 this_cpu_inc(*map->elem_count); 2455} 2456 2457static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2458{ 2459 this_cpu_dec(*map->elem_count); 2460} 2461 2462extern int sysctl_unprivileged_bpf_disabled; 2463 2464bool bpf_token_capable(const struct bpf_token *token, int cap); 2465 2466static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2467{ 2468 return bpf_token_capable(token, CAP_PERFMON); 2469} 2470 2471static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2472{ 2473 return bpf_token_capable(token, CAP_PERFMON); 2474} 2475 2476static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2477{ 2478 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2479} 2480 2481static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2482{ 2483 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2484} 2485 2486int bpf_map_new_fd(struct bpf_map *map, int flags); 2487int bpf_prog_new_fd(struct bpf_prog *prog); 2488 2489void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2490 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2491void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2492 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2493 bool sleepable); 2494int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2495int bpf_link_settle(struct bpf_link_primer *primer); 2496void bpf_link_cleanup(struct bpf_link_primer *primer); 2497void bpf_link_inc(struct bpf_link *link); 2498struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2499void bpf_link_put(struct bpf_link *link); 2500int bpf_link_new_fd(struct bpf_link *link); 2501struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2502struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2503 2504void bpf_token_inc(struct bpf_token *token); 2505void bpf_token_put(struct bpf_token *token); 2506int bpf_token_create(union bpf_attr *attr); 2507struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2508 2509bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2510bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2511bool bpf_token_allow_prog_type(const struct bpf_token *token, 2512 enum bpf_prog_type prog_type, 2513 enum bpf_attach_type attach_type); 2514 2515int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2516int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2517struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2518 umode_t mode); 2519 2520#define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2521#define DEFINE_BPF_ITER_FUNC(target, args...) \ 2522 extern int bpf_iter_ ## target(args); \ 2523 int __init bpf_iter_ ## target(args) { return 0; } 2524 2525/* 2526 * The task type of iterators. 2527 * 2528 * For BPF task iterators, they can be parameterized with various 2529 * parameters to visit only some of tasks. 2530 * 2531 * BPF_TASK_ITER_ALL (default) 2532 * Iterate over resources of every task. 2533 * 2534 * BPF_TASK_ITER_TID 2535 * Iterate over resources of a task/tid. 2536 * 2537 * BPF_TASK_ITER_TGID 2538 * Iterate over resources of every task of a process / task group. 2539 */ 2540enum bpf_iter_task_type { 2541 BPF_TASK_ITER_ALL = 0, 2542 BPF_TASK_ITER_TID, 2543 BPF_TASK_ITER_TGID, 2544}; 2545 2546struct bpf_iter_aux_info { 2547 /* for map_elem iter */ 2548 struct bpf_map *map; 2549 2550 /* for cgroup iter */ 2551 struct { 2552 struct cgroup *start; /* starting cgroup */ 2553 enum bpf_cgroup_iter_order order; 2554 } cgroup; 2555 struct { 2556 enum bpf_iter_task_type type; 2557 u32 pid; 2558 } task; 2559}; 2560 2561typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2562 union bpf_iter_link_info *linfo, 2563 struct bpf_iter_aux_info *aux); 2564typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2565typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2566 struct seq_file *seq); 2567typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2568 struct bpf_link_info *info); 2569typedef const struct bpf_func_proto * 2570(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2571 const struct bpf_prog *prog); 2572 2573enum bpf_iter_feature { 2574 BPF_ITER_RESCHED = BIT(0), 2575}; 2576 2577#define BPF_ITER_CTX_ARG_MAX 2 2578struct bpf_iter_reg { 2579 const char *target; 2580 bpf_iter_attach_target_t attach_target; 2581 bpf_iter_detach_target_t detach_target; 2582 bpf_iter_show_fdinfo_t show_fdinfo; 2583 bpf_iter_fill_link_info_t fill_link_info; 2584 bpf_iter_get_func_proto_t get_func_proto; 2585 u32 ctx_arg_info_size; 2586 u32 feature; 2587 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2588 const struct bpf_iter_seq_info *seq_info; 2589}; 2590 2591struct bpf_iter_meta { 2592 __bpf_md_ptr(struct seq_file *, seq); 2593 u64 session_id; 2594 u64 seq_num; 2595}; 2596 2597struct bpf_iter__bpf_map_elem { 2598 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2599 __bpf_md_ptr(struct bpf_map *, map); 2600 __bpf_md_ptr(void *, key); 2601 __bpf_md_ptr(void *, value); 2602}; 2603 2604int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2605void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2606int bpf_iter_prog_supported(struct bpf_prog *prog); 2607const struct bpf_func_proto * 