at v6.16-rc3 38 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_SEQLOCK_H 3#define __LINUX_SEQLOCK_H 4 5/* 6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with 7 * lockless readers (read-only retry loops), and no writer starvation. 8 * 9 * See Documentation/locking/seqlock.rst 10 * 11 * Copyrights: 12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli 13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH 14 */ 15 16#include <linux/compiler.h> 17#include <linux/kcsan-checks.h> 18#include <linux/lockdep.h> 19#include <linux/mutex.h> 20#include <linux/preempt.h> 21#include <linux/seqlock_types.h> 22#include <linux/spinlock.h> 23 24#include <asm/processor.h> 25 26/* 27 * The seqlock seqcount_t interface does not prescribe a precise sequence of 28 * read begin/retry/end. For readers, typically there is a call to 29 * read_seqcount_begin() and read_seqcount_retry(), however, there are more 30 * esoteric cases which do not follow this pattern. 31 * 32 * As a consequence, we take the following best-effort approach for raw usage 33 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, 34 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as 35 * atomics; if there is a matching read_seqcount_retry() call, no following 36 * memory operations are considered atomic. Usage of the seqlock_t interface 37 * is not affected. 38 */ 39#define KCSAN_SEQLOCK_REGION_MAX 1000 40 41static inline void __seqcount_init(seqcount_t *s, const char *name, 42 struct lock_class_key *key) 43{ 44 /* 45 * Make sure we are not reinitializing a held lock: 46 */ 47 lockdep_init_map(&s->dep_map, name, key, 0); 48 s->sequence = 0; 49} 50 51#ifdef CONFIG_DEBUG_LOCK_ALLOC 52 53# define SEQCOUNT_DEP_MAP_INIT(lockname) \ 54 .dep_map = { .name = #lockname } 55 56/** 57 * seqcount_init() - runtime initializer for seqcount_t 58 * @s: Pointer to the seqcount_t instance 59 */ 60# define seqcount_init(s) \ 61 do { \ 62 static struct lock_class_key __key; \ 63 __seqcount_init((s), #s, &__key); \ 64 } while (0) 65 66static inline void seqcount_lockdep_reader_access(const seqcount_t *s) 67{ 68 seqcount_t *l = (seqcount_t *)s; 69 unsigned long flags; 70 71 local_irq_save(flags); 72 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); 73 seqcount_release(&l->dep_map, _RET_IP_); 74 local_irq_restore(flags); 75} 76 77#else 78# define SEQCOUNT_DEP_MAP_INIT(lockname) 79# define seqcount_init(s) __seqcount_init(s, NULL, NULL) 80# define seqcount_lockdep_reader_access(x) 81#endif 82 83/** 84 * SEQCNT_ZERO() - static initializer for seqcount_t 85 * @name: Name of the seqcount_t instance 86 */ 87#define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } 88 89/* 90 * Sequence counters with associated locks (seqcount_LOCKNAME_t) 91 * 92 * A sequence counter which associates the lock used for writer 93 * serialization at initialization time. This enables lockdep to validate 94 * that the write side critical section is properly serialized. 95 * 96 * For associated locks which do not implicitly disable preemption, 97 * preemption protection is enforced in the write side function. 98 * 99 * Lockdep is never used in any for the raw write variants. 100 * 101 * See Documentation/locking/seqlock.rst 102 */ 103 104/* 105 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated 106 * @seqcount: The real sequence counter 107 * @lock: Pointer to the associated lock 108 * 109 * A plain sequence counter with external writer synchronization by 110 * LOCKNAME @lock. The lock is associated to the sequence counter in the 111 * static initializer or init function. This enables lockdep to validate 112 * that the write side critical section is properly serialized. 113 * 114 * LOCKNAME: raw_spinlock, spinlock, rwlock or mutex 115 */ 116 117/* 118 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t 119 * @s: Pointer to the seqcount_LOCKNAME_t instance 120 * @lock: Pointer to the associated lock 121 */ 122 123#define seqcount_LOCKNAME_init(s, _lock, lockname) \ 124 do { \ 125 seqcount_##lockname##_t *____s = (s); \ 126 seqcount_init(&____s->seqcount); \ 127 __SEQ_LOCK(____s->lock = (_lock)); \ 128 } while (0) 129 130#define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) 131#define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) 132#define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock) 133#define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex) 134 135/* 136 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers 137 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t 138 * 139 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t 140 * @locktype: LOCKNAME canonical C data type 141 * @preemptible: preemptibility of above locktype 142 * @lockbase: prefix for associated lock/unlock 143 */ 144#define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase) \ 145static __always_inline seqcount_t * \ 146__seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ 147{ \ 148 return &s->seqcount; \ 149} \ 150 \ 151static __always_inline const seqcount_t * \ 152__seqprop_##lockname##_const_ptr(const seqcount_##lockname##_t *s) \ 153{ \ 154 return &s->seqcount; \ 155} \ 156 \ 157static __always_inline unsigned \ 158__seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ 159{ \ 160 unsigned seq = smp_load_acquire(&s->seqcount.sequence); \ 161 \ 162 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 163 return seq; \ 164 \ 165 if (preemptible && unlikely(seq & 1)) { \ 166 __SEQ_LOCK(lockbase##_lock(s->lock)); \ 167 __SEQ_LOCK(lockbase##_unlock(s->lock)); \ 168 \ 169 /* \ 170 * Re-read the sequence counter since the (possibly \ 171 * preempted) writer made progress. \ 172 */ \ 173 seq = smp_load_acquire(&s->seqcount.sequence); \ 174 } \ 175 \ 176 return seq; \ 177} \ 178 \ 179static __always_inline bool \ 180__seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ 181{ \ 182 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 183 return preemptible; \ 184 \ 185 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ 186 return false; \ 187} \ 188 \ 189static __always_inline void \ 190__seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ 191{ \ 192 __SEQ_LOCK(lockdep_assert_held(s->lock)); \ 193} 194 195/* 196 * __seqprop() for seqcount_t 197 */ 198 199static inline seqcount_t *__seqprop_ptr(seqcount_t *s) 200{ 201 return s; 202} 203 204static inline const seqcount_t *__seqprop_const_ptr(const seqcount_t *s) 205{ 206 return s; 207} 208 209static inline unsigned __seqprop_sequence(const seqcount_t *s) 210{ 211 return smp_load_acquire(&s->sequence); 212} 213 214static inline bool __seqprop_preemptible(const seqcount_t *s) 215{ 216 return false; 217} 218 219static inline void __seqprop_assert(const seqcount_t *s) 220{ 221 lockdep_assert_preemption_disabled(); 222} 223 224#define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) 225 226SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, raw_spin) 227SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, spin) 228SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, read) 229SEQCOUNT_LOCKNAME(mutex, struct mutex, true, mutex) 230#undef SEQCOUNT_LOCKNAME 231 232/* 233 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t 234 * @name: Name of the seqcount_LOCKNAME_t instance 235 * @lock: Pointer to the associated LOCKNAME 236 */ 237 238#define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ 239 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 240 __SEQ_LOCK(.lock = (assoc_lock)) \ 241} 242 243#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 244#define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 245#define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 246#define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 247#define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 248 249#define __seqprop_case(s, lockname, prop) \ 250 seqcount_##lockname##_t: __seqprop_##lockname##_##prop 251 252#define __seqprop(s, prop) _Generic(*(s), \ 253 seqcount_t: __seqprop_##prop, \ 254 __seqprop_case((s), raw_spinlock, prop), \ 255 __seqprop_case((s), spinlock, prop), \ 256 __seqprop_case((s), rwlock, prop), \ 257 __seqprop_case((s), mutex, prop)) 258 259#define seqprop_ptr(s) __seqprop(s, ptr)(s) 260#define seqprop_const_ptr(s) __seqprop(s, const_ptr)(s) 261#define seqprop_sequence(s) __seqprop(s, sequence)(s) 262#define seqprop_preemptible(s) __seqprop(s, preemptible)(s) 263#define seqprop_assert(s) __seqprop(s, assert)(s) 264 265/** 266 * __read_seqcount_begin() - begin a seqcount_t read section 267 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 268 * 269 * Return: count to be passed to read_seqcount_retry() 270 */ 271#define __read_seqcount_begin(s) \ 272({ \ 273 unsigned __seq; \ 274 \ 275 while (unlikely((__seq = seqprop_sequence(s)) & 1)) \ 276 cpu_relax(); \ 277 \ 278 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 279 __seq; \ 280}) 281 282/** 283 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep 284 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 285 * 286 * Return: count to be passed to read_seqcount_retry() 287 */ 288#define raw_read_seqcount_begin(s) __read_seqcount_begin(s) 289 290/** 291 * read_seqcount_begin() - begin a seqcount_t read critical section 292 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 293 * 294 * Return: count to be passed to read_seqcount_retry() 295 */ 296#define read_seqcount_begin(s) \ 297({ \ 298 seqcount_lockdep_reader_access(seqprop_const_ptr(s)); \ 299 raw_read_seqcount_begin(s); \ 300}) 301 302/** 303 * raw_read_seqcount() - read the raw seqcount_t counter value 304 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 305 * 306 * raw_read_seqcount opens a read critical section of the given 307 * seqcount_t, without any lockdep checking, and without checking or 308 * masking the sequence counter LSB. Calling code is responsible for 309 * handling