Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <cl@gentwo.org>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_owner.h>
30#include <linux/sched/isolation.h>
31
32#include "internal.h"
33
34#ifdef CONFIG_PROC_FS
35#ifdef CONFIG_NUMA
36#define ENABLE_NUMA_STAT 1
37static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39/* zero numa counters within a zone */
40static void zero_zone_numa_counters(struct zone *zone)
41{
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_event[item], 0);
46 for_each_online_cpu(cpu) {
47 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
48 = 0;
49 }
50 }
51}
52
53/* zero numa counters of all the populated zones */
54static void zero_zones_numa_counters(void)
55{
56 struct zone *zone;
57
58 for_each_populated_zone(zone)
59 zero_zone_numa_counters(zone);
60}
61
62/* zero global numa counters */
63static void zero_global_numa_counters(void)
64{
65 int item;
66
67 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
68 atomic_long_set(&vm_numa_event[item], 0);
69}
70
71static void invalid_numa_statistics(void)
72{
73 zero_zones_numa_counters();
74 zero_global_numa_counters();
75}
76
77static DEFINE_MUTEX(vm_numa_stat_lock);
78
79static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
80 void *buffer, size_t *length, loff_t *ppos)
81{
82 int ret, oldval;
83
84 mutex_lock(&vm_numa_stat_lock);
85 if (write)
86 oldval = sysctl_vm_numa_stat;
87 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
88 if (ret || !write)
89 goto out;
90
91 if (oldval == sysctl_vm_numa_stat)
92 goto out;
93 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
94 static_branch_enable(&vm_numa_stat_key);
95 pr_info("enable numa statistics\n");
96 } else {
97 static_branch_disable(&vm_numa_stat_key);
98 invalid_numa_statistics();
99 pr_info("disable numa statistics, and clear numa counters\n");
100 }
101
102out:
103 mutex_unlock(&vm_numa_stat_lock);
104 return ret;
105}
106#endif
107#endif /* CONFIG_PROC_FS */
108
109#ifdef CONFIG_VM_EVENT_COUNTERS
110DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
111EXPORT_PER_CPU_SYMBOL(vm_event_states);
112
113static void sum_vm_events(unsigned long *ret)
114{
115 int cpu;
116 int i;
117
118 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
119
120 for_each_online_cpu(cpu) {
121 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
122
123 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
124 ret[i] += this->event[i];
125 }
126}
127
128/*
129 * Accumulate the vm event counters across all CPUs.
130 * The result is unavoidably approximate - it can change
131 * during and after execution of this function.
132*/
133void all_vm_events(unsigned long *ret)
134{
135 cpus_read_lock();
136 sum_vm_events(ret);
137 cpus_read_unlock();
138}
139EXPORT_SYMBOL_GPL(all_vm_events);
140
141/*
142 * Fold the foreign cpu events into our own.
143 *
144 * This is adding to the events on one processor
145 * but keeps the global counts constant.
146 */
147void vm_events_fold_cpu(int cpu)
148{
149 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 int i;
151
152 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
153 count_vm_events(i, fold_state->event[i]);
154 fold_state->event[i] = 0;
155 }
156}
157
158#endif /* CONFIG_VM_EVENT_COUNTERS */
159
160/*
161 * Manage combined zone based / global counters
162 *
163 * vm_stat contains the global counters
164 */
165atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
166atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
167atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
168EXPORT_SYMBOL(vm_zone_stat);
169EXPORT_SYMBOL(vm_node_stat);
170
171#ifdef CONFIG_NUMA
172static void fold_vm_zone_numa_events(struct zone *zone)
173{
174 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
175 int cpu;
176 enum numa_stat_item item;
177
178 for_each_online_cpu(cpu) {
179 struct per_cpu_zonestat *pzstats;
180
181 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
182 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
183 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
184 }
185
186 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
187 zone_numa_event_add(zone_numa_events[item], zone, item);
188}
189
190void fold_vm_numa_events(void)
191{
192 struct zone *zone;
193
194 for_each_populated_zone(zone)
195 fold_vm_zone_numa_events(zone);
196}
197#endif
198
199#ifdef CONFIG_SMP
200
201int calculate_pressure_threshold(struct zone *zone)
202{
203 int threshold;
204 int watermark_distance;
205
206 /*
207 * As vmstats are not up to date, there is drift between the estimated
208 * and real values. For high thresholds and a high number of CPUs, it
209 * is possible for the min watermark to be breached while the estimated
210 * value looks fine. The pressure threshold is a reduced value such
211 * that even the maximum amount of drift will not accidentally breach
212 * the min watermark
213 */
214 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
215 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
216
217 /*
218 * Maximum threshold is 125
219 */
220 threshold = min(125, threshold);
221
222 return threshold;
223}
224
225int calculate_normal_threshold(struct zone *zone)
226{
227 int threshold;
228 int mem; /* memory in 128 MB units */
229
230 /*
231 * The threshold scales with the number of processors and the amount
232 * of memory per zone. More memory means that we can defer updates for
233 * longer, more processors could lead to more contention.
234 * fls() is used to have a cheap way of logarithmic scaling.
235 *
236 * Some sample thresholds:
237 *
238 * Threshold Processors (fls) Zonesize fls(mem)+1
239 * ------------------------------------------------------------------
240 * 8 1 1 0.9-1 GB 4
241 * 16 2 2 0.9-1 GB 4
242 * 20 2 2 1-2 GB 5
243 * 24 2 2 2-4 GB 6
244 * 28 2 2 4-8 GB 7
245 * 32 2 2 8-16 GB 8
246 * 4 2 2 <128M 1
247 * 30 4 3 2-4 GB 5
248 * 48 4 3 8-16 GB 8
249 * 32 8 4 1-2 GB 4
250 * 32 8 4 0.9-1GB 4
251 * 10 16 5 <128M 1
252 * 40 16 5 900M 4
253 * 70 64 7 2-4 GB 5
254 * 84 64 7 4-8 GB 6
255 * 108 512 9 4-8 GB 6
256 * 125 1024 10 8-16 GB 8
257 * 125 1024 10 16-32 GB 9
258 */
259
260 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
261
262 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
263
264 /*
265 * Maximum threshold is 125
266 */
267 threshold = min(125, threshold);
268
269 return threshold;
270}
271
272/*
273 * Refresh the thresholds for each zone.
274 */
275void refresh_zone_stat_thresholds(void)
276{
277 struct pglist_data *pgdat;
278 struct zone *zone;
279 int cpu;
280 int threshold;
281
282 /* Zero current pgdat thresholds */
283 for_each_online_pgdat(pgdat) {
284 for_each_online_cpu(cpu) {
285 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
286 }
287 }
288
289 for_each_populated_zone(zone) {
290 struct pglist_data *pgdat = zone->zone_pgdat;
291 unsigned long max_drift, tolerate_drift;
292
293 threshold = calculate_normal_threshold(zone);
294
295 for_each_online_cpu(cpu) {
296 int pgdat_threshold;
297
298 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
299 = threshold;
300
301 /* Base nodestat threshold on the largest populated zone. */
302 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
303 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
304 = max(threshold, pgdat_threshold);
305 }
306
307 /*
308 * Only set percpu_drift_mark if there is a danger that
309 * NR_FREE_PAGES reports the low watermark is ok when in fact
310 * the min watermark could be breached by an allocation
311 */
312 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
313 max_drift = num_online_cpus() * threshold;
314 if (max_drift > tolerate_drift)
315 zone->percpu_drift_mark = high_wmark_pages(zone) +
316 max_drift;
317 }
318}
319
320void set_pgdat_percpu_threshold(pg_data_t *pgdat,
321 int (*calculate_pressure)(struct zone *))
322{
323 struct zone *zone;
324 int cpu;
325 int threshold;
326 int i;
327
328 for (i = 0; i < pgdat->nr_zones; i++) {
329 zone = &pgdat->node_zones[i];
330 if (!zone->percpu_drift_mark)
331 continue;
332
333 threshold = (*calculate_pressure)(zone);
334 for_each_online_cpu(cpu)
335 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
336 = threshold;
337 }
338}
339
340/*
341 * For use when we know that interrupts are disabled,
342 * or when we know that preemption is disabled and that
343 * particular counter cannot be updated from interrupt context.
344 */
345void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
346 long delta)
347{
348 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
349 s8 __percpu *p = pcp->vm_stat_diff + item;
350 long x;
351 long t;
352
353 /*
354 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
355 * atomicity is provided by IRQs being disabled -- either explicitly
356 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
357 * CPU migrations and preemption potentially corrupts a counter so
358 * disable preemption.
