at v6.16 19 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5#ifndef __LINUX_BIO_H 6#define __LINUX_BIO_H 7 8#include <linux/mempool.h> 9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10#include <linux/blk_types.h> 11#include <linux/uio.h> 12 13#define BIO_MAX_VECS 256U 14#define BIO_MAX_INLINE_VECS UIO_MAXIOV 15 16struct queue_limits; 17 18static inline unsigned int bio_max_segs(unsigned int nr_segs) 19{ 20 return min(nr_segs, BIO_MAX_VECS); 21} 22 23#define bio_iter_iovec(bio, iter) \ 24 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 25 26#define bio_iter_page(bio, iter) \ 27 bvec_iter_page((bio)->bi_io_vec, (iter)) 28#define bio_iter_len(bio, iter) \ 29 bvec_iter_len((bio)->bi_io_vec, (iter)) 30#define bio_iter_offset(bio, iter) \ 31 bvec_iter_offset((bio)->bi_io_vec, (iter)) 32 33#define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 34#define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 35#define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 36 37#define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 38#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 39 40#define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 41#define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 42 43/* 44 * Return the data direction, READ or WRITE. 45 */ 46#define bio_data_dir(bio) \ 47 (op_is_write(bio_op(bio)) ? WRITE : READ) 48 49/* 50 * Check whether this bio carries any data or not. A NULL bio is allowed. 51 */ 52static inline bool bio_has_data(struct bio *bio) 53{ 54 if (bio && 55 bio->bi_iter.bi_size && 56 bio_op(bio) != REQ_OP_DISCARD && 57 bio_op(bio) != REQ_OP_SECURE_ERASE && 58 bio_op(bio) != REQ_OP_WRITE_ZEROES) 59 return true; 60 61 return false; 62} 63 64static inline bool bio_no_advance_iter(const struct bio *bio) 65{ 66 return bio_op(bio) == REQ_OP_DISCARD || 67 bio_op(bio) == REQ_OP_SECURE_ERASE || 68 bio_op(bio) == REQ_OP_WRITE_ZEROES; 69} 70 71static inline void *bio_data(struct bio *bio) 72{ 73 if (bio_has_data(bio)) 74 return page_address(bio_page(bio)) + bio_offset(bio); 75 76 return NULL; 77} 78 79static inline bool bio_next_segment(const struct bio *bio, 80 struct bvec_iter_all *iter) 81{ 82 if (iter->idx >= bio->bi_vcnt) 83 return false; 84 85 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 86 return true; 87} 88 89/* 90 * drivers should _never_ use the all version - the bio may have been split 91 * before it got to the driver and the driver won't own all of it 92 */ 93#define bio_for_each_segment_all(bvl, bio, iter) \ 94 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 95 96static inline void bio_advance_iter(const struct bio *bio, 97 struct bvec_iter *iter, unsigned int bytes) 98{ 99 iter->bi_sector += bytes >> 9; 100 101 if (bio_no_advance_iter(bio)) 102 iter->bi_size -= bytes; 103 else 104 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 105 /* TODO: It is reasonable to complete bio with error here. */ 106} 107 108/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 109static inline void bio_advance_iter_single(const struct bio *bio, 110 struct bvec_iter *iter, 111 unsigned int bytes) 112{ 113 iter->bi_sector += bytes >> 9; 114 115 if (bio_no_advance_iter(bio)) 116 iter->bi_size -= bytes; 117 else 118 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 119} 120 121void __bio_advance(struct bio *, unsigned bytes); 122 123/** 124 * bio_advance - increment/complete a bio by some number of bytes 125 * @bio: bio to advance 126 * @nbytes: number of bytes to complete 127 * 128 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 129 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 130 * be updated on the last bvec as well. 131 * 132 * @bio will then represent the remaining, uncompleted portion of the io. 133 */ 134static inline void bio_advance(struct bio *bio, unsigned int nbytes) 135{ 136 if (nbytes == bio->bi_iter.bi_size) { 137 bio->bi_iter.bi_size = 0; 138 return; 139 } 140 __bio_advance(bio, nbytes); 141} 142 143#define __bio_for_each_segment(bvl, bio, iter, start) \ 144 