at v6.16 33 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * drivers/base/devres.c - device resource management 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 9#include <linux/device.h> 10#include <linux/module.h> 11#include <linux/slab.h> 12#include <linux/percpu.h> 13 14#include <asm/sections.h> 15 16#include "base.h" 17#include "trace.h" 18 19struct devres_node { 20 struct list_head entry; 21 dr_release_t release; 22 const char *name; 23 size_t size; 24}; 25 26struct devres { 27 struct devres_node node; 28 /* 29 * Some archs want to perform DMA into kmalloc caches 30 * and need a guaranteed alignment larger than 31 * the alignment of a 64-bit integer. 32 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same 33 * alignment for struct devres when allocated by kmalloc(). 34 */ 35 u8 __aligned(ARCH_DMA_MINALIGN) data[]; 36}; 37 38struct devres_group { 39 struct devres_node node[2]; 40 void *id; 41 int color; 42 /* -- 8 pointers */ 43}; 44 45static void set_node_dbginfo(struct devres_node *node, const char *name, 46 size_t size) 47{ 48 node->name = name; 49 node->size = size; 50} 51 52#ifdef CONFIG_DEBUG_DEVRES 53static int log_devres = 0; 54module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR); 55 56static void devres_dbg(struct device *dev, struct devres_node *node, 57 const char *op) 58{ 59 if (unlikely(log_devres)) 60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n", 61 op, node, node->name, node->size); 62} 63#else /* CONFIG_DEBUG_DEVRES */ 64#define devres_dbg(dev, node, op) do {} while (0) 65#endif /* CONFIG_DEBUG_DEVRES */ 66 67static void devres_log(struct device *dev, struct devres_node *node, 68 const char *op) 69{ 70 trace_devres_log(dev, op, node, node->name, node->size); 71 devres_dbg(dev, node, op); 72} 73 74/* 75 * Release functions for devres group. These callbacks are used only 76 * for identification. 77 */ 78static void group_open_release(struct device *dev, void *res) 79{ 80 /* noop */ 81} 82 83static void group_close_release(struct device *dev, void *res) 84{ 85 /* noop */ 86} 87 88static struct devres_group *node_to_group(struct devres_node *node) 89{ 90 if (node->release == &group_open_release) 91 return container_of(node, struct devres_group, node[0]); 92 if (node->release == &group_close_release) 93 return container_of(node, struct devres_group, node[1]); 94 return NULL; 95} 96 97static bool check_dr_size(size_t size, size_t *tot_size) 98{ 99 /* We must catch any near-SIZE_MAX cases that could overflow. */ 100 if (unlikely(check_add_overflow(sizeof(struct devres), 101 size, tot_size))) 102 return false; 103 104 /* Actually allocate the full kmalloc bucket size. */ 105 *tot_size = kmalloc_size_roundup(*tot_size); 106 107 return true; 108} 109 110static __always_inline struct devres *alloc_dr(dr_release_t release, 111 size_t size, gfp_t gfp, int nid) 112{ 113 size_t tot_size; 114 struct devres *dr; 115 116 if (!check_dr_size(size, &tot_size)) 117 return NULL; 118 119 dr = kmalloc_node_track_caller(tot_size, gfp, nid); 120 if (unlikely(!dr)) 121 return NULL; 122 123 /* No need to clear memory twice */ 124 if (!(gfp & __GFP_ZERO)) 125 memset(dr, 0, offsetof(struct devres, data)); 126 127 INIT_LIST_HEAD(&dr->node.entry); 128 dr->node.release = release; 129 return dr; 130} 131 132static void add_dr(struct device *dev, struct devres_node *node) 133{ 134 devres_log(dev, node, "ADD"); 135 BUG_ON(!list_empty(&node->entry)); 136 list_add_tail(&node->entry, &dev->devres_head); 137} 138 139static void replace_dr(struct device *dev, 140 struct devres_node *old, struct devres_node *new) 141{ 142 devres_log(dev, old, "REPLACE"); 143 BUG_ON(!list_empty(&new->entry)); 144 list_replace(&old->entry, &new->entry); 145} 146 147/** 148 * __devres_alloc_node - Allocate device resource data 149 * @release: Release function devres will be associated with 150 * @size: Allocation size 151 * @gfp: Allocation flags 152 * @nid: NUMA node 153 * @name: Name of the resource 154 * 155 * Allocate devres of @size bytes. The allocated area is zeroed, then 156 * associated with @release. The returned pointer can be passed to 157 * other devres_*() functions. 158 * 159 * RETURNS: 160 * Pointer to allocated devres on success, NULL on failure. 