Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5#include <linux/module.h>
6#include <linux/moduleparam.h>
7#include <linux/sched.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/file.h>
11#include <linux/stat.h>
12#include <linux/errno.h>
13#include <linux/major.h>
14#include <linux/wait.h>
15#include <linux/blkpg.h>
16#include <linux/init.h>
17#include <linux/swap.h>
18#include <linux/slab.h>
19#include <linux/compat.h>
20#include <linux/suspend.h>
21#include <linux/freezer.h>
22#include <linux/mutex.h>
23#include <linux/writeback.h>
24#include <linux/completion.h>
25#include <linux/highmem.h>
26#include <linux/splice.h>
27#include <linux/sysfs.h>
28#include <linux/miscdevice.h>
29#include <linux/falloc.h>
30#include <linux/uio.h>
31#include <linux/ioprio.h>
32#include <linux/blk-cgroup.h>
33#include <linux/sched/mm.h>
34#include <linux/statfs.h>
35#include <linux/uaccess.h>
36#include <linux/blk-mq.h>
37#include <linux/spinlock.h>
38#include <uapi/linux/loop.h>
39
40/* Possible states of device */
41enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46};
47
48struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77};
78
79struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88};
89
90#define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91#define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93static DEFINE_IDR(loop_index_idr);
94static DEFINE_MUTEX(loop_ctl_mutex);
95static DEFINE_MUTEX(loop_validate_mutex);
96
97/**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
109static int loop_global_lock_killable(struct loop_device *lo, bool global)
110{
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122}
123
124/**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
130static void loop_global_unlock(struct loop_device *lo, bool global)
131{
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135}
136
137static int max_part;
138static int part_shift;
139
140static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
141{
142 loff_t loopsize;
143
144 /* Compute loopsize in bytes */
145 loopsize = i_size_read(file->f_mapping->host);
146 if (offset > 0)
147 loopsize -= offset;
148 /* offset is beyond i_size, weird but possible */
149 if (loopsize < 0)
150 return 0;
151
152 if (sizelimit > 0 && sizelimit < loopsize)
153 loopsize = sizelimit;
154 /*
155 * Unfortunately, if we want to do I/O on the device,
156 * the number of 512-byte sectors has to fit into a sector_t.
157 */
158 return loopsize >> 9;
159}
160
161static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162{
163 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
164}
165
166/*
167 * We support direct I/O only if lo_offset is aligned with the logical I/O size
168 * of backing device, and the logical block size of loop is bigger than that of
169 * the backing device.
170 */
171static bool lo_can_use_dio(struct loop_device *lo)
172{
173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
174 return false;
175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
176 return false;
177 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
178 return false;
179 return true;
180}
181
182/*
183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
185 * disabled when the device block size is too small or the offset is unaligned.
186 *
187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
188 * not the originally passed in one.
189 */
190static inline void loop_update_dio(struct loop_device *lo)
191{
192 lockdep_assert_held(&lo->lo_mutex);
193 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
194 lo->lo_queue->mq_freeze_depth == 0);
195
196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
198}
199
200/**
201 * loop_set_size() - sets device size and notifies userspace
202 * @lo: struct loop_device to set the size for
203 * @size: new size of the loop device
204 *
205 * Callers must validate that the size passed into this function fits into
206 * a sector_t, eg using loop_validate_size()
207 */
208static void loop_set_size(struct loop_device *lo, loff_t size)
209{
210 if (!set_capacity_and_notify(lo->lo_disk, size))
211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
212}
213
214static void loop_clear_limits(struct loop_device *lo, int mode)
215{
216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
217
218 if (mode & FALLOC_FL_ZERO_RANGE)
219 lim.max_write_zeroes_sectors = 0;
220
221 if (mode & FALLOC_FL_PUNCH_HOLE) {
222 lim.max_hw_discard_sectors = 0;
223 lim.discard_granularity = 0;
224 }
225
226 /*
227 * XXX: this updates the queue limits without freezing the queue, which
228 * is against the locking protocol and dangerous. But we can't just
229 * freeze the queue as we're inside the ->queue_rq method here. So this
230 * should move out into a workqueue unless we get the file operations to
231 * advertise if they support specific fallocate operations.
232 */
233 queue_limits_commit_update(lo->lo_queue, &lim);
234}
235
236static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
237 int mode)
238{
239 /*
240 * We use fallocate to manipulate the space mappings used by the image
241 * a.k.a. discard/zerorange.
242 */
243 struct file *file = lo->lo_backing_file;
244 int ret;
245
246 mode |= FALLOC_FL_KEEP_SIZE;
247
248 if (!bdev_max_discard_sectors(lo->lo_device))
249 return -EOPNOTSUPP;
250
251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
253 return -EIO;
254
255 /*
256 * We initially configure the limits in a hope that fallocate is
257 * supported and clear them here if that turns out not to be true.
258 */
259 if (unlikely(ret == -EOPNOTSUPP))
260 loop_clear_limits(lo, mode);
261
262 return ret;
263}
264
265static int lo_req_flush(struct loop_device *lo, struct request *rq)
266{
267 int ret = vfs_fsync(lo->lo_backing_file, 0);
268 if (unlikely(ret && ret != -EINVAL))
269 ret = -EIO;
270
271 return ret;
272}
273
274static void lo_complete_rq(struct request *rq)
275{
276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
277 blk_status_t ret = BLK_STS_OK;
278
279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
280 req_op(rq) != REQ_OP_READ) {
281 if (cmd->ret < 0)
282 ret = errno_to_blk_status(cmd->ret);
283 goto end_io;
284 }
285
286 /*
287 * Short READ - if we got some data, advance our request and
288 * retry it. If we got no data, end the rest with EIO.
289 */
290 if (cmd->ret) {
291 blk_update_request(rq, BLK_STS_OK, cmd->ret);
292 cmd->ret = 0;
293 blk_mq_requeue_request(rq, true);
294 } else {
295 struct bio *bio = rq->bio;
296
297 while (bio) {
298 zero_fill_bio(bio);
299 bio = bio->bi_next;
300 }
301
302 ret = BLK_STS_IOERR;
303end_io:
304 blk_mq_end_request(rq, ret);
305 }
306}
307
308static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
309{
310 struct request *rq = blk_mq_rq_from_pdu(cmd);
311
312 if (!atomic_dec_and_test(&cmd->ref))
313 return;
314 kfree(cmd->bvec);
315 cmd->bvec = NULL;
316 if (req_op(rq) == REQ_OP_WRITE)
317 kiocb_end_write(&cmd->iocb);
318 if (likely(!blk_should_fake_timeout(rq->q)))
319 blk_mq_complete_request(rq);
320}
321
322static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
323{
324 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
325
326 cmd->ret = ret;
327 lo_rw_aio_do_completion(cmd);
328}
329
330static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
331 loff_t pos, int rw)
332{
333 struct iov_iter iter;
334 struct req_iterator rq_iter;
335 struct bio_vec *bvec;
336 struct request *rq = blk_mq_rq_from_pdu(cmd);
337 struct bio *bio = rq->bio;
338 struct file *file = lo->lo_backing_file;
339 struct bio_vec tmp;
340 unsigned int offset;
341 int nr_bvec = 0;
342 int ret;
343
344 rq_for_each_bvec(tmp, rq, rq_iter)
345 nr_bvec++;
346
347 if (rq->bio != rq->biotail) {
348
349 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
350 GFP_NOIO);
351 if (!bvec)
352 return -EIO;
353 cmd->bvec = bvec;
354
355 /*
356 * The bios of the request may be started from the middle of
357 * the 'bvec' because of bio splitting, so we can't directly
358 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
359 * API will take care of all details for us.