for (iter = (start); \ 145 (iter).bi_size && \ 146 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 147 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 148 149#define bio_for_each_segment(bvl, bio, iter) \ 150 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 151 152#define __bio_for_each_bvec(bvl, bio, iter, start) \ 153 for (iter = (start); \ 154 (iter).bi_size && \ 155 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 156 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 157 158/* iterate over multi-page bvec */ 159#define bio_for_each_bvec(bvl, bio, iter) \ 160 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 161 162/* 163 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 164 * same reasons as bio_for_each_segment_all(). 165 */ 166#define bio_for_each_bvec_all(bvl, bio, i) \ 167 for (i = 0, bvl = bio_first_bvec_all(bio); \ 168 i < (bio)->bi_vcnt; i++, bvl++) 169 170#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 171 172static inline unsigned bio_segments(struct bio *bio) 173{ 174 unsigned segs = 0; 175 struct bio_vec bv; 176 struct bvec_iter iter; 177 178 /* 179 * We special case discard/write same/write zeroes, because they 180 * interpret bi_size differently: 181 */ 182 183 switch (bio_op(bio)) { 184 case REQ_OP_DISCARD: 185 case REQ_OP_SECURE_ERASE: 186 case REQ_OP_WRITE_ZEROES: 187 return 0; 188 default: 189 break; 190 } 191 192 bio_for_each_segment(bv, bio, iter) 193 segs++; 194 195 return segs; 196} 197 198/* 199 * get a reference to a bio, so it won't disappear. the intended use is 200 * something like: 201 * 202 * bio_get(bio); 203 * submit_bio(rw, bio); 204 * if (bio->bi_flags ...) 205 * do_something 206 * bio_put(bio); 207 * 208 * without the bio_get(), it could potentially complete I/O before submit_bio 209 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 210 * runs 211 */ 212static inline void bio_get(struct bio *bio) 213{ 214 bio->bi_flags |= (1 << BIO_REFFED); 215 smp_mb__before_atomic(); 216 atomic_inc(&bio->__bi_cnt); 217} 218 219static inline void bio_cnt_set(struct bio *bio, unsigned int count) 220{ 221 if (count != 1) { 222 bio->bi_flags |= (1 << BIO_REFFED); 223 smp_mb(); 224 } 225 atomic_set(&bio->__bi_cnt, count); 226} 227 228static inline bool bio_flagged(struct bio *bio, unsigned int bit) 229{ 230 return bio->bi_flags & (1U << bit); 231} 232 233static inline void bio_set_flag(struct bio *bio, unsigned int bit) 234{ 235 bio->bi_flags |= (1U << bit); 236} 237 238static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 239{ 240 bio->bi_flags &= ~(1U << bit); 241} 242 243static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 244{ 245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 246 return bio->bi_io_vec; 247} 248 249static inline struct page *bio_first_page_all(struct bio *bio) 250{ 251 return bio_first_bvec_all(bio)->bv_page; 252} 253 254static inline struct folio *bio_first_folio_all(struct bio *bio) 255{ 256 return page_folio(bio_first_page_all(bio)); 257} 258 259static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 260{ 261 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 262 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 263} 264 265/** 266 * struct folio_iter - State for iterating all folios in a bio. 267 * @folio: The current folio we're iterating. NULL after the last folio. 268 * @offset: The byte offset within the current folio. 269 * @length: The number of bytes in this iteration (will not cross folio 270 * boundary). 