at v6.16-rc1 53 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5#ifndef _LINUX_BLKDEV_H 6#define _LINUX_BLKDEV_H 7 8#include <linux/types.h> 9#include <linux/blk_types.h> 10#include <linux/device.h> 11#include <linux/list.h> 12#include <linux/llist.h> 13#include <linux/minmax.h> 14#include <linux/timer.h> 15#include <linux/workqueue.h> 16#include <linux/wait.h> 17#include <linux/bio.h> 18#include <linux/gfp.h> 19#include <linux/kdev_t.h> 20#include <linux/rcupdate.h> 21#include <linux/percpu-refcount.h> 22#include <linux/blkzoned.h> 23#include <linux/sched.h> 24#include <linux/sbitmap.h> 25#include <linux/uuid.h> 26#include <linux/xarray.h> 27#include <linux/file.h> 28#include <linux/lockdep.h> 29 30struct module; 31struct request_queue; 32struct elevator_queue; 33struct blk_trace; 34struct request; 35struct sg_io_hdr; 36struct blkcg_gq; 37struct blk_flush_queue; 38struct kiocb; 39struct pr_ops; 40struct rq_qos; 41struct blk_queue_stats; 42struct blk_stat_callback; 43struct blk_crypto_profile; 44 45extern const struct device_type disk_type; 46extern const struct device_type part_type; 47extern const struct class block_class; 48 49/* 50 * Maximum number of blkcg policies allowed to be registered concurrently. 51 * Defined here to simplify include dependency. 52 */ 53#define BLKCG_MAX_POLS 6 54 55#define DISK_MAX_PARTS 256 56#define DISK_NAME_LEN 32 57 58#define PARTITION_META_INFO_VOLNAMELTH 64 59/* 60 * Enough for the string representation of any kind of UUID plus NULL. 61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 62 */ 63#define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 64 65struct partition_meta_info { 66 char uuid[PARTITION_META_INFO_UUIDLTH]; 67 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 68}; 69 70/** 71 * DOC: genhd capability flags 72 * 73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 74 * removable media. When set, the device remains present even when media is not 75 * inserted. Shall not be set for devices which are removed entirely when the 76 * media is removed. 77 * 78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 79 * doesn't appear in sysfs, and can't be opened from userspace or using 80 * blkdev_get*. Used for the underlying components of multipath devices. 81 * 82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 83 * scan for partitions from add_disk, and users can't add partitions manually. 84 * 85 */ 86enum { 87 GENHD_FL_REMOVABLE = 1 << 0, 88 GENHD_FL_HIDDEN = 1 << 1, 89 GENHD_FL_NO_PART = 1 << 2, 90}; 91 92enum { 93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 95}; 96 97enum { 98 /* Poll even if events_poll_msecs is unset */ 99 DISK_EVENT_FLAG_POLL = 1 << 0, 100 /* Forward events to udev */ 101 DISK_EVENT_FLAG_UEVENT = 1 << 1, 102 /* Block event polling when open for exclusive write */ 103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 104}; 105 106struct disk_events; 107struct badblocks; 108 109enum blk_integrity_checksum { 110 BLK_INTEGRITY_CSUM_NONE = 0, 111 BLK_INTEGRITY_CSUM_IP = 1, 112 BLK_INTEGRITY_CSUM_CRC = 2, 113 BLK_INTEGRITY_CSUM_CRC64 = 3, 114} __packed ; 115 116struct blk_integrity { 117 unsigned char flags; 118 enum blk_integrity_checksum csum_type; 119 unsigned char tuple_size; 120 unsigned char pi_offset; 121 unsigned char interval_exp; 122 unsigned char tag_size; 123}; 124 125typedef unsigned int __bitwise blk_mode_t; 126 127/* open for reading */ 128#define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0)) 129/* open for writing */ 130#define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1)) 131/* open exclusively (vs other exclusive openers */ 132#define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2)) 133/* opened with O_NDELAY */ 134#define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3)) 135/* open for "writes" only for ioctls (specialy hack for floppy.c) */ 136#define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4)) 137/* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */ 138#define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5)) 139/* return partition scanning errors */ 140#define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6)) 141 142struct gendisk { 143 /* 144 * major/first_minor/minors should not be set by any new driver, the 145 * block core will take care of allocating them automatically. 