161 */ 162void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, 163 const char *name) 164{ 165 struct devres *dr; 166 167 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid); 168 if (unlikely(!dr)) 169 return NULL; 170 set_node_dbginfo(&dr->node, name, size); 171 return dr->data; 172} 173EXPORT_SYMBOL_GPL(__devres_alloc_node); 174 175/** 176 * devres_for_each_res - Resource iterator 177 * @dev: Device to iterate resource from 178 * @release: Look for resources associated with this release function 179 * @match: Match function (optional) 180 * @match_data: Data for the match function 181 * @fn: Function to be called for each matched resource. 182 * @data: Data for @fn, the 3rd parameter of @fn 183 * 184 * Call @fn for each devres of @dev which is associated with @release 185 * and for which @match returns 1. 186 * 187 * RETURNS: 188 * void 189 */ 190void devres_for_each_res(struct device *dev, dr_release_t release, 191 dr_match_t match, void *match_data, 192 void (*fn)(struct device *, void *, void *), 193 void *data) 194{ 195 struct devres_node *node; 196 struct devres_node *tmp; 197 unsigned long flags; 198 199 if (!fn) 200 return; 201 202 spin_lock_irqsave(&dev->devres_lock, flags); 203 list_for_each_entry_safe_reverse(node, tmp, 204 &dev->devres_head, entry) { 205 struct devres *dr = container_of(node, struct devres, node); 206 207 if (node->release != release) 208 continue; 209 if (match && !match(dev, dr->data, match_data)) 210 continue; 211 fn(dev, dr->data, data); 212 } 213 spin_unlock_irqrestore(&dev->devres_lock, flags); 214} 215EXPORT_SYMBOL_GPL(devres_for_each_res); 216 217/** 218 * devres_free - Free device resource data 219 * @res: Pointer to devres data to free 220 * 221 * Free devres created with devres_alloc(). 222 */ 223void devres_free(void *res) 224{ 225 if (res) { 226 struct devres *dr = container_of(res, struct devres, data); 227 228 BUG_ON(!list_empty(&dr->node.entry)); 229 kfree(dr); 230 } 231} 232EXPORT_SYMBOL_GPL(devres_free); 233 234/** 235 * devres_add - Register device resource 236 * @dev: Device to add resource to 237 * @res: Resource to register 238 * 239 * Register devres @res to @dev. @res should have been allocated 240 * using devres_alloc(). On driver detach, the associated release 241 * function will be invoked and devres will be freed automatically. 242 */ 243void devres_add(struct device *dev, void *res) 244{ 245 struct devres *dr = container_of(res, struct devres, data); 246 unsigned long flags; 247 248 spin_lock_irqsave(&dev->devres_lock, flags); 249 add_dr(dev, &dr->node); 250 spin_unlock_irqrestore(&dev->devres_lock, flags); 251} 252EXPORT_SYMBOL_GPL(devres_add); 253 254static struct devres *find_dr(struct device *dev, dr_release_t release, 255 dr_match_t match, void *match_data) 256{ 257 struct devres_node *node; 258 259 list_for_each_entry_reverse(node, &dev->devres_head, entry) { 260 struct devres *dr = container_of(node, struct devres, node); 261 262 if (node->release != release) 263 continue; 264 if (match && !match(dev, dr->data, match_data)) 265 continue; 266 return dr; 267 } 268 269 return NULL; 270} 271 272/** 273 * devres_find - Find device resource 274 * @dev: Device to lookup resource from 275 * @release: Look for resources associated with this release function 276 * @match: Match function (optional) 277 * @match_data: Data for the match function 278 * 279 * Find the latest devres of @dev which is associated with @release 280 * and for which @match returns 1. If @match is NULL, it's considered 281 * to match all. 282 * 283 * RETURNS: 284 * Pointer to found devres, NULL if not found. 285 */ 286void *devres_find(struct device *dev, dr_release_t release, 287 dr_match_t match, void *match_data) 288{ 289 struct devres *dr; 290 unsigned long flags; 291 292 spin_lock_irqsave(&dev->devres_lock, flags); 293 dr = find_dr(dev, release, match, match_data); 294 spin_unlock_irqrestore(&dev->devres_lock, flags); 295 296 if (dr) 297 return dr->data; 298 return NULL; 299} 300EXPORT_SYMBOL_GPL(devres_find); 301 302/** 303 * devres_get - Find devres, if non-existent, add one atomically 304 * @dev: Device to lookup or add devres for 305 * @new_res: Pointer to new initialized devres to add if not found 306 * @match: Match function (optional) 307 * @match_data: Data for the match function 308 * 309 * Find the latest devres of @dev which has the same release function 310 * as @new_res and for which @match return 1. If found, @new_res is 311 * freed; otherwise, @new_res is added atomically. 312 * 313 * RETURNS: 314 * Pointer to found or added devres. 