at v6.16 53 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5#ifndef _LINUX_BLKDEV_H 6#define _LINUX_BLKDEV_H 7 8#include <linux/types.h> 9#include <linux/blk_types.h> 10#include <linux/device.h> 11#include <linux/list.h> 12#include <linux/llist.h> 13#include <linux/minmax.h> 14#include <linux/timer.h> 15#include <linux/workqueue.h> 16#include <linux/wait.h> 17#include <linux/bio.h> 18#include <linux/gfp.h> 19#include <linux/kdev_t.h> 20#include <linux/rcupdate.h> 21#include <linux/percpu-refcount.h> 22#include <linux/blkzoned.h> 23#include <linux/sched.h> 24#include <linux/sbitmap.h> 25#include <linux/uuid.h> 26#include <linux/xarray.h> 27#include <linux/file.h> 28#include <linux/lockdep.h> 29 30struct module; 31struct request_queue; 32struct elevator_queue; 33struct blk_trace; 34struct request; 35struct sg_io_hdr; 36struct blkcg_gq; 37struct blk_flush_queue; 38struct kiocb; 39struct pr_ops; 40struct rq_qos; 41struct blk_queue_stats; 42struct blk_stat_callback; 43struct blk_crypto_profile; 44 45extern const struct device_type disk_type; 46extern const struct device_type part_type; 47extern const struct class block_class; 48 49/* 50 * Maximum number of blkcg policies allowed to be registered concurrently. 51 * Defined here to simplify include dependency. 52 */ 53#define BLKCG_MAX_POLS 6 54 55#define DISK_MAX_PARTS 256 56#define DISK_NAME_LEN 32 57 58#define PARTITION_META_INFO_VOLNAMELTH 64 59/* 60 * Enough for the string representation of any kind of UUID plus NULL. 61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 62 */ 63#define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 64 65struct partition_meta_info { 66 char uuid[PARTITION_META_INFO_UUIDLTH]; 67 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 68}; 69 70/** 71 * DOC: genhd capability flags 72 * 73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 74 * removable media. When set, the device remains present even when media is not 75 * inserted. Shall not be set for devices which are removed entirely when the 76 * media is removed. 77 * 78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 79 * doesn't appear in sysfs, and can't be opened from userspace or using 80 * blkdev_get*. Used for the underlying components of multipath devices. 81 * 82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 83 * scan for partitions from add_disk, and users can't add partitions manually. 84 * 85 */ 86enum { 87 GENHD_FL_REMOVABLE = 1 << 0, 88 GENHD_FL_HIDDEN = 1 << 1, 89 GENHD_FL_NO_PART = 1 << 2, 90}; 91 92enum { 93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 95}; 96 97enum { 98 /* Poll even if events_poll_msecs is unset */ 99 DISK_EVENT_FLAG_POLL = 1 << 0, 100 /* Forward events to udev */ 101 DISK_EVENT_FLAG_UEVENT = 1 << 1, 102 /* Block event polling when open for exclusive write */ 103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 104}; 105 106struct disk_events; 107struct badblocks; 108 109enum blk_integrity_checksum { 110 BLK_INTEGRITY_CSUM_NONE = 0, 111 BLK_INTEGRITY_CSUM_IP = 1, 112 BLK_INTEGRITY_CSUM_CRC = 2, 113 BLK_INTEGRITY_CSUM_CRC64 = 3, 114} __packed ; 115 116struct blk_integrity { 117 unsigned char flags; 118 enum blk_integrity_checksum csum_type; 119 unsigned char tuple_size; 120 unsigned char pi_offset; 121 unsigned char interval_exp; 122 unsigned char tag_size; 123}; 124 125typedef unsigned int __bitwise blk_mode_t; 126 127/* open for reading */ 128#define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0)) 129/* open for writing */ 130#define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1)) 131/* open exclusively (vs other exclusive openers */ 132#define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2)) 133/* opened with O_NDELAY */ 134#define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3)) 135/* open for "writes" only for ioctls (specialy hack for floppy.c) */ 136#define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4)) 137/* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */ 138#define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5)) 139/* return partition scanning errors */ 140#define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6)) 141 142struct gendisk { 143 /* 144 * major/first_minor/minors should not be set by any new driver, the 145 * block core will take care of allocating them automatically. 146 */ 147 int major; 148 int first_minor; 149 int minors; 150 151 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 152 153 unsigned short events; /* supported events */ 154 unsigned short event_flags; /* flags related to event processing */ 155 156 struct xarray part_tbl; 157 struct block_device *part0; 158 159 const struct block_device_operations *fops; 160 struct request_queue *queue; 161 void *private_data; 162 163 struct bio_set bio_split; 164 165 int flags; 166 unsigned long state; 167#define GD_NEED_PART_SCAN 0 168#define GD_READ_ONLY 1 169#define GD_DEAD 2 170#define GD_NATIVE_CAPACITY 3 171#define GD_ADDED 4 172#define GD_SUPPRESS_PART_SCAN 5 173#define GD_OWNS_QUEUE 6 174 175 struct mutex open_mutex; /* open/close mutex */ 176 unsigned open_partitions; /* number of open partitions */ 177 178 struct backing_dev_info *bdi; 179 struct kobject queue_kobj; /* the queue/ directory */ 180 struct kobject *slave_dir; 181#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 182 struct list_head slave_bdevs; 183#endif 184 struct timer_rand_state *random; 185 struct disk_events *ev; 186 187#ifdef CONFIG_BLK_DEV_ZONED 188 /* 189 * Zoned block device information. Reads of this information must be 190 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this 191 * information is only allowed while no requests are being processed. 192 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue(). 193 */ 194 unsigned int nr_zones; 195 unsigned int zone_capacity; 196 unsigned int last_zone_capacity; 197 unsigned long __rcu *conv_zones_bitmap; 198 unsigned int zone_wplugs_hash_bits; 199 atomic_t nr_zone_wplugs; 200 spinlock_t zone_wplugs_lock; 201 struct mempool_s *zone_wplugs_pool; 202 struct hlist_head *zone_wplugs_hash; 203 struct workqueue_struct *zone_wplugs_wq; 204#endif /* CONFIG_BLK_DEV_ZONED */ 205 206#if IS_ENABLED(CONFIG_CDROM) 207 struct cdrom_device_info *cdi; 208#endif 209 int node_id; 210 struct badblocks *bb; 211 struct lockdep_map lockdep_map; 212 u64 diskseq; 213 blk_mode_t open_mode; 214 215 /* 216 * Independent sector access ranges. This is always NULL for 217 * devices that do not have multiple independent access ranges. 218 */ 219 struct blk_independent_access_ranges *ia_ranges; 220 221 struct mutex rqos_state_mutex; /* rqos state change mutex */ 222}; 223 224/** 225 * disk_openers - returns how many openers are there for a disk 226 * @disk: disk to check 227 * 228 * This returns the number of openers for a disk. Note that this value is only 229 * stable if disk->open_mutex is held. 230 * 231 * Note: Due to a quirk in the block layer open code, each open partition is 232 * only counted once even if there are multiple openers. 