360 */
361 rq_for_each_bvec(tmp, rq, rq_iter) {
362 *bvec = tmp;
363 bvec++;
364 }
365 bvec = cmd->bvec;
366 offset = 0;
367 } else {
368 /*
369 * Same here, this bio may be started from the middle of the
370 * 'bvec' because of bio splitting, so offset from the bvec
371 * must be passed to iov iterator
372 */
373 offset = bio->bi_iter.bi_bvec_done;
374 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
375 }
376 atomic_set(&cmd->ref, 2);
377
378 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
379 iter.iov_offset = offset;
380
381 cmd->iocb.ki_pos = pos;
382 cmd->iocb.ki_filp = file;
383 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
384 if (cmd->use_aio) {
385 cmd->iocb.ki_complete = lo_rw_aio_complete;
386 cmd->iocb.ki_flags = IOCB_DIRECT;
387 } else {
388 cmd->iocb.ki_complete = NULL;
389 cmd->iocb.ki_flags = 0;
390 }
391
392 if (rw == ITER_SOURCE) {
393 kiocb_start_write(&cmd->iocb);
394 ret = file->f_op->write_iter(&cmd->iocb, &iter);
395 } else
396 ret = file->f_op->read_iter(&cmd->iocb, &iter);
397
398 lo_rw_aio_do_completion(cmd);
399
400 if (ret != -EIOCBQUEUED)
401 lo_rw_aio_complete(&cmd->iocb, ret);
402 return -EIOCBQUEUED;
403}
404
405static int do_req_filebacked(struct loop_device *lo, struct request *rq)
406{
407 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
408 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
409
410 switch (req_op(rq)) {
411 case REQ_OP_FLUSH:
412 return lo_req_flush(lo, rq);
413 case REQ_OP_WRITE_ZEROES:
414 /*
415 * If the caller doesn't want deallocation, call zeroout to
416 * write zeroes the range. Otherwise, punch them out.
417 */
418 return lo_fallocate(lo, rq, pos,
419 (rq->cmd_flags & REQ_NOUNMAP) ?
420 FALLOC_FL_ZERO_RANGE :
421 FALLOC_FL_PUNCH_HOLE);
422 case REQ_OP_DISCARD:
423 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
424 case REQ_OP_WRITE:
425 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
426 case REQ_OP_READ:
427 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
428 default:
429 WARN_ON_ONCE(1);
430 return -EIO;
431 }
432}
433
434static void loop_reread_partitions(struct loop_device *lo)
435{
436 int rc;
437
438 mutex_lock(&lo->lo_disk->open_mutex);
439 rc = bdev_disk_changed(lo->lo_disk, false);
440 mutex_unlock(&lo->lo_disk->open_mutex);
441 if (rc)
442 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
443 __func__, lo->lo_number, lo->lo_file_name, rc);
444}
445
446static unsigned int loop_query_min_dio_size(struct loop_device *lo)
447{
448 struct file *file = lo->lo_backing_file;
449 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
450 struct kstat st;
451
452 /*
453 * Use the minimal dio alignment of the file system if provided.
454 */
455 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
456 (st.result_mask & STATX_DIOALIGN))
457 return st.dio_offset_align;
458
459 /*
460 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
461 * a handful of file systems support the STATX_DIOALIGN flag.
462 */
463 if (sb_bdev)
464 return bdev_logical_block_size(sb_bdev);
465 return SECTOR_SIZE;
466}
467
468static inline int is_loop_device(struct file *file)
469{
470 struct inode *i = file->f_mapping->host;
471
472 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
473}
474
475static int loop_validate_file(struct file *file, struct block_device *bdev)
476{
477 struct inode *inode = file->f_mapping->host;
478 struct file *f = file;
479
480 /* Avoid recursion */
481 while (is_loop_device(f)) {
482 struct loop_device *l;
483
484 lockdep_assert_held(&loop_validate_mutex);
485 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
486 return -EBADF;
487
488 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
489 if (l->lo_state != Lo_bound)
490 return -EINVAL;
491 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
492 rmb();
493 f = l->lo_backing_file;
494 }
495 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
496 return -EINVAL;
497 return 0;
498}
499
500static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
501{
502 lo->lo_backing_file = file;
503 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
504 mapping_set_gfp_mask(file->f_mapping,
505 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
506 if (lo->lo_backing_file->f_flags & O_DIRECT)
507 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
508 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
509}
510
511static int loop_check_backing_file(struct file *file)
512{
513 if (!file->f_op->read_iter)
514 return -EINVAL;
515
516 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
517 return -EINVAL;
518
519 return 0;
520}
521
522/*
523 * loop_change_fd switched the backing store of a loopback device to
524 * a new file. This is useful for operating system installers to free up
525 * the original file and in High Availability environments to switch to
526 * an alternative location for the content in case of server meltdown.
527 * This can only work if the loop device is used read-only, and if the
528 * new backing store is the same size and type as the old backing store.
529 */
530static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
531 unsigned int arg)
532{
533 struct file *file = fget(arg);
534 struct file *old_file;
535 unsigned int memflags;
536 int error;
537 bool partscan;
538 bool is_loop;
539
540 if (!file)
541 return -EBADF;
542
543 error = loop_check_backing_file(file);
544 if (error)
545 return error;
546
547 /* suppress uevents while reconfiguring the device */
548 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
549
550 is_loop = is_loop_device(file);
551 error = loop_global_lock_killable(lo, is_loop);
552 if (error)
553 goto out_putf;
554 error = -ENXIO;
555 if (lo->lo_state != Lo_bound)
556 goto out_err;
557
558 /* the loop device has to be read-only */
559 error = -EINVAL;
560 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
561 goto out_err;
562
563 error = loop_validate_file(file, bdev);
564 if (error)
565 goto out_err;
566
567 old_file = lo->lo_backing_file;
568
569 error = -EINVAL;
570
571 /* size of the new backing store needs to be the same */
572 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
573 goto out_err;
574
575 /*
576 * We might switch to direct I/O mode for the loop device, write back
577 * all dirty data the page cache now that so that the individual I/O
578 * operations don't have to do that.
579 */
580 vfs_fsync(file, 0);
581
582 /* and ... switch */
583 disk_force_media_change(lo->lo_disk);
584 memflags = blk_mq_freeze_queue(lo->lo_queue);
585 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
586 loop_assign_backing_file(lo, file);
587 loop_update_dio(lo);
588 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
589 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
590 loop_global_unlock(lo, is_loop);
591
592 /*
593 * Flush loop_validate_file() before fput(), for l->lo_backing_file
594 * might be pointing at old_file which might be the last reference.
595 */
596 if (!is_loop) {
597 mutex_lock(&loop_validate_mutex);
598 mutex_unlock(&loop_validate_mutex);
599 }
600 /*
601 * We must drop file reference outside of lo_mutex as dropping
602 * the file ref can take open_mutex which creates circular locking
603 * dependency.
604 */
605 fput(old_file);
606 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
607 if (partscan)
608 loop_reread_partitions(lo);
609
610 error = 0;
611done:
612 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
613 return error;
614
615out_err:
616 loop_global_unlock(lo, is_loop);
617out_putf:
618 fput(file);
619 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
620 goto done;
621}
622
623/* loop sysfs attributes */
624
625static ssize_t loop_attr_show(struct device *dev, char *page,
626 ssize_t (*callback)(struct loop_device *, char *))
627{
628 struct gendisk *disk = dev_to_disk(dev);
629 struct loop_device *lo = disk->private_data;
630
631 return callback(lo, page);
632}
633
634#define LOOP_ATTR_RO(_name) \
635static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
636static ssize_t loop_attr_do_show_##_name(struct device *d, \
637 struct device_attribute *attr, char *b) \
638{ \
639 return loop_attr_show(d, b, loop_attr_##_name##_show); \
640} \
641static struct device_attribute loop_attr_##_name = \
642 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
643
644static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
645{
646 ssize_t ret;
647 char *p = NULL;
648
649 spin_lock_irq(&lo->lo_lock);
650 if (lo->lo_backing_file)
651 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
652 spin_unlock_irq(&lo->lo_lock);
653
654 if (IS_ERR_OR_NULL(p))
655 ret = PTR_ERR(p);
656 else {
657 ret = strlen(p);
658 memmove(buf, p, ret);
659 buf[ret++] = '\n';
660 buf[ret] = 0;
661 }
662
663 return ret;
664}
665
666static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
667{
668 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
669}
670
671static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
672{
673 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
674}
675
676static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
677{
678 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
679
680 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
681}
682
683static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
684{
685 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
686
687 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
688}
689
690static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
691{
692 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
693
694 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
695}
696
697LOOP_ATTR_RO(backing_file);
698LOOP_ATTR_RO(offset);
699LOOP_ATTR_RO(sizelimit);
700LOOP_ATTR_RO(autoclear);
701LOOP_ATTR_RO(partscan);
702LOOP_ATTR_RO(dio);
703
704static struct attribute *loop_attrs[] = {
705 &loop_attr_backing_file.attr,
706 &loop_attr_offset.attr,
707 &loop_attr_sizelimit.attr,
708 &loop_attr_autoclear.attr,
709 &loop_attr_partscan.attr,
710 &loop_attr_dio.attr,
711 NULL,
712};
713
714static struct attribute_group loop_attribute_group = {
715 .name = "loop",
716 .attrs= loop_attrs,
717};
718
719static void loop_sysfs_init(struct loop_device *lo)
720{
721 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
722 &loop_attribute_group);
723}
724
725static void loop_sysfs_exit(struct loop_device *lo)
726{
727 if (lo->sysfs_inited)
728 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
729 &loop_attribute_group);
730}
731
732static void loop_get_discard_config(struct loop_device *lo,
733 u32 *granularity, u32 *max_discard_sectors)
734{
735 struct file *file = lo->lo_backing_file;
736 struct inode *inode = file->f_mapping->host;
737 struct kstatfs sbuf;
738
739 /*
740 * If the backing device is a block device, mirror its zeroing
741 * capability. Set the discard sectors to the block device's zeroing
742 * capabilities because loop discards result in blkdev_issue_zeroout(),
743 * not blkdev_issue_discard(). This maintains consistent behavior with
744 * file-backed loop devices: discarded regions read back as zero.
