at v6.16 451 lines 15 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10#ifndef __ASM_MEMORY_H 11#define __ASM_MEMORY_H 12 13#include <linux/const.h> 14#include <linux/sizes.h> 15#include <asm/page-def.h> 16 17/* 18 * Size of the PCI I/O space. This must remain a power of two so that 19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 20 */ 21#define PCI_IO_SIZE SZ_16M 22 23/* 24 * VMEMMAP_SIZE - allows the whole linear region to be covered by 25 * a struct page array 26 * 27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 28 * needs to cover the memory region from the beginning of the 52-bit 29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 31 * of the VMEMMAP where 52-bit support is not available in hardware. 32 */ 33#define VMEMMAP_RANGE (_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) 34#define VMEMMAP_SIZE ((VMEMMAP_RANGE >> PAGE_SHIFT) * sizeof(struct page)) 35 36/* 37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 38 * start of the TTBR1 address space. 39 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 40 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 41 * VA_BITS - the maximum number of bits for virtual addresses. 42 */ 43#define VA_BITS (CONFIG_ARM64_VA_BITS) 44#define _PAGE_OFFSET(va) (-(UL(1) << (va))) 45#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 46#define KIMAGE_VADDR (MODULES_END) 47#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 48#define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) 49#define MODULES_VSIZE (SZ_2G) 50#define VMEMMAP_START (VMEMMAP_END - VMEMMAP_SIZE) 51#define VMEMMAP_END (-UL(SZ_1G)) 52#define PCI_IO_START (VMEMMAP_END + SZ_8M) 53#define PCI_IO_END (PCI_IO_START + PCI_IO_SIZE) 54#define FIXADDR_TOP (-UL(SZ_8M)) 55 56#if VA_BITS > 48 57#ifdef CONFIG_ARM64_16K_PAGES 58#define VA_BITS_MIN (47) 59#else 60#define VA_BITS_MIN (48) 61#endif 62#else 63#define VA_BITS_MIN (VA_BITS) 64#endif 65 66#define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 67 68#define KERNEL_START _text 69#define KERNEL_END _end 70 71/* 72 * Generic and Software Tag-Based KASAN modes require 1/8th and 1/16th of the 73 * kernel virtual address space for storing the shadow memory respectively. 74 * 75 * The mapping between a virtual memory address and its corresponding shadow 76 * memory address is defined based on the formula: 77 * 78 * shadow_addr = (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET 79 * 80 * where KASAN_SHADOW_SCALE_SHIFT is the order of the number of bits that map 81 * to a single shadow byte and KASAN_SHADOW_OFFSET is a constant that offsets 82 * the mapping. Note that KASAN_SHADOW_OFFSET does not point to the start of 83 * the shadow memory region. 84 * 85 * Based on this mapping, we define two constants: 86 * 87 * KASAN_SHADOW_START: the start of the shadow memory region; 88 * KASAN_SHADOW_END: the end of the shadow memory region. 89 * 90 * KASAN_SHADOW_END is defined first as the shadow address that corresponds to 91 * the upper bound of possible virtual kernel memory addresses UL(1) << 64 92 * according to the mapping formula. 93 * 94 * KASAN_SHADOW_START is defined second based on KASAN_SHADOW_END. The shadow 95 * memory start must map to the lowest possible kernel virtual memory address 96 * and thus it depends on the actual bitness of the address space. 97 * 98 * As KASAN inserts redzones between stack variables, this increases the stack 99 * memory usage significantly. Thus, we double the (minimum) stack size. 100 */ 101#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 102#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 103#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) + KASAN_SHADOW_OFFSET) 104#define _KASAN_SHADOW_START(va) (KASAN_SHADOW_END - (UL(1) << ((va) - KASAN_SHADOW_SCALE_SHIFT))) 105#define KASAN_SHADOW_START _KASAN_SHADOW_START(vabits_actual) 106#define PAGE_END KASAN_SHADOW_START 107#define KASAN_THREAD_SHIFT 1 108#else 109#define KASAN_THREAD_SHIFT 0 110#define PAGE_END (_PAGE_END(VA_BITS_MIN)) 111#endif /* CONFIG_KASAN */ 112 113#define DIRECT_MAP_PHYSMEM_END __pa(PAGE_END - 1) 114 115#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 116 117/* 118 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 119 * stacks are a multiple of page size. 120 */ 121#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 122#define THREAD_SHIFT PAGE_SHIFT 123#else 124#define THREAD_SHIFT MIN_THREAD_SHIFT 125#endif 126 127#if THREAD_SHIFT >= PAGE_SHIFT 128#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 129#endif 130 131#define THREAD_SIZE (UL(1) << THREAD_SHIFT) 132 133/* 134 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 135 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 136 * assembly. 