315 */ 316void *devres_get(struct device *dev, void *new_res, 317 dr_match_t match, void *match_data) 318{ 319 struct devres *new_dr = container_of(new_res, struct devres, data); 320 struct devres *dr; 321 unsigned long flags; 322 323 spin_lock_irqsave(&dev->devres_lock, flags); 324 dr = find_dr(dev, new_dr->node.release, match, match_data); 325 if (!dr) { 326 add_dr(dev, &new_dr->node); 327 dr = new_dr; 328 new_res = NULL; 329 } 330 spin_unlock_irqrestore(&dev->devres_lock, flags); 331 devres_free(new_res); 332 333 return dr->data; 334} 335EXPORT_SYMBOL_GPL(devres_get); 336 337/** 338 * devres_remove - Find a device resource and remove it 339 * @dev: Device to find resource from 340 * @release: Look for resources associated with this release function 341 * @match: Match function (optional) 342 * @match_data: Data for the match function 343 * 344 * Find the latest devres of @dev associated with @release and for 345 * which @match returns 1. If @match is NULL, it's considered to 346 * match all. If found, the resource is removed atomically and 347 * returned. 348 * 349 * RETURNS: 350 * Pointer to removed devres on success, NULL if not found. 351 */ 352void *devres_remove(struct device *dev, dr_release_t release, 353 dr_match_t match, void *match_data) 354{ 355 struct devres *dr; 356 unsigned long flags; 357 358 spin_lock_irqsave(&dev->devres_lock, flags); 359 dr = find_dr(dev, release, match, match_data); 360 if (dr) { 361 list_del_init(&dr->node.entry); 362 devres_log(dev, &dr->node, "REM"); 363 } 364 spin_unlock_irqrestore(&dev->devres_lock, flags); 365 366 if (dr) 367 return dr->data; 368 return NULL; 369} 370EXPORT_SYMBOL_GPL(devres_remove); 371 372/** 373 * devres_destroy - Find a device resource and destroy it 374 * @dev: Device to find resource from 375 * @release: Look for resources associated with this release function 376 * @match: Match function (optional) 377 * @match_data: Data for the match function 378 * 379 * Find the latest devres of @dev associated with @release and for 380 * which @match returns 1. If @match is NULL, it's considered to 381 * match all. If found, the resource is removed atomically and freed. 382 * 383 * Note that the release function for the resource will not be called, 384 * only the devres-allocated data will be freed. The caller becomes 385 * responsible for freeing any other data. 386 * 387 * RETURNS: 388 * 0 if devres is found and freed, -ENOENT if not found. 389 */ 390int devres_destroy(struct device *dev, dr_release_t release, 391 dr_match_t match, void *match_data) 392{ 393 void *res; 394 395 res = devres_remove(dev, release, match, match_data); 396 if (unlikely(!res)) 397 return -ENOENT; 398 399 devres_free(res); 400 return 0; 401} 402EXPORT_SYMBOL_GPL(devres_destroy); 403 404 405/** 406 * devres_release - Find a device resource and destroy it, calling release 407 * @dev: Device to find resource from 408 * @release: Look for resources associated with this release function 409 * @match: Match function (optional) 410 * @match_data: Data for the match function 411 * 412 * Find the latest devres of @dev associated with @release and for 413 * which @match returns 1. If @match is NULL, it's considered to 414 * match all. If found, the resource is removed atomically, the 415 * release function called and the resource freed. 416 * 417 * RETURNS: 418 * 0 if devres is found and freed, -ENOENT if not found. 419 */ 420int devres_release(struct device *dev, dr_release_t release, 421 dr_match_t match, void *match_data) 422{ 423 void *res; 424 425 res = devres_remove(dev, release, match, match_data); 426 if (unlikely(!res)) 427 return -ENOENT; 428 429 (*release)(dev, res); 430 devres_free(res); 431 return 0; 432} 433EXPORT_SYMBOL_GPL(devres_release); 434 435static int remove_nodes(struct device *dev, 436 struct list_head *first, struct list_head *end, 437 struct list_head *todo) 438{ 439 struct devres_node *node, *n; 440 int cnt = 0, nr_groups = 0; 441 442 /* First pass - move normal devres entries to @todo and clear 443 * devres_group colors. 444 */ 445 node = list_entry(first, struct devres_node, entry); 446 list_for_each_entry_safe_from(node, n, end, entry) { 447 struct devres_group *grp; 448 449 grp = node_to_group(node); 450 if (grp) { 451 /* clear color of group markers in the first pass */ 452 grp->color = 0; 453 nr_groups++; 454 } else { 455 /* regular devres entry */ 456 if (&node->entry == first) 457 first = first->next; 458 list_move_tail(&node->entry, todo); 459 cnt++; 460 } 461 } 462 463 if (!nr_groups) 464 return cnt; 465 466 /* Second pass - Scan groups and color them. A group gets 467 * color value of two iff the group is wholly contained in 468 * [current node, end). That is, for a closed group, both opening 469 * and closing markers should be in the range, while just the 470 * opening marker is enough for an open group. 