745 */
746 if (S_ISBLK(inode->i_mode)) {
747 struct block_device *bdev = I_BDEV(inode);
748
749 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
750 *granularity = bdev_discard_granularity(bdev);
751
752 /*
753 * We use punch hole to reclaim the free space used by the
754 * image a.k.a. discard.
755 */
756 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
757 *max_discard_sectors = UINT_MAX >> 9;
758 *granularity = sbuf.f_bsize;
759 }
760}
761
762struct loop_worker {
763 struct rb_node rb_node;
764 struct work_struct work;
765 struct list_head cmd_list;
766 struct list_head idle_list;
767 struct loop_device *lo;
768 struct cgroup_subsys_state *blkcg_css;
769 unsigned long last_ran_at;
770};
771
772static void loop_workfn(struct work_struct *work);
773
774#ifdef CONFIG_BLK_CGROUP
775static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
776{
777 return !css || css == blkcg_root_css;
778}
779#else
780static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
781{
782 return !css;
783}
784#endif
785
786static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
787{
788 struct rb_node **node, *parent = NULL;
789 struct loop_worker *cur_worker, *worker = NULL;
790 struct work_struct *work;
791 struct list_head *cmd_list;
792
793 spin_lock_irq(&lo->lo_work_lock);
794
795 if (queue_on_root_worker(cmd->blkcg_css))
796 goto queue_work;
797
798 node = &lo->worker_tree.rb_node;
799
800 while (*node) {
801 parent = *node;
802 cur_worker = container_of(*node, struct loop_worker, rb_node);
803 if (cur_worker->blkcg_css == cmd->blkcg_css) {
804 worker = cur_worker;
805 break;
806 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
807 node = &(*node)->rb_left;
808 } else {
809 node = &(*node)->rb_right;
810 }
811 }
812 if (worker)
813 goto queue_work;
814
815 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
816 /*
817 * In the event we cannot allocate a worker, just queue on the
818 * rootcg worker and issue the I/O as the rootcg
819 */
820 if (!worker) {
821 cmd->blkcg_css = NULL;
822 if (cmd->memcg_css)
823 css_put(cmd->memcg_css);
824 cmd->memcg_css = NULL;
825 goto queue_work;
826 }
827
828 worker->blkcg_css = cmd->blkcg_css;
829 css_get(worker->blkcg_css);
830 INIT_WORK(&worker->work, loop_workfn);
831 INIT_LIST_HEAD(&worker->cmd_list);
832 INIT_LIST_HEAD(&worker->idle_list);
833 worker->lo = lo;
834 rb_link_node(&worker->rb_node, parent, node);
835 rb_insert_color(&worker->rb_node, &lo->worker_tree);
836queue_work:
837 if (worker) {
838 /*
839 * We need to remove from the idle list here while
840 * holding the lock so that the idle timer doesn't
841 * free the worker
842 */
843 if (!list_empty(&worker->idle_list))
844 list_del_init(&worker->idle_list);
845 work = &worker->work;
846 cmd_list = &worker->cmd_list;
847 } else {
848 work = &lo->rootcg_work;
849 cmd_list = &lo->rootcg_cmd_list;
850 }
851 list_add_tail(&cmd->list_entry, cmd_list);
852 queue_work(lo->workqueue, work);
853 spin_unlock_irq(&lo->lo_work_lock);
854}
855
856static void loop_set_timer(struct loop_device *lo)
857{
858 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
859}
860
861static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
862{
863 struct loop_worker *pos, *worker;
864
865 spin_lock_irq(&lo->lo_work_lock);
866 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
867 idle_list) {
868 if (!delete_all &&
869 time_is_after_jiffies(worker->last_ran_at +
870 LOOP_IDLE_WORKER_TIMEOUT))
871 break;
872 list_del(&worker->idle_list);
873 rb_erase(&worker->rb_node, &lo->worker_tree);
874 css_put(worker->blkcg_css);
875 kfree(worker);
876 }
877 if (!list_empty(&lo->idle_worker_list))
878 loop_set_timer(lo);
879 spin_unlock_irq(&lo->lo_work_lock);
880}
881
882static void loop_free_idle_workers_timer(struct timer_list *timer)
883{
884 struct loop_device *lo = container_of(timer, struct loop_device, timer);
885
886 return loop_free_idle_workers(lo, false);
887}
888
889/**
890 * loop_set_status_from_info - configure device from loop_info
891 * @lo: struct loop_device to configure
892 * @info: struct loop_info64 to configure the device with
893 *
894 * Configures the loop device parameters according to the passed
895 * in loop_info64 configuration.
896 */
897static int
898loop_set_status_from_info(struct loop_device *lo,
899 const struct loop_info64 *info)
900{
901 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
902 return -EINVAL;
903
904 switch (info->lo_encrypt_type) {
905 case LO_CRYPT_NONE:
906 break;
907 case LO_CRYPT_XOR:
908 pr_warn("support for the xor transformation has been removed.\n");
909 return -EINVAL;
910 case LO_CRYPT_CRYPTOAPI:
911 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
912 return -EINVAL;
913 default:
914 return -EINVAL;
915 }
916
917 /* Avoid assigning overflow values */
918 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
919 return -EOVERFLOW;
920
921 lo->lo_offset = info->lo_offset;
922 lo->lo_sizelimit = info->lo_sizelimit;
923
924 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
925 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
926 return 0;
927}
928
929static unsigned int loop_default_blocksize(struct loop_device *lo)
930{
931 /* In case of direct I/O, match underlying minimum I/O size */
932 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
933 return lo->lo_min_dio_size;
934 return SECTOR_SIZE;
935}
936
937static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
938 unsigned int bsize)
939{
940 struct file *file = lo->lo_backing_file;
941 struct inode *inode = file->f_mapping->host;
942 struct block_device *backing_bdev = NULL;
943 u32 granularity = 0, max_discard_sectors = 0;
944
945 if (S_ISBLK(inode->i_mode))
946 backing_bdev = I_BDEV(inode);
947 else if (inode->i_sb->s_bdev)
948 backing_bdev = inode->i_sb->s_bdev;
949
950 if (!bsize)
951 bsize = loop_default_blocksize(lo);
952
953 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
954
955 lim->logical_block_size = bsize;
956 lim->physical_block_size = bsize;
957 lim->io_min = bsize;
958 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
959 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
960 lim->features |= BLK_FEAT_WRITE_CACHE;
961 if (backing_bdev && !bdev_nonrot(backing_bdev))
962 lim->features |= BLK_FEAT_ROTATIONAL;
963 lim->max_hw_discard_sectors = max_discard_sectors;
964 lim->max_write_zeroes_sectors = max_discard_sectors;
965 if (max_discard_sectors)
966 lim->discard_granularity = granularity;
967 else
968 lim->discard_granularity = 0;
969}
970
971static int loop_configure(struct loop_device *lo, blk_mode_t mode,
972 struct block_device *bdev,
973 const struct loop_config *config)
974{
975 struct file *file = fget(config->fd);
976 struct queue_limits lim;
977 int error;
978 loff_t size;
979 bool partscan;
980 bool is_loop;
981
982 if (!file)
983 return -EBADF;
984
985 error = loop_check_backing_file(file);
986 if (error)
987 return error;
988
989 is_loop = is_loop_device(file);
990
991 /* This is safe, since we have a reference from open(). */
992 __module_get(THIS_MODULE);
993
994 /*
995 * If we don't hold exclusive handle for the device, upgrade to it
996 * here to avoid changing device under exclusive owner.