146 */ 147 int major; 148 int first_minor; 149 int minors; 150 151 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 152 153 unsigned short events; /* supported events */ 154 unsigned short event_flags; /* flags related to event processing */ 155 156 struct xarray part_tbl; 157 struct block_device *part0; 158 159 const struct block_device_operations *fops; 160 struct request_queue *queue; 161 void *private_data; 162 163 struct bio_set bio_split; 164 165 int flags; 166 unsigned long state; 167#define GD_NEED_PART_SCAN 0 168#define GD_READ_ONLY 1 169#define GD_DEAD 2 170#define GD_NATIVE_CAPACITY 3 171#define GD_ADDED 4 172#define GD_SUPPRESS_PART_SCAN 5 173#define GD_OWNS_QUEUE 6 174 175 struct mutex open_mutex; /* open/close mutex */ 176 unsigned open_partitions; /* number of open partitions */ 177 178 struct backing_dev_info *bdi; 179 struct kobject queue_kobj; /* the queue/ directory */ 180 struct kobject *slave_dir; 181#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 182 struct list_head slave_bdevs; 183#endif 184 struct timer_rand_state *random; 185 struct disk_events *ev; 186 187#ifdef CONFIG_BLK_DEV_ZONED 188 /* 189 * Zoned block device information. Reads of this information must be 190 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this 191 * information is only allowed while no requests are being processed. 192 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue(). 193 */ 194 unsigned int nr_zones; 195 unsigned int zone_capacity; 196 unsigned int last_zone_capacity; 197 unsigned long __rcu *conv_zones_bitmap; 198 unsigned int zone_wplugs_hash_bits; 199 atomic_t nr_zone_wplugs; 200 spinlock_t zone_wplugs_lock; 201 struct mempool_s *zone_wplugs_pool; 202 struct hlist_head *zone_wplugs_hash; 203 struct workqueue_struct *zone_wplugs_wq; 204#endif /* CONFIG_BLK_DEV_ZONED */ 205 206#if IS_ENABLED(CONFIG_CDROM) 207 struct cdrom_device_info *cdi; 208#endif 209 int node_id; 210 struct badblocks *bb; 211 struct lockdep_map lockdep_map; 212 u64 diskseq; 213 blk_mode_t open_mode; 214 215 /* 216 * Independent sector access ranges. This is always NULL for 217 * devices that do not have multiple independent access ranges. 218 */ 219 struct blk_independent_access_ranges *ia_ranges; 220 221 struct mutex rqos_state_mutex; /* rqos state change mutex */ 222}; 223 224/** 225 * disk_openers - returns how many openers are there for a disk 226 * @disk: disk to check 227 * 228 * This returns the number of openers for a disk. Note that this value is only 229 * stable if disk->open_mutex is held. 230 * 231 * Note: Due to a quirk in the block layer open code, each open partition is 232 * only counted once even if there are multiple openers. 233 */ 234static inline unsigned int disk_openers(struct gendisk *disk) 235{ 236 return atomic_read(&disk->part0->bd_openers); 237} 238 239/** 240 * disk_has_partscan - return %true if partition scanning is enabled on a disk 241 * @disk: disk to check 242 * 243 * Returns %true if partitions scanning is enabled for @disk, or %false if 244 * partition scanning is disabled either permanently or temporarily. 245 */ 246static inline bool disk_has_partscan(struct gendisk *disk) 247{ 248 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) && 249 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 250} 251 252/* 253 * The gendisk is refcounted by the part0 block_device, and the bd_device 254 * therein is also used for device model presentation in sysfs. 255 */ 256#define dev_to_disk(device) \ 257 (dev_to_bdev(device)->bd_disk) 258#define disk_to_dev(disk) \ 259 (&((disk)->part0->bd_device)) 260 261#if IS_REACHABLE(CONFIG_CDROM) 262#define disk_to_cdi(disk) ((disk)->cdi) 263#else 264#define disk_to_cdi(disk) NULL 265#endif 266 267static inline dev_t disk_devt(struct gendisk *disk) 268{ 269 return MKDEV(disk->major, disk->first_minor); 270} 271 272/* 273 * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER) 274 * however we constrain this to what we can validate and test. 275 */ 276#define BLK_MAX_BLOCK_SIZE SZ_64K 277 278/* blk_validate_limits() validates bsize, so drivers don't usually need to */ 279static inline int blk_validate_block_size(unsigned long bsize) 280{ 281 if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize)) 282 return -EINVAL; 283 284 return 0; 285} 286 287static inline bool blk_op_is_passthrough(blk_opf_t op) 288{ 289 op &= REQ_OP_MASK; 290 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 291} 292 293/* flags set by the driver in queue_limits.features */ 294typedef unsigned int __bitwise blk_features_t; 295 296/* supports a volatile write cache */ 297#define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0)) 298 299/* supports passing on the FUA bit */ 300#define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1)) 301 302/* rotational device (hard drive or floppy) */ 303#define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2)) 304 305/* contributes to the random number pool */ 306#define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3)) 307 308/* do disk/partitions IO accounting */ 309#define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4)) 