359 */
360 preempt_disable_nested();
361
362 x = delta + __this_cpu_read(*p);
363
364 t = __this_cpu_read(pcp->stat_threshold);
365
366 if (unlikely(abs(x) > t)) {
367 zone_page_state_add(x, zone, item);
368 x = 0;
369 }
370 __this_cpu_write(*p, x);
371
372 preempt_enable_nested();
373}
374EXPORT_SYMBOL(__mod_zone_page_state);
375
376void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
377 long delta)
378{
379 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
380 s8 __percpu *p = pcp->vm_node_stat_diff + item;
381 long x;
382 long t;
383
384 if (vmstat_item_in_bytes(item)) {
385 /*
386 * Only cgroups use subpage accounting right now; at
387 * the global level, these items still change in
388 * multiples of whole pages. Store them as pages
389 * internally to keep the per-cpu counters compact.
390 */
391 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
392 delta >>= PAGE_SHIFT;
393 }
394
395 /* See __mod_node_page_state */
396 preempt_disable_nested();
397
398 x = delta + __this_cpu_read(*p);
399
400 t = __this_cpu_read(pcp->stat_threshold);
401
402 if (unlikely(abs(x) > t)) {
403 node_page_state_add(x, pgdat, item);
404 x = 0;
405 }
406 __this_cpu_write(*p, x);
407
408 preempt_enable_nested();
409}
410EXPORT_SYMBOL(__mod_node_page_state);
411
412/*
413 * Optimized increment and decrement functions.
414 *
415 * These are only for a single page and therefore can take a struct page *
416 * argument instead of struct zone *. This allows the inclusion of the code
417 * generated for page_zone(page) into the optimized functions.
418 *
419 * No overflow check is necessary and therefore the differential can be
420 * incremented or decremented in place which may allow the compilers to
421 * generate better code.
422 * The increment or decrement is known and therefore one boundary check can
423 * be omitted.
424 *
425 * NOTE: These functions are very performance sensitive. Change only
426 * with care.
427 *
428 * Some processors have inc/dec instructions that are atomic vs an interrupt.
429 * However, the code must first determine the differential location in a zone
430 * based on the processor number and then inc/dec the counter. There is no
431 * guarantee without disabling preemption that the processor will not change
432 * in between and therefore the atomicity vs. interrupt cannot be exploited
433 * in a useful way here.
434 */
435void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
436{
437 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
438 s8 __percpu *p = pcp->vm_stat_diff + item;
439 s8 v, t;
440
441 /* See __mod_node_page_state */
442 preempt_disable_nested();
443
444 v = __this_cpu_inc_return(*p);
445 t = __this_cpu_read(pcp->stat_threshold);
446 if (unlikely(v > t)) {
447 s8 overstep = t >> 1;
448
449 zone_page_state_add(v + overstep, zone, item);
450 __this_cpu_write(*p, -overstep);
451 }
452
453 preempt_enable_nested();
454}
455
456void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
457{
458 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
459 s8 __percpu *p = pcp->vm_node_stat_diff + item;
460 s8 v, t;
461
462 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
463
464 /* See __mod_node_page_state */
465 preempt_disable_nested();
466
467 v = __this_cpu_inc_return(*p);
468 t = __this_cpu_read(pcp->stat_threshold);
469 if (unlikely(v > t)) {
470 s8 overstep = t >> 1;
471
472 node_page_state_add(v + overstep, pgdat, item);
473 __this_cpu_write(*p, -overstep);
474 }
475
476 preempt_enable_nested();
477}
478
479void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
480{
481 __inc_zone_state(page_zone(page), item);
482}
483EXPORT_SYMBOL(__inc_zone_page_state);
484
485void __inc_node_page_state(struct page *page, enum node_stat_item item)
486{
487 __inc_node_state(page_pgdat(page), item);
488}
489EXPORT_SYMBOL(__inc_node_page_state);
490
491void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
492{
493 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
494 s8 __percpu *p = pcp->vm_stat_diff + item;
495 s8 v, t;
496
497 /* See __mod_node_page_state */
498 preempt_disable_nested();
499
500 v = __this_cpu_dec_return(*p);
501 t = __this_cpu_read(pcp->stat_threshold);
502 if (unlikely(v < - t)) {
503 s8 overstep = t >> 1;
504
505 zone_page_state_add(v - overstep, zone, item);
506 __this_cpu_write(*p, overstep);
507 }
508
509 preempt_enable_nested();
510}
511
512void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
513{
514 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
515 s8 __percpu *p = pcp->vm_node_stat_diff + item;
516 s8 v, t;
517
518 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
519
520 /* See __mod_node_page_state */
521 preempt_disable_nested();
522
523 v = __this_cpu_dec_return(*p);
524 t = __this_cpu_read(pcp->stat_threshold);
525 if (unlikely(v < - t)) {
526 s8 overstep = t >> 1;
527
528 node_page_state_add(v - overstep, pgdat, item);
529 __this_cpu_write(*p, overstep);
530 }
531
532 preempt_enable_nested();
533}
534
535void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
536{
537 __dec_zone_state(page_zone(page), item);
538}
539EXPORT_SYMBOL(__dec_zone_page_state);
540
541void __dec_node_page_state(struct page *page, enum node_stat_item item)
542{
543 __dec_node_state(page_pgdat(page), item);
544}
545EXPORT_SYMBOL(__dec_node_page_state);
546
547#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
548/*
549 * If we have cmpxchg_local support then we do not need to incur the overhead
550 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
551 *
552 * mod_state() modifies the zone counter state through atomic per cpu
553 * operations.
554 *
555 * Overstep mode specifies how overstep should handled:
556 * 0 No overstepping
557 * 1 Overstepping half of threshold
558 * -1 Overstepping minus half of threshold
559*/
560static inline void mod_zone_state(struct zone *zone,
561 enum zone_stat_item item, long delta, int overstep_mode)
562{
563 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
564 s8 __percpu *p = pcp->vm_stat_diff + item;
565 long n, t, z;
566 s8 o;
567
568 o = this_cpu_read(*p);
569 do {
570 z = 0; /* overflow to zone counters */
571
572 /*
573 * The fetching of the stat_threshold is racy. We may apply
574 * a counter threshold to the wrong the cpu if we get
575 * rescheduled while executing here. However, the next
576 * counter update will apply the threshold again and
577 * therefore bring the counter under the threshold again.
578 *
579 * Most of the time the thresholds are the same anyways
580 * for all cpus in a zone.
581 */
582 t = this_cpu_read(pcp->stat_threshold);
583
584 n = delta + (long)o;
585
586 if (abs(n) > t) {
587 int os = overstep_mode * (t >> 1) ;
588
589 /* Overflow must be added to zone counters */
590 z = n + os;
591 n = -os;
592 }
593 } while (!this_cpu_try_cmpxchg(*p, &o, n));
594
595 if (z)
596 zone_page_state_add(z, zone, item);
597}
598
599void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
600 long delta)
601{
602 mod_zone_state(zone, item, delta, 0);
603}
604EXPORT_SYMBOL(mod_zone_page_state);
605
606void inc_zone_page_state(struct page *page, enum zone_stat_item item)
607{
608 mod_zone_state(page_zone(page), item, 1, 1);
609}
610EXPORT_SYMBOL(inc_zone_page_state);
611
612void dec_zone_page_state(struct page *page, enum zone_stat_item item)
613{
614 mod_zone_state(page_zone(page), item, -1, -1);
615}
616EXPORT_SYMBOL(dec_zone_page_state);
617
618static inline void mod_node_state(struct pglist_data *pgdat,
619 enum node_stat_item item, int delta, int overstep_mode)
620{
621 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
622 s8 __percpu *p = pcp->vm_node_stat_diff + item;
623 long n, t, z;
624 s8 o;
625
626 if (vmstat_item_in_bytes(item)) {
627 /*
628 * Only cgroups use subpage accounting right now; at
629 * the global level, these items still change in
630 * multiples of whole pages. Store them as pages
631 * internally to keep the per-cpu counters compact.
632 */
633 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
634 delta >>= PAGE_SHIFT;
635 }
636
637 o = this_cpu_read(*p);
638 do {
639 z = 0; /* overflow to node counters */
640
641 /*
642 * The fetching of the stat_threshold is racy. We may apply
643 * a counter threshold to the wrong the cpu if we get
644 * rescheduled while executing here. However, the next
645 * counter update will apply the threshold again and
646 * therefore bring the counter under the threshold again.
647 *
648 * Most of the time the thresholds are the same anyways
649 * for all cpus in a node.