2608bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2609int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2610int bpf_iter_new_fd(struct bpf_link *link); 2611bool bpf_link_is_iter(struct bpf_link *link); 2612struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2613int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2614void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2615 struct seq_file *seq); 2616int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2617 struct bpf_link_info *info); 2618 2619int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2620 struct bpf_func_state *caller, 2621 struct bpf_func_state *callee); 2622 2623int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2624int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2625int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2626 u64 flags); 2627int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2628 u64 flags); 2629 2630int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2631 2632int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2633 void *key, void *value, u64 map_flags); 2634int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2635int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2636 void *key, void *value, u64 map_flags); 2637int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2638 2639int bpf_get_file_flag(int flags); 2640int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2641 size_t actual_size); 2642 2643/* verify correctness of eBPF program */ 2644int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2645 2646#ifndef CONFIG_BPF_JIT_ALWAYS_ON 2647void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2648#endif 2649 2650struct btf *bpf_get_btf_vmlinux(void); 2651 2652/* Map specifics */ 2653struct xdp_frame; 2654struct sk_buff; 2655struct bpf_dtab_netdev; 2656struct bpf_cpu_map_entry; 2657 2658void __dev_flush(struct list_head *flush_list); 2659int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2660 struct net_device *dev_rx); 2661int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2662 struct net_device *dev_rx); 2663int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2664 struct bpf_map *map, bool exclude_ingress); 2665int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2666 const struct bpf_prog *xdp_prog); 2667int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2668 const struct bpf_prog *xdp_prog, 2669 struct bpf_map *map, bool exclude_ingress); 2670 2671void __cpu_map_flush(struct list_head *flush_list); 2672int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2673 struct net_device *dev_rx); 2674int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2675 struct sk_buff *skb); 2676 2677/* Return map's numa specified by userspace */ 2678static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2679{ 2680 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2681 attr->numa_node : NUMA_NO_NODE; 2682} 2683 2684struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2685int array_map_alloc_check(union bpf_attr *attr); 2686 2687int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2688 union bpf_attr __user *uattr); 2689int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2690 union bpf_attr __user *uattr); 2691int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2692 const union bpf_attr *kattr, 2693 union bpf_attr __user *uattr); 2694int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2695 const union bpf_attr *kattr, 2696 union bpf_attr __user *uattr); 2697int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2698 const union bpf_attr *kattr, 2699 union bpf_attr __user *uattr); 2700int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2701 const union bpf_attr *kattr, 2702 union bpf_attr __user *uattr); 2703int bpf_prog_test_run_nf(struct bpf_prog *prog, 2704 const union bpf_attr *kattr, 2705 union bpf_attr __user *uattr); 2706bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2707 const struct bpf_prog *prog, 2708 struct bpf_insn_access_aux *info); 2709 2710static inline bool bpf_tracing_ctx_access(int off, int size, 2711 enum bpf_access_type type) 2712{ 2713 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2714 return false; 2715 if (type != BPF_READ) 2716 return false; 2717 if (off % size != 0) 2718 return false; 2719 return true; 2720} 2721 2722static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2723 enum bpf_access_type type, 2724 const struct bpf_prog *prog, 2725 struct bpf_insn_access_aux *info) 2726{ 2727 if (!bpf_tracing_ctx_access(off, size, type)) 2728 return false; 2729 return btf_ctx_access(off, size, type, prog, info); 2730} 2731 2732int btf_struct_access(struct bpf_verifier_log *log, 2733 const struct bpf_reg_state *reg, 2734 int off, int size, enum bpf_access_type atype, 2735 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2736bool btf_struct_ids_match(struct bpf_verifier_log *log, 2737 const struct btf *btf, u32 id, int off, 2738 const struct btf *need_btf, u32 need_type_id, 2739 bool strict); 2740 2741int btf_distill_func_proto(struct bpf_verifier_log *log, 2742 struct btf *btf, 2743 const struct btf_type *func_proto, 2744 const