233 */ 234static inline unsigned int disk_openers(struct gendisk *disk) 235{ 236 return atomic_read(&disk->part0->bd_openers); 237} 238 239/** 240 * disk_has_partscan - return %true if partition scanning is enabled on a disk 241 * @disk: disk to check 242 * 243 * Returns %true if partitions scanning is enabled for @disk, or %false if 244 * partition scanning is disabled either permanently or temporarily. 245 */ 246static inline bool disk_has_partscan(struct gendisk *disk) 247{ 248 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) && 249 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 250} 251 252/* 253 * The gendisk is refcounted by the part0 block_device, and the bd_device 254 * therein is also used for device model presentation in sysfs. 255 */ 256#define dev_to_disk(device) \ 257 (dev_to_bdev(device)->bd_disk) 258#define disk_to_dev(disk) \ 259 (&((disk)->part0->bd_device)) 260 261#if IS_REACHABLE(CONFIG_CDROM) 262#define disk_to_cdi(disk) ((disk)->cdi) 263#else 264#define disk_to_cdi(disk) NULL 265#endif 266 267static inline dev_t disk_devt(struct gendisk *disk) 268{ 269 return MKDEV(disk->major, disk->first_minor); 270} 271 272#ifdef CONFIG_TRANSPARENT_HUGEPAGE 273/* 274 * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER) 275 * however we constrain this to what we can validate and test. 276 */ 277#define BLK_MAX_BLOCK_SIZE SZ_64K 278#else 279#define BLK_MAX_BLOCK_SIZE PAGE_SIZE 280#endif 281 282 283/* blk_validate_limits() validates bsize, so drivers don't usually need to */ 284static inline int blk_validate_block_size(unsigned long bsize) 285{ 286 if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize)) 287 return -EINVAL; 288 289 return 0; 290} 291 292static inline bool blk_op_is_passthrough(blk_opf_t op) 293{ 294 op &= REQ_OP_MASK; 295 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 296} 297 298/* flags set by the driver in queue_limits.features */ 299typedef unsigned int __bitwise blk_features_t; 300 301/* supports a volatile write cache */ 302#define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0)) 303 304/* supports passing on the FUA bit */ 305#define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1)) 306 307/* rotational device (hard drive or floppy) */ 308#define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2)) 309 310/* contributes to the random number pool */ 311#define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3)) 312 313/* do disk/partitions IO accounting */ 314#define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4)) 315 316/* don't modify data until writeback is done */ 317#define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5)) 318 319/* always completes in submit context */ 320#define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6)) 321 322/* supports REQ_NOWAIT */ 323#define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7)) 324 325/* supports DAX */ 326#define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8)) 327 328/* supports I/O polling */ 329#define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9)) 330 331/* is a zoned device */ 332#define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10)) 333 334/* supports PCI(e) p2p requests */ 335#define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12)) 336 337/* skip this queue in blk_mq_(un)quiesce_tagset */ 338#define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13)) 339 340/* undocumented magic for bcache */ 341#define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \ 342 ((__force blk_features_t)(1u << 15)) 343 344/* atomic writes enabled */ 345#define BLK_FEAT_ATOMIC_WRITES \ 346 ((__force blk_features_t)(1u << 16)) 347 348/* 349 * Flags automatically inherited when stacking limits. 350 */ 351#define BLK_FEAT_INHERIT_MASK \ 352 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \ 353 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | \ 354 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE) 355 356/* internal flags in queue_limits.flags */ 357typedef unsigned int __bitwise blk_flags_t; 358 359/* do not send FLUSH/FUA commands despite advertising a write cache */ 360#define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0)) 361 362/* I/O topology is misaligned */ 363#define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1)) 364 365/* passthrough command IO accounting */ 366#define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2)) 367 368struct queue_limits { 369 blk_features_t features; 370 blk_flags_t flags; 371 unsigned long seg_boundary_mask; 372 unsigned long virt_boundary_mask; 373 374 unsigned int max_hw_sectors; 375 unsigned int max_dev_sectors; 376 unsigned int chunk_sectors; 377 unsigned int max_sectors; 378 unsigned int max_user_sectors; 379 unsigned int max_segment_size; 380 unsigned int min_segment_size; 381 unsigned int physical_block_size; 382 unsigned int logical_block_size; 383 unsigned int alignment_offset; 384 unsigned int io_min; 385 unsigned int io_opt; 386 unsigned int max_discard_sectors; 387 unsigned int max_hw_discard_sectors; 388 unsigned int max_user_discard_sectors; 389 unsigned int max_secure_erase_sectors; 390 unsigned int max_write_zeroes_sectors; 391 unsigned int max_hw_zone_append_sectors; 392 unsigned int max_zone_append_sectors; 393 unsigned int discard_granularity; 394 unsigned int discard_alignment; 395 unsigned int zone_write_granularity; 396 397 /* atomic write limits */ 398 unsigned int atomic_write_hw_max; 399 unsigned int atomic_write_max_sectors; 400 unsigned int atomic_write_hw_boundary; 401 unsigned int atomic_write_boundary_sectors; 402 unsigned int atomic_write_hw_unit_min; 403 unsigned int atomic_write_unit_min; 404 unsigned int atomic_write_hw_unit_max; 405 unsigned int atomic_write_unit_max; 406 407 unsigned short max_segments; 408 unsigned short max_integrity_segments; 409 unsigned short max_discard_segments; 410 411 unsigned short max_write_streams; 412 unsigned int write_stream_granularity; 413 414 unsigned int max_open_zones; 415 unsigned int max_active_zones; 416 417 /* 418 * Drivers that set dma_alignment to less than 511 must be prepared to 419 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 420 * due to possible offsets. 421 */ 422 unsigned int dma_alignment; 423 unsigned int dma_pad_mask; 424 425 struct blk_integrity integrity; 426}; 427 428typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 429 void *data); 430 431#define BLK_ALL_ZONES ((unsigned int)-1) 432int blkdev_report_zones(struct block_device *bdev, sector_t sector, 433 unsigned int nr_zones, report_zones_cb cb, void *data); 434int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 435 sector_t sectors, sector_t nr_sectors); 436int blk_revalidate_disk_zones(struct gendisk *disk); 437 438/* 439 * Independent access ranges: struct blk_independent_access_range describes 440 * a range of contiguous sectors that can be accessed using device command 441 * execution resources that are independent from the resources used for 442 * other access ranges. This is typically found with single-LUN multi-actuator 443 * HDDs where each access range is served by a different set of heads. 