137 */ 138#ifdef CONFIG_VMAP_STACK 139#define THREAD_ALIGN (2 * THREAD_SIZE) 140#else 141#define THREAD_ALIGN THREAD_SIZE 142#endif 143 144#define IRQ_STACK_SIZE THREAD_SIZE 145 146#define OVERFLOW_STACK_SIZE SZ_4K 147 148#define NVHE_STACK_SHIFT PAGE_SHIFT 149#define NVHE_STACK_SIZE (UL(1) << NVHE_STACK_SHIFT) 150 151/* 152 * With the minimum frame size of [x29, x30], exactly half the combined 153 * sizes of the hyp and overflow stacks is the maximum size needed to 154 * save the unwinded stacktrace; plus an additional entry to delimit the 155 * end. 156 */ 157#define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + NVHE_STACK_SIZE) / 2 + sizeof(long)) 158 159/* 160 * Alignment of kernel segments (e.g. .text, .data). 161 * 162 * 4 KB granule: 16 level 3 entries, with contiguous bit 163 * 16 KB granule: 4 level 3 entries, without contiguous bit 164 * 64 KB granule: 1 level 3 entry 165 */ 166#define SEGMENT_ALIGN SZ_64K 167 168/* 169 * Memory types available. 170 * 171 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in 172 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note 173 * that protection_map[] only contains MT_NORMAL attributes. 174 */ 175#define MT_NORMAL 0 176#define MT_NORMAL_TAGGED 1 177#define MT_NORMAL_NC 2 178#define MT_DEVICE_nGnRnE 3 179#define MT_DEVICE_nGnRE 4 180 181/* 182 * Memory types for Stage-2 translation 183 */ 184#define MT_S2_NORMAL 0xf 185#define MT_S2_NORMAL_NC 0x5 186#define MT_S2_DEVICE_nGnRE 0x1 187 188/* 189 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 190 * Stage-2 enforces Normal-WB and Device-nGnRE 191 */ 192#define MT_S2_FWB_NORMAL 6 193#define MT_S2_FWB_NORMAL_NC 5 194#define MT_S2_FWB_DEVICE_nGnRE 1 195 196#ifdef CONFIG_ARM64_4K_PAGES 197#define IOREMAP_MAX_ORDER (PUD_SHIFT) 198#else 199#define IOREMAP_MAX_ORDER (PMD_SHIFT) 200#endif 201 202/* 203 * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated 204 * until link time. 205 */ 206#define RESERVED_SWAPPER_OFFSET (PAGE_SIZE) 207 208/* 209 * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated 210 * until link time. 211 */ 212#define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE) 213 214#ifndef __ASSEMBLY__ 215 216#include <linux/bitops.h> 217#include <linux/compiler.h> 218#include <linux/mmdebug.h> 219#include <linux/types.h> 220#include <asm/boot.h> 221#include <asm/bug.h> 222#include <asm/sections.h> 223#include <asm/sysreg.h> 224 225static inline u64 __pure read_tcr(void) 226{ 227 u64 tcr; 228 229 // read_sysreg() uses asm volatile, so avoid it here 230 asm("mrs %0, tcr_el1" : "=r"(tcr)); 231 return tcr; 232} 233 234#if VA_BITS > 48 235// For reasons of #include hell, we can't use TCR_T1SZ_OFFSET/TCR_T1SZ_MASK here 236#define vabits_actual (64 - ((read_tcr() >> 16) & 63)) 237#else 238#define vabits_actual ((u64)VA_BITS) 239#endif 240 241extern s64 memstart_addr; 242/* PHYS_OFFSET - the physical address of the start of memory. */ 243#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 244 245/* the offset between the kernel virtual and physical mappings */ 246extern u64 kimage_voffset; 247 248static inline unsigned long kaslr_offset(void) 249{ 250 return (u64)&_text - KIMAGE_VADDR; 251} 252 253#ifdef CONFIG_RANDOMIZE_BASE 254void kaslr_init(void); 255static inline bool kaslr_enabled(void) 256{ 257 extern bool __kaslr_is_enabled; 258 return __kaslr_is_enabled; 259} 260#else 261static inline void kaslr_init(void) { } 262static inline bool kaslr_enabled(void) { return false; } 263#endif 264 265/* 266 * Allow all memory at the discovery stage. We will clip it later. 267 */ 268#define MIN_MEMBLOCK_ADDR 0 269#define MAX_MEMBLOCK_ADDR U64_MAX 270 271/* 272 * PFNs are used to describe any physical page; this means 273 * PFN 0 == physical address 0. 274 * 275 * This is the PFN of the first RAM page in the kernel 276 * direct-mapped view. We assume this is the first page 277 * of RAM in the mem_map as well. 278 */ 279#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 280 281/* 282 * When dealing with data aborts, watchpoints, or instruction traps we may end 283 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 284 * pass on to access_ok(), for instance. 285 */ 286#define __untagged_addr(addr) \ 287 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 288 289#define untagged_addr(addr) ({ \ 290 u64 __addr = (__force u64)(addr); \ 291 __addr &= __untagged_addr(__addr); \ 292 (__force __typeof__(addr))__addr; \ 293}) 294 295#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 296#define __tag_shifted(tag) ((u64)(tag) << 56) 297#define __tag_reset(addr) __untagged_addr(addr) 298#define __tag_get(addr) (__u8)((u64)(addr) >> 56) 299#else 300#define __tag_shifted(tag) 0UL 301#define __tag_reset(addr) (addr) 302#define __tag_get(addr) 0 303#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 304 305static inline const void *__tag_set(const void *addr, u8 tag) 306{ 307 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 308 return (const void *)(__addr | __tag_shifted(tag)); 309} 310 311#ifdef CONFIG_KASAN_HW_TAGS 312#define arch_enable_tag_checks_sync() mte_enable_kernel_sync() 313#define arch_enable_tag_checks_async() mte_enable_kernel_async() 314#define