char *func_name, 2745 struct btf_func_model *m); 2746 2747struct bpf_reg_state; 2748int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2749int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2750 struct btf *btf, const struct btf_type *t); 2751const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2752 int comp_idx, const char *tag_key); 2753int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2754 int comp_idx, const char *tag_key, int last_id); 2755 2756struct bpf_prog *bpf_prog_by_id(u32 id); 2757struct bpf_link *bpf_link_by_id(u32 id); 2758 2759const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2760 const struct bpf_prog *prog); 2761void bpf_task_storage_free(struct task_struct *task); 2762void bpf_cgrp_storage_free(struct cgroup *cgroup); 2763bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2764const struct btf_func_model * 2765bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2766 const struct bpf_insn *insn); 2767int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2768 u16 btf_fd_idx, u8 **func_addr); 2769 2770struct bpf_core_ctx { 2771 struct bpf_verifier_log *log; 2772 const struct btf *btf; 2773}; 2774 2775bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2776 const struct bpf_reg_state *reg, 2777 const char *field_name, u32 btf_id, const char *suffix); 2778 2779bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2780 const struct btf *reg_btf, u32 reg_id, 2781 const struct btf *arg_btf, u32 arg_id); 2782 2783int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2784 int relo_idx, void *insn); 2785 2786static inline bool unprivileged_ebpf_enabled(void) 2787{ 2788 return !sysctl_unprivileged_bpf_disabled; 2789} 2790 2791/* Not all bpf prog type has the bpf_ctx. 2792 * For the bpf prog type that has initialized the bpf_ctx, 2793 * this function can be used to decide if a kernel function 2794 * is called by a bpf program. 2795 */ 2796static inline bool has_current_bpf_ctx(void) 2797{ 2798 return !!current->bpf_ctx; 2799} 2800 2801void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2802 2803void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2804 enum bpf_dynptr_type type, u32 offset, u32 size); 2805void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2806void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2807 2808#else /* !CONFIG_BPF_SYSCALL */ 2809static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2810{ 2811 return ERR_PTR(-EOPNOTSUPP); 2812} 2813 2814static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2815 enum bpf_prog_type type, 2816 bool attach_drv) 2817{ 2818 return ERR_PTR(-EOPNOTSUPP); 2819} 2820 2821static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2822{ 2823} 2824 2825static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2826{ 2827} 2828 2829static inline void bpf_prog_put(struct bpf_prog *prog) 2830{ 2831} 2832 2833static inline void bpf_prog_inc(struct bpf_prog *prog) 2834{ 2835} 2836 2837static inline struct bpf_prog *__must_check 2838bpf_prog_inc_not_zero(struct bpf_prog *prog) 2839{ 2840 return ERR_PTR(-EOPNOTSUPP); 2841} 2842 2843static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2844 const struct bpf_link_ops *ops, 2845 struct bpf_prog *prog) 2846{ 2847} 2848 2849static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2850 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2851 bool sleepable) 2852{ 2853} 2854 2855static inline int bpf_link_prime(struct bpf_link *link, 2856 struct bpf_link_primer *primer) 2857{ 2858 return -EOPNOTSUPP; 2859} 2860 2861static inline int bpf_link_settle(struct bpf_link_primer *primer) 2862{ 2863 return -EOPNOTSUPP; 2864} 2865 2866static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2867{ 2868} 2869 2870static inline void bpf_link_inc(struct bpf_link *link) 2871{ 2872} 2873 2874static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2875{ 2876 return NULL; 2877} 2878 2879static inline void bpf_link_put(struct bpf_link *link) 2880{ 2881} 2882 2883static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2884{ 2885 return -EOPNOTSUPP; 2886} 2887 2888static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2889{ 2890 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2891} 2892 2893static inline void bpf_token_inc(struct bpf_token *token) 2894{ 2895} 2896 2897static inline void bpf_token_put(struct bpf_token *token) 2898{ 2899} 2900 2901static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2902{ 2903 return ERR_PTR(-EOPNOTSUPP); 2904} 2905 2906static inline void __dev_flush(struct list_head *flush_list) 2907{ 2908} 2909 2910struct xdp_frame; 2911struct bpf_dtab_netdev; 2912struct bpf_cpu_map_entry; 2913 2914static inline 2915int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2916 struct net_device *dev_rx) 2917{ 2918 return 0; 2919} 2920 2921static inline 2922int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2923 struct net_device *dev_rx) 2924{ 2925 return 0; 2926} 2927 2928static inline 2929int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2930 struct bpf_map *map, bool exclude_ingress) 2931{ 2932 return 0; 2933} 2934 2935struct sk_buff; 