444 * The set of independent ranges supported by the device is defined using 445 * struct blk_independent_access_ranges. The independent ranges must not overlap 446 * and must include all sectors within the disk capacity (no sector holes 447 * allowed). 448 * For a device with multiple ranges, requests targeting sectors in different 449 * ranges can be executed in parallel. A request can straddle an access range 450 * boundary. 451 */ 452struct blk_independent_access_range { 453 struct kobject kobj; 454 sector_t sector; 455 sector_t nr_sectors; 456}; 457 458struct blk_independent_access_ranges { 459 struct kobject kobj; 460 bool sysfs_registered; 461 unsigned int nr_ia_ranges; 462 struct blk_independent_access_range ia_range[]; 463}; 464 465struct request_queue { 466 /* 467 * The queue owner gets to use this for whatever they like. 468 * ll_rw_blk doesn't touch it. 469 */ 470 void *queuedata; 471 472 struct elevator_queue *elevator; 473 474 const struct blk_mq_ops *mq_ops; 475 476 /* sw queues */ 477 struct blk_mq_ctx __percpu *queue_ctx; 478 479 /* 480 * various queue flags, see QUEUE_* below 481 */ 482 unsigned long queue_flags; 483 484 unsigned int rq_timeout; 485 486 unsigned int queue_depth; 487 488 refcount_t refs; 489 490 /* hw dispatch queues */ 491 unsigned int nr_hw_queues; 492 struct xarray hctx_table; 493 494 struct percpu_ref q_usage_counter; 495 struct lock_class_key io_lock_cls_key; 496 struct lockdep_map io_lockdep_map; 497 498 struct lock_class_key q_lock_cls_key; 499 struct lockdep_map q_lockdep_map; 500 501 struct request *last_merge; 502 503 spinlock_t queue_lock; 504 505 int quiesce_depth; 506 507 struct gendisk *disk; 508 509 /* 510 * mq queue kobject 511 */ 512 struct kobject *mq_kobj; 513 514 struct queue_limits limits; 515 516#ifdef CONFIG_PM 517 struct device *dev; 518 enum rpm_status rpm_status; 519#endif 520 521 /* 522 * Number of contexts that have called blk_set_pm_only(). If this 523 * counter is above zero then only RQF_PM requests are processed. 524 */ 525 atomic_t pm_only; 526 527 struct blk_queue_stats *stats; 528 struct rq_qos *rq_qos; 529 struct mutex rq_qos_mutex; 530 531 /* 532 * ida allocated id for this queue. Used to index queues from 533 * ioctx. 534 */ 535 int id; 536 537 /* 538 * queue settings 539 */ 540 unsigned long nr_requests; /* Max # of requests */ 541 542#ifdef CONFIG_BLK_INLINE_ENCRYPTION 543 struct blk_crypto_profile *crypto_profile; 544 struct kobject *crypto_kobject; 545#endif 546 547 struct timer_list timeout; 548 struct work_struct timeout_work; 549 550 atomic_t nr_active_requests_shared_tags; 551 552 struct blk_mq_tags *sched_shared_tags; 553 554 struct list_head icq_list; 555#ifdef CONFIG_BLK_CGROUP 556 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 557 struct blkcg_gq *root_blkg; 558 struct list_head blkg_list; 559 struct mutex blkcg_mutex; 560#endif 561 562 int node; 563 564 spinlock_t requeue_lock; 565 struct list_head requeue_list; 566 struct delayed_work requeue_work; 567 568#ifdef CONFIG_BLK_DEV_IO_TRACE 569 struct blk_trace __rcu *blk_trace; 570#endif 571 /* 572 * for flush operations 573 */ 574 struct blk_flush_queue *fq; 575 struct list_head flush_list; 576 577 /* 578 * Protects against I/O scheduler switching, particularly when updating 579 * q->elevator. Since the elevator update code path may also modify q-> 580 * nr_requests and wbt latency, this lock also protects the sysfs attrs 581 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update 582 * may modify hctx tags, reserved-tags and cpumask, so this lock also 583 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking 584 * order during an elevator or nr_hw_queue update, first freeze the 585 * queue, then acquire ->elevator_lock. 586 */ 587 struct mutex elevator_lock; 588 589 struct mutex sysfs_lock; 590 /* 591 * Protects queue limits and also sysfs attribute read_ahead_kb. 592 */ 593 struct mutex limits_lock; 594 595 /* 596 * for reusing dead hctx instance in case of updating 597 * nr_hw_queues 598 */ 599 struct list_head unused_hctx_list; 600 spinlock_t unused_hctx_lock; 601 602 int mq_freeze_depth; 603 604#ifdef CONFIG_BLK_DEV_THROTTLING 605 /* Throttle data */ 606 struct throtl_data *td; 607#endif 608 struct rcu_head rcu_head; 609#ifdef CONFIG_LOCKDEP 610 struct task_struct *mq_freeze_owner; 611 int mq_freeze_owner_depth; 612 /* 613 * Records disk & queue state in current context, used in unfreeze 614 * queue 615 */ 616 bool mq_freeze_disk_dead; 617 bool mq_freeze_queue_dying; 618#endif 619 wait_queue_head_t mq_freeze_wq; 620 /* 621 * Protect concurrent access to q_usage_counter by 622 * percpu_ref_kill() and percpu_ref_reinit(). 623 */ 624 struct mutex mq_freeze_lock; 625 626 struct blk_mq_tag_set *tag_set; 627 struct list_head tag_set_list; 628 629 struct dentry *debugfs_dir; 630 struct dentry *sched_debugfs_dir; 631 struct dentry *rqos_debugfs_dir; 632 /* 633 * Serializes all debugfs metadata operations using the above dentries. 634 */ 635 struct mutex debugfs_mutex; 636}; 637 638/* Keep blk_queue_flag_name[] in sync with the definitions below */ 639enum { 640 QUEUE_FLAG_DYING, /* queue being torn down */ 641 QUEUE_FLAG_NOMERGES, /* disable merge attempts */ 642 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */ 643 QUEUE_FLAG_FAIL_IO, /* fake timeout */ 644 QUEUE_FLAG_NOXMERGES, /* No extended merges */ 645 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */ 646 QUEUE_FLAG_INIT_DONE, /* queue is initialized */ 647 QUEUE_FLAG_STATS, /* track IO start and completion times */ 648 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */ 649 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */ 650 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */ 651 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */ 652 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */ 653 QUEUE_FLAG_DISABLE_WBT_DEF, /* for sched to disable/enable wbt */ 654 QUEUE_FLAG_NO_ELV_SWITCH, /* can't switch elevator any more */ 655 QUEUE_FLAG_MAX 656}; 657 658#define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP) 659 660void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 661void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 662 663#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 664#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 665#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 666#define blk_queue_noxmerges(q) \ 667 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 668#define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL)) 669#define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT) 670#define blk_queue_passthrough_stat(q) \ 671 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH) 672#define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX) 673#define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA) 674#ifdef CONFIG_BLK_RQ_ALLOC_TIME 675#define blk_queue_rq_alloc_time(q) \ 676 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 677#else 678#define blk_queue_rq_alloc_time(q) false 