271 */ 272struct folio_iter { 273 struct folio *folio; 274 size_t offset; 275 size_t length; 276 /* private: for use by the iterator */ 277 struct folio *_next; 278 size_t _seg_count; 279 int _i; 280}; 281 282static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 283 int i) 284{ 285 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 286 287 if (unlikely(i >= bio->bi_vcnt)) { 288 fi->folio = NULL; 289 return; 290 } 291 292 fi->folio = page_folio(bvec->bv_page); 293 fi->offset = bvec->bv_offset + 294 PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page); 295 fi->_seg_count = bvec->bv_len; 296 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 297 fi->_next = folio_next(fi->folio); 298 fi->_i = i; 299} 300 301static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 302{ 303 fi->_seg_count -= fi->length; 304 if (fi->_seg_count) { 305 fi->folio = fi->_next; 306 fi->offset = 0; 307 fi->length = min(folio_size(fi->folio), fi->_seg_count); 308 fi->_next = folio_next(fi->folio); 309 } else { 310 bio_first_folio(fi, bio, fi->_i + 1); 311 } 312} 313 314/** 315 * bio_for_each_folio_all - Iterate over each folio in a bio. 316 * @fi: struct folio_iter which is updated for each folio. 317 * @bio: struct bio to iterate over. 318 */ 319#define bio_for_each_folio_all(fi, bio) \ 320 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 321 322void bio_trim(struct bio *bio, sector_t offset, sector_t size); 323extern struct bio *bio_split(struct bio *bio, int sectors, 324 gfp_t gfp, struct bio_set *bs); 325int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim, 326 unsigned *segs, unsigned max_bytes); 327 328/** 329 * bio_next_split - get next @sectors from a bio, splitting if necessary 330 * @bio: bio to split 331 * @sectors: number of sectors to split from the front of @bio 332 * @gfp: gfp mask 333 * @bs: bio set to allocate from 334 * 335 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 336 * than @sectors, returns the original bio unchanged. 337 */ 338static inline struct bio *bio_next_split(struct bio *bio, int sectors, 339 gfp_t gfp, struct bio_set *bs) 340{ 341 if (sectors >= bio_sectors(bio)) 342 return bio; 343 344 return bio_split(bio, sectors, gfp, bs); 345} 346 347enum { 348 BIOSET_NEED_BVECS = BIT(0), 349 BIOSET_NEED_RESCUER = BIT(1), 350 BIOSET_PERCPU_CACHE = BIT(2), 351}; 352extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 353extern void bioset_exit(struct bio_set *); 354extern int biovec_init_pool(mempool_t *pool, int pool_entries); 355 356struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 357 blk_opf_t opf, gfp_t gfp_mask, 358 struct bio_set *bs); 359struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); 360extern void bio_put(struct bio *); 361 362struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 363 gfp_t gfp, struct bio_set *bs); 364int bio_init_clone(struct block_device *bdev, struct bio *bio, 365 struct bio *bio_src, gfp_t gfp); 366 367extern struct bio_set fs_bio_set; 368 369static inline struct bio *bio_alloc(struct block_device *bdev, 370 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) 371{ 372 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 373} 374 375void submit_bio(struct bio *bio); 376 377extern void bio_endio(struct bio *); 378 379static inline void bio_io_error(struct bio *bio) 380{ 381 bio->bi_status = BLK_STS_IOERR; 382 bio_endio(bio); 383} 384 385static inline void bio_wouldblock_error(struct bio *bio) 386{ 387 bio_set_flag(bio, BIO_QUIET); 388 bio->bi_status = BLK_STS_AGAIN; 389 bio_endio(bio); 390} 391 392/* 393 * Calculate number of bvec segments that should be allocated to fit data 394 * pointed by @iter. If @iter is backed by bvec it's going to be reused 395 * instead of allocating a new one. 396 */ 397static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 398{ 399 if (iov_iter_is_bvec(iter)) 400 return 0; 401 return iov_iter_npages(iter, max_segs); 402} 403 404struct request_queue; 405 406void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 407 unsigned short max_vecs, blk_opf_t opf); 408extern void bio_uninit(struct bio *); 409void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); 410void bio_chain(struct bio *, struct bio *); 411 412int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, 413 unsigned off); 414bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, 415 size_t len, size_t off); 416void __bio_add_page(struct bio *bio, struct page *page, 417 unsigned int len, unsigned int off); 418void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 419 size_t off); 