2936 2937static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2938 struct sk_buff *skb, 2939 const struct bpf_prog *xdp_prog) 2940{ 2941 return 0; 2942} 2943 2944static inline 2945int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2946 const struct bpf_prog *xdp_prog, 2947 struct bpf_map *map, bool exclude_ingress) 2948{ 2949 return 0; 2950} 2951 2952static inline void __cpu_map_flush(struct list_head *flush_list) 2953{ 2954} 2955 2956static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2957 struct xdp_frame *xdpf, 2958 struct net_device *dev_rx) 2959{ 2960 return 0; 2961} 2962 2963static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2964 struct sk_buff *skb) 2965{ 2966 return -EOPNOTSUPP; 2967} 2968 2969static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2970 enum bpf_prog_type type) 2971{ 2972 return ERR_PTR(-EOPNOTSUPP); 2973} 2974 2975static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2976 const union bpf_attr *kattr, 2977 union bpf_attr __user *uattr) 2978{ 2979 return -ENOTSUPP; 2980} 2981 2982static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2983 const union bpf_attr *kattr, 2984 union bpf_attr __user *uattr) 2985{ 2986 return -ENOTSUPP; 2987} 2988 2989static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2990 const union bpf_attr *kattr, 2991 union bpf_attr __user *uattr) 2992{ 2993 return -ENOTSUPP; 2994} 2995 2996static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2997 const union bpf_attr *kattr, 2998 union bpf_attr __user *uattr) 2999{ 3000 return -ENOTSUPP; 3001} 3002 3003static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 3004 const union bpf_attr *kattr, 3005 union bpf_attr __user *uattr) 3006{ 3007 return -ENOTSUPP; 3008} 3009 3010static inline void bpf_map_put(struct bpf_map *map) 3011{ 3012} 3013 3014static inline struct bpf_prog *bpf_prog_by_id(u32 id) 3015{ 3016 return ERR_PTR(-ENOTSUPP); 3017} 3018 3019static inline int btf_struct_access(struct bpf_verifier_log *log, 3020 const struct bpf_reg_state *reg, 3021 int off, int size, enum bpf_access_type atype, 3022 u32 *next_btf_id, enum bpf_type_flag *flag, 3023 const char **field_name) 3024{ 3025 return -EACCES; 3026} 3027 3028static inline const struct bpf_func_proto * 3029bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 3030{ 3031 return NULL; 3032} 3033 3034static inline void bpf_task_storage_free(struct task_struct *task) 3035{ 3036} 3037 3038static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3039{ 3040 return false; 3041} 3042 3043static inline const struct btf_func_model * 3044bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3045 const struct bpf_insn *insn) 3046{ 3047 return NULL; 3048} 3049 3050static inline int 3051bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3052 u16 btf_fd_idx, u8 **func_addr) 3053{ 3054 return -ENOTSUPP; 3055} 3056 3057static inline bool unprivileged_ebpf_enabled(void) 3058{ 3059 return false; 3060} 3061 3062static inline bool has_current_bpf_ctx(void) 3063{ 3064 return false; 3065} 3066 3067static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 3068{ 3069} 3070 3071static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 3072{ 3073} 3074 3075static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 3076 enum bpf_dynptr_type type, u32 offset, u32 size) 3077{ 3078} 3079 3080static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 3081{ 3082} 3083 3084static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 3085{ 3086} 3087#endif /* CONFIG_BPF_SYSCALL */ 3088 3089static __always_inline int 3090bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 3091{ 3092 int ret = -EFAULT; 3093 3094 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 3095 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 3096 if (unlikely(ret < 0)) 3097 memset(dst, 0, size); 3098 return ret; 3099} 3100 3101void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 3102 3103static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 3104 enum bpf_prog_type type) 3105{ 3106 return bpf_prog_get_type_dev(ufd, type, false); 3107} 3108 3109void __bpf_free_used_maps(struct bpf_prog_aux *aux, 3110 struct bpf_map **used_maps, u32 len); 3111 3112bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 3113 3114int bpf_prog_offload_compile(struct bpf_prog *prog); 3115void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 3116int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 3117 struct bpf_prog *prog); 3118 3119int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 3120 3121int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 3122int bpf_map_offload_update_elem(struct bpf_map *map, 3123 void *key, void *value, u64 flags); 3124int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 3125int bpf_map_offload_get_next_key(struct bpf_map *map, 3126 void *key, void *next_key); 3127 3128bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3129 3130struct bpf_offload_dev * 3131bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3132void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3133void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3134int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3135 