650 */
651 t = this_cpu_read(pcp->stat_threshold);
652
653 n = delta + (long)o;
654
655 if (abs(n) > t) {
656 int os = overstep_mode * (t >> 1) ;
657
658 /* Overflow must be added to node counters */
659 z = n + os;
660 n = -os;
661 }
662 } while (!this_cpu_try_cmpxchg(*p, &o, n));
663
664 if (z)
665 node_page_state_add(z, pgdat, item);
666}
667
668void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
669 long delta)
670{
671 mod_node_state(pgdat, item, delta, 0);
672}
673EXPORT_SYMBOL(mod_node_page_state);
674
675void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
676{
677 mod_node_state(pgdat, item, 1, 1);
678}
679
680void inc_node_page_state(struct page *page, enum node_stat_item item)
681{
682 mod_node_state(page_pgdat(page), item, 1, 1);
683}
684EXPORT_SYMBOL(inc_node_page_state);
685
686void dec_node_page_state(struct page *page, enum node_stat_item item)
687{
688 mod_node_state(page_pgdat(page), item, -1, -1);
689}
690EXPORT_SYMBOL(dec_node_page_state);
691#else
692/*
693 * Use interrupt disable to serialize counter updates
694 */
695void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
696 long delta)
697{
698 unsigned long flags;
699
700 local_irq_save(flags);
701 __mod_zone_page_state(zone, item, delta);
702 local_irq_restore(flags);
703}
704EXPORT_SYMBOL(mod_zone_page_state);
705
706void inc_zone_page_state(struct page *page, enum zone_stat_item item)
707{
708 unsigned long flags;
709 struct zone *zone;
710
711 zone = page_zone(page);
712 local_irq_save(flags);
713 __inc_zone_state(zone, item);
714 local_irq_restore(flags);
715}
716EXPORT_SYMBOL(inc_zone_page_state);
717
718void dec_zone_page_state(struct page *page, enum zone_stat_item item)
719{
720 unsigned long flags;
721
722 local_irq_save(flags);
723 __dec_zone_page_state(page, item);
724 local_irq_restore(flags);
725}
726EXPORT_SYMBOL(dec_zone_page_state);
727
728void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
729{
730 unsigned long flags;
731
732 local_irq_save(flags);
733 __inc_node_state(pgdat, item);
734 local_irq_restore(flags);
735}
736EXPORT_SYMBOL(inc_node_state);
737
738void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
739 long delta)
740{
741 unsigned long flags;
742
743 local_irq_save(flags);
744 __mod_node_page_state(pgdat, item, delta);
745 local_irq_restore(flags);
746}
747EXPORT_SYMBOL(mod_node_page_state);
748
749void inc_node_page_state(struct page *page, enum node_stat_item item)
750{
751 unsigned long flags;
752 struct pglist_data *pgdat;
753
754 pgdat = page_pgdat(page);
755 local_irq_save(flags);
756 __inc_node_state(pgdat, item);
757 local_irq_restore(flags);
758}
759EXPORT_SYMBOL(inc_node_page_state);
760
761void dec_node_page_state(struct page *page, enum node_stat_item item)
762{
763 unsigned long flags;
764
765 local_irq_save(flags);
766 __dec_node_page_state(page, item);
767 local_irq_restore(flags);
768}
769EXPORT_SYMBOL(dec_node_page_state);
770#endif
771
772/*
773 * Fold a differential into the global counters.
774 * Returns the number of counters updated.
775 */
776static int fold_diff(int *zone_diff, int *node_diff)
777{
778 int i;
779 int changes = 0;
780
781 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
782 if (zone_diff[i]) {
783 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
784 changes++;
785 }
786
787 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
788 if (node_diff[i]) {
789 atomic_long_add(node_diff[i], &vm_node_stat[i]);
790 changes++;
791 }
792 return changes;
793}
794
795/*
796 * Update the zone counters for the current cpu.
797 *
798 * Note that refresh_cpu_vm_stats strives to only access
799 * node local memory. The per cpu pagesets on remote zones are placed
800 * in the memory local to the processor using that pageset. So the
801 * loop over all zones will access a series of cachelines local to
802 * the processor.
803 *
804 * The call to zone_page_state_add updates the cachelines with the
805 * statistics in the remote zone struct as well as the global cachelines
806 * with the global counters. These could cause remote node cache line
807 * bouncing and will have to be only done when necessary.
808 *
809 * The function returns the number of global counters updated.
810 */
811static int refresh_cpu_vm_stats(bool do_pagesets)
812{
813 struct pglist_data *pgdat;
814 struct zone *zone;
815 int i;
816 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
817 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
818 int changes = 0;
819
820 for_each_populated_zone(zone) {
821 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
822 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
823
824 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
825 int v;
826
827 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
828 if (v) {
829
830 atomic_long_add(v, &zone->vm_stat[i]);
831 global_zone_diff[i] += v;
832#ifdef CONFIG_NUMA
833 /* 3 seconds idle till flush */
834 __this_cpu_write(pcp->expire, 3);
835#endif
836 }
837 }
838
839 if (do_pagesets) {
840 cond_resched();
841
842 changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
843#ifdef CONFIG_NUMA
844 /*
845 * Deal with draining the remote pageset of this
846 * processor
847 *
848 * Check if there are pages remaining in this pageset
849 * if not then there is nothing to expire.
850 */
851 if (!__this_cpu_read(pcp->expire) ||
852 !__this_cpu_read(pcp->count))
853 continue;
854
855 /*
856 * We never drain zones local to this processor.
857 */
858 if (zone_to_nid(zone) == numa_node_id()) {
859 __this_cpu_write(pcp->expire, 0);
860 continue;
861 }
862
863 if (__this_cpu_dec_return(pcp->expire)) {
864 changes++;
865 continue;
866 }
867
868 if (__this_cpu_read(pcp->count)) {
869 drain_zone_pages(zone, this_cpu_ptr(pcp));
870 changes++;
871 }
872#endif
873 }
874 }
875
876 for_each_online_pgdat(pgdat) {
877 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
878
879 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
880 int v;
881
882 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
883 if (v) {
884 atomic_long_add(v, &pgdat->vm_stat[i]);
885 global_node_diff[i] += v;
886 }
887 }
888 }
889
890 changes += fold_diff(global_zone_diff, global_node_diff);
891 return changes;
892}
893
894/*
895 * Fold the data for an offline cpu into the global array.
896 * There cannot be any access by the offline cpu and therefore
897 * synchronization is simplified.
898 */
899void cpu_vm_stats_fold(int cpu)
900{
901 struct pglist_data *pgdat;
902 struct zone *zone;
903 int i;
904 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
905 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
906
907 for_each_populated_zone(zone) {
908 struct per_cpu_zonestat *pzstats;
909
910 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
911
912 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
913 if (pzstats->vm_stat_diff[i]) {
914 int v;
915
916 v = pzstats->vm_stat_diff[i];
917 pzstats->vm_stat_diff[i] = 0;
918 atomic_long_add(v, &zone->vm_stat[i]);
919 global_zone_diff[i] += v;
920 }
921 }
922#ifdef CONFIG_NUMA
923 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
924 if (pzstats->vm_numa_event[i]) {
925 unsigned long v;
926
927 v = pzstats->vm_numa_event[i];
928 pzstats->vm_numa_event[i] = 0;
929 zone_numa_event_add(v, zone, i);
930 }
931 }
932#endif
933 }
934
935 for_each_online_pgdat(pgdat) {
936 struct per_cpu_nodestat *p;
937
938 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
939
940 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
941 if (p->vm_node_stat_diff[i]) {
942 int v;
943
944 v = p->vm_node_stat_diff[i];
945 p->vm_node_stat_diff[i] = 0;
946 atomic_long_add(v, &pgdat->vm_stat[i]);
947 global_node_diff[i] += v;
948 }
949 }
950
951 fold_diff(global_zone_diff, global_node_diff);
952}
953
954/*
955 * this is only called if !populated_zone(zone), which implies no other users of
956 * pset->vm_stat_diff[] exist.
957 */
958void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
959{
960 unsigned long v;
961 int i;
962
963 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
964 if (pzstats->vm_stat_diff[i]) {
965 v = pzstats->vm_stat_diff[i];
966 pzstats->vm_stat_diff[i] = 0;
967 zone_page_state_add(v, zone, i);
968 }
969 }
970
971#ifdef CONFIG_NUMA
972 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
973 if (pzstats->vm_numa_event[i]) {
974 v = pzstats->vm_numa_event[i];
975 pzstats->vm_numa_event[i] = 0;
976 zone_numa_event_add(v, zone, i);
977 }
978 }
979#endif
980}
981#endif
982
983#ifdef CONFIG_NUMA
984/*
985 * Determine the per node value of a stat item. This function
986 * is called frequently in a NUMA machine, so try to be as
987 * frugal as possible.