997 */
998 if (!(mode & BLK_OPEN_EXCL)) {
999 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1000 if (error)
1001 goto out_putf;
1002 }
1003
1004 error = loop_global_lock_killable(lo, is_loop);
1005 if (error)
1006 goto out_bdev;
1007
1008 error = -EBUSY;
1009 if (lo->lo_state != Lo_unbound)
1010 goto out_unlock;
1011
1012 error = loop_validate_file(file, bdev);
1013 if (error)
1014 goto out_unlock;
1015
1016 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1017 error = -EINVAL;
1018 goto out_unlock;
1019 }
1020
1021 error = loop_set_status_from_info(lo, &config->info);
1022 if (error)
1023 goto out_unlock;
1024 lo->lo_flags = config->info.lo_flags;
1025
1026 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1027 !file->f_op->write_iter)
1028 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1029
1030 if (!lo->workqueue) {
1031 lo->workqueue = alloc_workqueue("loop%d",
1032 WQ_UNBOUND | WQ_FREEZABLE,
1033 0, lo->lo_number);
1034 if (!lo->workqueue) {
1035 error = -ENOMEM;
1036 goto out_unlock;
1037 }
1038 }
1039
1040 /* suppress uevents while reconfiguring the device */
1041 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1042
1043 disk_force_media_change(lo->lo_disk);
1044 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1045
1046 lo->lo_device = bdev;
1047 loop_assign_backing_file(lo, file);
1048
1049 lim = queue_limits_start_update(lo->lo_queue);
1050 loop_update_limits(lo, &lim, config->block_size);
1051 /* No need to freeze the queue as the device isn't bound yet. */
1052 error = queue_limits_commit_update(lo->lo_queue, &lim);
1053 if (error)
1054 goto out_unlock;
1055
1056 /*
1057 * We might switch to direct I/O mode for the loop device, write back
1058 * all dirty data the page cache now that so that the individual I/O
1059 * operations don't have to do that.
1060 */
1061 vfs_fsync(file, 0);
1062
1063 loop_update_dio(lo);
1064 loop_sysfs_init(lo);
1065
1066 size = get_loop_size(lo, file);
1067 loop_set_size(lo, size);
1068
1069 /* Order wrt reading lo_state in loop_validate_file(). */
1070 wmb();
1071
1072 lo->lo_state = Lo_bound;
1073 if (part_shift)
1074 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1075 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1076 if (partscan)
1077 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1078
1079 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1080 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1081
1082 loop_global_unlock(lo, is_loop);
1083 if (partscan)
1084 loop_reread_partitions(lo);
1085
1086 if (!(mode & BLK_OPEN_EXCL))
1087 bd_abort_claiming(bdev, loop_configure);
1088
1089 return 0;
1090
1091out_unlock:
1092 loop_global_unlock(lo, is_loop);
1093out_bdev:
1094 if (!(mode & BLK_OPEN_EXCL))
1095 bd_abort_claiming(bdev, loop_configure);
1096out_putf:
1097 fput(file);
1098 /* This is safe: open() is still holding a reference. */
1099 module_put(THIS_MODULE);
1100 return error;
1101}
1102
1103static void __loop_clr_fd(struct loop_device *lo)
1104{
1105 struct queue_limits lim;
1106 struct file *filp;
1107 gfp_t gfp = lo->old_gfp_mask;
1108
1109 spin_lock_irq(&lo->lo_lock);
1110 filp = lo->lo_backing_file;
1111 lo->lo_backing_file = NULL;
1112 spin_unlock_irq(&lo->lo_lock);
1113
1114 lo->lo_device = NULL;
1115 lo->lo_offset = 0;
1116 lo->lo_sizelimit = 0;
1117 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1118
1119 /*
1120 * Reset the block size to the default.
1121 *
1122 * No queue freezing needed because this is called from the final
1123 * ->release call only, so there can't be any outstanding I/O.
1124 */
1125 lim = queue_limits_start_update(lo->lo_queue);
1126 lim.logical_block_size = SECTOR_SIZE;
1127 lim.physical_block_size = SECTOR_SIZE;
1128 lim.io_min = SECTOR_SIZE;
1129 queue_limits_commit_update(lo->lo_queue, &lim);
1130
1131 invalidate_disk(lo->lo_disk);
1132 loop_sysfs_exit(lo);
1133 /* let user-space know about this change */
1134 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1135 mapping_set_gfp_mask(filp->f_mapping, gfp);
1136 /* This is safe: open() is still holding a reference. */
1137 module_put(THIS_MODULE);
1138
1139 disk_force_media_change(lo->lo_disk);
1140
1141 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1142 int err;
1143
1144 /*
1145 * open_mutex has been held already in release path, so don't
1146 * acquire it if this function is called in such case.
1147 *
1148 * If the reread partition isn't from release path, lo_refcnt
1149 * must be at least one and it can only become zero when the
1150 * current holder is released.
1151 */
1152 err = bdev_disk_changed(lo->lo_disk, false);
1153 if (err)
1154 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1155 __func__, lo->lo_number, err);
1156 /* Device is gone, no point in returning error */
1157 }
1158
1159 /*
1160 * lo->lo_state is set to Lo_unbound here after above partscan has
1161 * finished. There cannot be anybody else entering __loop_clr_fd() as
1162 * Lo_rundown state protects us from all the other places trying to
1163 * change the 'lo' device.
1164 */
1165 lo->lo_flags = 0;
1166 if (!part_shift)
1167 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1168 mutex_lock(&lo->lo_mutex);
1169 lo->lo_state = Lo_unbound;
1170 mutex_unlock(&lo->lo_mutex);
1171
1172 /*
1173 * Need not hold lo_mutex to fput backing file. Calling fput holding
1174 * lo_mutex triggers a circular lock dependency possibility warning as
1175 * fput can take open_mutex which is usually taken before lo_mutex.
1176 */
1177 fput(filp);
1178}
1179
1180static int loop_clr_fd(struct loop_device *lo)
1181{
1182 int err;
1183
1184 /*
1185 * Since lo_ioctl() is called without locks held, it is possible that
1186 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1187 *
1188 * Therefore, use global lock when setting Lo_rundown state in order to
1189 * make sure that loop_validate_file() will fail if the "struct file"
1190 * which loop_configure()/loop_change_fd() found via fget() was this
1191 * loop device.
1192 */
1193 err = loop_global_lock_killable(lo, true);
1194 if (err)
1195 return err;
1196 if (lo->lo_state != Lo_bound) {
1197 loop_global_unlock(lo, true);
1198 return -ENXIO;
1199 }
1200 /*
1201 * Mark the device for removing the backing device on last close.
1202 * If we are the only opener, also switch the state to roundown here to
1203 * prevent new openers from coming in.