420void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len); 421 422/** 423 * bio_add_max_vecs - number of bio_vecs needed to add data to a bio 424 * @kaddr: kernel virtual address to add 425 * @len: length in bytes to add 426 * 427 * Calculate how many bio_vecs need to be allocated to add the kernel virtual 428 * address range in [@kaddr:@len] in the worse case. 429 */ 430static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len) 431{ 432 if (is_vmalloc_addr(kaddr)) 433 return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE); 434 return 1; 435} 436 437unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len); 438bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len); 439 440int submit_bio_wait(struct bio *bio); 441int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data, 442 size_t len, enum req_op op); 443 444int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); 445void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter); 446void __bio_release_pages(struct bio *bio, bool mark_dirty); 447extern void bio_set_pages_dirty(struct bio *bio); 448extern void bio_check_pages_dirty(struct bio *bio); 449 450extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 451 struct bio *src, struct bvec_iter *src_iter); 452extern void bio_copy_data(struct bio *dst, struct bio *src); 453extern void bio_free_pages(struct bio *bio); 454void guard_bio_eod(struct bio *bio); 455void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); 456 457static inline void zero_fill_bio(struct bio *bio) 458{ 459 zero_fill_bio_iter(bio, bio->bi_iter); 460} 461 462static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 463{ 464 if (bio_flagged(bio, BIO_PAGE_PINNED)) 465 __bio_release_pages(bio, mark_dirty); 466} 467 468#define bio_dev(bio) \ 469 disk_devt((bio)->bi_bdev->bd_disk) 470 471#ifdef CONFIG_BLK_CGROUP 472void bio_associate_blkg(struct bio *bio); 473void bio_associate_blkg_from_css(struct bio *bio, 474 struct cgroup_subsys_state *css); 475void bio_clone_blkg_association(struct bio *dst, struct bio *src); 476void blkcg_punt_bio_submit(struct bio *bio); 477#else /* CONFIG_BLK_CGROUP */ 478static inline void bio_associate_blkg(struct bio *bio) { } 479static inline void bio_associate_blkg_from_css(struct bio *bio, 480 struct cgroup_subsys_state *css) 481{ } 482static inline void bio_clone_blkg_association(struct bio *dst, 483 struct bio *src) { } 484static inline void blkcg_punt_bio_submit(struct bio *bio) 485{ 486 submit_bio(bio); 487} 488#endif /* CONFIG_BLK_CGROUP */ 489 490static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 491{ 492 bio_clear_flag(bio, BIO_REMAPPED); 493 if (bio->bi_bdev != bdev) 494 bio_clear_flag(bio, BIO_BPS_THROTTLED); 495 bio->bi_bdev = bdev; 496 bio_associate_blkg(bio); 497} 498 499/* 500 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 501 * 502 * A bio_list anchors a singly-linked list of bios chained through the bi_next 503 * member of the bio. The bio_list also caches the last list member to allow 504 * fast access to the tail. 505 */ 506struct bio_list { 507 struct bio *head; 508 struct bio *tail; 509}; 510 511static inline int bio_list_empty(const struct bio_list *bl) 512{ 513 return bl->head == NULL; 514} 515 516static inline void bio_list_init(struct bio_list *bl) 517{ 518 bl->head = bl->tail = NULL; 519} 520 521#define BIO_EMPTY_LIST { NULL, NULL } 522 523#define bio_list_for_each(bio, bl) \ 524 for (bio = (bl)->head; bio; bio = bio->bi_next) 525 526static inline unsigned bio_list_size(const struct bio_list *bl) 527{ 528 unsigned sz = 0; 529 struct bio *bio; 530 531 bio_list_for_each(bio, bl) 532 sz++; 533 534 return sz; 535} 536 537static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 538{ 539 bio->bi_next = NULL; 540 541 if (bl->tail) 542 bl->tail->bi_next = bio; 543 else 544 bl->head = bio; 545 546 bl->tail = bio; 547} 548 549static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 550{ 551 bio->bi_next = bl->head; 552 553 bl->head = bio; 554 555 if (!bl->tail) 556 bl->tail = bio; 557} 558 