that. 310 * 311 * Return: count to be passed to read_seqcount_retry() 312 */ 313#define raw_read_seqcount(s) \ 314({ \ 315 unsigned __seq = seqprop_sequence(s); \ 316 \ 317 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 318 __seq; \ 319}) 320 321/** 322 * raw_seqcount_try_begin() - begin a seqcount_t read critical section 323 * w/o lockdep and w/o counter stabilization 324 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 325 * @start: count to be passed to read_seqcount_retry() 326 * 327 * Similar to raw_seqcount_begin(), except it enables eliding the critical 328 * section entirely if odd, instead of doing the speculation knowing it will 329 * fail. 330 * 331 * Useful when counter stabilization is more or less equivalent to taking 332 * the lock and there is a slowpath that does that. 333 * 334 * If true, start will be set to the (even) sequence count read. 335 * 336 * Return: true when a read critical section is started. 337 */ 338#define raw_seqcount_try_begin(s, start) \ 339({ \ 340 start = raw_read_seqcount(s); \ 341 !(start & 1); \ 342}) 343 344/** 345 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o 346 * lockdep and w/o counter stabilization 347 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 348 * 349 * raw_seqcount_begin opens a read critical section of the given 350 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait 351 * for the count to stabilize. If a writer is active when it begins, it 352 * will fail the read_seqcount_retry() at the end of the read critical 353 * section instead of stabilizing at the beginning of it. 354 * 355 * Use this only in special kernel hot paths where the read section is 356 * small and has a high probability of success through other external 357 * means. It will save a single branching instruction. 358 * 359 * Return: count to be passed to read_seqcount_retry() 360 */ 361#define raw_seqcount_begin(s) \ 362({ \ 363 /* \ 364 * If the counter is odd, let read_seqcount_retry() fail \ 365 * by decrementing the counter. \ 366 */ \ 367 raw_read_seqcount(s) & ~1; \ 368}) 369 370/** 371 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier 372 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 373 * @start: count, from read_seqcount_begin() 374 * 375 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() 376 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 377 * provided before actually loading any of the variables that are to be 378 * protected in this critical section. 379 * 380 * Use carefully, only in critical code, and comment how the barrier is 381 * provided. 382 * 383 * Return: true if a read section retry is required, else false 384 */ 385#define __read_seqcount_retry(s, start) \ 386 do___read_seqcount_retry(seqprop_const_ptr(s), start) 387 388static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start) 389{ 390 kcsan_atomic_next(0); 391 return unlikely(READ_ONCE(s->sequence) != start); 392} 393 394/** 395 * read_seqcount_retry() - end a seqcount_t read critical section 396 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 397 * @start: count, from read_seqcount_begin() 398 * 399 * read_seqcount_retry closes the read critical section of given 400 * seqcount_t. If the critical section was invalid, it must be ignored 401 * (and typically retried). 402 * 403 * Return: true if a read section retry is required, else false 404 */ 405#define read_seqcount_retry(s, start) \ 406 do_read_seqcount_retry(seqprop_const_ptr(s), start) 407 408static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start) 409{ 410 smp_rmb(); 411 return do___read_seqcount_retry(s, start); 412} 413 414/** 415 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep 416 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 417 * 418 * Context: check write_seqcount_begin() 419 */ 420#define raw_write_seqcount_begin(s) \ 421do { \ 422 if (seqprop_preemptible(s)) \ 423 preempt_disable(); \ 424 \ 425 do_raw_write_seqcount_begin(seqprop_ptr(s)); \ 426} while (0) 427 428static inline void do_raw_write_seqcount_begin(seqcount_t *s) 429{ 430 kcsan_nestable_atomic_begin(); 431 s->sequence++; 432 smp_wmb(); 433} 434 435/** 436 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep 437 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 438 * 439 * Context: check write_seqcount_end() 440 */ 441#define raw_write_seqcount_end(s) \ 442do { \ 443 do_raw_write_seqcount_end(seqprop_ptr(s)); \ 444 \ 445 if (seqprop_preemptible(s)) \ 446 preempt_enable(); \ 447} while (0) 448 449static inline void do_raw_write_seqcount_end(seqcount_t *s) 450{ 451 smp_wmb(); 452 s->sequence++; 453 kcsan_nestable_atomic_end(); 454} 455 456/** 457 * write_seqcount_begin_nested() - start a seqcount_t write section with 458 * custom lockdep nesting level 459 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 460 * @subclass: lockdep nesting level 461 * 462 * See Documentation/locking/lockdep-design.rst 463 * Context: check write_seqcount_begin() 464 */ 465#define write_seqcount_begin_nested(s, subclass) \ 466do { \ 467 seqprop_assert(s); \ 468 \ 469 if (seqprop_preemptible(s)) \ 470 preempt_disable(); \ 471 \ 472 do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \ 473} while (0) 474 475static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass) 476{ 477 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); 478 do_raw_write_seqcount_begin(s); 479} 480 481/** 482 * write_seqcount_begin() - start a seqcount_t write side critical section 483 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 484 * 485 * Context: sequence counter write side sections must be serialized and 486 * non-preemptible. Preemption will be automatically disabled if and 487 * only if the seqcount write serialization lock is associated, and 488 * preemptible. If readers can be invoked from hardirq or softirq 489 * context, interrupts or bottom halves must be respectively disabled. 490 */ 491#define write_seqcount_begin(s) \ 492do { \ 493 seqprop_assert(s); \ 494 \ 495 if (seqprop_preemptible(s)) \ 496 preempt_disable(); \ 497 \ 498 do_write_seqcount_begin(seqprop_ptr(s)); \ 499} while (0) 500 501static inline void do_write_seqcount_begin(seqcount_t *s) 502{ 503 do_write_seqcount_begin_nested(s, 0); 504} 505 506/** 507 * write_seqcount_end() - end a seqcount_t write side critical section 508 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 509 * 510 * Context: Preemption will be automatically re-enabled if and only if 511 * the seqcount write serialization lock is associated, and preemptible. 512 */ 513#define write_seqcount_end(s) \ 514do { \ 515 do_write_seqcount_end(seqprop_ptr(s)); \ 516 \ 517 if (seqprop_preemptible(s)) \ 518 preempt_enable(); \ 519} while (0) 520 521static inline void do_write_seqcount_end(seqcount_t *s) 522{ 523 seqcount_release(&s->dep_map, _RET_IP_); 524 do_raw_write_seqcount_end(s); 525} 526 527/** 528 * raw_write_seqcount_barrier() - do a seqcount_t write barrier 529 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 530 * 531 * This can be used to provide an ordering guarantee instead of the usual 532 * consistency guarantee. It is one wmb cheaper, because it can collapse 533 * the two back-to-back wmb()s. 534 * 535 * Note that writes surrounding the barrier should be declared atomic (e.g. 536 * via WRITE_ONCE): a) to ensure the writes become visible to other threads 537 * atomically, avoiding compiler optimizations; b) to document which writes are 538 * meant to propagate to the reader critical section. This is necessary because 539 * neither writes before nor after the barrier are enclosed in a seq-writer 540 * critical section that would ensure readers are aware of ongoing writes:: 541 * 542 * seqcount_t seq; 543 * bool X = true, Y = false; 544 * 545 * void read(void) 546 * { 547 * bool x, y; 548 * 549 * do { 550 * int s = read_seqcount_begin(&seq); 551 * 552 * x = X; y = Y; 553 * 554 * } while (read_seqcount_retry(&seq, s)); 555 * 556 * BUG_ON(!x && !y); 557 * } 558 * 559 * void write(void) 560 * { 561 * WRITE_ONCE(Y, true); 562 * 563 * raw_write_seqcount_barrier(seq); 564 * 565 * WRITE_ONCE(X, false); 566 * } 567 */ 568#define raw_write_seqcount_barrier(s) \ 569 do_raw_write_seqcount_barrier(seqprop_ptr(s)) 570 571static inline void do_raw_write_seqcount_barrier(seqcount_t *s) 572{ 573 kcsan_nestable_atomic_begin(); 574 s->sequence++; 575 smp_wmb(); 576 s->sequence++; 577 kcsan_nestable_atomic_end(); 578} 579 580/** 581 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read 582 * side operations 583 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 584 * 585 * After write_seqcount_invalidate, no seqcount_t read side operations 586 * will complete successfully and see data older than this. 587 */ 588#define write_seqcount_invalidate(s) \ 589 do_write_seqcount_invalidate(seqprop_ptr(s)) 590 591static inline void do_write_seqcount_invalidate(seqcount_t *s) 592{ 593 smp_wmb(); 594 kcsan_nestable_atomic_begin(); 595 s->sequence+=2; 596 kcsan_nestable_atomic_end(); 597} 598 599/* 600 * Latch sequence counters (seqcount_latch_t) 601 * 602 * A sequence counter variant where the counter even/odd value is used to 603 * switch between two copies of protected data. This allows the read path, 604 * typically NMIs, to safely interrupt the write side critical section. 605 * 606 * As the write sections are fully preemptible, no special handling for 607 * PREEMPT_RT is needed. 608 */ 609typedef struct { 610 seqcount_t seqcount; 611} seqcount_latch_t; 612 613/** 614 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t 615 * @seq_name: Name of the seqcount_latch_t instance 616 */ 617#define SEQCNT_LATCH_ZERO(seq_name) { \ 618 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 619} 620 621/** 622 * seqcount_latch_init() - runtime initializer for seqcount_latch_t 623 * @s: Pointer to the seqcount_latch_t instance 624 */ 625#define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) 626 627/** 628 * raw_read_seqcount_latch() - pick even/odd latch data copy 629 * @s: Pointer to seqcount_latch_t 630 * 631 * See raw_write_seqcount_latch() for details and a full reader/writer 632 * usage example. 