1204 */
1205
1206 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1207 if (disk_openers(lo->lo_disk) == 1)
1208 lo->lo_state = Lo_rundown;
1209 loop_global_unlock(lo, true);
1210
1211 return 0;
1212}
1213
1214static int
1215loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1216{
1217 int err;
1218 bool partscan = false;
1219 bool size_changed = false;
1220 unsigned int memflags;
1221
1222 err = mutex_lock_killable(&lo->lo_mutex);
1223 if (err)
1224 return err;
1225 if (lo->lo_state != Lo_bound) {
1226 err = -ENXIO;
1227 goto out_unlock;
1228 }
1229
1230 if (lo->lo_offset != info->lo_offset ||
1231 lo->lo_sizelimit != info->lo_sizelimit) {
1232 size_changed = true;
1233 sync_blockdev(lo->lo_device);
1234 invalidate_bdev(lo->lo_device);
1235 }
1236
1237 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1238 memflags = blk_mq_freeze_queue(lo->lo_queue);
1239
1240 err = loop_set_status_from_info(lo, info);
1241 if (err)
1242 goto out_unfreeze;
1243
1244 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1245 (info->lo_flags & LO_FLAGS_PARTSCAN);
1246
1247 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1248 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1249
1250 /* update the direct I/O flag if lo_offset changed */
1251 loop_update_dio(lo);
1252
1253out_unfreeze:
1254 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1255 if (partscan)
1256 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1257 if (!err && size_changed) {
1258 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1259 lo->lo_backing_file);
1260 loop_set_size(lo, new_size);
1261 }
1262out_unlock:
1263 mutex_unlock(&lo->lo_mutex);
1264 if (partscan)
1265 loop_reread_partitions(lo);
1266
1267 return err;
1268}
1269
1270static int
1271loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1272{
1273 struct path path;
1274 struct kstat stat;
1275 int ret;
1276
1277 ret = mutex_lock_killable(&lo->lo_mutex);
1278 if (ret)
1279 return ret;
1280 if (lo->lo_state != Lo_bound) {
1281 mutex_unlock(&lo->lo_mutex);
1282 return -ENXIO;
1283 }
1284
1285 memset(info, 0, sizeof(*info));
1286 info->lo_number = lo->lo_number;
1287 info->lo_offset = lo->lo_offset;
1288 info->lo_sizelimit = lo->lo_sizelimit;
1289 info->lo_flags = lo->lo_flags;
1290 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1291
1292 /* Drop lo_mutex while we call into the filesystem. */
1293 path = lo->lo_backing_file->f_path;
1294 path_get(&path);
1295 mutex_unlock(&lo->lo_mutex);
1296 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1297 if (!ret) {
1298 info->lo_device = huge_encode_dev(stat.dev);
1299 info->lo_inode = stat.ino;
1300 info->lo_rdevice = huge_encode_dev(stat.rdev);
1301 }
1302 path_put(&path);
1303 return ret;
1304}
1305
1306static void
1307loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1308{
1309 memset(info64, 0, sizeof(*info64));
1310 info64->lo_number = info->lo_number;
1311 info64->lo_device = info->lo_device;
1312 info64->lo_inode = info->lo_inode;
1313 info64->lo_rdevice = info->lo_rdevice;
1314 info64->lo_offset = info->lo_offset;
1315 info64->lo_sizelimit = 0;
1316 info64->lo_flags = info->lo_flags;
1317 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1318}
1319
1320static int
1321loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1322{
1323 memset(info, 0, sizeof(*info));
1324 info->lo_number = info64->lo_number;
1325 info->lo_device = info64->lo_device;
1326 info->lo_inode = info64->lo_inode;
1327 info->lo_rdevice = info64->lo_rdevice;
1328 info->lo_offset = info64->lo_offset;
1329 info->lo_flags = info64->lo_flags;
1330 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1331
1332 /* error in case values were truncated */
1333 if (info->lo_device != info64->lo_device ||
1334 info->lo_rdevice != info64->lo_rdevice ||
1335 info->lo_inode != info64->lo_inode ||
1336 info->lo_offset != info64->lo_offset)
1337 return -EOVERFLOW;
1338
1339 return 0;
1340}
1341
1342static int
1343loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1344{
1345 struct loop_info info;
1346 struct loop_info64 info64;
1347
1348 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1349 return -EFAULT;
1350 loop_info64_from_old(&info, &info64);
1351 return loop_set_status(lo, &info64);
1352}
1353
1354static int
1355loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1356{
1357 struct loop_info64 info64;
1358
1359 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1360 return -EFAULT;
1361 return loop_set_status(lo, &info64);
1362}
1363
1364static int
1365loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1366 struct loop_info info;
1367 struct loop_info64 info64;
1368 int err;
1369
1370 if (!arg)
1371 return -EINVAL;
1372 err = loop_get_status(lo, &info64);
1373 if (!err)
1374 err = loop_info64_to_old(&info64, &info);
1375 if (!err && copy_to_user(arg, &info, sizeof(info)))
1376 err = -EFAULT;
1377
1378 return err;
1379}
1380
1381static int
1382loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1383 struct loop_info64 info64;
1384 int err;
1385
1386 if (!arg)
1387 return -EINVAL;
1388 err = loop_get_status(lo, &info64);
1389 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1390 err = -EFAULT;
1391
1392 return err;
1393}
1394
1395static int loop_set_capacity(struct loop_device *lo)
1396{
1397 loff_t size;
1398
1399 if (unlikely(lo->lo_state != Lo_bound))
1400 return -ENXIO;
1401
1402 size = get_loop_size(lo, lo->lo_backing_file);
1403 loop_set_size(lo, size);
1404
1405 return 0;
1406}
1407
1408static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1409{
1410 bool use_dio = !!arg;
1411 unsigned int memflags;
1412
1413 if (lo->lo_state != Lo_bound)
1414 return -ENXIO;
1415 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1416 return 0;
1417
1418 if (use_dio) {
1419 if (!lo_can_use_dio(lo))
1420 return -EINVAL;
1421 /* flush dirty pages before starting to use direct I/O */
1422 vfs_fsync(lo->lo_backing_file, 0);
1423 }
1424
1425 memflags = blk_mq_freeze_queue(lo->lo_queue);
1426 if (use_dio)
1427 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1428 else
1429 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1430 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1431 return 0;
1432}
1433
1434static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1435{
1436 struct queue_limits lim;
1437 unsigned int memflags;
1438 int err = 0;
1439
1440 if (lo->lo_state != Lo_bound)
1441 return -ENXIO;
1442
1443 if (lo->lo_queue->limits.logical_block_size == arg)
1444 return 0;
1445
1446 sync_blockdev(lo->lo_device);
1447 invalidate_bdev(lo->lo_device);
1448
1449 lim = queue_limits_start_update(lo->lo_queue);
1450 loop_update_limits(lo, &lim, arg);
1451
1452 memflags = blk_mq_freeze_queue(lo->lo_queue);
1453 err = queue_limits_commit_update(lo->lo_queue, &lim);
1454 loop_update_dio(lo);
1455 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1456
1457 return err;
1458}
1459
1460static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1461 unsigned long arg)
1462{
1463 int err;
1464
1465 err = mutex_lock_killable(&lo->lo_mutex);
1466 if (err)
1467 return err;
1468 switch (cmd) {
1469 case LOOP_SET_CAPACITY:
1470 err = loop_set_capacity(lo);
1471 break;
1472 case LOOP_SET_DIRECT_IO:
1473 err = loop_set_dio(lo, arg);
1474 break;
1475 case LOOP_SET_BLOCK_SIZE:
1476 err = loop_set_block_size(lo, arg);
1477 break;
1478 default:
1479 err = -EINVAL;
1480 }
1481 mutex_unlock(&lo->lo_mutex);
1482 return err;
1483}
1484
1485static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1486 unsigned int cmd, unsigned long arg)
1487{
1488 struct loop_device *lo = bdev->bd_disk->private_data;
1489 void __user *argp = (void __user *) arg;
1490 int err;
1491
1492 switch (cmd) {
1493 case LOOP_SET_FD: {
1494 /*
1495 * Legacy case - pass in a zeroed out struct loop_config with
1496 * only the file descriptor set , which corresponds with the
1497 * default parameters we'd have used otherwise.