471 */ 472 node = list_entry(first, struct devres_node, entry); 473 list_for_each_entry_safe_from(node, n, end, entry) { 474 struct devres_group *grp; 475 476 grp = node_to_group(node); 477 BUG_ON(!grp || list_empty(&grp->node[0].entry)); 478 479 grp->color++; 480 if (list_empty(&grp->node[1].entry)) 481 grp->color++; 482 483 BUG_ON(grp->color <= 0 || grp->color > 2); 484 if (grp->color == 2) { 485 /* No need to update current node or end. The removed 486 * nodes are always before both. 487 */ 488 list_move_tail(&grp->node[0].entry, todo); 489 list_del_init(&grp->node[1].entry); 490 } 491 } 492 493 return cnt; 494} 495 496static void release_nodes(struct device *dev, struct list_head *todo) 497{ 498 struct devres *dr, *tmp; 499 500 /* Release. Note that both devres and devres_group are 501 * handled as devres in the following loop. This is safe. 502 */ 503 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) { 504 devres_log(dev, &dr->node, "REL"); 505 dr->node.release(dev, dr->data); 506 kfree(dr); 507 } 508} 509 510/** 511 * devres_release_all - Release all managed resources 512 * @dev: Device to release resources for 513 * 514 * Release all resources associated with @dev. This function is 515 * called on driver detach. 516 */ 517int devres_release_all(struct device *dev) 518{ 519 unsigned long flags; 520 LIST_HEAD(todo); 521 int cnt; 522 523 /* Looks like an uninitialized device structure */ 524 if (WARN_ON(dev->devres_head.next == NULL)) 525 return -ENODEV; 526 527 /* Nothing to release if list is empty */ 528 if (list_empty(&dev->devres_head)) 529 return 0; 530 531 spin_lock_irqsave(&dev->devres_lock, flags); 532 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo); 533 spin_unlock_irqrestore(&dev->devres_lock, flags); 534 535 release_nodes(dev, &todo); 536 return cnt; 537} 538 539/** 540 * devres_open_group - Open a new devres group 541 * @dev: Device to open devres group for 542 * @id: Separator ID 543 * @gfp: Allocation flags 544 * 545 * Open a new devres group for @dev with @id. For @id, using a 546 * pointer to an object which won't be used for another group is 547 * recommended. If @id is NULL, address-wise unique ID is created. 548 * 549 * RETURNS: 550 * ID of the new group, NULL on failure. 551 */ 552void *devres_open_group(struct device *dev, void *id, gfp_t gfp) 553{ 554 struct devres_group *grp; 555 unsigned long flags; 556 557 grp = kmalloc(sizeof(*grp), gfp); 558 if (unlikely(!grp)) 559 return NULL; 560 561 grp->node[0].release = &group_open_release; 562 grp->node[1].release = &group_close_release; 563 INIT_LIST_HEAD(&grp->node[0].entry); 564 INIT_LIST_HEAD(&grp->node[1].entry); 565 set_node_dbginfo(&grp->node[0], "grp<", 0); 566 set_node_dbginfo(&grp->node[1], "grp>", 0); 567 grp->id = grp; 568 if (id) 569 grp->id = id; 570 grp->color = 0; 571 572 spin_lock_irqsave(&dev->devres_lock, flags); 573 add_dr(dev, &grp->node[0]); 574 spin_unlock_irqrestore(&dev->devres_lock, flags); 575 return grp->id; 576} 577EXPORT_SYMBOL_GPL(devres_open_group); 578 579/* 580 * Find devres group with ID @id. If @id is NULL, look for the latest open 581 * group. 582 */ 583static struct devres_group *find_group(struct device *dev, void *id) 584{ 585 struct devres_node *node; 586 587 list_for_each_entry_reverse(node, &dev->devres_head, entry) { 588 struct devres_group *grp; 589 590 if (node->release != &group_open_release) 591 continue; 592 593 grp = container_of(node, struct devres_group, node[0]); 594 595 if (id) { 596 if (grp->id == id) 597 return grp; 598 } else if (list_empty(&grp->node[1].entry)) 599 return grp; 600 } 601 602 return NULL; 603} 604 605/** 606 * devres_close_group - Close a devres group 607 * @dev: Device to close devres group for 608 * @id: ID of target group, can be NULL 609 * 610 * Close the group identified by @id. If @id is NULL, the latest open 611 * group is selected. 612 */ 613void devres_close_group(struct device *dev, void *id) 614{ 615 struct devres_group *grp; 616 unsigned long flags; 617 618 spin_lock_irqsave(&dev->devres_lock, flags); 619 620 grp = find_group(dev, id); 621 if (grp) 622 add_dr(dev, &grp->node[1]); 623 else 624 WARN_ON(1); 625 626 spin_unlock_irqrestore(&dev->devres_lock, flags); 627} 628EXPORT_SYMBOL_GPL(devres_close_group); 629 630/** 631 * devres_remove_group - Remove a devres group 632 * @dev: Device to remove group for 633 * @id: ID of target group, can be NULL 634 * 635 * Remove the group identified by @id. If @id is NULL, the latest 636 * open group is selected. Note that removing a group doesn't affect 637 * any other resources. 