633 * 634 * Return: sequence counter raw value. Use the lowest bit as an index for 635 * picking which data copy to read. The full counter must then be checked 636 * with raw_read_seqcount_latch_retry(). 637 */ 638static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) 639{ 640 /* 641 * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). 642 * Due to the dependent load, a full smp_rmb() is not needed. 643 */ 644 return READ_ONCE(s->seqcount.sequence); 645} 646 647/** 648 * read_seqcount_latch() - pick even/odd latch data copy 649 * @s: Pointer to seqcount_latch_t 650 * 651 * See write_seqcount_latch() for details and a full reader/writer usage 652 * example. 653 * 654 * Return: sequence counter raw value. Use the lowest bit as an index for 655 * picking which data copy to read. The full counter must then be checked 656 * with read_seqcount_latch_retry(). 657 */ 658static __always_inline unsigned read_seqcount_latch(const seqcount_latch_t *s) 659{ 660 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); 661 return raw_read_seqcount_latch(s); 662} 663 664/** 665 * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section 666 * @s: Pointer to seqcount_latch_t 667 * @start: count, from raw_read_seqcount_latch() 668 * 669 * Return: true if a read section retry is required, else false 670 */ 671static __always_inline int 672raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) 673{ 674 smp_rmb(); 675 return unlikely(READ_ONCE(s->seqcount.sequence) != start); 676} 677 678/** 679 * read_seqcount_latch_retry() - end a seqcount_latch_t read section 680 * @s: Pointer to seqcount_latch_t 681 * @start: count, from read_seqcount_latch() 682 * 683 * Return: true if a read section retry is required, else false 684 */ 685static __always_inline int 686read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) 687{ 688 kcsan_atomic_next(0); 689 return raw_read_seqcount_latch_retry(s, start); 690} 691 692/** 693 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy 694 * @s: Pointer to seqcount_latch_t 695 */ 696static __always_inline void raw_write_seqcount_latch(seqcount_latch_t *s) 697{ 698 smp_wmb(); /* prior stores before incrementing "sequence" */ 699 s->seqcount.sequence++; 700 smp_wmb(); /* increment "sequence" before following stores */ 701} 702 703/** 704 * write_seqcount_latch_begin() - redirect latch readers to odd copy 705 * @s: Pointer to seqcount_latch_t 706 * 707 * The latch technique is a multiversion concurrency control method that allows 708 * queries during non-atomic modifications. If you can guarantee queries never 709 * interrupt the modification -- e.g. the concurrency is strictly between CPUs 710 * -- you most likely do not need this. 711 * 712 * Where the traditional RCU/lockless data structures rely on atomic 713 * modifications to ensure queries observe either the old or the new state the 714 * latch allows the same for non-atomic updates. The trade-off is doubling the 715 * cost of storage; we have to maintain two copies of the entire data 716 * structure. 717 * 718 * Very simply put: we first modify one copy and then the other. This ensures 719 * there is always one copy in a stable state, ready to give us an answer. 720 * 721 * The basic form is a data structure like:: 722 * 723 * struct latch_struct { 724 * seqcount_latch_t seq; 725 * struct data_struct data[2]; 726 * }; 727 * 728 * Where a modification, which is assumed to be externally serialized, does the 729 * following:: 730 * 731 * void latch_modify(struct latch_struct *latch, ...) 732 * { 733 * write_seqcount_latch_begin(&latch->seq); 734 * modify(latch->data[0], ...); 735 * write_seqcount_latch(&latch->seq); 736 * modify(latch->data[1], ...); 737 * write_seqcount_latch_end(&latch->seq); 738 * } 739 * 740 * The query will have a form like:: 741 * 742 * struct entry *latch_query(struct latch_struct *latch, ...) 743 * { 744 * struct entry *entry; 745 * unsigned seq, idx; 746 * 747 * do { 748 * seq = read_seqcount_latch(&latch->seq); 749 * 750 * idx = seq & 0x01; 751 * entry = data_query(latch->data[idx], ...); 752 * 753 * // This includes needed smp_rmb() 754 * } while (read_seqcount_latch_retry(&latch->seq, seq)); 755 * 756 * return entry; 757 * } 758 * 759 * So during the modification, queries are first redirected to data[1]. Then we 760 * modify data[0]. When that is complete, we redirect queries back to data[0] 761 * and we can modify data[1]. 762 * 763 * NOTE: 764 * 765 * The non-requirement for atomic modifications does _NOT_ include 766 * the publishing of new entries in the case where data is a dynamic 767 * data structure. 