1498 */
1499 struct loop_config config;
1500
1501 memset(&config, 0, sizeof(config));
1502 config.fd = arg;
1503
1504 return loop_configure(lo, mode, bdev, &config);
1505 }
1506 case LOOP_CONFIGURE: {
1507 struct loop_config config;
1508
1509 if (copy_from_user(&config, argp, sizeof(config)))
1510 return -EFAULT;
1511
1512 return loop_configure(lo, mode, bdev, &config);
1513 }
1514 case LOOP_CHANGE_FD:
1515 return loop_change_fd(lo, bdev, arg);
1516 case LOOP_CLR_FD:
1517 return loop_clr_fd(lo);
1518 case LOOP_SET_STATUS:
1519 err = -EPERM;
1520 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1521 err = loop_set_status_old(lo, argp);
1522 break;
1523 case LOOP_GET_STATUS:
1524 return loop_get_status_old(lo, argp);
1525 case LOOP_SET_STATUS64:
1526 err = -EPERM;
1527 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1528 err = loop_set_status64(lo, argp);
1529 break;
1530 case LOOP_GET_STATUS64:
1531 return loop_get_status64(lo, argp);
1532 case LOOP_SET_CAPACITY:
1533 case LOOP_SET_DIRECT_IO:
1534 case LOOP_SET_BLOCK_SIZE:
1535 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1536 return -EPERM;
1537 fallthrough;
1538 default:
1539 err = lo_simple_ioctl(lo, cmd, arg);
1540 break;
1541 }
1542
1543 return err;
1544}
1545
1546#ifdef CONFIG_COMPAT
1547struct compat_loop_info {
1548 compat_int_t lo_number; /* ioctl r/o */
1549 compat_dev_t lo_device; /* ioctl r/o */
1550 compat_ulong_t lo_inode; /* ioctl r/o */
1551 compat_dev_t lo_rdevice; /* ioctl r/o */
1552 compat_int_t lo_offset;
1553 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1554 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1555 compat_int_t lo_flags; /* ioctl r/o */
1556 char lo_name[LO_NAME_SIZE];
1557 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1558 compat_ulong_t lo_init[2];
1559 char reserved[4];
1560};
1561
1562/*
1563 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1564 * - noinlined to reduce stack space usage in main part of driver
1565 */
1566static noinline int
1567loop_info64_from_compat(const struct compat_loop_info __user *arg,
1568 struct loop_info64 *info64)
1569{
1570 struct compat_loop_info info;
1571
1572 if (copy_from_user(&info, arg, sizeof(info)))
1573 return -EFAULT;
1574
1575 memset(info64, 0, sizeof(*info64));
1576 info64->lo_number = info.lo_number;
1577 info64->lo_device = info.lo_device;
1578 info64->lo_inode = info.lo_inode;
1579 info64->lo_rdevice = info.lo_rdevice;
1580 info64->lo_offset = info.lo_offset;
1581 info64->lo_sizelimit = 0;
1582 info64->lo_flags = info.lo_flags;
1583 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1584 return 0;
1585}
1586
1587/*
1588 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1589 * - noinlined to reduce stack space usage in main part of driver
1590 */
1591static noinline int
1592loop_info64_to_compat(const struct loop_info64 *info64,
1593 struct compat_loop_info __user *arg)
1594{
1595 struct compat_loop_info info;
1596
1597 memset(&info, 0, sizeof(info));
1598 info.lo_number = info64->lo_number;
1599 info.lo_device = info64->lo_device;
1600 info.lo_inode = info64->lo_inode;
1601 info.lo_rdevice = info64->lo_rdevice;
1602 info.lo_offset = info64->lo_offset;
1603 info.lo_flags = info64->lo_flags;
1604 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1605
1606 /* error in case values were truncated */
1607 if (info.lo_device != info64->lo_device ||
1608 info.lo_rdevice != info64->lo_rdevice ||
1609 info.lo_inode != info64->lo_inode ||
1610 info.lo_offset != info64->lo_offset)
1611 return -EOVERFLOW;
1612
1613 if (copy_to_user(arg, &info, sizeof(info)))
1614 return -EFAULT;
1615 return 0;
1616}
1617
1618static int
1619loop_set_status_compat(struct loop_device *lo,
1620 const struct compat_loop_info __user *arg)
1621{
1622 struct loop_info64 info64;
1623 int ret;
1624
1625 ret = loop_info64_from_compat(arg, &info64);
1626 if (ret < 0)
1627 return ret;
1628 return loop_set_status(lo, &info64);
1629}
1630
1631static int
1632loop_get_status_compat(struct loop_device *lo,
1633 struct compat_loop_info __user *arg)
1634{
1635 struct loop_info64 info64;
1636 int err;
1637
1638 if (!arg)
1639 return -EINVAL;
1640 err = loop_get_status(lo, &info64);
1641 if (!err)
1642 err = loop_info64_to_compat(&info64, arg);
1643 return err;
1644}
1645
1646static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1647 unsigned int cmd, unsigned long arg)
1648{
1649 struct loop_device *lo = bdev->bd_disk->private_data;
1650 int err;
1651
1652 switch(cmd) {
1653 case LOOP_SET_STATUS:
1654 err = loop_set_status_compat(lo,
1655 (const struct compat_loop_info __user *)arg);
1656 break;
1657 case LOOP_GET_STATUS:
1658 err = loop_get_status_compat(lo,
1659 (struct compat_loop_info __user *)arg);
1660 break;
1661 case LOOP_SET_CAPACITY:
1662 case LOOP_CLR_FD:
1663 case LOOP_GET_STATUS64:
1664 case LOOP_SET_STATUS64:
1665 case LOOP_CONFIGURE:
1666 arg = (unsigned long) compat_ptr(arg);
1667 fallthrough;
1668 case LOOP_SET_FD:
1669 case LOOP_CHANGE_FD:
1670 case LOOP_SET_BLOCK_SIZE:
1671 case LOOP_SET_DIRECT_IO:
1672 err = lo_ioctl(bdev, mode, cmd, arg);
1673 break;
1674 default:
1675 err = -ENOIOCTLCMD;
1676 break;
1677 }
1678 return err;
1679}
1680#endif
1681
1682static int lo_open(struct gendisk *disk, blk_mode_t mode)
1683{
1684 struct loop_device *lo = disk->private_data;
1685 int err;
1686
1687 err = mutex_lock_killable(&lo->lo_mutex);
1688 if (err)
1689 return err;
1690
1691 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1692 err = -ENXIO;
1693 mutex_unlock(&lo->lo_mutex);
1694 return err;
1695}
1696
1697static void lo_release(struct gendisk *disk)
1698{
1699 struct loop_device *lo = disk->private_data;
1700 bool need_clear = false;
1701
1702 if (disk_openers(disk) > 0)
1703 return;
1704 /*
1705 * Clear the backing device information if this is the last close of
1706 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1707 * has been called.
1708 */
1709
1710 mutex_lock(&lo->lo_mutex);
1711 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1712 lo->lo_state = Lo_rundown;
1713
1714 need_clear = (lo->lo_state == Lo_rundown);
1715 mutex_unlock(&lo->lo_mutex);
1716
1717 if (need_clear)
1718 __loop_clr_fd(lo);
1719}
1720
1721static void lo_free_disk(struct gendisk *disk)
1722{
1723 struct loop_device *lo = disk->private_data;
1724
1725 if (lo->workqueue)
1726 destroy_workqueue(lo->workqueue);
1727 loop_free_idle_workers(lo, true);
1728 timer_shutdown_sync(&lo->timer);
1729 mutex_destroy(&lo->lo_mutex);
1730 kfree(lo);
1731}
1732
1733static const struct block_device_operations lo_fops = {
1734 .owner = THIS_MODULE,
1735 .open = lo_open,
1736 .release = lo_release,
1737 .ioctl = lo_ioctl,
1738#ifdef CONFIG_COMPAT
1739 .compat_ioctl = lo_compat_ioctl,
1740#endif
1741 .free_disk = lo_free_disk,
1742};
1743
1744/*
1745 * And now the modules code and kernel interface.
1746 */
1747
1748/*
1749 * If max_loop is specified, create that many devices upfront.
1750 * This also becomes a hard limit. If max_loop is not specified,
1751 * the default isn't a hard limit (as before commit 85c50197716c
1752 * changed the default value from 0 for max_loop=0 reasons), just
1753 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1754 * init time. Loop devices can be requested on-demand with the
1755 * /dev/loop-control interface, or be instantiated by accessing
1756 * a 'dead' device node.