988 */
989unsigned long sum_zone_node_page_state(int node,
990 enum zone_stat_item item)
991{
992 struct zone *zones = NODE_DATA(node)->node_zones;
993 int i;
994 unsigned long count = 0;
995
996 for (i = 0; i < MAX_NR_ZONES; i++)
997 count += zone_page_state(zones + i, item);
998
999 return count;
1000}
1001
1002/* Determine the per node value of a numa stat item. */
1003unsigned long sum_zone_numa_event_state(int node,
1004 enum numa_stat_item item)
1005{
1006 struct zone *zones = NODE_DATA(node)->node_zones;
1007 unsigned long count = 0;
1008 int i;
1009
1010 for (i = 0; i < MAX_NR_ZONES; i++)
1011 count += zone_numa_event_state(zones + i, item);
1012
1013 return count;
1014}
1015
1016/*
1017 * Determine the per node value of a stat item.
1018 */
1019unsigned long node_page_state_pages(struct pglist_data *pgdat,
1020 enum node_stat_item item)
1021{
1022 long x = atomic_long_read(&pgdat->vm_stat[item]);
1023#ifdef CONFIG_SMP
1024 if (x < 0)
1025 x = 0;
1026#endif
1027 return x;
1028}
1029
1030unsigned long node_page_state(struct pglist_data *pgdat,
1031 enum node_stat_item item)
1032{
1033 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1034
1035 return node_page_state_pages(pgdat, item);
1036}
1037#endif
1038
1039/*
1040 * Count number of pages "struct page" and "struct page_ext" consume.
1041 * nr_memmap_boot_pages: # of pages allocated by boot allocator
1042 * nr_memmap_pages: # of pages that were allocated by buddy allocator
1043 */
1044static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1045static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1046
1047void memmap_boot_pages_add(long delta)
1048{
1049 atomic_long_add(delta, &nr_memmap_boot_pages);
1050}
1051
1052void memmap_pages_add(long delta)
1053{
1054 atomic_long_add(delta, &nr_memmap_pages);
1055}
1056
1057#ifdef CONFIG_COMPACTION
1058
1059struct contig_page_info {
1060 unsigned long free_pages;
1061 unsigned long free_blocks_total;
1062 unsigned long free_blocks_suitable;
1063};
1064
1065/*
1066 * Calculate the number of free pages in a zone, how many contiguous
1067 * pages are free and how many are large enough to satisfy an allocation of
1068 * the target size. Note that this function makes no attempt to estimate
1069 * how many suitable free blocks there *might* be if MOVABLE pages were
1070 * migrated. Calculating that is possible, but expensive and can be
1071 * figured out from userspace
1072 */
1073static void fill_contig_page_info(struct zone *zone,
1074 unsigned int suitable_order,
1075 struct contig_page_info *info)
1076{
1077 unsigned int order;
1078
1079 info->free_pages = 0;
1080 info->free_blocks_total = 0;
1081 info->free_blocks_suitable = 0;
1082
1083 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1084 unsigned long blocks;
1085
1086 /*
1087 * Count number of free blocks.
1088 *
1089 * Access to nr_free is lockless as nr_free is used only for
1090 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1091 */
1092 blocks = data_race(zone->free_area[order].nr_free);
1093 info->free_blocks_total += blocks;
1094
1095 /* Count free base pages */
1096 info->free_pages += blocks << order;
1097
1098 /* Count the suitable free blocks */
1099 if (order >= suitable_order)
1100 info->free_blocks_suitable += blocks <<
1101 (order - suitable_order);
1102 }
1103}
1104
1105/*
1106 * A fragmentation index only makes sense if an allocation of a requested
1107 * size would fail. If that is true, the fragmentation index indicates
1108 * whether external fragmentation or a lack of memory was the problem.
1109 * The value can be used to determine if page reclaim or compaction
1110 * should be used
1111 */
1112static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1113{
1114 unsigned long requested = 1UL << order;
1115
1116 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1117 return 0;
1118
1119 if (!info->free_blocks_total)
1120 return 0;
1121
1122 /* Fragmentation index only makes sense when a request would fail */
1123 if (info->free_blocks_suitable)
1124 return -1000;
1125
1126 /*
1127 * Index is between 0 and 1 so return within 3 decimal places
1128 *
1129 * 0 => allocation would fail due to lack of memory
1130 * 1 => allocation would fail due to fragmentation
1131 */
1132 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1133}
1134
1135/*
1136 * Calculates external fragmentation within a zone wrt the given order.
1137 * It is defined as the percentage of pages found in blocks of size
1138 * less than 1 << order. It returns values in range [0, 100].
1139 */
1140unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1141{
1142 struct contig_page_info info;
1143
1144 fill_contig_page_info(zone, order, &info);
1145 if (info.free_pages == 0)
1146 return 0;
1147
1148 return div_u64((info.free_pages -
1149 (info.free_blocks_suitable << order)) * 100,
1150 info.free_pages);
1151}
1152
1153/* Same as __fragmentation index but allocs contig_page_info on stack */
1154int fragmentation_index(struct zone *zone, unsigned int order)
1155{
1156 struct contig_page_info info;
1157
1158 fill_contig_page_info(zone, order, &info);
1159 return __fragmentation_index(order, &info);
1160}
1161#endif
1162
1163#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1164 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1165#ifdef CONFIG_ZONE_DMA
1166#define TEXT_FOR_DMA(xx) xx "_dma",
1167#else
1168#define TEXT_FOR_DMA(xx)
1169#endif
1170
1171#ifdef CONFIG_ZONE_DMA32
1172#define TEXT_FOR_DMA32(xx) xx "_dma32",
1173#else
1174#define TEXT_FOR_DMA32(xx)
1175#endif
1176
1177#ifdef CONFIG_HIGHMEM
1178#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1179#else
1180#define TEXT_FOR_HIGHMEM(xx)
1181#endif
1182
1183#ifdef CONFIG_ZONE_DEVICE
1184#define TEXT_FOR_DEVICE(xx) xx "_device",
1185#else
1186#define TEXT_FOR_DEVICE(xx)
1187#endif
1188
1189#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1190 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1191 TEXT_FOR_DEVICE(xx)
1192
1193const char * const vmstat_text[] = {
1194 /* enum zone_stat_item counters */
1195 "nr_free_pages",
1196 "nr_free_pages_blocks",
1197 "nr_zone_inactive_anon",
1198 "nr_zone_active_anon",
1199 "nr_zone_inactive_file",
1200 "nr_zone_active_file",
1201 "nr_zone_unevictable",
1202 "nr_zone_write_pending",
1203 "nr_mlock",
1204#if IS_ENABLED(CONFIG_ZSMALLOC)
1205 "nr_zspages",
1206#endif
1207 "nr_free_cma",
1208#ifdef CONFIG_UNACCEPTED_MEMORY
1209 "nr_unaccepted",
1210#endif
1211
1212 /* enum numa_stat_item counters */
1213#ifdef CONFIG_NUMA
1214 "numa_hit",
1215 "numa_miss",
1216 "numa_foreign",
1217 "numa_interleave",
1218 "numa_local",
1219 "numa_other",
1220#endif
1221
1222 /* enum node_stat_item counters */
1223 "nr_inactive_anon",
1224 "nr_active_anon",
1225 "nr_inactive_file",
1226 "nr_active_file",
1227 "nr_unevictable",
1228 "nr_slab_reclaimable",
1229 "nr_slab_unreclaimable",