struct net_device *netdev); 3136void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3137 struct net_device *netdev); 3138bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3139 3140void unpriv_ebpf_notify(int new_state); 3141 3142#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3143int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3144 struct bpf_prog_aux *prog_aux); 3145void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3146int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3147int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3148void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3149 3150static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3151{ 3152 return aux->dev_bound; 3153} 3154 3155static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3156{ 3157 return aux->offload_requested; 3158} 3159 3160bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3161 3162static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3163{ 3164 return unlikely(map->ops == &bpf_map_offload_ops); 3165} 3166 3167struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3168void bpf_map_offload_map_free(struct bpf_map *map); 3169u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3170int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3171 const union bpf_attr *kattr, 3172 union bpf_attr __user *uattr); 3173 3174int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3175int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3176int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3177int sock_map_bpf_prog_query(const union bpf_attr *attr, 3178 union bpf_attr __user *uattr); 3179int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3180 3181void sock_map_unhash(struct sock *sk); 3182void sock_map_destroy(struct sock *sk); 3183void sock_map_close(struct sock *sk, long timeout); 3184#else 3185static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3186 struct bpf_prog_aux *prog_aux) 3187{ 3188 return -EOPNOTSUPP; 3189} 3190 3191static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3192 u32 func_id) 3193{ 3194 return NULL; 3195} 3196 3197static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3198 union bpf_attr *attr) 3199{ 3200 return -EOPNOTSUPP; 3201} 3202 3203static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3204 struct bpf_prog *old_prog) 3205{ 3206 return -EOPNOTSUPP; 3207} 3208 3209static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3210{ 3211} 3212 3213static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3214{ 3215 return false; 3216} 3217 3218static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3219{ 3220 return false; 3221} 3222 3223static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3224{ 3225 return false; 3226} 3227 3228static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3229{ 3230 return false; 3231} 3232 3233static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3234{ 3235 return ERR_PTR(-EOPNOTSUPP); 3236} 3237 3238static inline void bpf_map_offload_map_free(struct bpf_map *map) 3239{ 3240} 3241 3242static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3243{ 3244 return 0; 3245} 3246 3247static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3248 const union bpf_attr *kattr, 3249 union bpf_attr __user *uattr) 3250{ 3251 return -ENOTSUPP; 3252} 3253 3254#ifdef CONFIG_BPF_SYSCALL 3255static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3256 struct bpf_prog *prog) 3257{ 3258 return -EINVAL; 3259} 3260 3261static inline int sock_map_prog_detach(const union bpf_attr *attr, 3262 enum bpf_prog_type ptype) 3263{ 3264 return -EOPNOTSUPP; 3265} 3266 3267static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3268 u64 flags) 3269{ 3270 return -EOPNOTSUPP; 3271} 3272 3273static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3274 union bpf_attr __user *uattr) 3275{ 3276 return -EINVAL; 3277} 3278 3279static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3280{ 3281 return -EOPNOTSUPP; 3282} 3283#endif /* CONFIG_BPF_SYSCALL */ 3284#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3285 3286static __always_inline void 3287bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3288{ 3289 const struct bpf_prog_array_item *item; 3290 struct bpf_prog *prog; 3291 3292 if (unlikely(!array)) 3293 return; 3294 3295 item = &array->items[0]; 3296 while ((prog = READ_ONCE(item->prog))) { 3297 bpf_prog_inc_misses_counter(prog); 3298 item++; 3299 } 3300} 3301 3302#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3303void bpf_sk_reuseport_detach(struct sock *sk); 3304int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3305 void *value); 3306int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3307 void *value, u64 map_flags); 3308#else 3309static inline void bpf_sk_reuseport_detach(struct sock *sk) 3310{ 3311} 3312 3313#ifdef CONFIG_BPF_SYSCALL 3314static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3315 void *key, void *value) 3316{ 3317 return -EOPNOTSUPP; 3318} 3319 3320static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3321 