1757 */
1758static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1759
1760#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1761static bool max_loop_specified;
1762
1763static int max_loop_param_set_int(const char *val,
1764 const struct kernel_param *kp)
1765{
1766 int ret;
1767
1768 ret = param_set_int(val, kp);
1769 if (ret < 0)
1770 return ret;
1771
1772 max_loop_specified = true;
1773 return 0;
1774}
1775
1776static const struct kernel_param_ops max_loop_param_ops = {
1777 .set = max_loop_param_set_int,
1778 .get = param_get_int,
1779};
1780
1781module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1782MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1783#else
1784module_param(max_loop, int, 0444);
1785MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1786#endif
1787
1788module_param(max_part, int, 0444);
1789MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1790
1791static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1792
1793static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1794{
1795 int qd, ret;
1796
1797 ret = kstrtoint(s, 0, &qd);
1798 if (ret < 0)
1799 return ret;
1800 if (qd < 1)
1801 return -EINVAL;
1802 hw_queue_depth = qd;
1803 return 0;
1804}
1805
1806static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1807 .set = loop_set_hw_queue_depth,
1808 .get = param_get_int,
1809};
1810
1811device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1812MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1813
1814MODULE_DESCRIPTION("Loopback device support");
1815MODULE_LICENSE("GPL");
1816MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1817
1818static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1819 const struct blk_mq_queue_data *bd)
1820{
1821 struct request *rq = bd->rq;
1822 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1823 struct loop_device *lo = rq->q->queuedata;
1824
1825 blk_mq_start_request(rq);
1826
1827 if (lo->lo_state != Lo_bound)
1828 return BLK_STS_IOERR;
1829
1830 switch (req_op(rq)) {
1831 case REQ_OP_FLUSH:
1832 case REQ_OP_DISCARD:
1833 case REQ_OP_WRITE_ZEROES:
1834 cmd->use_aio = false;
1835 break;
1836 default:
1837 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1838 break;
1839 }
1840
1841 /* always use the first bio's css */
1842 cmd->blkcg_css = NULL;
1843 cmd->memcg_css = NULL;
1844#ifdef CONFIG_BLK_CGROUP
1845 if (rq->bio) {
1846 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1847#ifdef CONFIG_MEMCG
1848 if (cmd->blkcg_css) {
1849 cmd->memcg_css =
1850 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1851 &memory_cgrp_subsys);
1852 }
1853#endif
1854 }
1855#endif
1856 loop_queue_work(lo, cmd);
1857
1858 return BLK_STS_OK;
1859}
1860
1861static void loop_handle_cmd(struct loop_cmd *cmd)
1862{
1863 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1864 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1865 struct request *rq = blk_mq_rq_from_pdu(cmd);
1866 const bool write = op_is_write(req_op(rq));
1867 struct loop_device *lo = rq->q->queuedata;
1868 int ret = 0;
1869 struct mem_cgroup *old_memcg = NULL;
1870
1871 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1872 ret = -EIO;
1873 goto failed;
1874 }
1875
1876 if (cmd_blkcg_css)
1877 kthread_associate_blkcg(cmd_blkcg_css);
1878 if (cmd_memcg_css)
1879 old_memcg = set_active_memcg(
1880 mem_cgroup_from_css(cmd_memcg_css));
1881
1882 /*
1883 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1884 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1885 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1886 * not yet been completed.
1887 */
1888 ret = do_req_filebacked(lo, rq);
1889
1890 if (cmd_blkcg_css)
1891 kthread_associate_blkcg(NULL);
1892
1893 if (cmd_memcg_css) {
1894 set_active_memcg(old_memcg);
1895 css_put(cmd_memcg_css);
1896 }
1897 failed:
1898 /* complete non-aio request */
1899 if (ret != -EIOCBQUEUED) {
1900 if (ret == -EOPNOTSUPP)
1901 cmd->ret = ret;
1902 else
1903 cmd->ret = ret ? -EIO : 0;
1904 if (likely(!blk_should_fake_timeout(rq->q)))
1905 blk_mq_complete_request(rq);
1906 }
1907}
1908
1909static void loop_process_work(struct loop_worker *worker,
1910 struct list_head *cmd_list, struct loop_device *lo)
1911{
1912 int orig_flags = current->flags;
1913 struct loop_cmd *cmd;
1914
1915 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1916 spin_lock_irq(&lo->lo_work_lock);
1917 while (!list_empty(cmd_list)) {
1918 cmd = container_of(
1919 cmd_list->next, struct loop_cmd, list_entry);
1920 list_del(cmd_list->next);
1921 spin_unlock_irq(&lo->lo_work_lock);
1922
1923 loop_handle_cmd(cmd);
1924 cond_resched();
1925
1926 spin_lock_irq(&lo->lo_work_lock);
1927 }
1928
1929 /*
1930 * We only add to the idle list if there are no pending cmds
1931 * *and* the worker will not run again which ensures that it
1932 * is safe to free any worker on the idle list
1933 */
1934 if (worker && !work_pending(&worker->work)) {
1935 worker->last_ran_at = jiffies;
1936 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1937 loop_set_timer(lo);
1938 }
1939 spin_unlock_irq(&lo->lo_work_lock);
1940 current->flags = orig_flags;
1941}
1942
1943static void loop_workfn(struct work_struct *work)
1944{
1945 struct loop_worker *worker =
1946 container_of(work, struct loop_worker, work);
1947 loop_process_work(worker, &worker->cmd_list, worker->lo);
1948}
1949
1950static void loop_rootcg_workfn(struct work_struct *work)
1951{
1952 struct loop_device *lo =
1953 container_of(work, struct loop_device, rootcg_work);
1954 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1955}
1956
1957static const struct blk_mq_ops loop_mq_ops = {
1958 .queue_rq = loop_queue_rq,
1959 .complete = lo_complete_rq,
1960};
1961
1962static int loop_add(int i)
1963{
1964 struct queue_limits lim = {
1965 /*
1966 * Random number picked from the historic block max_sectors cap.
1967 */
1968 .max_hw_sectors = 2560u,
1969 };
1970 struct loop_device *lo;
1971 struct gendisk *disk;
1972 int err;
1973
1974 err = -ENOMEM;
1975 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1976 if (!lo)
1977 goto out;
1978 lo->worker_tree = RB_ROOT;
1979 INIT_LIST_HEAD(&lo->idle_worker_list);
1980 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
1981 lo->lo_state = Lo_unbound;
1982
1983 err = mutex_lock_killable(&loop_ctl_mutex);
1984 if (err)
1985 goto out_free_dev;
1986
1987 /* allocate id, if @id >= 0, we're requesting that specific id */
1988 if (i >= 0) {
1989 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1990 if (err == -ENOSPC)
1991 err = -EEXIST;
1992 } else {
1993 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1994 }
1995 mutex_unlock(&loop_ctl_mutex);
1996 if (err < 0)
1997 goto out_free_dev;
1998 i = err;
1999
2000 lo->tag_set.ops = &loop_mq_ops;
2001 lo->tag_set.nr_hw_queues = 1;
2002 lo->tag_set.queue_depth = hw_queue_depth;
2003 lo->tag_set.numa_node = NUMA_NO_NODE;
2004 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2005 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2006 lo->tag_set.driver_data = lo;
2007
2008 err = blk_mq_alloc_tag_set(&lo->tag_set);
2009 if (err)
2010 goto out_free_idr;
2011
2012 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2013 if (IS_ERR(disk)) {
2014 err = PTR_ERR(disk);
2015 goto out_cleanup_tags;
2016 }
2017 lo->lo_queue = lo->lo_disk->queue;
2018
2019 /*
2020 * Disable partition scanning by default. The in-kernel partition
2021 * scanning can be requested individually per-device during its
2022 * setup. Userspace can always add and remove partitions from all
2023 * devices. The needed partition minors are allocated from the
2024 * extended minor space, the main loop device numbers will continue
2025 * to match the loop minors, regardless of the number of partitions
2026 * used.
2027 *
2028 * If max_part is given, partition scanning is globally enabled for
2029 * all loop devices. The minors for the main loop devices will be
2030 * multiples of max_part.