310 311/* don't modify data until writeback is done */ 312#define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5)) 313 314/* always completes in submit context */ 315#define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6)) 316 317/* supports REQ_NOWAIT */ 318#define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7)) 319 320/* supports DAX */ 321#define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8)) 322 323/* supports I/O polling */ 324#define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9)) 325 326/* is a zoned device */ 327#define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10)) 328 329/* supports PCI(e) p2p requests */ 330#define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12)) 331 332/* skip this queue in blk_mq_(un)quiesce_tagset */ 333#define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13)) 334 335/* undocumented magic for bcache */ 336#define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \ 337 ((__force blk_features_t)(1u << 15)) 338 339/* atomic writes enabled */ 340#define BLK_FEAT_ATOMIC_WRITES \ 341 ((__force blk_features_t)(1u << 16)) 342 343/* 344 * Flags automatically inherited when stacking limits. 345 */ 346#define BLK_FEAT_INHERIT_MASK \ 347 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \ 348 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | \ 349 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE) 350 351/* internal flags in queue_limits.flags */ 352typedef unsigned int __bitwise blk_flags_t; 353 354/* do not send FLUSH/FUA commands despite advertising a write cache */ 355#define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0)) 356 357/* I/O topology is misaligned */ 358#define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1)) 359 360/* passthrough command IO accounting */ 361#define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2)) 362 363struct queue_limits { 364 blk_features_t features; 365 blk_flags_t flags; 366 unsigned long seg_boundary_mask; 367 unsigned long virt_boundary_mask; 368 369 unsigned int max_hw_sectors; 370 unsigned int max_dev_sectors; 371 unsigned int chunk_sectors; 372 unsigned int max_sectors; 373 unsigned int max_user_sectors; 374 unsigned int max_segment_size; 375 unsigned int min_segment_size; 376 unsigned int physical_block_size; 377 unsigned int logical_block_size; 378 unsigned int alignment_offset; 379 unsigned int io_min; 380 unsigned int io_opt; 381 unsigned int max_discard_sectors; 382 unsigned int max_hw_discard_sectors; 383 unsigned int max_user_discard_sectors; 384 unsigned int max_secure_erase_sectors; 385 unsigned int max_write_zeroes_sectors; 386 unsigned int max_hw_zone_append_sectors; 387 unsigned int max_zone_append_sectors; 388 unsigned int discard_granularity; 389 unsigned int discard_alignment; 390 unsigned int zone_write_granularity; 391 392 /* atomic write limits */ 393 unsigned int atomic_write_hw_max; 394 unsigned int atomic_write_max_sectors; 395 unsigned int atomic_write_hw_boundary; 396 unsigned int atomic_write_boundary_sectors; 397 unsigned int atomic_write_hw_unit_min; 398 unsigned int atomic_write_unit_min; 399 unsigned int atomic_write_hw_unit_max; 400 unsigned int atomic_write_unit_max; 401 402 unsigned short max_segments; 403 unsigned short max_integrity_segments; 404 unsigned short max_discard_segments; 405 406 unsigned short max_write_streams; 407 unsigned int write_stream_granularity; 408 409 unsigned int max_open_zones; 410 unsigned int max_active_zones; 411 412 /* 413 * Drivers that set dma_alignment to less than 511 must be prepared to 414 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 415 * due to possible offsets. 416 */ 417 unsigned int dma_alignment; 418 unsigned int dma_pad_mask; 419 420 struct blk_integrity integrity; 421}; 422 423typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 424 void *data); 425 426#define BLK_ALL_ZONES ((unsigned int)-1) 427int blkdev_report_zones(struct block_device *bdev, sector_t sector, 428 unsigned int nr_zones, report_zones_cb cb, void *data); 429int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 430 sector_t sectors, sector_t nr_sectors); 431int blk_revalidate_disk_zones(struct gendisk *disk); 432 433/* 434 * Independent access ranges: struct blk_independent_access_range describes 435 * a range of contiguous sectors that can be accessed using device command 436 * execution resources that are independent from the resources used for 437 * other access ranges. This is typically found with single-LUN multi-actuator 438 * HDDs where each access range is served by a different set of heads. 