638 */ 639void devres_remove_group(struct device *dev, void *id) 640{ 641 struct devres_group *grp; 642 unsigned long flags; 643 644 spin_lock_irqsave(&dev->devres_lock, flags); 645 646 grp = find_group(dev, id); 647 if (grp) { 648 list_del_init(&grp->node[0].entry); 649 list_del_init(&grp->node[1].entry); 650 devres_log(dev, &grp->node[0], "REM"); 651 } else 652 WARN_ON(1); 653 654 spin_unlock_irqrestore(&dev->devres_lock, flags); 655 656 kfree(grp); 657} 658EXPORT_SYMBOL_GPL(devres_remove_group); 659 660/** 661 * devres_release_group - Release resources in a devres group 662 * @dev: Device to release group for 663 * @id: ID of target group, can be NULL 664 * 665 * Release all resources in the group identified by @id. If @id is 666 * NULL, the latest open group is selected. The selected group and 667 * groups properly nested inside the selected group are removed. 668 * 669 * RETURNS: 670 * The number of released non-group resources. 671 */ 672int devres_release_group(struct device *dev, void *id) 673{ 674 struct devres_group *grp; 675 unsigned long flags; 676 LIST_HEAD(todo); 677 int cnt = 0; 678 679 spin_lock_irqsave(&dev->devres_lock, flags); 680 681 grp = find_group(dev, id); 682 if (grp) { 683 struct list_head *first = &grp->node[0].entry; 684 struct list_head *end = &dev->devres_head; 685 686 if (!list_empty(&grp->node[1].entry)) 687 end = grp->node[1].entry.next; 688 689 cnt = remove_nodes(dev, first, end, &todo); 690 spin_unlock_irqrestore(&dev->devres_lock, flags); 691 692 release_nodes(dev, &todo); 693 } else if (list_empty(&dev->devres_head)) { 694 /* 695 * dev is probably dying via devres_release_all(): groups 696 * have already been removed and are on the process of 697 * being released - don't touch and don't warn. 698 */ 699 spin_unlock_irqrestore(&dev->devres_lock, flags); 700 } else { 701 WARN_ON(1); 702 spin_unlock_irqrestore(&dev->devres_lock, flags); 703 } 704 705 return cnt; 706} 707EXPORT_SYMBOL_GPL(devres_release_group); 708 709/* 710 * Custom devres actions allow inserting a simple function call 711 * into the teardown sequence. 712 */ 713 714struct action_devres { 715 void *data; 716 void (*action)(void *); 717}; 718 719static int devm_action_match(struct device *dev, void *res, void *p) 720{ 721 struct action_devres *devres = res; 722 struct action_devres *target = p; 723 724 return devres->action == target->action && 725 devres->data == target->data; 726} 727 728static void devm_action_release(struct device *dev, void *res) 729{ 730 struct action_devres *devres = res; 731 732 devres->action(devres->data); 733} 734 735/** 736 * __devm_add_action() - add a custom action to list of managed resources 737 * @dev: Device that owns the action 738 * @action: Function that should be called 739 * @data: Pointer to data passed to @action implementation 740 * @name: Name of the resource (for debugging purposes) 741 * 742 * This adds a custom action to the list of managed resources so that 743 * it gets executed as part of standard resource unwinding. 744 */ 745int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name) 746{ 747 struct action_devres *devres; 748 749 devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres), 750 GFP_KERNEL, NUMA_NO_NODE, name); 751 if (!devres) 752 return -ENOMEM; 753 754 devres->data = data; 755 devres->action = action; 756 757 devres_add(dev, devres); 758 return 0; 759} 760EXPORT_SYMBOL_GPL(__devm_add_action); 761 762bool devm_is_action_added(struct device *dev, void (*action)(void *), void *data) 763{ 764 struct action_devres devres = { 765 .data = data, 766 .action = action, 767 }; 768 769 return devres_find(dev, devm_action_release, devm_action_match, &devres); 770} 771EXPORT_SYMBOL_GPL(devm_is_action_added); 772 773/** 774 * devm_remove_action_nowarn() - removes previously added custom action 775 * @dev: Device that owns the action 776 * @action: Function implementing the action 777 * @data: Pointer to data passed to @action implementation 778 * 779 * Removes instance of @action previously added by devm_add_action(). 780 * Both action and data should match one of the existing entries. 781 * 782 * In contrast to devm_remove_action(), this function does not WARN() if no 783 * entry could have been found. 784 * 785 * This should only be used if the action is contained in an object with 786 * independent lifetime management, e.g. the Devres rust abstraction. 