768 * 769 * An iteration might start in data[0] and get suspended long enough 770 * to miss an entire modification sequence, once it resumes it might 771 * observe the new entry. 772 * 773 * NOTE2: 774 * 775 * When data is a dynamic data structure; one should use regular RCU 776 * patterns to manage the lifetimes of the objects within. 777 */ 778static __always_inline void write_seqcount_latch_begin(seqcount_latch_t *s) 779{ 780 kcsan_nestable_atomic_begin(); 781 raw_write_seqcount_latch(s); 782} 783 784/** 785 * write_seqcount_latch() - redirect latch readers to even copy 786 * @s: Pointer to seqcount_latch_t 787 */ 788static __always_inline void write_seqcount_latch(seqcount_latch_t *s) 789{ 790 raw_write_seqcount_latch(s); 791} 792 793/** 794 * write_seqcount_latch_end() - end a seqcount_latch_t write section 795 * @s: Pointer to seqcount_latch_t 796 * 797 * Marks the end of a seqcount_latch_t writer section, after all copies of the 798 * latch-protected data have been updated. 799 */ 800static __always_inline void write_seqcount_latch_end(seqcount_latch_t *s) 801{ 802 kcsan_nestable_atomic_end(); 803} 804 805#define __SEQLOCK_UNLOCKED(lockname) \ 806 { \ 807 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ 808 .lock = __SPIN_LOCK_UNLOCKED(lockname) \ 809 } 810 811/** 812 * seqlock_init() - dynamic initializer for seqlock_t 813 * @sl: Pointer to the seqlock_t instance 814 */ 815#define seqlock_init(sl) \ 816 do { \ 817 spin_lock_init(&(sl)->lock); \ 818 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ 819 } while (0) 820 821/** 822 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t 823 * @sl: Name of the seqlock_t instance 824 */ 825#define DEFINE_SEQLOCK(sl) \ 826 seqlock_t sl = __SEQLOCK_UNLOCKED(sl) 827 828/** 829 * read_seqbegin() - start a seqlock_t read side critical section 830 * @sl: Pointer to seqlock_t 831 * 832 * Return: count, to be passed to read_seqretry() 833 */ 834static inline unsigned read_seqbegin(const seqlock_t *sl) 835{ 836 return read_seqcount_begin(&sl->seqcount); 837} 838 839/** 840 * read_seqretry() - end a seqlock_t read side section 841 * @sl: Pointer to seqlock_t 842 * @start: count, from read_seqbegin() 843 * 844 * read_seqretry closes the read side critical section of given seqlock_t. 845 * If the critical section was invalid, it must be ignored (and typically 846 * retried). 847 * 848 * Return: true if a read section retry is required, else false 849 */ 850static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) 851{ 852 return read_seqcount_retry(&sl->seqcount, start); 853} 854 855/* 856 * For all seqlock_t write side functions, use the internal 857 * do_write_seqcount_begin() instead of generic write_seqcount_begin(). 858 * This way, no redundant lockdep_assert_held() checks are added. 859 */ 860 861/** 862 * write_seqlock() - start a seqlock_t write side critical section 863 * @sl: Pointer to seqlock_t 864 * 865 * write_seqlock opens a write side critical section for the given 866 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside 867 * that sequential lock. All seqlock_t write side sections are thus 868 * automatically serialized and non-preemptible. 869 * 870 * Context: if the seqlock_t read section, or other write side critical 871 * sections, can be invoked from hardirq or softirq contexts, use the 872 * _irqsave or _bh variants of this function instead. 873 */ 874static inline void write_seqlock(seqlock_t *sl) 875{ 876 spin_lock(&sl->lock); 877 do_write_seqcount_begin(&sl->seqcount.seqcount); 878} 879 880/** 881 * write_sequnlock() - end a seqlock_t write side critical section 882 * @sl: Pointer to seqlock_t 883 * 884 * write_sequnlock closes the (serialized and non-preemptible) write side 885 * critical section of given seqlock_t. 886 */ 887static inline void write_sequnlock(seqlock_t *sl) 888{ 889 do_write_seqcount_end(&sl->seqcount.seqcount); 890 spin_unlock(&sl->lock); 891} 892 893/** 894 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section 895 * @sl: Pointer to seqlock_t 896 * 897 * _bh variant of write_seqlock(). Use only if the read side section, or 898 * other write side sections, can be invoked from softirq contexts. 899 */ 900static inline void write_seqlock_bh(seqlock_t *sl) 901{ 902 spin_lock_bh(&sl->lock); 903 do_write_seqcount_begin(&sl->seqcount.seqcount); 904} 905 906/** 907 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section 908 * @sl: Pointer to seqlock_t 909 * 910 * write_sequnlock_bh closes the serialized, non-preemptible, and 911 * softirqs-disabled, seqlock_t write side critical section opened with 912 * write_seqlock_bh(). 913 */ 914static inline void write_sequnlock_bh(seqlock_t *sl) 915{ 916 do_write_seqcount_end(&sl->seqcount.seqcount); 917 spin_unlock_bh(&sl->lock); 918} 919 920/** 921 * write_seqlock_irq() - start a non-interruptible seqlock_t write section 922 * @sl: Pointer to seqlock_t 923 * 924 * _irq variant of write_seqlock(). Use only if the read side section, or 925 * other write sections, can be invoked from hardirq contexts. 