void *key, void *value, 3322 u64 map_flags) 3323{ 3324 return -EOPNOTSUPP; 3325} 3326#endif /* CONFIG_BPF_SYSCALL */ 3327#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3328 3329/* verifier prototypes for helper functions called from eBPF programs */ 3330extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3331extern const struct bpf_func_proto bpf_map_update_elem_proto; 3332extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3333extern const struct bpf_func_proto bpf_map_push_elem_proto; 3334extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3335extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3336extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3337 3338extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3339extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3340extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3341extern const struct bpf_func_proto bpf_tail_call_proto; 3342extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3343extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3344extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3345extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3346extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3347extern const struct bpf_func_proto bpf_get_current_comm_proto; 3348extern const struct bpf_func_proto bpf_get_stackid_proto; 3349extern const struct bpf_func_proto bpf_get_stack_proto; 3350extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3351extern const struct bpf_func_proto bpf_get_task_stack_proto; 3352extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3353extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3354extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3355extern const struct bpf_func_proto bpf_sock_map_update_proto; 3356extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3357extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3358extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3359extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3360extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3361extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3362extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3363extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3364extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3365extern const struct bpf_func_proto bpf_spin_lock_proto; 3366extern const struct bpf_func_proto bpf_spin_unlock_proto; 3367extern const struct bpf_func_proto bpf_get_local_storage_proto; 3368extern const struct bpf_func_proto bpf_strtol_proto; 3369extern const struct bpf_func_proto bpf_strtoul_proto; 3370extern const struct bpf_func_proto bpf_tcp_sock_proto; 3371extern const struct bpf_func_proto bpf_jiffies64_proto; 3372extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3373extern const struct bpf_func_proto bpf_event_output_data_proto; 3374extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3375extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3376extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3377extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3378extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3379extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3380extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3381extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3382extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3383extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3384extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3385extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3386extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3387extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3388extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3389extern const struct bpf_func_proto bpf_copy_from_user_proto; 3390extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3391extern const struct bpf_func_proto bpf_snprintf_proto; 3392extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3393extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3394extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3395extern const struct bpf_func_proto bpf_sock_from_file_proto; 3396extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3397extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3398extern const struct bpf_func_proto bpf_task_storage_get_proto; 3399extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3400extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3401extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3402extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3403extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3404extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3405extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3406extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3407extern const struct bpf_func_proto bpf_find_vma_proto; 3408extern const struct bpf_func_proto bpf_loop_proto; 3409extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3410extern const struct bpf_func_proto bpf_set_retval_proto; 3411extern