787 * 788 * Causing the warning from regular driver code most likely indicates an abuse 789 * of the devres API. 790 * 791 * Returns: 0 on success, -ENOENT if no entry could have been found. 792 */ 793int devm_remove_action_nowarn(struct device *dev, 794 void (*action)(void *), 795 void *data) 796{ 797 struct action_devres devres = { 798 .data = data, 799 .action = action, 800 }; 801 802 return devres_destroy(dev, devm_action_release, devm_action_match, 803 &devres); 804} 805EXPORT_SYMBOL_GPL(devm_remove_action_nowarn); 806 807/** 808 * devm_release_action() - release previously added custom action 809 * @dev: Device that owns the action 810 * @action: Function implementing the action 811 * @data: Pointer to data passed to @action implementation 812 * 813 * Releases and removes instance of @action previously added by 814 * devm_add_action(). Both action and data should match one of the 815 * existing entries. 816 */ 817void devm_release_action(struct device *dev, void (*action)(void *), void *data) 818{ 819 struct action_devres devres = { 820 .data = data, 821 .action = action, 822 }; 823 824 WARN_ON(devres_release(dev, devm_action_release, devm_action_match, 825 &devres)); 826 827} 828EXPORT_SYMBOL_GPL(devm_release_action); 829 830/* 831 * Managed kmalloc/kfree 832 */ 833static void devm_kmalloc_release(struct device *dev, void *res) 834{ 835 /* noop */ 836} 837 838static int devm_kmalloc_match(struct device *dev, void *res, void *data) 839{ 840 return res == data; 841} 842 843/** 844 * devm_kmalloc - Resource-managed kmalloc 845 * @dev: Device to allocate memory for 846 * @size: Allocation size 847 * @gfp: Allocation gfp flags 848 * 849 * Managed kmalloc. Memory allocated with this function is 850 * automatically freed on driver detach. Like all other devres 851 * resources, guaranteed alignment is unsigned long long. 852 * 853 * RETURNS: 854 * Pointer to allocated memory on success, NULL on failure. 855 */ 856void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) 857{ 858 struct devres *dr; 859 860 if (unlikely(!size)) 861 return ZERO_SIZE_PTR; 862 863 /* use raw alloc_dr for kmalloc caller tracing */ 864 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev)); 865 if (unlikely(!dr)) 866 return NULL; 867 868 /* 869 * This is named devm_kzalloc_release for historical reasons 870 * The initial implementation did not support kmalloc, only kzalloc 871 */ 872 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size); 873 devres_add(dev, dr->data); 874 return dr->data; 875} 876EXPORT_SYMBOL_GPL(devm_kmalloc); 877 878/** 879 * devm_krealloc - Resource-managed krealloc() 880 * @dev: Device to re-allocate memory for 881 * @ptr: Pointer to the memory chunk to re-allocate 882 * @new_size: New allocation size 883 * @gfp: Allocation gfp flags 884 * 885 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc(). 886 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR, 887 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the 888 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't 889 * change the order in which the release callback for the re-alloc'ed devres 890 * will be called (except when falling back to devm_kmalloc() or when freeing 891 * resources when new_size is zero). The contents of the memory are preserved 892 * up to the lesser of new and old sizes. 893 */ 894void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp) 895{ 896 size_t total_new_size, total_old_size; 897 struct devres *old_dr, *new_dr; 898 unsigned long flags; 899 900 if (unlikely(!new_size)) { 901 devm_kfree(dev, ptr); 902 return ZERO_SIZE_PTR; 903 } 904 905 if (unlikely(ZERO_OR_NULL_PTR(ptr))) 906 return devm_kmalloc(dev, new_size, gfp); 907 908 if (WARN_ON(is_kernel_rodata((unsigned long)ptr))) 909 /* 910 * We cannot reliably realloc a const string returned by 911 * devm_kstrdup_const(). 912 */ 913 return NULL; 914 915 if (!check_dr_size(new_size, &total_new_size)) 916 return NULL; 917 918 total_old_size = ksize(container_of(ptr, struct devres, data)); 919 if (total_old_size == 0) { 920 WARN(1, "Pointer doesn't point to dynamically allocated memory."); 921 return NULL; 922 } 923 924 /* 925 * If new size is smaller or equal to the actual number of bytes 926 * allocated previously - just return the same pointer. 927 */ 928 if (total_new_size <= total_old_size) 929 return ptr; 930 931 /* 932 * Otherwise: allocate new, larger chunk. We need to allocate before 933 * taking the lock as most probably the caller uses GFP_KERNEL. 