1230 "nr_isolated_anon",
1231 "nr_isolated_file",
1232 "workingset_nodes",
1233 "workingset_refault_anon",
1234 "workingset_refault_file",
1235 "workingset_activate_anon",
1236 "workingset_activate_file",
1237 "workingset_restore_anon",
1238 "workingset_restore_file",
1239 "workingset_nodereclaim",
1240 "nr_anon_pages",
1241 "nr_mapped",
1242 "nr_file_pages",
1243 "nr_dirty",
1244 "nr_writeback",
1245 "nr_writeback_temp",
1246 "nr_shmem",
1247 "nr_shmem_hugepages",
1248 "nr_shmem_pmdmapped",
1249 "nr_file_hugepages",
1250 "nr_file_pmdmapped",
1251 "nr_anon_transparent_hugepages",
1252 "nr_vmscan_write",
1253 "nr_vmscan_immediate_reclaim",
1254 "nr_dirtied",
1255 "nr_written",
1256 "nr_throttled_written",
1257 "nr_kernel_misc_reclaimable",
1258 "nr_foll_pin_acquired",
1259 "nr_foll_pin_released",
1260 "nr_kernel_stack",
1261#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1262 "nr_shadow_call_stack",
1263#endif
1264 "nr_page_table_pages",
1265 "nr_sec_page_table_pages",
1266#ifdef CONFIG_IOMMU_SUPPORT
1267 "nr_iommu_pages",
1268#endif
1269#ifdef CONFIG_SWAP
1270 "nr_swapcached",
1271#endif
1272#ifdef CONFIG_NUMA_BALANCING
1273 "pgpromote_success",
1274 "pgpromote_candidate",
1275#endif
1276 "pgdemote_kswapd",
1277 "pgdemote_direct",
1278 "pgdemote_khugepaged",
1279 "pgdemote_proactive",
1280#ifdef CONFIG_HUGETLB_PAGE
1281 "nr_hugetlb",
1282#endif
1283 "nr_balloon_pages",
1284 /* system-wide enum vm_stat_item counters */
1285 "nr_dirty_threshold",
1286 "nr_dirty_background_threshold",
1287 "nr_memmap_pages",
1288 "nr_memmap_boot_pages",
1289
1290#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1291 /* enum vm_event_item counters */
1292 "pgpgin",
1293 "pgpgout",
1294 "pswpin",
1295 "pswpout",
1296
1297 TEXTS_FOR_ZONES("pgalloc")
1298 TEXTS_FOR_ZONES("allocstall")
1299 TEXTS_FOR_ZONES("pgskip")
1300
1301 "pgfree",
1302 "pgactivate",
1303 "pgdeactivate",
1304 "pglazyfree",
1305
1306 "pgfault",
1307 "pgmajfault",
1308 "pglazyfreed",
1309
1310 "pgrefill",
1311 "pgreuse",
1312 "pgsteal_kswapd",
1313 "pgsteal_direct",
1314 "pgsteal_khugepaged",
1315 "pgsteal_proactive",
1316 "pgscan_kswapd",
1317 "pgscan_direct",
1318 "pgscan_khugepaged",
1319 "pgscan_proactive",
1320 "pgscan_direct_throttle",
1321 "pgscan_anon",
1322 "pgscan_file",
1323 "pgsteal_anon",
1324 "pgsteal_file",
1325
1326#ifdef CONFIG_NUMA
1327 "zone_reclaim_success",
1328 "zone_reclaim_failed",
1329#endif
1330 "pginodesteal",
1331 "slabs_scanned",
1332 "kswapd_inodesteal",
1333 "kswapd_low_wmark_hit_quickly",
1334 "kswapd_high_wmark_hit_quickly",
1335 "pageoutrun",
1336
1337 "pgrotated",
1338
1339 "drop_pagecache",
1340 "drop_slab",
1341 "oom_kill",
1342
1343#ifdef CONFIG_NUMA_BALANCING
1344 "numa_pte_updates",
1345 "numa_huge_pte_updates",
1346 "numa_hint_faults",
1347 "numa_hint_faults_local",
1348 "numa_pages_migrated",
1349#endif
1350#ifdef CONFIG_MIGRATION
1351 "pgmigrate_success",
1352 "pgmigrate_fail",
1353 "thp_migration_success",
1354 "thp_migration_fail",
1355 "thp_migration_split",
1356#endif
1357#ifdef CONFIG_COMPACTION
1358 "compact_migrate_scanned",
1359 "compact_free_scanned",
1360 "compact_isolated",
1361 "compact_stall",
1362 "compact_fail",
1363 "compact_success",
1364 "compact_daemon_wake",
1365 "compact_daemon_migrate_scanned",
1366 "compact_daemon_free_scanned",
1367#endif
1368
1369#ifdef CONFIG_HUGETLB_PAGE
1370 "htlb_buddy_alloc_success",
1371 "htlb_buddy_alloc_fail",
1372#endif
1373#ifdef CONFIG_CMA
1374 "cma_alloc_success",
1375 "cma_alloc_fail",
1376#endif
1377 "unevictable_pgs_culled",
1378 "unevictable_pgs_scanned",
1379 "unevictable_pgs_rescued",
1380 "unevictable_pgs_mlocked",
1381 "unevictable_pgs_munlocked",
1382 "unevictable_pgs_cleared",
1383 "unevictable_pgs_stranded",
1384
1385#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1386 "thp_fault_alloc",
1387 "thp_fault_fallback",
1388 "thp_fault_fallback_charge",
1389 "thp_collapse_alloc",
1390 "thp_collapse_alloc_failed",
1391 "thp_file_alloc",
1392 "thp_file_fallback",
1393 "thp_file_fallback_charge",
1394 "thp_file_mapped",
1395 "thp_split_page",
1396 "thp_split_page_failed",
1397 "thp_deferred_split_page",
1398 "thp_underused_split_page",
1399 "thp_split_pmd",
1400 "thp_scan_exceed_none_pte",
1401 "thp_scan_exceed_swap_pte",
1402 "thp_scan_exceed_share_pte",
1403#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1404 "thp_split_pud",
1405#endif
1406 "thp_zero_page_alloc",
1407 "thp_zero_page_alloc_failed",
1408 "thp_swpout",
1409 "thp_swpout_fallback",
1410#endif
1411#ifdef CONFIG_MEMORY_BALLOON
1412 "balloon_inflate",
1413 "balloon_deflate",
1414#ifdef CONFIG_BALLOON_COMPACTION
1415 "balloon_migrate",
1416#endif
1417#endif /* CONFIG_MEMORY_BALLOON */
1418#ifdef CONFIG_DEBUG_TLBFLUSH
1419 "nr_tlb_remote_flush",
1420 "nr_tlb_remote_flush_received",
1421 "nr_tlb_local_flush_all",
1422 "nr_tlb_local_flush_one",
1423#endif /* CONFIG_DEBUG_TLBFLUSH */
1424
1425#ifdef CONFIG_SWAP
1426 "swap_ra",
1427 "swap_ra_hit",
1428 "swpin_zero",
1429 "swpout_zero",
1430#ifdef CONFIG_KSM
1431 "ksm_swpin_copy",
1432#endif
1433#endif
1434#ifdef CONFIG_KSM
1435 "cow_ksm",
1436#endif
1437#ifdef CONFIG_ZSWAP
1438 "zswpin",
1439 "zswpout",
1440 "zswpwb",
1441#endif
1442#ifdef CONFIG_X86
1443 "direct_map_level2_splits",
1444 "direct_map_level3_splits",
1445 "direct_map_level2_collapses",
1446 "direct_map_level3_collapses",
1447#endif
1448#ifdef CONFIG_PER_VMA_LOCK_STATS
1449 "vma_lock_success",
1450 "vma_lock_abort",
1451 "vma_lock_retry",
1452 "vma_lock_miss",
1453#endif
1454#ifdef CONFIG_DEBUG_STACK_USAGE
1455 "kstack_1k",
1456#if THREAD_SIZE > 1024
1457 "kstack_2k",
1458#endif
1459#if THREAD_SIZE > 2048
1460 "kstack_4k",
1461#endif
1462#if THREAD_SIZE > 4096
1463 "kstack_8k",
1464#endif
1465#if THREAD_SIZE > 8192
1466 "kstack_16k",
1467#endif
1468#if THREAD_SIZE > 16384
1469 "kstack_32k",
1470#endif
1471#if THREAD_SIZE > 32768
1472 "kstack_64k",
1473#endif
1474#if THREAD_SIZE > 65536
1475 "kstack_rest",
1476#endif
1477#endif
1478#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1479};
1480#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1481
1482#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1483 defined(CONFIG_PROC_FS)
1484static void *frag_start(struct seq_file *m, loff_t *pos)
1485{
1486 pg_data_t *pgdat;
1487 loff_t node = *pos;
1488
1489 for (pgdat = first_online_pgdat();
1490 pgdat && node;
1491 pgdat = next_online_pgdat(pgdat))
1492 --node;
1493
1494 return pgdat;
1495}
1496
1497static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1498{
1499 pg_data_t *pgdat = (pg_data_t *)arg;
1500
1501 (*pos)++;
1502 return next_online_pgdat(pgdat);
1503}
1504
1505static void frag_stop(struct seq_file *m, void *arg)
1506{
1507}
1508
1509/*
1510 * Walk zones in a node and print using a callback.
1511 * If @assert_populated is true, only use callback for zones that are populated.