439 * The set of independent ranges supported by the device is defined using 440 * struct blk_independent_access_ranges. The independent ranges must not overlap 441 * and must include all sectors within the disk capacity (no sector holes 442 * allowed). 443 * For a device with multiple ranges, requests targeting sectors in different 444 * ranges can be executed in parallel. A request can straddle an access range 445 * boundary. 446 */ 447struct blk_independent_access_range { 448 struct kobject kobj; 449 sector_t sector; 450 sector_t nr_sectors; 451}; 452 453struct blk_independent_access_ranges { 454 struct kobject kobj; 455 bool sysfs_registered; 456 unsigned int nr_ia_ranges; 457 struct blk_independent_access_range ia_range[]; 458}; 459 460struct request_queue { 461 /* 462 * The queue owner gets to use this for whatever they like. 463 * ll_rw_blk doesn't touch it. 464 */ 465 void *queuedata; 466 467 struct elevator_queue *elevator; 468 469 const struct blk_mq_ops *mq_ops; 470 471 /* sw queues */ 472 struct blk_mq_ctx __percpu *queue_ctx; 473 474 /* 475 * various queue flags, see QUEUE_* below 476 */ 477 unsigned long queue_flags; 478 479 unsigned int rq_timeout; 480 481 unsigned int queue_depth; 482 483 refcount_t refs; 484 485 /* hw dispatch queues */ 486 unsigned int nr_hw_queues; 487 struct xarray hctx_table; 488 489 struct percpu_ref q_usage_counter; 490 struct lock_class_key io_lock_cls_key; 491 struct lockdep_map io_lockdep_map; 492 493 struct lock_class_key q_lock_cls_key; 494 struct lockdep_map q_lockdep_map; 495 496 struct request *last_merge; 497 498 spinlock_t queue_lock; 499 500 int quiesce_depth; 501 502 struct gendisk *disk; 503 504 /* 505 * mq queue kobject 506 */ 507 struct kobject *mq_kobj; 508 509 struct queue_limits limits; 510 511#ifdef CONFIG_PM 512 struct device *dev; 513 enum rpm_status rpm_status; 514#endif 515 516 /* 517 * Number of contexts that have called blk_set_pm_only(). If this 518 * counter is above zero then only RQF_PM requests are processed. 519 */ 520 atomic_t pm_only; 521 522 struct blk_queue_stats *stats; 523 struct rq_qos *rq_qos; 524 struct mutex rq_qos_mutex; 525 526 /* 527 * ida allocated id for this queue. Used to index queues from 528 * ioctx. 529 */ 530 int id; 531 532 /* 533 * queue settings 534 */ 535 unsigned long nr_requests; /* Max # of requests */ 536 537#ifdef CONFIG_BLK_INLINE_ENCRYPTION 538 struct blk_crypto_profile *crypto_profile; 539 struct kobject *crypto_kobject; 540#endif 541 542 struct timer_list timeout; 543 struct work_struct timeout_work; 544 545 atomic_t nr_active_requests_shared_tags; 546 547 struct blk_mq_tags *sched_shared_tags; 548 549 struct list_head icq_list; 550#ifdef CONFIG_BLK_CGROUP 551 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 552 struct blkcg_gq *root_blkg; 553 struct list_head blkg_list; 554 struct mutex blkcg_mutex; 555#endif 556 557 int node; 558 559 spinlock_t requeue_lock; 560 struct list_head requeue_list; 561 struct delayed_work requeue_work; 562 563#ifdef CONFIG_BLK_DEV_IO_TRACE 564 struct blk_trace __rcu *blk_trace; 565#endif 566 /* 567 * for flush operations 568 */ 569 struct blk_flush_queue *fq; 570 struct list_head flush_list; 571 572 /* 573 * Protects against I/O scheduler switching, particularly when updating 574 * q->elevator. Since the elevator update code path may also modify q-> 575 * nr_requests and wbt latency, this lock also protects the sysfs attrs 576 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update 577 * may modify hctx tags, reserved-tags and cpumask, so this lock also 578 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking 579 * order during an elevator or nr_hw_queue update, first freeze the 580 * queue, then acquire ->elevator_lock. 581 */ 582 struct mutex elevator_lock; 583 584 struct mutex sysfs_lock; 585 /* 586 * Protects queue limits and also sysfs attribute read_ahead_kb. 587 */ 588 struct mutex limits_lock; 589 590 /* 591 * for reusing dead hctx instance in case of updating 592 * nr_hw_queues 593 */ 594 struct list_head unused_hctx_list; 595 spinlock_t unused_hctx_lock; 596 597 int mq_freeze_depth; 598 599#ifdef CONFIG_BLK_DEV_THROTTLING 600 /* Throttle data */ 601 struct throtl_data *td; 602#endif 603 struct rcu_head rcu_head; 604#ifdef CONFIG_LOCKDEP 605 struct task_struct *mq_freeze_owner; 606 int mq_freeze_owner_depth; 607 /* 608 * Records disk & queue state in current context, used in unfreeze 609 * queue 610 */ 611 bool mq_freeze_disk_dead; 612 bool mq_freeze_queue_dying; 613#endif 614 wait_queue_head_t mq_freeze_wq; 615 /* 616 * Protect concurrent access to q_usage_counter by 617 * percpu_ref_kill() and percpu_ref_reinit(). 618 */ 619 struct mutex mq_freeze_lock; 620 621 struct blk_mq_tag_set *tag_set; 622 struct list_head tag_set_list; 623 624 struct dentry *debugfs_dir; 625 struct dentry *sched_debugfs_dir; 626 struct dentry *rqos_debugfs_dir; 627 /* 628 * Serializes all debugfs metadata operations using the above dentries. 