926 */ 927static inline void write_seqlock_irq(seqlock_t *sl) 928{ 929 spin_lock_irq(&sl->lock); 930 do_write_seqcount_begin(&sl->seqcount.seqcount); 931} 932 933/** 934 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section 935 * @sl: Pointer to seqlock_t 936 * 937 * write_sequnlock_irq closes the serialized and non-interruptible 938 * seqlock_t write side section opened with write_seqlock_irq(). 939 */ 940static inline void write_sequnlock_irq(seqlock_t *sl) 941{ 942 do_write_seqcount_end(&sl->seqcount.seqcount); 943 spin_unlock_irq(&sl->lock); 944} 945 946static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) 947{ 948 unsigned long flags; 949 950 spin_lock_irqsave(&sl->lock, flags); 951 do_write_seqcount_begin(&sl->seqcount.seqcount); 952 return flags; 953} 954 955/** 956 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write 957 * section 958 * @lock: Pointer to seqlock_t 959 * @flags: Stack-allocated storage for saving caller's local interrupt 960 * state, to be passed to write_sequnlock_irqrestore(). 961 * 962 * _irqsave variant of write_seqlock(). Use it only if the read side 963 * section, or other write sections, can be invoked from hardirq context. 964 */ 965#define write_seqlock_irqsave(lock, flags) \ 966 do { flags = __write_seqlock_irqsave(lock); } while (0) 967 968/** 969 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write 970 * section 971 * @sl: Pointer to seqlock_t 972 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() 973 * 974 * write_sequnlock_irqrestore closes the serialized and non-interruptible 975 * seqlock_t write section previously opened with write_seqlock_irqsave(). 976 */ 977static inline void 978write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) 979{ 980 do_write_seqcount_end(&sl->seqcount.seqcount); 981 spin_unlock_irqrestore(&sl->lock, flags); 982} 983 984/** 985 * read_seqlock_excl() - begin a seqlock_t locking reader section 986 * @sl: Pointer to seqlock_t 987 * 988 * read_seqlock_excl opens a seqlock_t locking reader critical section. A 989 * locking reader exclusively locks out *both* other writers *and* other 990 * locking readers, but it does not update the embedded sequence number. 991 * 992 * Locking readers act like a normal spin_lock()/spin_unlock(). 993 * 994 * Context: if the seqlock_t write section, *or other read sections*, can 995 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 996 * variant of this function instead. 997 * 998 * The opened read section must be closed with read_sequnlock_excl(). 999 */ 1000static inline void read_seqlock_excl(seqlock_t *sl) 1001{ 1002 spin_lock(&sl->lock); 1003} 1004 1005/** 1006 * read_sequnlock_excl() - end a seqlock_t locking reader critical section 1007 * @sl: Pointer to seqlock_t 1008 */ 1009static inline void read_sequnlock_excl(seqlock_t *sl) 1010{ 1011 spin_unlock(&sl->lock); 1012} 1013 1014/** 1015 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with 1016 * softirqs disabled 1017 * @sl: Pointer to seqlock_t 1018 * 1019 * _bh variant of read_seqlock_excl(). Use this variant only if the 1020 * seqlock_t write side section, *or other read sections*, can be invoked 1021 * from softirq contexts. 1022 */ 1023static inline void read_seqlock_excl_bh(seqlock_t *sl) 1024{ 1025 spin_lock_bh(&sl->lock); 1026} 1027 1028/** 1029 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking 1030 * reader section 1031 * @sl: Pointer to seqlock_t 1032 */ 1033static inline void read_sequnlock_excl_bh(seqlock_t *sl) 1034{ 1035 spin_unlock_bh(&sl->lock); 1036} 1037 1038/** 1039 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking 1040 * reader section 1041 * @sl: Pointer to seqlock_t 1042 * 1043 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t 1044 * write side section, *or other read sections*, can be invoked from a 1045 * hardirq context. 1046 */ 1047static inline void read_seqlock_excl_irq(seqlock_t *sl) 1048{ 1049 spin_lock_irq(&sl->lock); 1050} 1051 1052/** 1053 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t 1054 * locking reader section 1055 * @sl: Pointer to seqlock_t 1056 */ 1057static inline void read_sequnlock_excl_irq(seqlock_t *sl) 1058{ 1059 spin_unlock_irq(&sl->lock); 1060} 1061 1062static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) 1063{ 1064 unsigned long flags; 1065 1066 spin_lock_irqsave(&sl->lock, flags); 1067 return flags; 1068} 1069 1070/** 1071 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t 1072 * locking reader section 1073 * @lock: Pointer to seqlock_t 1074 * @flags: Stack-allocated storage for saving caller's local interrupt 1075 * state, to be passed to read_sequnlock_excl_irqrestore(). 1076 * 1077 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t 1078 * write side section, *or other read sections*, can be invoked from a 1079 * hardirq context. 