934 * alloc_dr() will call check_dr_size() to reserve extra memory 935 * for struct devres automatically, so size @new_size user request 936 * is delivered to it directly as devm_kmalloc() does. 937 */ 938 new_dr = alloc_dr(devm_kmalloc_release, 939 new_size, gfp, dev_to_node(dev)); 940 if (!new_dr) 941 return NULL; 942 943 /* 944 * The spinlock protects the linked list against concurrent 945 * modifications but not the resource itself. 946 */ 947 spin_lock_irqsave(&dev->devres_lock, flags); 948 949 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr); 950 if (!old_dr) { 951 spin_unlock_irqrestore(&dev->devres_lock, flags); 952 kfree(new_dr); 953 WARN(1, "Memory chunk not managed or managed by a different device."); 954 return NULL; 955 } 956 957 replace_dr(dev, &old_dr->node, &new_dr->node); 958 959 spin_unlock_irqrestore(&dev->devres_lock, flags); 960 961 /* 962 * We can copy the memory contents after releasing the lock as we're 963 * no longer modifying the list links. 964 */ 965 memcpy(new_dr->data, old_dr->data, 966 total_old_size - offsetof(struct devres, data)); 967 /* 968 * Same for releasing the old devres - it's now been removed from the 969 * list. This is also the reason why we must not use devm_kfree() - the 970 * links are no longer valid. 971 */ 972 kfree(old_dr); 973 974 return new_dr->data; 975} 976EXPORT_SYMBOL_GPL(devm_krealloc); 977 978/** 979 * devm_kstrdup - Allocate resource managed space and 980 * copy an existing string into that. 981 * @dev: Device to allocate memory for 982 * @s: the string to duplicate 983 * @gfp: the GFP mask used in the devm_kmalloc() call when 984 * allocating memory 985 * RETURNS: 986 * Pointer to allocated string on success, NULL on failure. 987 */ 988char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) 989{ 990 if (!s) 991 return NULL; 992 993 return devm_kmemdup(dev, s, strlen(s) + 1, gfp); 994} 995EXPORT_SYMBOL_GPL(devm_kstrdup); 996 997/** 998 * devm_kstrdup_const - resource managed conditional string duplication 999 * @dev: device for which to duplicate the string 1000 * @s: the string to duplicate 1001 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 1002 * 1003 * Strings allocated by devm_kstrdup_const will be automatically freed when 1004 * the associated device is detached. 1005 * 1006 * RETURNS: 1007 * Source string if it is in .rodata section otherwise it falls back to 1008 * devm_kstrdup. 1009 */ 1010const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp) 1011{ 1012 if (is_kernel_rodata((unsigned long)s)) 1013 return s; 1014 1015 return devm_kstrdup(dev, s, gfp); 1016} 1017EXPORT_SYMBOL_GPL(devm_kstrdup_const); 1018 1019/** 1020 * devm_kvasprintf - Allocate resource managed space and format a string 1021 * into that. 1022 * @dev: Device to allocate memory for 1023 * @gfp: the GFP mask used in the devm_kmalloc() call when 1024 * allocating memory 1025 * @fmt: The printf()-style format string 1026 * @ap: Arguments for the format string 1027 * RETURNS: 1028 * Pointer to allocated string on success, NULL on failure. 1029 */ 1030char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, 1031 va_list ap) 1032{ 1033 unsigned int len; 1034 char *p; 1035 va_list aq; 1036 1037 va_copy(aq, ap); 1038 len = vsnprintf(NULL, 0, fmt, aq); 1039 va_end(aq); 1040 1041 p = devm_kmalloc(dev, len+1, gfp); 1042 if (!p) 1043 return NULL; 1044 1045 vsnprintf(p, len+1, fmt, ap); 1046 1047 return p; 1048} 1049EXPORT_SYMBOL(devm_kvasprintf); 1050 1051/** 1052 * devm_kasprintf - Allocate resource managed space and format a string 1053 * into that. 1054 * @dev: Device to allocate memory for 1055 * @gfp: the GFP mask used in the devm_kmalloc() call when 1056 * allocating memory 1057 * @fmt: The printf()-style format string 1058 * @...: Arguments for the format string 1059 * RETURNS: 1060 * Pointer to allocated string on success, NULL on failure. 1061 */ 1062char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) 1063{ 1064 va_list ap; 1065 char *p; 1066 1067 va_start(ap, fmt); 1068 p = devm_kvasprintf(dev, gfp, fmt, ap); 1069 va_end(ap); 1070 1071 return p; 1072} 1073EXPORT_SYMBOL_GPL(devm_kasprintf); 1074 1075/** 1076 * devm_kfree - Resource-managed kfree 1077 * @dev: Device this memory belongs to 1078 * @p: Memory to free 1079 * 1080 * Free memory allocated with devm_kmalloc(). 