679#endif 680 681#define blk_noretry_request(rq) \ 682 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 683 REQ_FAILFAST_DRIVER)) 684#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 685#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 686#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 687#define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 688#define blk_queue_skip_tagset_quiesce(q) \ 689 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE) 690#define blk_queue_disable_wbt(q) \ 691 test_bit(QUEUE_FLAG_DISABLE_WBT_DEF, &(q)->queue_flags) 692#define blk_queue_no_elv_switch(q) \ 693 test_bit(QUEUE_FLAG_NO_ELV_SWITCH, &(q)->queue_flags) 694 695extern void blk_set_pm_only(struct request_queue *q); 696extern void blk_clear_pm_only(struct request_queue *q); 697 698#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 699 700#define dma_map_bvec(dev, bv, dir, attrs) \ 701 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 702 (dir), (attrs)) 703 704static inline bool queue_is_mq(struct request_queue *q) 705{ 706 return q->mq_ops; 707} 708 709#ifdef CONFIG_PM 710static inline enum rpm_status queue_rpm_status(struct request_queue *q) 711{ 712 return q->rpm_status; 713} 714#else 715static inline enum rpm_status queue_rpm_status(struct request_queue *q) 716{ 717 return RPM_ACTIVE; 718} 719#endif 720 721static inline bool blk_queue_is_zoned(struct request_queue *q) 722{ 723 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 724 (q->limits.features & BLK_FEAT_ZONED); 725} 726 727static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 728{ 729 if (!blk_queue_is_zoned(disk->queue)) 730 return 0; 731 return sector >> ilog2(disk->queue->limits.chunk_sectors); 732} 733 734static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 735{ 736 return bdev->bd_disk->queue->limits.max_open_zones; 737} 738 739static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 740{ 741 return bdev->bd_disk->queue->limits.max_active_zones; 742} 743 744static inline unsigned int blk_queue_depth(struct request_queue *q) 745{ 746 if (q->queue_depth) 747 return q->queue_depth; 748 749 return q->nr_requests; 750} 751 752/* 753 * default timeout for SG_IO if none specified 754 */ 755#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 756#define BLK_MIN_SG_TIMEOUT (7 * HZ) 757 758/* This should not be used directly - use rq_for_each_segment */ 759#define for_each_bio(_bio) \ 760 for (; _bio; _bio = _bio->bi_next) 761 762int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk, 763 const struct attribute_group **groups, 764 struct fwnode_handle *fwnode); 765int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 766 const struct attribute_group **groups); 767static inline int __must_check add_disk(struct gendisk *disk) 768{ 769 return device_add_disk(NULL, disk, NULL); 770} 771void del_gendisk(struct gendisk *gp); 772void invalidate_disk(struct gendisk *disk); 773void set_disk_ro(struct gendisk *disk, bool read_only); 774void disk_uevent(struct gendisk *disk, enum kobject_action action); 775 776static inline u8 bdev_partno(const struct block_device *bdev) 777{ 778 return atomic_read(&bdev->__bd_flags) & BD_PARTNO; 779} 780 781static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag) 782{ 783 return atomic_read(&bdev->__bd_flags) & flag; 784} 785 786static inline void bdev_set_flag(struct block_device *bdev, unsigned flag) 787{ 788 atomic_or(flag, &bdev->__bd_flags); 789} 790 791static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag) 792{ 793 atomic_andnot(flag, &bdev->__bd_flags); 794} 795 796static inline bool get_disk_ro(struct gendisk *disk) 797{ 798 return bdev_test_flag(disk->part0, BD_READ_ONLY) || 799 test_bit(GD_READ_ONLY, &disk->state); 800} 801 802static inline bool bdev_read_only(struct block_device *bdev) 803{ 804 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk); 805} 806 807bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 808void disk_force_media_change(struct gendisk *disk); 809void bdev_mark_dead(struct block_device *bdev, bool surprise); 810 811void add_disk_randomness(struct gendisk *disk) __latent_entropy; 812void rand_initialize_disk(struct gendisk *disk); 813 814static inline sector_t get_start_sect(struct block_device *bdev) 815{ 816 return bdev->bd_start_sect; 817} 818 819static inline sector_t bdev_nr_sectors(struct block_device *bdev) 820{ 821 return bdev->bd_nr_sectors; 822} 823 824static inline loff_t bdev_nr_bytes(struct block_device *bdev) 825{ 826 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 827} 828 829static inline sector_t get_capacity(struct gendisk *disk) 830{ 831 return bdev_nr_sectors(disk->part0); 832} 833 834static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 835{ 836 return bdev_nr_sectors(sb->s_bdev) >> 837 (sb->s_blocksize_bits - SECTOR_SHIFT); 838} 839 840#ifdef CONFIG_BLK_DEV_ZONED 841static inline unsigned int disk_nr_zones(struct gendisk *disk) 842{ 843 return disk->nr_zones; 844} 845bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs); 846 847/** 848 * disk_zone_capacity - returns the zone capacity of zone containing @sector 849 * @disk: disk to work with 850 * @sector: sector number within the querying zone 851 * 852 * Returns the zone capacity of a zone containing @sector. @sector can be any 853 * sector in the zone. 854 */ 855static inline unsigned int disk_zone_capacity(struct gendisk *disk, 856 sector_t sector) 857{ 858 sector_t zone_sectors = disk->queue->limits.chunk_sectors; 859 860 if (sector + zone_sectors >= get_capacity(disk)) 861 return disk->last_zone_capacity; 862 return disk->zone_capacity; 863} 864static inline unsigned int bdev_zone_capacity(struct block_device *bdev, 865 sector_t pos) 866{ 867 return disk_zone_capacity(bdev->bd_disk, pos); 868} 869#else /* CONFIG_BLK_DEV_ZONED */ 870static inline unsigned int disk_nr_zones(struct gendisk *disk) 871{ 872 return 0; 873} 874static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) 875{ 876 return false; 877} 878#endif /* CONFIG_BLK_DEV_ZONED */ 879 880static inline unsigned int bdev_nr_zones(struct block_device *bdev) 881{ 882 return disk_nr_zones(bdev->bd_disk); 883} 884 885int bdev_disk_changed(struct gendisk *disk, bool invalidate); 886 887void put_disk(struct gendisk *disk); 888struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node, 889 struct lock_class_key *lkclass); 890 891/** 892 * blk_alloc_disk - allocate a gendisk structure 893 * @lim: queue limits to be used for this disk. 894 * @node_id: numa node to allocate on 895 * 896 * Allocate and pre-initialize a gendisk structure for use with BIO based 897 * drivers. 