1080 */ 1081#define read_seqlock_excl_irqsave(lock, flags) \ 1082 do { flags = __read_seqlock_excl_irqsave(lock); } while (0) 1083 1084/** 1085 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t 1086 * locking reader section 1087 * @sl: Pointer to seqlock_t 1088 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() 1089 */ 1090static inline void 1091read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) 1092{ 1093 spin_unlock_irqrestore(&sl->lock, flags); 1094} 1095 1096/** 1097 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader 1098 * @lock: Pointer to seqlock_t 1099 * @seq : Marker and return parameter. If the passed value is even, the 1100 * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). 1101 * If the passed value is odd, the reader will become a *locking* reader 1102 * as in read_seqlock_excl(). In the first call to this function, the 1103 * caller *must* initialize and pass an even value to @seq; this way, a 1104 * lockless read can be optimistically tried first. 1105 * 1106 * read_seqbegin_or_lock is an API designed to optimistically try a normal 1107 * lockless seqlock_t read section first. If an odd counter is found, the 1108 * lockless read trial has failed, and the next read iteration transforms 1109 * itself into a full seqlock_t locking reader. 1110 * 1111 * This is typically used to avoid seqlock_t lockless readers starvation 1112 * (too much retry loops) in the case of a sharp spike in write side 1113 * activity. 1114 * 1115 * Context: if the seqlock_t write section, *or other read sections*, can 1116 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1117 * variant of this function instead. 1118 * 1119 * Check Documentation/locking/seqlock.rst for template example code. 1120 * 1121 * Return: the encountered sequence counter value, through the @seq 1122 * parameter, which is overloaded as a return parameter. This returned 1123 * value must be checked with need_seqretry(). If the read section need to 1124 * be retried, this returned value must also be passed as the @seq 1125 * parameter of the next read_seqbegin_or_lock() iteration. 1126 */ 1127static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 1128{ 1129 if (!(*seq & 1)) /* Even */ 1130 *seq = read_seqbegin(lock); 1131 else /* Odd */ 1132 read_seqlock_excl(lock); 1133} 1134 1135/** 1136 * need_seqretry() - validate seqlock_t "locking or lockless" read section 1137 * @lock: Pointer to seqlock_t 1138 * @seq: sequence count, from read_seqbegin_or_lock() 1139 * 1140 * Return: true if a read section retry is required, false otherwise 1141 */ 1142static inline int need_seqretry(seqlock_t *lock, int seq) 1143{ 1144 return !(seq & 1) && read_seqretry(lock, seq); 1145} 1146 1147/** 1148 * done_seqretry() - end seqlock_t "locking or lockless" reader section 1149 * @lock: Pointer to seqlock_t 1150 * @seq: count, from read_seqbegin_or_lock() 1151 * 1152 * done_seqretry finishes the seqlock_t read side critical section started 1153 * with read_seqbegin_or_lock() and validated by need_seqretry(). 1154 */ 1155static inline void done_seqretry(seqlock_t *lock, int seq) 1156{ 1157 if (seq & 1) 1158 read_sequnlock_excl(lock); 1159} 1160 1161/** 1162 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or 1163 * a non-interruptible locking reader 1164 * @lock: Pointer to seqlock_t 1165 * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). 1166 * 1167 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if 1168 * the seqlock_t write section, *or other read sections*, can be invoked 1169 * from hardirq context. 1170 * 1171 * Note: Interrupts will be disabled only for "locking reader" mode. 1172 * 1173 * Return: 1174 * 1175 * 1. The saved local interrupts state in case of a locking reader, to 1176 * be passed to done_seqretry_irqrestore(). 1177 * 1178 * 2. The encountered sequence counter value, returned through @seq 1179 * overloaded as a return parameter. Check read_seqbegin_or_lock(). 1180 */ 1181static inline unsigned long 1182read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) 1183{ 1184 unsigned long flags = 0; 1185 1186 if (!(*seq & 1)) /* Even */ 1187 *seq = read_seqbegin(lock); 1188 else /* Odd */ 1189 read_seqlock_excl_irqsave(lock, flags); 1190 1191 return flags; 1192} 1193 1194/** 1195 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a 1196 * non-interruptible locking reader section 1197 * @lock: Pointer to seqlock_t 1198 * @seq: Count, from read_seqbegin_or_lock_irqsave() 1199 * @flags: Caller's saved local interrupt state in case of a locking 1200 * reader, also from read_seqbegin_or_lock_irqsave() 1201 * 1202 * This is the _irqrestore variant of done_seqretry(). The read section 1203 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated 1204 * by need_seqretry(). 1205 */ 1206static inline void 1207done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) 1208{ 1209 if (seq & 1) 1210 read_sequnlock_excl_irqrestore(lock, flags); 1211} 1212#endif /* __LINUX_SEQLOCK_H */