1081 */ 1082void devm_kfree(struct device *dev, const void *p) 1083{ 1084 int rc; 1085 1086 /* 1087 * Special cases: pointer to a string in .rodata returned by 1088 * devm_kstrdup_const() or NULL/ZERO ptr. 1089 */ 1090 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p))) 1091 return; 1092 1093 rc = devres_destroy(dev, devm_kmalloc_release, 1094 devm_kmalloc_match, (void *)p); 1095 WARN_ON(rc); 1096} 1097EXPORT_SYMBOL_GPL(devm_kfree); 1098 1099/** 1100 * devm_kmemdup - Resource-managed kmemdup 1101 * @dev: Device this memory belongs to 1102 * @src: Memory region to duplicate 1103 * @len: Memory region length 1104 * @gfp: GFP mask to use 1105 * 1106 * Duplicate region of a memory using resource managed kmalloc 1107 */ 1108void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp) 1109{ 1110 void *p; 1111 1112 p = devm_kmalloc(dev, len, gfp); 1113 if (p) 1114 memcpy(p, src, len); 1115 1116 return p; 1117} 1118EXPORT_SYMBOL_GPL(devm_kmemdup); 1119 1120struct pages_devres { 1121 unsigned long addr; 1122 unsigned int order; 1123}; 1124 1125static int devm_pages_match(struct device *dev, void *res, void *p) 1126{ 1127 struct pages_devres *devres = res; 1128 struct pages_devres *target = p; 1129 1130 return devres->addr == target->addr; 1131} 1132 1133static void devm_pages_release(struct device *dev, void *res) 1134{ 1135 struct pages_devres *devres = res; 1136 1137 free_pages(devres->addr, devres->order); 1138} 1139 1140/** 1141 * devm_get_free_pages - Resource-managed __get_free_pages 1142 * @dev: Device to allocate memory for 1143 * @gfp_mask: Allocation gfp flags 1144 * @order: Allocation size is (1 << order) pages 1145 * 1146 * Managed get_free_pages. Memory allocated with this function is 1147 * automatically freed on driver detach. 1148 * 1149 * RETURNS: 1150 * Address of allocated memory on success, 0 on failure. 1151 */ 1152 1153unsigned long devm_get_free_pages(struct device *dev, 1154 gfp_t gfp_mask, unsigned int order) 1155{ 1156 struct pages_devres *devres; 1157 unsigned long addr; 1158 1159 addr = __get_free_pages(gfp_mask, order); 1160 1161 if (unlikely(!addr)) 1162 return 0; 1163 1164 devres = devres_alloc(devm_pages_release, 1165 sizeof(struct pages_devres), GFP_KERNEL); 1166 if (unlikely(!devres)) { 1167 free_pages(addr, order); 1168 return 0; 1169 } 1170 1171 devres->addr = addr; 1172 devres->order = order; 1173 1174 devres_add(dev, devres); 1175 return addr; 1176} 1177EXPORT_SYMBOL_GPL(devm_get_free_pages); 1178 1179/** 1180 * devm_free_pages - Resource-managed free_pages 1181 * @dev: Device this memory belongs to 1182 * @addr: Memory to free 1183 * 1184 * Free memory allocated with devm_get_free_pages(). Unlike free_pages, 1185 * there is no need to supply the @order. 1186 */ 1187void devm_free_pages(struct device *dev, unsigned long addr) 1188{ 1189 struct pages_devres devres = { .addr = addr }; 1190 1191 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match, 1192 &devres)); 1193} 1194EXPORT_SYMBOL_GPL(devm_free_pages); 1195 1196static void devm_percpu_release(struct device *dev, void *pdata) 1197{ 1198 void __percpu *p; 1199 1200 p = *(void __percpu **)pdata; 1201 free_percpu(p); 1202} 1203 1204static int devm_percpu_match(struct device *dev, void *data, void *p) 1205{ 1206 struct devres *devr = container_of(data, struct devres, data); 1207 1208 return *(void **)devr->data == p; 1209} 1210 1211/** 1212 * __devm_alloc_percpu - Resource-managed alloc_percpu 1213 * @dev: Device to allocate per-cpu memory for 1214 * @size: Size of per-cpu memory to allocate 1215 * @align: Alignment of per-cpu memory to allocate 1216 * 1217 * Managed alloc_percpu. Per-cpu memory allocated with this function is 1218 * automatically freed on driver detach. 1219 * 1220 * RETURNS: 1221 * Pointer to allocated memory on success, NULL on failure. 1222 */ 1223void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, 1224 size_t align) 1225{ 1226 void *p; 1227 void __percpu *pcpu; 1228 1229 pcpu = __alloc_percpu(size, align); 1230 if (!pcpu) 1231 return NULL; 1232 1233 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL); 1234 if (!p) { 1235 free_percpu(pcpu); 1236 return NULL; 1237 } 1238 1239 *(void __percpu **)p = pcpu; 1240 1241 devres_add(dev, p); 1242 1243 return pcpu; 1244} 1245EXPORT_SYMBOL_GPL(__devm_alloc_percpu); 1246 1247/** 1248 * devm_free_percpu - Resource-managed free_percpu 1249 * @dev: Device this memory belongs to 1250 * @pdata: Per-cpu memory to free 1251 * 1252 * Free memory allocated with devm_alloc_percpu(). 1253 */ 1254void devm_free_percpu(struct device *dev, void __percpu *pdata) 1255{ 1256 /* 1257 * Use devres_release() to prevent memory leakage as 1258 * devm_free_pages() does. 1259 */ 1260 WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match, 1261 (void *)(__force unsigned long)pdata)); 1262} 1263EXPORT_SYMBOL_GPL(devm_free_percpu);