559static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 560{ 561 if (!bl2->head) 562 return; 563 564 if (bl->tail) 565 bl->tail->bi_next = bl2->head; 566 else 567 bl->head = bl2->head; 568 569 bl->tail = bl2->tail; 570} 571 572static inline void bio_list_merge_init(struct bio_list *bl, 573 struct bio_list *bl2) 574{ 575 bio_list_merge(bl, bl2); 576 bio_list_init(bl2); 577} 578 579static inline void bio_list_merge_head(struct bio_list *bl, 580 struct bio_list *bl2) 581{ 582 if (!bl2->head) 583 return; 584 585 if (bl->head) 586 bl2->tail->bi_next = bl->head; 587 else 588 bl->tail = bl2->tail; 589 590 bl->head = bl2->head; 591} 592 593static inline struct bio *bio_list_peek(struct bio_list *bl) 594{ 595 return bl->head; 596} 597 598static inline struct bio *bio_list_pop(struct bio_list *bl) 599{ 600 struct bio *bio = bl->head; 601 602 if (bio) { 603 bl->head = bl->head->bi_next; 604 if (!bl->head) 605 bl->tail = NULL; 606 607 bio->bi_next = NULL; 608 } 609 610 return bio; 611} 612 613static inline struct bio *bio_list_get(struct bio_list *bl) 614{ 615 struct bio *bio = bl->head; 616 617 bl->head = bl->tail = NULL; 618 619 return bio; 620} 621 622/* 623 * Increment chain count for the bio. Make sure the CHAIN flag update 624 * is visible before the raised count. 625 */ 626static inline void bio_inc_remaining(struct bio *bio) 627{ 628 bio_set_flag(bio, BIO_CHAIN); 629 smp_mb__before_atomic(); 630 atomic_inc(&bio->__bi_remaining); 631} 632 633/* 634 * bio_set is used to allow other portions of the IO system to 635 * allocate their own private memory pools for bio and iovec structures. 636 * These memory pools in turn all allocate from the bio_slab 637 * and the bvec_slabs[]. 638 */ 639#define BIO_POOL_SIZE 2 640 641struct bio_set { 642 struct kmem_cache *bio_slab; 643 unsigned int front_pad; 644 645 /* 646 * per-cpu bio alloc cache 647 */ 648 struct bio_alloc_cache __percpu *cache; 649 650 mempool_t bio_pool; 651 mempool_t bvec_pool; 652 653 unsigned int back_pad; 654 /* 655 * Deadlock avoidance for stacking block drivers: see comments in 656 * bio_alloc_bioset() for details 657 */ 658 spinlock_t rescue_lock; 659 struct bio_list rescue_list; 660 struct work_struct rescue_work; 661 struct workqueue_struct *rescue_workqueue; 662 663 /* 664 * Hot un-plug notifier for the per-cpu cache, if used 665 */ 666 struct hlist_node cpuhp_dead; 667}; 668 669static inline bool bioset_initialized(struct bio_set *bs) 670{ 671 return bs->bio_slab != NULL; 672} 673 674/* 675 * Mark a bio as polled. Note that for async polled IO, the caller must 676 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 677 * We cannot block waiting for requests on polled IO, as those completions 678 * must be found by the caller. This is different than IRQ driven IO, where 679 * it's safe to wait for IO to complete. 680 */ 681static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 682{ 683 bio->bi_opf |= REQ_POLLED; 684 if (kiocb->ki_flags & IOCB_NOWAIT) 685 bio->bi_opf |= REQ_NOWAIT; 686} 687 688static inline void bio_clear_polled(struct bio *bio) 689{ 690 bio->bi_opf &= ~REQ_POLLED; 691} 692 693/** 694 * bio_is_zone_append - is this a zone append bio? 695 * @bio: bio to check 696 * 697 * Check if @bio is a zone append operation. Core block layer code and end_io 698 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check 699 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if 700 * it is not natively supported. 701 */ 702static inline bool bio_is_zone_append(struct bio *bio) 703{ 704 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 705 return false; 706 return bio_op(bio) == REQ_OP_ZONE_APPEND || 707 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 708} 709 710struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 711 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); 712struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new); 713 714struct bio *blk_alloc_discard_bio(struct block_device *bdev, 715 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask); 716 717#endif /* __LINUX_BIO_H */