1512 */
1513static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1514 bool assert_populated, bool nolock,
1515 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1516{
1517 struct zone *zone;
1518 struct zone *node_zones = pgdat->node_zones;
1519 unsigned long flags;
1520
1521 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1522 if (assert_populated && !populated_zone(zone))
1523 continue;
1524
1525 if (!nolock)
1526 spin_lock_irqsave(&zone->lock, flags);
1527 print(m, pgdat, zone);
1528 if (!nolock)
1529 spin_unlock_irqrestore(&zone->lock, flags);
1530 }
1531}
1532#endif
1533
1534#ifdef CONFIG_PROC_FS
1535static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1536 struct zone *zone)
1537{
1538 int order;
1539
1540 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1541 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1542 /*
1543 * Access to nr_free is lockless as nr_free is used only for
1544 * printing purposes. Use data_race to avoid KCSAN warning.
1545 */
1546 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1547 seq_putc(m, '\n');
1548}
1549
1550/*
1551 * This walks the free areas for each zone.
1552 */
1553static int frag_show(struct seq_file *m, void *arg)
1554{
1555 pg_data_t *pgdat = (pg_data_t *)arg;
1556 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1557 return 0;
1558}
1559
1560static void pagetypeinfo_showfree_print(struct seq_file *m,
1561 pg_data_t *pgdat, struct zone *zone)
1562{
1563 int order, mtype;
1564
1565 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1566 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1567 pgdat->node_id,
1568 zone->name,
1569 migratetype_names[mtype]);
1570 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1571 unsigned long freecount = 0;
1572 struct free_area *area;
1573 struct list_head *curr;
1574 bool overflow = false;
1575
1576 area = &(zone->free_area[order]);
1577
1578 list_for_each(curr, &area->free_list[mtype]) {
1579 /*
1580 * Cap the free_list iteration because it might
1581 * be really large and we are under a spinlock
1582 * so a long time spent here could trigger a
1583 * hard lockup detector. Anyway this is a
1584 * debugging tool so knowing there is a handful
1585 * of pages of this order should be more than
1586 * sufficient.
1587 */
1588 if (++freecount >= 100000) {
1589 overflow = true;
1590 break;
1591 }
1592 }
1593 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1594 spin_unlock_irq(&zone->lock);
1595 cond_resched();
1596 spin_lock_irq(&zone->lock);
1597 }
1598 seq_putc(m, '\n');
1599 }
1600}
1601
1602/* Print out the free pages at each order for each migatetype */
1603static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1604{
1605 int order;
1606 pg_data_t *pgdat = (pg_data_t *)arg;
1607
1608 /* Print header */
1609 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1610 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1611 seq_printf(m, "%6d ", order);
1612 seq_putc(m, '\n');
1613
1614 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1615}
1616
1617static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1618 pg_data_t *pgdat, struct zone *zone)
1619{
1620 int mtype;
1621 unsigned long pfn;
1622 unsigned long start_pfn = zone->zone_start_pfn;
1623 unsigned long end_pfn = zone_end_pfn(zone);
1624 unsigned long count[MIGRATE_TYPES] = { 0, };
1625
1626 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1627 struct page *page;
1628
1629 page = pfn_to_online_page(pfn);
1630 if (!page)
1631 continue;
1632
1633 if (page_zone(page) != zone)
1634 continue;
1635
1636 mtype = get_pageblock_migratetype(page);
1637
1638 if (mtype < MIGRATE_TYPES)
1639 count[mtype]++;
1640 }
1641
1642 /* Print counts */
1643 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1644 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1645 seq_printf(m, "%12lu ", count[mtype]);
1646 seq_putc(m, '\n');
1647}
1648
1649/* Print out the number of pageblocks for each migratetype */
1650static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1651{
1652 int mtype;
1653 pg_data_t *pgdat = (pg_data_t *)arg;
1654
1655 seq_printf(m, "\n%-23s", "Number of blocks type ");
1656 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1657 seq_printf(m, "%12s ", migratetype_names[mtype]);
1658 seq_putc(m, '\n');
1659 walk_zones_in_node(m, pgdat, true, false,
1660 pagetypeinfo_showblockcount_print);
1661}
1662
1663/*
1664 * Print out the number of pageblocks for each migratetype that contain pages
1665 * of other types. This gives an indication of how well fallbacks are being
1666 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1667 * to determine what is going on
1668 */
1669static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1670{
1671#ifdef CONFIG_PAGE_OWNER
1672 int mtype;
1673
1674 if (!static_branch_unlikely(&page_owner_inited))
1675 return;
1676
1677 drain_all_pages(NULL);
1678
1679 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1680 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1681 seq_printf(m, "%12s ", migratetype_names[mtype]);
1682 seq_putc(m, '\n');
1683
1684 walk_zones_in_node(m, pgdat, true, true,
1685 pagetypeinfo_showmixedcount_print);
1686#endif /* CONFIG_PAGE_OWNER */
1687}
1688
1689/*
1690 * This prints out statistics in relation to grouping pages by mobility.
1691 * It is expensive to collect so do not constantly read the file.
1692 */
1693static int pagetypeinfo_show(struct seq_file *m, void *arg)
1694{
1695 pg_data_t *pgdat = (pg_data_t *)arg;
1696
1697 /* check memoryless node */
1698 if (!node_state(pgdat->node_id, N_MEMORY))
1699 return 0;
1700
1701 seq_printf(m, "Page block order: %d\n", pageblock_order);
1702 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1703 seq_putc(m, '\n');
1704 pagetypeinfo_showfree(m, pgdat);
1705 pagetypeinfo_showblockcount(m, pgdat);
1706 pagetypeinfo_showmixedcount(m, pgdat);
1707
1708 return 0;
1709}
1710
1711static const struct seq_operations fragmentation_op = {
1712 .start = frag_start,
1713 .next = frag_next,
1714 .stop = frag_stop,
1715 .show = frag_show,
1716};
1717
1718static const struct seq_operations pagetypeinfo_op = {
1719 .start = frag_start,
1720 .next = frag_next,
1721 .stop = frag_stop,
1722 .show = pagetypeinfo_show,
1723};
1724
1725static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1726{
1727 int zid;
1728
1729 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1730 struct zone *compare = &pgdat->node_zones[zid];
1731
1732 if (populated_zone(compare))
1733 return zone == compare;
1734 }
1735
1736 return false;
1737}
1738
1739static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1740 struct zone *zone)
1741{
1742 int i;
1743 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1744 if (is_zone_first_populated(pgdat, zone)) {
1745 seq_printf(m, "\n per-node stats");
1746 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1747 unsigned long pages = node_page_state_pages(pgdat, i);
1748
1749 if (vmstat_item_print_in_thp(i))
1750 pages /= HPAGE_PMD_NR;
1751 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1752 pages);
1753 }
1754 }
1755 seq_printf(m,
1756 "\n pages free %lu"
1757 "\n boost %lu"
1758 "\n min %lu"
1759 "\n low %lu"
1760 "\n high %lu"
1761 "\n promo %lu"
1762 "\n spanned %lu"
1763 "\n present %lu"
1764 "\n managed %lu"
1765 "\n cma %lu",
1766 zone_page_state(zone, NR_FREE_PAGES),
1767 zone->watermark_boost,
1768 min_wmark_pages(zone),
1769 low_wmark_pages(zone),
1770 high_wmark_pages(zone),
1771 promo_wmark_pages(zone),
1772 zone->spanned_pages,
1773 zone->present_pages,
1774 zone_managed_pages(zone),
1775 zone_cma_pages(zone));
1776
1777 seq_printf(m,
1778 "\n protection: (%ld",
1779 zone->lowmem_reserve[0]);
1780 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1781 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1782 seq_putc(m, ')');
1783
1784 /* If unpopulated, no other information is useful */
1785 if (!populated_zone(zone)) {
1786 seq_putc(m, '\n');
1787 return;
1788 }
1789
1790 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1791 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1792 zone_page_state(zone, i));
1793
1794#ifdef CONFIG_NUMA
1795 fold_vm_zone_numa_events(zone);
1796 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1797 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1798 zone_numa_event_state(zone, i));
1799#endif
1800