898 * 899 * Returns an ERR_PTR on error, else the allocated disk. 900 * 901 * Context: can sleep 902 */ 903#define blk_alloc_disk(lim, node_id) \ 904({ \ 905 static struct lock_class_key __key; \ 906 \ 907 __blk_alloc_disk(lim, node_id, &__key); \ 908}) 909 910int __register_blkdev(unsigned int major, const char *name, 911 void (*probe)(dev_t devt)); 912#define register_blkdev(major, name) \ 913 __register_blkdev(major, name, NULL) 914void unregister_blkdev(unsigned int major, const char *name); 915 916bool disk_check_media_change(struct gendisk *disk); 917void set_capacity(struct gendisk *disk, sector_t size); 918 919#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 920int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 921void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 922#else 923static inline int bd_link_disk_holder(struct block_device *bdev, 924 struct gendisk *disk) 925{ 926 return 0; 927} 928static inline void bd_unlink_disk_holder(struct block_device *bdev, 929 struct gendisk *disk) 930{ 931} 932#endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 933 934dev_t part_devt(struct gendisk *disk, u8 partno); 935void inc_diskseq(struct gendisk *disk); 936void blk_request_module(dev_t devt); 937 938extern int blk_register_queue(struct gendisk *disk); 939extern void blk_unregister_queue(struct gendisk *disk); 940void submit_bio_noacct(struct bio *bio); 941struct bio *bio_split_to_limits(struct bio *bio); 942 943extern int blk_lld_busy(struct request_queue *q); 944extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 945extern void blk_queue_exit(struct request_queue *q); 946extern void blk_sync_queue(struct request_queue *q); 947 948/* Helper to convert REQ_OP_XXX to its string format XXX */ 949extern const char *blk_op_str(enum req_op op); 950 951int blk_status_to_errno(blk_status_t status); 952blk_status_t errno_to_blk_status(int errno); 953const char *blk_status_to_str(blk_status_t status); 954 955/* only poll the hardware once, don't continue until a completion was found */ 956#define BLK_POLL_ONESHOT (1 << 0) 957int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 958int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 959 unsigned int flags); 960 961static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 962{ 963 return bdev->bd_queue; /* this is never NULL */ 964} 965 966/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 967const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 968 969static inline unsigned int bio_zone_no(struct bio *bio) 970{ 971 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 972} 973 974static inline bool bio_straddles_zones(struct bio *bio) 975{ 976 return bio_sectors(bio) && 977 bio_zone_no(bio) != 978 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1); 979} 980 981/* 982 * Return how much within the boundary is left to be used for I/O at a given 983 * offset. 984 */ 985static inline unsigned int blk_boundary_sectors_left(sector_t offset, 986 unsigned int boundary_sectors) 987{ 988 if (unlikely(!is_power_of_2(boundary_sectors))) 989 return boundary_sectors - sector_div(offset, boundary_sectors); 990 return boundary_sectors - (offset & (boundary_sectors - 1)); 991} 992 993/** 994 * queue_limits_start_update - start an atomic update of queue limits 995 * @q: queue to update 996 * 997 * This functions starts an atomic update of the queue limits. It takes a lock 998 * to prevent other updates and returns a snapshot of the current limits that 999 * the caller can modify. The caller must call queue_limits_commit_update() 1000 * to finish the update. 1001 * 1002 * Context: process context. 1003 */ 1004static inline struct queue_limits 1005queue_limits_start_update(struct request_queue *q) 1006{ 1007 mutex_lock(&q->limits_lock); 1008 return q->limits; 1009} 1010int queue_limits_commit_update_frozen(struct request_queue *q, 1011 struct queue_limits *lim); 1012int queue_limits_commit_update(struct request_queue *q, 1013 struct queue_limits *lim); 1014int queue_limits_set(struct request_queue *q, struct queue_limits *lim); 1015int blk_validate_limits(struct queue_limits *lim); 1016 1017/** 1018 * queue_limits_cancel_update - cancel an atomic update of queue limits 1019 * @q: queue to update 1020 * 1021 * This functions cancels an atomic update of the queue limits started by 1022 * queue_limits_start_update() and should be used when an error occurs after 1023 * starting update. 1024 */ 1025static inline void queue_limits_cancel_update(struct request_queue *q) 1026{ 1027 mutex_unlock(&q->limits_lock); 1028} 1029 1030/* 1031 * These helpers are for drivers that have sloppy feature negotiation and might 1032 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O 1033 * completion handler when the device returned an indicator that the respective 1034 * feature is not actually supported. They are racy and the driver needs to 1035 * cope with that. Try to avoid this scheme if you can. 1036 */ 1037static inline void blk_queue_disable_discard(struct request_queue *q) 1038{ 1039 q->limits.max_discard_sectors = 0; 1040} 1041 1042static inline void blk_queue_disable_secure_erase(struct request_queue *q) 1043{ 1044 q->limits.max_secure_erase_sectors = 0; 1045} 1046 1047static inline void blk_queue_disable_write_zeroes(struct request_queue *q) 1048{ 1049 q->limits.max_write_zeroes_sectors = 0; 1050} 1051 1052/* 1053 * Access functions for manipulating queue properties 1054 */ 1055extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1056extern void blk_set_stacking_limits(struct queue_limits *lim); 1057extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1058 sector_t offset); 1059void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 1060 sector_t offset, const char *pfx); 1061extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1062 1063struct blk_independent_access_ranges * 1064disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 1065void disk_set_independent_access_ranges(struct gendisk *disk, 1066 struct blk_independent_access_ranges *iars); 1067 1068bool __must_check blk_get_queue(struct request_queue *); 1069extern void blk_put_queue(struct request_queue *); 1070 1071void blk_mark_disk_dead(struct gendisk *disk); 1072 1073struct rq_list { 1074 struct request *head; 1075 struct request *tail; 1076}; 1077 1078#ifdef CONFIG_BLOCK 1079/* 1080 * blk_plug permits building a queue of related requests by holding the I/O 1081 * fragments for a short period. This allows merging of sequential requests 1082 * into single larger request. As the requests are moved from a per-task list to 1083 * the device's request_queue in a batch, this results in improved scalability 1084 * as the lock contention for request_queue lock is reduced. 1085 * 1086 * It is ok not to disable preemption when adding the request to the plug list 1087 * or when attempting a merge. For details, please see schedule() where 1088 * blk_flush_plug() is called. 