arch_enable_tag_checks_asymm() mte_enable_kernel_asymm() 315#define arch_suppress_tag_checks_start() mte_enable_tco() 316#define arch_suppress_tag_checks_stop() mte_disable_tco() 317#define arch_force_async_tag_fault() mte_check_tfsr_exit() 318#define arch_get_random_tag() mte_get_random_tag() 319#define arch_get_mem_tag(addr) mte_get_mem_tag(addr) 320#define arch_set_mem_tag_range(addr, size, tag, init) \ 321 mte_set_mem_tag_range((addr), (size), (tag), (init)) 322#endif /* CONFIG_KASAN_HW_TAGS */ 323 324/* 325 * Physical vs virtual RAM address space conversion. These are 326 * private definitions which should NOT be used outside memory.h 327 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 328 */ 329 330 331/* 332 * Check whether an arbitrary address is within the linear map, which 333 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the 334 * kernel's TTBR1 address range. 335 */ 336#define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET)) 337 338#define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET) 339#define __kimg_to_phys(addr) ((addr) - kimage_voffset) 340 341#define __virt_to_phys_nodebug(x) ({ \ 342 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 343 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 344}) 345 346#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 347 348#ifdef CONFIG_DEBUG_VIRTUAL 349extern phys_addr_t __virt_to_phys(unsigned long x); 350extern phys_addr_t __phys_addr_symbol(unsigned long x); 351#else 352#define __virt_to_phys(x) __virt_to_phys_nodebug(x) 353#define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 354#endif /* CONFIG_DEBUG_VIRTUAL */ 355 356#define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) 357#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 358 359/* 360 * Note: Drivers should NOT use these. They are the wrong 361 * translation for translating DMA addresses. Use the driver 362 * DMA support - see dma-mapping.h. 363 */ 364#define virt_to_phys virt_to_phys 365static inline phys_addr_t virt_to_phys(const volatile void *x) 366{ 367 return __virt_to_phys((unsigned long)(x)); 368} 369 370#define phys_to_virt phys_to_virt 371static inline void *phys_to_virt(phys_addr_t x) 372{ 373 return (void *)(__phys_to_virt(x)); 374} 375 376/* Needed already here for resolving __phys_to_pfn() in virt_to_pfn() */ 377#include <asm-generic/memory_model.h> 378 379static inline unsigned long virt_to_pfn(const void *kaddr) 380{ 381 return __phys_to_pfn(virt_to_phys(kaddr)); 382} 383 384/* 385 * Drivers should NOT use these either. 386 */ 387#define __pa(x) __virt_to_phys((unsigned long)(x)) 388#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 389#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 390#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 391#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 392#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 393 394/* 395 * virt_to_page(x) convert a _valid_ virtual address to struct page * 396 * virt_addr_valid(x) indicates whether a virtual address is valid 397 */ 398#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 399 400#if defined(CONFIG_DEBUG_VIRTUAL) 401#define page_to_virt(x) ({ \ 402 __typeof__(x) __page = x; \ 403 void *__addr = __va(page_to_phys(__page)); \ 404 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 405}) 406#define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 407#else 408#define page_to_virt(x) ({ \ 409 __typeof__(x) __page = x; \ 410 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 411 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 412 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 413}) 414 415#define virt_to_page(x) ({ \ 416 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 417 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 418 (struct page *)__addr; \ 419}) 420#endif /* CONFIG_DEBUG_VIRTUAL */ 421 422#define virt_addr_valid(addr) ({ \ 423 __typeof__(addr) __addr = __tag_reset(addr); \ 424 __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \ 425}) 426 427void dump_mem_limit(void); 428#endif /* !ASSEMBLY */ 429 430/* 431 * Given that the GIC architecture permits ITS implementations that can only be 432 * configured with a LPI table address once, GICv3 systems with many CPUs may 433 * end up reserving a lot of different regions after a kexec for their LPI 434 * tables (one per CPU), as we are forced to reuse the same memory after kexec 435 * (and thus reserve it persistently with EFI beforehand) 436 */ 437#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 438# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 439#endif 440 441/* 442 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory 443 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into 444 * multiple parts. As a result, the number of memory regions is large. 445 */ 446#ifdef CONFIG_EFI 447#define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8) 448#endif 449 450 451#endif /* __ASM_MEMORY_H */