1801 seq_printf(m, "\n pagesets");
1802 for_each_online_cpu(i) {
1803 struct per_cpu_pages *pcp;
1804 struct per_cpu_zonestat __maybe_unused *pzstats;
1805
1806 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1807 seq_printf(m,
1808 "\n cpu: %i"
1809 "\n count: %i"
1810 "\n high: %i"
1811 "\n batch: %i"
1812 "\n high_min: %i"
1813 "\n high_max: %i",
1814 i,
1815 pcp->count,
1816 pcp->high,
1817 pcp->batch,
1818 pcp->high_min,
1819 pcp->high_max);
1820#ifdef CONFIG_SMP
1821 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1822 seq_printf(m, "\n vm stats threshold: %d",
1823 pzstats->stat_threshold);
1824#endif
1825 }
1826 seq_printf(m,
1827 "\n node_unreclaimable: %u"
1828 "\n start_pfn: %lu",
1829 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1830 zone->zone_start_pfn);
1831 seq_putc(m, '\n');
1832}
1833
1834/*
1835 * Output information about zones in @pgdat. All zones are printed regardless
1836 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1837 * set of all zones and userspace would not be aware of such zones if they are
1838 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1839 */
1840static int zoneinfo_show(struct seq_file *m, void *arg)
1841{
1842 pg_data_t *pgdat = (pg_data_t *)arg;
1843 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1844 return 0;
1845}
1846
1847static const struct seq_operations zoneinfo_op = {
1848 .start = frag_start, /* iterate over all zones. The same as in
1849 * fragmentation. */
1850 .next = frag_next,
1851 .stop = frag_stop,
1852 .show = zoneinfo_show,
1853};
1854
1855#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1856 NR_VM_NUMA_EVENT_ITEMS + \
1857 NR_VM_NODE_STAT_ITEMS + \
1858 NR_VM_STAT_ITEMS + \
1859 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1860 NR_VM_EVENT_ITEMS : 0))
1861
1862static void *vmstat_start(struct seq_file *m, loff_t *pos)
1863{
1864 unsigned long *v;
1865 int i;
1866
1867 if (*pos >= NR_VMSTAT_ITEMS)
1868 return NULL;
1869
1870 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1871 fold_vm_numa_events();
1872 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1873 m->private = v;
1874 if (!v)
1875 return ERR_PTR(-ENOMEM);
1876 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1877 v[i] = global_zone_page_state(i);
1878 v += NR_VM_ZONE_STAT_ITEMS;
1879
1880#ifdef CONFIG_NUMA
1881 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1882 v[i] = global_numa_event_state(i);
1883 v += NR_VM_NUMA_EVENT_ITEMS;
1884#endif
1885
1886 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1887 v[i] = global_node_page_state_pages(i);
1888 if (vmstat_item_print_in_thp(i))
1889 v[i] /= HPAGE_PMD_NR;
1890 }
1891 v += NR_VM_NODE_STAT_ITEMS;
1892
1893 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1894 v + NR_DIRTY_THRESHOLD);
1895 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1896 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1897 v += NR_VM_STAT_ITEMS;
1898
1899#ifdef CONFIG_VM_EVENT_COUNTERS
1900 all_vm_events(v);
1901 v[PGPGIN] /= 2; /* sectors -> kbytes */
1902 v[PGPGOUT] /= 2;
1903#endif
1904 return (unsigned long *)m->private + *pos;
1905}
1906
1907static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1908{
1909 (*pos)++;
1910 if (*pos >= NR_VMSTAT_ITEMS)
1911 return NULL;
1912 return (unsigned long *)m->private + *pos;
1913}
1914
1915static int vmstat_show(struct seq_file *m, void *arg)
1916{
1917 unsigned long *l = arg;
1918 unsigned long off = l - (unsigned long *)m->private;
1919
1920 seq_puts(m, vmstat_text[off]);
1921 seq_put_decimal_ull(m, " ", *l);
1922 seq_putc(m, '\n');
1923
1924 if (off == NR_VMSTAT_ITEMS - 1) {
1925 /*
1926 * We've come to the end - add any deprecated counters to avoid
1927 * breaking userspace which might depend on them being present.
1928 */
1929 seq_puts(m, "nr_unstable 0\n");
1930 }
1931 return 0;
1932}
1933
1934static void vmstat_stop(struct seq_file *m, void *arg)
1935{
1936 kfree(m->private);
1937 m->private = NULL;
1938}
1939
1940static const struct seq_operations vmstat_op = {
1941 .start = vmstat_start,
1942 .next = vmstat_next,
1943 .stop = vmstat_stop,
1944 .show = vmstat_show,
1945};
1946#endif /* CONFIG_PROC_FS */
1947
1948#ifdef CONFIG_SMP
1949static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1950static int sysctl_stat_interval __read_mostly = HZ;
1951static int vmstat_late_init_done;
1952
1953#ifdef CONFIG_PROC_FS
1954static void refresh_vm_stats(struct work_struct *work)
1955{
1956 refresh_cpu_vm_stats(true);
1957}
1958
1959static int vmstat_refresh(const struct ctl_table *table, int write,
1960 void *buffer, size_t *lenp, loff_t *ppos)
1961{
1962 long val;
1963 int err;
1964 int i;
1965
1966 /*
1967 * The regular update, every sysctl_stat_interval, may come later
1968 * than expected: leaving a significant amount in per_cpu buckets.
1969 * This is particularly misleading when checking a quantity of HUGE
1970 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1971 * which can equally be echo'ed to or cat'ted from (by root),
1972 * can be used to update the stats just before reading them.
1973 *
1974 * Oh, and since global_zone_page_state() etc. are so careful to hide
1975 * transiently negative values, report an error here if any of
1976 * the stats is negative, so we know to go looking for imbalance.
1977 */
1978 err = schedule_on_each_cpu(refresh_vm_stats);
1979 if (err)
1980 return err;
1981 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1982 /*
1983 * Skip checking stats known to go negative occasionally.
1984 */
1985 switch (i) {
1986 case NR_ZONE_WRITE_PENDING:
1987 case NR_FREE_CMA_PAGES:
1988 continue;
1989 }
1990 val = atomic_long_read(&vm_zone_stat[i]);
1991 if (val < 0) {
1992 pr_warn("%s: %s %ld\n",
1993 __func__, zone_stat_name(i), val);
1994 }
1995 }
1996 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1997 /*
1998 * Skip checking stats known to go negative occasionally.
1999 */
2000 switch (i) {
2001 case NR_WRITEBACK:
2002 continue;
2003 }
2004 val = atomic_long_read(&vm_node_stat[i]);
2005 if (val < 0) {
2006 pr_warn("%s: %s %ld\n",
2007 __func__, node_stat_name(i), val);
2008 }
2009 }
2010 if (write)
2011 *ppos += *lenp;
2012 else
2013 *lenp = 0;
2014 return 0;
2015}
2016#endif /* CONFIG_PROC_FS */
2017
2018static void vmstat_update(struct work_struct *w)
2019{
2020 if (refresh_cpu_vm_stats(true)) {
2021 /*
2022 * Counters were updated so we expect more updates
2023 * to occur in the future. Keep on running the
2024 * update worker thread.
2025 */
2026 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2027 this_cpu_ptr(&vmstat_work),
2028 round_jiffies_relative(sysctl_stat_interval));
2029 }
2030}
2031
2032/*
2033 * Check if the diffs for a certain cpu indicate that
2034 * an update is needed.
2035 */
2036static bool need_update(int cpu)
2037{
2038 pg_data_t *last_pgdat = NULL;
2039 struct zone *zone;
2040
2041 for_each_populated_zone(zone) {
2042 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2043 struct per_cpu_nodestat *n;
2044
2045 /*
2046 * The fast way of checking if there are any vmstat diffs.
2047 */
2048 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2049 return true;
2050
2051 if (last_pgdat == zone->zone_pgdat)
2052 continue;
2053 last_pgdat = zone->zone_pgdat;
2054 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2055 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2056 return true;
2057 }
2058 return false;
2059}
2060
2061/*
2062 * Switch off vmstat processing and then fold all the remaining differentials
2063 * until the diffs stay at zero. The function is used by NOHZ and can only be
2064 * invoked when tick processing is not active.
2065 */
2066void quiet_vmstat(void)
2067{
2068 if (system_state != SYSTEM_RUNNING)
2069 return;
2070
2071 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2072 return;
2073
2074 if (!need_update(smp_processor_id()))
2075 return;
2076
2077 /*
2078 * Just refresh counters and do not care about the pending delayed
2079 * vmstat_update. It doesn't fire that often to matter and canceling
2080 * it would be too expensive from this path.
2081 * vmstat_shepherd will take care about that for us.
2082 */
2083 refresh_cpu_vm_stats(false);
2084}
2085
2086/*
2087 * Shepherd worker thread that checks the
2088 * differentials of processors that have their worker
2089 * threads for vm statistics updates disabled because of
2090 * inactivity.