1089 */ 1090struct blk_plug { 1091 struct rq_list mq_list; /* blk-mq requests */ 1092 1093 /* if ios_left is > 1, we can batch tag/rq allocations */ 1094 struct rq_list cached_rqs; 1095 u64 cur_ktime; 1096 unsigned short nr_ios; 1097 1098 unsigned short rq_count; 1099 1100 bool multiple_queues; 1101 bool has_elevator; 1102 1103 struct list_head cb_list; /* md requires an unplug callback */ 1104}; 1105 1106struct blk_plug_cb; 1107typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1108struct blk_plug_cb { 1109 struct list_head list; 1110 blk_plug_cb_fn callback; 1111 void *data; 1112}; 1113extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1114 void *data, int size); 1115extern void blk_start_plug(struct blk_plug *); 1116extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1117extern void blk_finish_plug(struct blk_plug *); 1118 1119void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1120static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1121{ 1122 if (plug) 1123 __blk_flush_plug(plug, async); 1124} 1125 1126/* 1127 * tsk == current here 1128 */ 1129static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1130{ 1131 struct blk_plug *plug = tsk->plug; 1132 1133 if (plug) 1134 plug->cur_ktime = 0; 1135 current->flags &= ~PF_BLOCK_TS; 1136} 1137 1138int blkdev_issue_flush(struct block_device *bdev); 1139long nr_blockdev_pages(void); 1140#else /* CONFIG_BLOCK */ 1141struct blk_plug { 1142}; 1143 1144static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1145 unsigned short nr_ios) 1146{ 1147} 1148 1149static inline void blk_start_plug(struct blk_plug *plug) 1150{ 1151} 1152 1153static inline void blk_finish_plug(struct blk_plug *plug) 1154{ 1155} 1156 1157static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1158{ 1159} 1160 1161static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1162{ 1163} 1164 1165static inline int blkdev_issue_flush(struct block_device *bdev) 1166{ 1167 return 0; 1168} 1169 1170static inline long nr_blockdev_pages(void) 1171{ 1172 return 0; 1173} 1174#endif /* CONFIG_BLOCK */ 1175 1176extern void blk_io_schedule(void); 1177 1178int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1179 sector_t nr_sects, gfp_t gfp_mask); 1180int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1181 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1182int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1183 sector_t nr_sects, gfp_t gfp); 1184 1185#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1186#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1187#define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */ 1188 1189extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1190 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1191 unsigned flags); 1192extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1193 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1194 1195static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1196 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1197{ 1198 return blkdev_issue_discard(sb->s_bdev, 1199 block << (sb->s_blocksize_bits - 1200 SECTOR_SHIFT), 1201 nr_blocks << (sb->s_blocksize_bits - 1202 SECTOR_SHIFT), 1203 gfp_mask); 1204} 1205static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1206 sector_t nr_blocks, gfp_t gfp_mask) 1207{ 1208 return blkdev_issue_zeroout(sb->s_bdev, 1209 block << (sb->s_blocksize_bits - 1210 SECTOR_SHIFT), 1211 nr_blocks << (sb->s_blocksize_bits - 1212 SECTOR_SHIFT), 1213 gfp_mask, 0); 1214} 1215 1216static inline bool bdev_is_partition(struct block_device *bdev) 1217{ 1218 return bdev_partno(bdev) != 0; 1219} 1220 1221enum blk_default_limits { 1222 BLK_MAX_SEGMENTS = 128, 1223 BLK_SAFE_MAX_SECTORS = 255, 1224 BLK_MAX_SEGMENT_SIZE = 65536, 1225 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1226}; 1227 1228/* 1229 * Default upper limit for the software max_sectors limit used for 1230 * regular file system I/O. This can be increased through sysfs. 1231 * 1232 * Not to be confused with the max_hw_sector limit that is entirely 1233 * controlled by the driver, usually based on hardware limits. 1234 */ 1235#define BLK_DEF_MAX_SECTORS_CAP 2560u 1236 1237static inline struct queue_limits *bdev_limits(struct block_device *bdev) 1238{ 1239 return &bdev_get_queue(bdev)->limits; 1240} 1241 1242static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1243{ 1244 return q->limits.seg_boundary_mask; 1245} 1246 1247static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1248{ 1249 return q->limits.virt_boundary_mask; 1250} 1251 1252static inline unsigned int queue_max_sectors(const struct request_queue *q) 1253{ 1254 return q->limits.max_sectors; 1255} 1256 1257static inline unsigned int queue_max_bytes(struct request_queue *q) 1258{ 1259 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1260} 1261 1262static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1263{ 1264 return q->limits.max_hw_sectors; 1265} 1266 1267static inline unsigned short queue_max_segments(const struct request_queue *q) 1268{ 1269 return q->limits.max_segments; 1270} 1271 1272static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1273{ 1274 return q->limits.max_discard_segments; 1275} 1276 1277static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1278{ 1279 return q->limits.max_segment_size; 1280} 1281 1282static inline bool queue_emulates_zone_append(struct request_queue *q) 1283{ 1284 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors; 1285} 1286 1287static inline bool bdev_emulates_zone_append(struct block_device *bdev) 1288{ 1289 return queue_emulates_zone_append(bdev_get_queue(bdev)); 1290} 1291 1292static inline unsigned int 1293bdev_max_zone_append_sectors(struct block_device *bdev) 1294{ 1295 return bdev_limits(bdev)->max_zone_append_sectors; 1296} 1297 1298static inline unsigned int bdev_max_segments(struct block_device *bdev) 1299{ 1300 return queue_max_segments(bdev_get_queue(bdev)); 1301} 1302 1303static inline unsigned short bdev_max_write_streams(struct block_device *bdev) 1304{ 1305 if (bdev_is_partition(bdev)) 1306 return 0; 1307 return bdev_limits(bdev)->max_write_streams; 1308} 1309 1310static inline unsigned queue_logical_block_size(const struct request_queue *q) 1311{ 1312 return q->limits.logical_block_size; 1313} 1314 1315static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1316{ 1317 return queue_logical_block_size(bdev_get_queue(bdev)); 1318} 1319 1320static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1321{ 1322 return q->limits.physical_block_size; 1323} 1324 1325static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1326{ 1327 return queue_physical_block_size(bdev_get_queue(bdev)); 1328} 1329 1330static inline unsigned int queue_io_min(const struct request_queue *q) 1331{ 1332 return q->limits.io_min; 1333} 1334 1335static inline unsigned int bdev_io_min(struct block_device *bdev) 1336{ 1337 return queue_io_min(bdev_get_queue(bdev)); 1338} 1339 1340static inline unsigned int queue_io_opt(const struct request_queue *q) 1341{ 1342 return q->limits.io_opt; 1343} 1344 1345static inline unsigned int bdev_io_opt(struct block_device *bdev) 1346{ 1347 return queue_io_opt(bdev_get_queue(bdev)); 1348} 1349 1350static inline unsigned int 1351queue_zone_write_granularity(const struct request_queue *q) 1352{ 1353 return q->limits.zone_write_granularity; 1354} 1355 1356static inline unsigned int 1357bdev_zone_write_granularity(struct block_device *bdev) 1358{ 1359 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1360} 1361 1362int bdev_alignment_offset(struct block_device *bdev); 1363unsigned int bdev_discard_alignment(struct