2031 *
2032 * Note: Global-for-all-devices, set-only-at-init, read-only module
2033 * parameteters like 'max_loop' and 'max_part' make things needlessly
2034 * complicated, are too static, inflexible and may surprise
2035 * userspace tools. Parameters like this in general should be avoided.
2036 */
2037 if (!part_shift)
2038 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2039 mutex_init(&lo->lo_mutex);
2040 lo->lo_number = i;
2041 spin_lock_init(&lo->lo_lock);
2042 spin_lock_init(&lo->lo_work_lock);
2043 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2044 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2045 disk->major = LOOP_MAJOR;
2046 disk->first_minor = i << part_shift;
2047 disk->minors = 1 << part_shift;
2048 disk->fops = &lo_fops;
2049 disk->private_data = lo;
2050 disk->queue = lo->lo_queue;
2051 disk->events = DISK_EVENT_MEDIA_CHANGE;
2052 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2053 sprintf(disk->disk_name, "loop%d", i);
2054 /* Make this loop device reachable from pathname. */
2055 err = add_disk(disk);
2056 if (err)
2057 goto out_cleanup_disk;
2058
2059 /* Show this loop device. */
2060 mutex_lock(&loop_ctl_mutex);
2061 lo->idr_visible = true;
2062 mutex_unlock(&loop_ctl_mutex);
2063
2064 return i;
2065
2066out_cleanup_disk:
2067 put_disk(disk);
2068out_cleanup_tags:
2069 blk_mq_free_tag_set(&lo->tag_set);
2070out_free_idr:
2071 mutex_lock(&loop_ctl_mutex);
2072 idr_remove(&loop_index_idr, i);
2073 mutex_unlock(&loop_ctl_mutex);
2074out_free_dev:
2075 kfree(lo);
2076out:
2077 return err;
2078}
2079
2080static void loop_remove(struct loop_device *lo)
2081{
2082 /* Make this loop device unreachable from pathname. */
2083 del_gendisk(lo->lo_disk);
2084 blk_mq_free_tag_set(&lo->tag_set);
2085
2086 mutex_lock(&loop_ctl_mutex);
2087 idr_remove(&loop_index_idr, lo->lo_number);
2088 mutex_unlock(&loop_ctl_mutex);
2089
2090 put_disk(lo->lo_disk);
2091}
2092
2093#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2094static void loop_probe(dev_t dev)
2095{
2096 int idx = MINOR(dev) >> part_shift;
2097
2098 if (max_loop_specified && max_loop && idx >= max_loop)
2099 return;
2100 loop_add(idx);
2101}
2102#else
2103#define loop_probe NULL
2104#endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2105
2106static int loop_control_remove(int idx)
2107{
2108 struct loop_device *lo;
2109 int ret;
2110
2111 if (idx < 0) {
2112 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2113 return -EINVAL;
2114 }
2115
2116 /* Hide this loop device for serialization. */
2117 ret = mutex_lock_killable(&loop_ctl_mutex);
2118 if (ret)
2119 return ret;
2120 lo = idr_find(&loop_index_idr, idx);
2121 if (!lo || !lo->idr_visible)
2122 ret = -ENODEV;
2123 else
2124 lo->idr_visible = false;
2125 mutex_unlock(&loop_ctl_mutex);
2126 if (ret)
2127 return ret;
2128
2129 /* Check whether this loop device can be removed. */
2130 ret = mutex_lock_killable(&lo->lo_mutex);
2131 if (ret)
2132 goto mark_visible;
2133 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2134 mutex_unlock(&lo->lo_mutex);
2135 ret = -EBUSY;
2136 goto mark_visible;
2137 }
2138 /* Mark this loop device as no more bound, but not quite unbound yet */
2139 lo->lo_state = Lo_deleting;
2140 mutex_unlock(&lo->lo_mutex);
2141
2142 loop_remove(lo);
2143 return 0;
2144
2145mark_visible:
2146 /* Show this loop device again. */
2147 mutex_lock(&loop_ctl_mutex);
2148 lo->idr_visible = true;
2149 mutex_unlock(&loop_ctl_mutex);
2150 return ret;
2151}
2152
2153static int loop_control_get_free(int idx)
2154{
2155 struct loop_device *lo;
2156 int id, ret;
2157
2158 ret = mutex_lock_killable(&loop_ctl_mutex);
2159 if (ret)
2160 return ret;
2161 idr_for_each_entry(&loop_index_idr, lo, id) {
2162 /* Hitting a race results in creating a new loop device which is harmless. */
2163 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2164 goto found;
2165 }
2166 mutex_unlock(&loop_ctl_mutex);
2167 return loop_add(-1);
2168found:
2169 mutex_unlock(&loop_ctl_mutex);
2170 return id;
2171}
2172
2173static long loop_control_ioctl(struct file *file, unsigned int cmd,
2174 unsigned long parm)
2175{
2176 switch (cmd) {
2177 case LOOP_CTL_ADD:
2178 return loop_add(parm);
2179 case LOOP_CTL_REMOVE:
2180 return loop_control_remove(parm);
2181 case LOOP_CTL_GET_FREE:
2182 return loop_control_get_free(parm);
2183 default:
2184 return -ENOSYS;
2185 }
2186}
2187
2188static const struct file_operations loop_ctl_fops = {
2189 .open = nonseekable_open,
2190 .unlocked_ioctl = loop_control_ioctl,
2191 .compat_ioctl = loop_control_ioctl,
2192 .owner = THIS_MODULE,
2193 .llseek = noop_llseek,
2194};
2195
2196static struct miscdevice loop_misc = {
2197 .minor = LOOP_CTRL_MINOR,
2198 .name = "loop-control",
2199 .fops = &loop_ctl_fops,
2200};
2201
2202MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2203MODULE_ALIAS("devname:loop-control");
2204
2205static int __init loop_init(void)
2206{
2207 int i;
2208 int err;
2209
2210 part_shift = 0;
2211 if (max_part > 0) {
2212 part_shift = fls(max_part);
2213
2214 /*
2215 * Adjust max_part according to part_shift as it is exported
2216 * to user space so that user can decide correct minor number
2217 * if [s]he want to create more devices.
2218 *
2219 * Note that -1 is required because partition 0 is reserved
2220 * for the whole disk.
2221 */
2222 max_part = (1UL << part_shift) - 1;
2223 }
2224
2225 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2226 err = -EINVAL;
2227 goto err_out;
2228 }
2229
2230 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2231 err = -EINVAL;
2232 goto err_out;
2233 }
2234
2235 err = misc_register(&loop_misc);
2236 if (err < 0)
2237 goto err_out;
2238
2239
2240 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2241 err = -EIO;
2242 goto misc_out;
2243 }
2244
2245 /* pre-create number of devices given by config or max_loop */
2246 for (i = 0; i < max_loop; i++)
2247 loop_add(i);
2248
2249 printk(KERN_INFO "loop: module loaded\n");
2250 return 0;
2251
2252misc_out:
2253 misc_deregister(&loop_misc);
2254err_out:
2255 return err;
2256}
2257
2258static void __exit loop_exit(void)
2259{
2260 struct loop_device *lo;
2261 int id;
2262
2263 unregister_blkdev(LOOP_MAJOR, "loop");
2264 misc_deregister(&loop_misc);
2265
2266 /*
2267 * There is no need to use loop_ctl_mutex here, for nobody else can
2268 * access loop_index_idr when this module is unloading (unless forced
2269 * module unloading is requested). If this is not a clean unloading,
2270 * we have no means to avoid kernel crash.
2271 */
2272 idr_for_each_entry(&loop_index_idr, lo, id)
2273 loop_remove(lo);
2274
2275 idr_destroy(&loop_index_idr);
2276}
2277
2278module_init(loop_init);
2279module_exit(loop_exit);
2280
2281#ifndef MODULE
2282static int __init max_loop_setup(char *str)
2283{
2284 max_loop = simple_strtol(str, NULL, 0);
2285#ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2286 max_loop_specified = true;
2287#endif
2288 return 1;
2289}
2290
2291__setup("max_loop=", max_loop_setup);
2292#endif