const struct bpf_func_proto bpf_get_retval_proto; 3412extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3413extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3414extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3415 3416const struct bpf_func_proto *tracing_prog_func_proto( 3417 enum bpf_func_id func_id, const struct bpf_prog *prog); 3418 3419/* Shared helpers among cBPF and eBPF. */ 3420void bpf_user_rnd_init_once(void); 3421u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3422u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3423 3424#if defined(CONFIG_NET) 3425bool bpf_sock_common_is_valid_access(int off, int size, 3426 enum bpf_access_type type, 3427 struct bpf_insn_access_aux *info); 3428bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3429 struct bpf_insn_access_aux *info); 3430u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3431 const struct bpf_insn *si, 3432 struct bpf_insn *insn_buf, 3433 struct bpf_prog *prog, 3434 u32 *target_size); 3435int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3436 struct bpf_dynptr *ptr); 3437#else 3438static inline bool bpf_sock_common_is_valid_access(int off, int size, 3439 enum bpf_access_type type, 3440 struct bpf_insn_access_aux *info) 3441{ 3442 return false; 3443} 3444static inline bool bpf_sock_is_valid_access(int off, int size, 3445 enum bpf_access_type type, 3446 struct bpf_insn_access_aux *info) 3447{ 3448 return false; 3449} 3450static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3451 const struct bpf_insn *si, 3452 struct bpf_insn *insn_buf, 3453 struct bpf_prog *prog, 3454 u32 *target_size) 3455{ 3456 return 0; 3457} 3458static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3459 struct bpf_dynptr *ptr) 3460{ 3461 return -EOPNOTSUPP; 3462} 3463#endif 3464 3465#ifdef CONFIG_INET 3466struct sk_reuseport_kern { 3467 struct sk_buff *skb; 3468 struct sock *sk; 3469 struct sock *selected_sk; 3470 struct sock *migrating_sk; 3471 void *data_end; 3472 u32 hash; 3473 u32 reuseport_id; 3474 bool bind_inany; 3475}; 3476bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3477 struct bpf_insn_access_aux *info); 3478 3479u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3480 const struct bpf_insn *si, 3481 struct bpf_insn *insn_buf, 3482 struct bpf_prog *prog, 3483 u32 *target_size); 3484 3485bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3486 struct bpf_insn_access_aux *info); 3487 3488u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3489 const struct bpf_insn *si, 3490 struct bpf_insn *insn_buf, 3491 struct bpf_prog *prog, 3492 u32 *target_size); 3493#else 3494static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3495 enum bpf_access_type type, 3496 struct bpf_insn_access_aux *info) 3497{ 3498 return false; 3499} 3500 3501static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3502 const struct bpf_insn *si, 3503 struct bpf_insn *insn_buf, 3504 struct bpf_prog *prog, 3505 u32 *target_size) 3506{ 3507 return 0; 3508} 3509static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3510 enum bpf_access_type type, 3511 struct bpf_insn_access_aux *info) 3512{ 3513 return false; 3514} 3515 3516static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3517 const struct bpf_insn *si, 3518 struct bpf_insn *insn_buf, 3519 struct bpf_prog *prog, 3520 u32 *target_size) 3521{ 3522 return 0; 3523} 3524#endif /* CONFIG_INET */ 3525 3526enum bpf_text_poke_type { 3527 BPF_MOD_CALL, 3528 BPF_MOD_JUMP, 3529}; 3530 3531int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3532 void *addr1, void *addr2); 3533 3534void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3535 struct bpf_prog *new, struct bpf_prog *old); 3536 3537void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3538int bpf_arch_text_invalidate(void *dst, size_t len); 3539 3540struct btf_id_set; 3541bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3542 3543#define MAX_BPRINTF_VARARGS 12 3544#define MAX_BPRINTF_BUF 1024 3545 3546struct bpf_bprintf_data { 3547 u32 *bin_args; 3548 char *buf; 3549 bool get_bin_args; 3550 bool get_buf; 3551}; 3552 3553int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3554 u32 num_args, struct bpf_bprintf_data *data); 3555void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3556 3557#ifdef CONFIG_BPF_LSM 3558void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3559void bpf_cgroup_atype_put(int cgroup_atype); 3560#else 3561static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3562static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3563#endif /* CONFIG_BPF_LSM */ 3564 3565struct key; 3566 3567#ifdef CONFIG_KEYS 3568struct bpf_key { 3569 struct key *key; 3570 bool has_ref; 3571}; 3572#endif /* CONFIG_KEYS */ 3573 3574static inline bool type_is_alloc(u32 type) 3575{ 3576 return type & MEM_ALLOC; 3577} 3578 3579static inline gfp_t bpf_memcg_flags(gfp_t flags) 3580{ 3581 if (memcg_bpf_enabled()) 3582 return flags | __GFP_ACCOUNT; 3583 return flags; 3584} 3585 3586static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3587{ 3588 return prog->aux->func_idx != 0; 3589} 3590 3591#endif /* _LINUX_BPF_H */