block_device *bdev); 1364 1365static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1366{ 1367 return bdev_limits(bdev)->max_discard_sectors; 1368} 1369 1370static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1371{ 1372 return bdev_limits(bdev)->discard_granularity; 1373} 1374 1375static inline unsigned int 1376bdev_max_secure_erase_sectors(struct block_device *bdev) 1377{ 1378 return bdev_limits(bdev)->max_secure_erase_sectors; 1379} 1380 1381static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1382{ 1383 return bdev_limits(bdev)->max_write_zeroes_sectors; 1384} 1385 1386static inline bool bdev_nonrot(struct block_device *bdev) 1387{ 1388 return blk_queue_nonrot(bdev_get_queue(bdev)); 1389} 1390 1391static inline bool bdev_synchronous(struct block_device *bdev) 1392{ 1393 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS; 1394} 1395 1396static inline bool bdev_stable_writes(struct block_device *bdev) 1397{ 1398 struct request_queue *q = bdev_get_queue(bdev); 1399 1400 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1401 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE) 1402 return true; 1403 return q->limits.features & BLK_FEAT_STABLE_WRITES; 1404} 1405 1406static inline bool blk_queue_write_cache(struct request_queue *q) 1407{ 1408 return (q->limits.features & BLK_FEAT_WRITE_CACHE) && 1409 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED); 1410} 1411 1412static inline bool bdev_write_cache(struct block_device *bdev) 1413{ 1414 return blk_queue_write_cache(bdev_get_queue(bdev)); 1415} 1416 1417static inline bool bdev_fua(struct block_device *bdev) 1418{ 1419 return bdev_limits(bdev)->features & BLK_FEAT_FUA; 1420} 1421 1422static inline bool bdev_nowait(struct block_device *bdev) 1423{ 1424 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT; 1425} 1426 1427static inline bool bdev_is_zoned(struct block_device *bdev) 1428{ 1429 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1430} 1431 1432static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1433{ 1434 return disk_zone_no(bdev->bd_disk, sec); 1435} 1436 1437static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1438{ 1439 struct request_queue *q = bdev_get_queue(bdev); 1440 1441 if (!blk_queue_is_zoned(q)) 1442 return 0; 1443 return q->limits.chunk_sectors; 1444} 1445 1446static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1447 sector_t sector) 1448{ 1449 return sector & (bdev_zone_sectors(bdev) - 1); 1450} 1451 1452static inline sector_t bio_offset_from_zone_start(struct bio *bio) 1453{ 1454 return bdev_offset_from_zone_start(bio->bi_bdev, 1455 bio->bi_iter.bi_sector); 1456} 1457 1458static inline bool bdev_is_zone_start(struct block_device *bdev, 1459 sector_t sector) 1460{ 1461 return bdev_offset_from_zone_start(bdev, sector) == 0; 1462} 1463 1464/* Check whether @sector is a multiple of the zone size. */ 1465static inline bool bdev_is_zone_aligned(struct block_device *bdev, 1466 sector_t sector) 1467{ 1468 return bdev_is_zone_start(bdev, sector); 1469} 1470 1471/** 1472 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone 1473 * @bdev: block device to check 1474 * @sector: sector number 1475 * 1476 * Check if @sector on @bdev is contained in a sequential write required zone. 1477 */ 1478static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector) 1479{ 1480 bool is_seq = false; 1481 1482#if IS_ENABLED(CONFIG_BLK_DEV_ZONED) 1483 if (bdev_is_zoned(bdev)) { 1484 struct gendisk *disk = bdev->bd_disk; 1485 unsigned long *bitmap; 1486 1487 rcu_read_lock(); 1488 bitmap = rcu_dereference(disk->conv_zones_bitmap); 1489 is_seq = !bitmap || 1490 !test_bit(disk_zone_no(disk, sector), bitmap); 1491 rcu_read_unlock(); 1492 } 1493#endif 1494 1495 return is_seq; 1496} 1497 1498int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector, 1499 sector_t nr_sects, gfp_t gfp_mask); 1500 1501static inline unsigned int queue_dma_alignment(const struct request_queue *q) 1502{ 1503 return q->limits.dma_alignment; 1504} 1505 1506static inline unsigned int 1507queue_atomic_write_unit_max_bytes(const struct request_queue *q) 1508{ 1509 return q->limits.atomic_write_unit_max; 1510} 1511 1512static inline unsigned int 1513queue_atomic_write_unit_min_bytes(const struct request_queue *q) 1514{ 1515 return q->limits.atomic_write_unit_min; 1516} 1517 1518static inline unsigned int 1519queue_atomic_write_boundary_bytes(const struct request_queue *q) 1520{ 1521 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT; 1522} 1523 1524static inline unsigned int 1525queue_atomic_write_max_bytes(const struct request_queue *q) 1526{ 1527 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT; 1528} 1529 1530static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1531{ 1532 return queue_dma_alignment(bdev_get_queue(bdev)); 1533} 1534 1535static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1536 struct iov_iter *iter) 1537{ 1538 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1539 bdev_logical_block_size(bdev) - 1); 1540} 1541 1542static inline unsigned int 1543blk_lim_dma_alignment_and_pad(struct queue_limits *lim) 1544{ 1545 return lim->dma_alignment | lim->dma_pad_mask; 1546} 1547 1548static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr, 1549 unsigned int len) 1550{ 1551 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits); 1552 1553 return !(addr & alignment) && !(len & alignment); 1554} 1555 1556/* assumes size > 256 */ 1557static inline unsigned int blksize_bits(unsigned int size) 1558{ 1559 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1560} 1561 1562int kblockd_schedule_work(struct work_struct *work); 1563int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1564 1565#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1566 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1567#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1568 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1569 1570#ifdef CONFIG_BLK_INLINE_ENCRYPTION 1571 1572bool blk_crypto_register(struct blk_crypto_profile *profile, 1573 struct request_queue *q); 1574 1575#else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1576 1577static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1578 struct request_queue *q) 1579{ 1580 return true; 1581} 1582 1583#endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1584 1585enum blk_unique_id { 1586 /* these match the Designator Types specified in SPC */ 1587 BLK_UID_T10 = 1, 1588 BLK_UID_EUI64 = 2, 1589 BLK_UID_NAA = 3, 1590}; 1591 1592struct block_device_operations { 1593 void (*submit_bio)(struct bio *bio); 1594 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1595 unsigned int flags); 1596 int (*open)(struct gendisk *disk, blk_mode_t mode); 1597 void (*release)(struct gendisk *disk); 1598 int (*ioctl)(struct block_device *bdev, blk_mode_t mode, 1599 unsigned cmd, unsigned long arg); 1600 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode, 1601 unsigned cmd, unsigned long arg); 1602 unsigned int (*check_events) (struct gendisk *disk, 1603 unsigned int clearing); 1604 void (*unlock_native_capacity) (struct gendisk *); 1605 int (*getgeo)(struct block_device *, struct hd_geometry *); 1606 int (*set_read_only)(struct block_device *bdev, bool ro); 1607 void (*free_disk)(struct gendisk *disk); 1608 /* this callback is with swap_lock and sometimes page table lock held */ 1609 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1610 int (*report_zones)(struct gendisk *, sector_t sector, 1611 unsigned int nr_zones, report_zones_cb cb, void *data); 1612 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1613 /* returns the length of the identifier or a negative errno: */ 1614 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1615 enum blk_unique_id id_type); 1616 struct module *owner; 1617 const struct pr_ops *pr_ops; 1618 1619 /* 1620 * Special callback for probing GPT entry at a given sector. 