2091 */
2092static void vmstat_shepherd(struct work_struct *w);
2093
2094static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2095
2096static void vmstat_shepherd(struct work_struct *w)
2097{
2098 int cpu;
2099
2100 cpus_read_lock();
2101 /* Check processors whose vmstat worker threads have been disabled */
2102 for_each_online_cpu(cpu) {
2103 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2104
2105 /*
2106 * In kernel users of vmstat counters either require the precise value and
2107 * they are using zone_page_state_snapshot interface or they can live with
2108 * an imprecision as the regular flushing can happen at arbitrary time and
2109 * cumulative error can grow (see calculate_normal_threshold).
2110 *
2111 * From that POV the regular flushing can be postponed for CPUs that have
2112 * been isolated from the kernel interference without critical
2113 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2114 * for all isolated CPUs to avoid interference with the isolated workload.
2115 */
2116 if (cpu_is_isolated(cpu))
2117 continue;
2118
2119 if (!delayed_work_pending(dw) && need_update(cpu))
2120 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2121
2122 cond_resched();
2123 }
2124 cpus_read_unlock();
2125
2126 schedule_delayed_work(&shepherd,
2127 round_jiffies_relative(sysctl_stat_interval));
2128}
2129
2130static void __init start_shepherd_timer(void)
2131{
2132 int cpu;
2133
2134 for_each_possible_cpu(cpu) {
2135 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2136 vmstat_update);
2137
2138 /*
2139 * For secondary CPUs during CPU hotplug scenarios,
2140 * vmstat_cpu_online() will enable the work.
2141 * mm/vmstat:online enables and disables vmstat_work
2142 * symmetrically during CPU hotplug events.
2143 */
2144 if (!cpu_online(cpu))
2145 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2146 }
2147
2148 schedule_delayed_work(&shepherd,
2149 round_jiffies_relative(sysctl_stat_interval));
2150}
2151
2152static void __init init_cpu_node_state(void)
2153{
2154 int node;
2155
2156 for_each_online_node(node) {
2157 if (!cpumask_empty(cpumask_of_node(node)))
2158 node_set_state(node, N_CPU);
2159 }
2160}
2161
2162static int vmstat_cpu_online(unsigned int cpu)
2163{
2164 if (vmstat_late_init_done)
2165 refresh_zone_stat_thresholds();
2166
2167 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2168 node_set_state(cpu_to_node(cpu), N_CPU);
2169 }
2170 enable_delayed_work(&per_cpu(vmstat_work, cpu));
2171
2172 return 0;
2173}
2174
2175static int vmstat_cpu_down_prep(unsigned int cpu)
2176{
2177 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2178 return 0;
2179}
2180
2181static int vmstat_cpu_dead(unsigned int cpu)
2182{
2183 const struct cpumask *node_cpus;
2184 int node;
2185
2186 node = cpu_to_node(cpu);
2187
2188 refresh_zone_stat_thresholds();
2189 node_cpus = cpumask_of_node(node);
2190 if (!cpumask_empty(node_cpus))
2191 return 0;
2192
2193 node_clear_state(node, N_CPU);
2194
2195 return 0;
2196}
2197
2198static int __init vmstat_late_init(void)
2199{
2200 refresh_zone_stat_thresholds();
2201 vmstat_late_init_done = 1;
2202
2203 return 0;
2204}
2205late_initcall(vmstat_late_init);
2206#endif
2207
2208#ifdef CONFIG_PROC_FS
2209static const struct ctl_table vmstat_table[] = {
2210#ifdef CONFIG_SMP
2211 {
2212 .procname = "stat_interval",
2213 .data = &sysctl_stat_interval,
2214 .maxlen = sizeof(sysctl_stat_interval),
2215 .mode = 0644,
2216 .proc_handler = proc_dointvec_jiffies,
2217 },
2218 {
2219 .procname = "stat_refresh",
2220 .data = NULL,
2221 .maxlen = 0,
2222 .mode = 0600,
2223 .proc_handler = vmstat_refresh,
2224 },
2225#endif
2226#ifdef CONFIG_NUMA
2227 {
2228 .procname = "numa_stat",
2229 .data = &sysctl_vm_numa_stat,
2230 .maxlen = sizeof(int),
2231 .mode = 0644,
2232 .proc_handler = sysctl_vm_numa_stat_handler,
2233 .extra1 = SYSCTL_ZERO,
2234 .extra2 = SYSCTL_ONE,
2235 },
2236#endif
2237};
2238#endif
2239
2240struct workqueue_struct *mm_percpu_wq;
2241
2242void __init init_mm_internals(void)
2243{
2244 int ret __maybe_unused;
2245
2246 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2247
2248#ifdef CONFIG_SMP
2249 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2250 NULL, vmstat_cpu_dead);
2251 if (ret < 0)
2252 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2253
2254 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2255 vmstat_cpu_online,
2256 vmstat_cpu_down_prep);
2257 if (ret < 0)
2258 pr_err("vmstat: failed to register 'online' hotplug state\n");
2259
2260 cpus_read_lock();
2261 init_cpu_node_state();
2262 cpus_read_unlock();
2263
2264 start_shepherd_timer();
2265#endif
2266#ifdef CONFIG_PROC_FS
2267 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2268 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2269 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2270 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2271 register_sysctl_init("vm", vmstat_table);
2272#endif
2273}
2274
2275#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2276
2277/*
2278 * Return an index indicating how much of the available free memory is
2279 * unusable for an allocation of the requested size.
2280 */
2281static int unusable_free_index(unsigned int order,
2282 struct contig_page_info *info)
2283{
2284 /* No free memory is interpreted as all free memory is unusable */
2285 if (info->free_pages == 0)
2286 return 1000;
2287
2288 /*
2289 * Index should be a value between 0 and 1. Return a value to 3
2290 * decimal places.
2291 *
2292 * 0 => no fragmentation
2293 * 1 => high fragmentation
2294 */
2295 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2296
2297}
2298
2299static void unusable_show_print(struct seq_file *m,
2300 pg_data_t *pgdat, struct zone *zone)
2301{
2302 unsigned int order;
2303 int index;
2304 struct contig_page_info info;
2305
2306 seq_printf(m, "Node %d, zone %8s ",
2307 pgdat->node_id,
2308 zone->name);
2309 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2310 fill_contig_page_info(zone, order, &info);
2311 index = unusable_free_index(order, &info);
2312 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2313 }
2314
2315 seq_putc(m, '\n');
2316}
2317
2318/*
2319 * Display unusable free space index
2320 *
2321 * The unusable free space index measures how much of the available free
2322 * memory cannot be used to satisfy an allocation of a given size and is a
2323 * value between 0 and 1. The higher the value, the more of free memory is
2324 * unusable and by implication, the worse the external fragmentation is. This
2325 * can be expressed as a percentage by multiplying by 100.
2326 */
2327static int unusable_show(struct seq_file *m, void *arg)
2328{
2329 pg_data_t *pgdat = (pg_data_t *)arg;
2330
2331 /* check memoryless node */
2332 if (!node_state(pgdat->node_id, N_MEMORY))
2333 return 0;
2334
2335 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2336
2337 return 0;
2338}
2339
2340static const struct seq_operations unusable_sops = {
2341 .start = frag_start,
2342 .next = frag_next,
2343 .stop = frag_stop,
2344 .show = unusable_show,
2345};
2346
2347DEFINE_SEQ_ATTRIBUTE(unusable);
2348
2349static void extfrag_show_print(struct seq_file *m,
2350 pg_data_t *pgdat, struct zone *zone)
2351{
2352 unsigned int order;
2353 int index;
2354
2355 /* Alloc on stack as interrupts are disabled for zone walk */
2356 struct contig_page_info info;
2357
2358 seq_printf(m, "Node %d, zone %8s ",
2359 pgdat->node_id,
2360 zone->name);
2361 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2362 fill_contig_page_info(zone, order, &info);
2363 index = __fragmentation_index(order, &info);
2364 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2365 }
2366
2367 seq_putc(m, '\n');
2368}
2369
2370/*
2371 * Display fragmentation index for orders that allocations would fail for
2372 */
2373static int extfrag_show(struct seq_file *m, void *arg)
2374{
2375 pg_data_t *pgdat = (pg_data_t *)arg;
2376
2377 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2378
2379 return 0;
2380}
2381
2382static const struct seq_operations extfrag_sops = {
2383 .start = frag_start,
2384 .next = frag_next,
2385 .stop = frag_stop,
2386 .show = extfrag_show,
2387};
2388
2389DEFINE_SEQ_ATTRIBUTE(extfrag);
2390
2391static int __init extfrag_debug_init(void)
2392{
2393 struct dentry *extfrag_debug_root;
2394
2395 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2396
2397 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2398 &unusable_fops);
2399
2400 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2401 &extfrag_fops);
2402
2403 return 0;
2404}
2405
2406module_init(extfrag_debug_init);
2407
2408#endif