1621 * Needed by Android devices, used by GPT scanner and MMC blk 1622 * driver. 1623 */ 1624 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1625}; 1626 1627#ifdef CONFIG_COMPAT 1628extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t, 1629 unsigned int, unsigned long); 1630#else 1631#define blkdev_compat_ptr_ioctl NULL 1632#endif 1633 1634static inline void blk_wake_io_task(struct task_struct *waiter) 1635{ 1636 /* 1637 * If we're polling, the task itself is doing the completions. For 1638 * that case, we don't need to signal a wakeup, it's enough to just 1639 * mark us as RUNNING. 1640 */ 1641 if (waiter == current) 1642 __set_current_state(TASK_RUNNING); 1643 else 1644 wake_up_process(waiter); 1645} 1646 1647unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1648 unsigned long start_time); 1649void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1650 unsigned int sectors, unsigned long start_time); 1651 1652unsigned long bio_start_io_acct(struct bio *bio); 1653void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1654 struct block_device *orig_bdev); 1655 1656/** 1657 * bio_end_io_acct - end I/O accounting for bio based drivers 1658 * @bio: bio to end account for 1659 * @start_time: start time returned by bio_start_io_acct() 1660 */ 1661static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1662{ 1663 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1664} 1665 1666int bdev_validate_blocksize(struct block_device *bdev, int block_size); 1667int set_blocksize(struct file *file, int size); 1668 1669int lookup_bdev(const char *pathname, dev_t *dev); 1670 1671void blkdev_show(struct seq_file *seqf, off_t offset); 1672 1673#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1674#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1675#ifdef CONFIG_BLOCK 1676#define BLKDEV_MAJOR_MAX 512 1677#else 1678#define BLKDEV_MAJOR_MAX 0 1679#endif 1680 1681struct blk_holder_ops { 1682 void (*mark_dead)(struct block_device *bdev, bool surprise); 1683 1684 /* 1685 * Sync the file system mounted on the block device. 1686 */ 1687 void (*sync)(struct block_device *bdev); 1688 1689 /* 1690 * Freeze the file system mounted on the block device. 1691 */ 1692 int (*freeze)(struct block_device *bdev); 1693 1694 /* 1695 * Thaw the file system mounted on the block device. 1696 */ 1697 int (*thaw)(struct block_device *bdev); 1698}; 1699 1700/* 1701 * For filesystems using @fs_holder_ops, the @holder argument passed to 1702 * helpers used to open and claim block devices via 1703 * bd_prepare_to_claim() must point to a superblock. 1704 */ 1705extern const struct blk_holder_ops fs_holder_ops; 1706 1707/* 1708 * Return the correct open flags for blkdev_get_by_* for super block flags 1709 * as stored in sb->s_flags. 1710 */ 1711#define sb_open_mode(flags) \ 1712 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \ 1713 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE)) 1714 1715struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder, 1716 const struct blk_holder_ops *hops); 1717struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode, 1718 void *holder, const struct blk_holder_ops *hops); 1719int bd_prepare_to_claim(struct block_device *bdev, void *holder, 1720 const struct blk_holder_ops *hops); 1721void bd_abort_claiming(struct block_device *bdev, void *holder); 1722 1723struct block_device *I_BDEV(struct inode *inode); 1724struct block_device *file_bdev(struct file *bdev_file); 1725bool disk_live(struct gendisk *disk); 1726unsigned int block_size(struct block_device *bdev); 1727 1728#ifdef CONFIG_BLOCK 1729void invalidate_bdev(struct block_device *bdev); 1730int sync_blockdev(struct block_device *bdev); 1731int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1732int sync_blockdev_nowait(struct block_device *bdev); 1733void sync_bdevs(bool wait); 1734void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask); 1735void printk_all_partitions(void); 1736int __init early_lookup_bdev(const char *pathname, dev_t *dev); 1737#else 1738static inline void invalidate_bdev(struct block_device *bdev) 1739{ 1740} 1741static inline int sync_blockdev(struct block_device *bdev) 1742{ 1743 return 0; 1744} 1745static inline int sync_blockdev_nowait(struct block_device *bdev) 1746{ 1747 return 0; 1748} 1749static inline void sync_bdevs(bool wait) 1750{ 1751} 1752static inline void bdev_statx(const struct path *path, struct kstat *stat, 1753 u32 request_mask) 1754{ 1755} 1756static inline void printk_all_partitions(void) 1757{ 1758} 1759static inline int early_lookup_bdev(const char *pathname, dev_t *dev) 1760{ 1761 return -EINVAL; 1762} 1763#endif /* CONFIG_BLOCK */ 1764 1765int bdev_freeze(struct block_device *bdev); 1766int bdev_thaw(struct block_device *bdev); 1767void bdev_fput(struct file *bdev_file); 1768 1769struct io_comp_batch { 1770 struct rq_list req_list; 1771 bool need_ts; 1772 void (*complete)(struct io_comp_batch *); 1773}; 1774 1775static inline bool blk_atomic_write_start_sect_aligned(sector_t sector, 1776 struct queue_limits *limits) 1777{ 1778 unsigned int alignment = max(limits->atomic_write_hw_unit_min, 1779 limits->atomic_write_hw_boundary); 1780 1781 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT); 1782} 1783 1784static inline bool bdev_can_atomic_write(struct block_device *bdev) 1785{ 1786 struct request_queue *bd_queue = bdev->bd_queue; 1787 struct queue_limits *limits = &bd_queue->limits; 1788 1789 if (!limits->atomic_write_unit_min) 1790 return false; 1791 1792 if (bdev_is_partition(bdev)) 1793 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect, 1794 limits); 1795 1796 return true; 1797} 1798 1799static inline unsigned int 1800bdev_atomic_write_unit_min_bytes(struct block_device *bdev) 1801{ 1802 if (!bdev_can_atomic_write(bdev)) 1803 return 0; 1804 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev)); 1805} 1806 1807static inline unsigned int 1808bdev_atomic_write_unit_max_bytes(struct block_device *bdev) 1809{ 1810 if (!bdev_can_atomic_write(bdev)) 1811 return 0; 1812 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev)); 1813} 1814 1815#define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1816 1817#endif /* _LINUX_BLKDEV_H */