629 */ 630 struct mutex debugfs_mutex; 631}; 632 633/* Keep blk_queue_flag_name[] in sync with the definitions below */ 634enum { 635 QUEUE_FLAG_DYING, /* queue being torn down */ 636 QUEUE_FLAG_NOMERGES, /* disable merge attempts */ 637 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */ 638 QUEUE_FLAG_FAIL_IO, /* fake timeout */ 639 QUEUE_FLAG_NOXMERGES, /* No extended merges */ 640 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */ 641 QUEUE_FLAG_INIT_DONE, /* queue is initialized */ 642 QUEUE_FLAG_STATS, /* track IO start and completion times */ 643 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */ 644 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */ 645 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */ 646 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */ 647 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */ 648 QUEUE_FLAG_DISABLE_WBT_DEF, /* for sched to disable/enable wbt */ 649 QUEUE_FLAG_NO_ELV_SWITCH, /* can't switch elevator any more */ 650 QUEUE_FLAG_MAX 651}; 652 653#define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP) 654 655void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 656void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 657 658#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 659#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 660#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 661#define blk_queue_noxmerges(q) \ 662 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 663#define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL)) 664#define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT) 665#define blk_queue_passthrough_stat(q) \ 666 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH) 667#define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX) 668#define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA) 669#ifdef CONFIG_BLK_RQ_ALLOC_TIME 670#define blk_queue_rq_alloc_time(q) \ 671 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 672#else 673#define blk_queue_rq_alloc_time(q) false 674#endif 675 676#define blk_noretry_request(rq) \ 677 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 678 REQ_FAILFAST_DRIVER)) 679#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 680#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 681#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 682#define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 683#define blk_queue_skip_tagset_quiesce(q) \ 684 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE) 685#define blk_queue_disable_wbt(q) \ 686 test_bit(QUEUE_FLAG_DISABLE_WBT_DEF, &(q)->queue_flags) 687#define blk_queue_no_elv_switch(q) \ 688 test_bit(QUEUE_FLAG_NO_ELV_SWITCH, &(q)->queue_flags) 689 690extern void blk_set_pm_only(struct request_queue *q); 691extern void blk_clear_pm_only(struct request_queue *q); 692 693#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 694 695#define dma_map_bvec(dev, bv, dir, attrs) \ 696 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 697 (dir), (attrs)) 698 699static inline bool queue_is_mq(struct request_queue *q) 700{ 701 return q->mq_ops; 702} 703 704#ifdef CONFIG_PM 705static inline enum rpm_status queue_rpm_status(struct request_queue *q) 706{ 707 return q->rpm_status; 708} 709#else 710static inline enum rpm_status queue_rpm_status(struct request_queue *q) 711{ 712 return RPM_ACTIVE; 713} 714#endif 715 716static inline bool blk_queue_is_zoned(struct request_queue *q) 717{ 718 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 719 (q->limits.features & BLK_FEAT_ZONED); 720} 721 722static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 723{ 724 if (!blk_queue_is_zoned(disk->queue)) 725 return 0; 726 return sector >> ilog2(disk->queue->limits.chunk_sectors); 727} 728 729static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 730{ 731 return bdev->bd_disk->queue->limits.max_open_zones; 732} 733 734static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 735{ 736 return bdev->bd_disk->queue->limits.max_active_zones; 737} 738 739static inline unsigned int blk_queue_depth(struct request_queue *q) 740{ 741 if (q->queue_depth) 742 return q->queue_depth; 743 744 return q->nr_requests; 745} 746 747/* 748 * default timeout for SG_IO if none specified 749 */ 750#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 751#define BLK_MIN_SG_TIMEOUT (7 * HZ) 752 753/* This should not be used directly - use rq_for_each_segment */ 754#define for_each_bio(_bio) \ 755 for (; _bio; _bio = _bio->bi_next) 756 757int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk, 758 const struct attribute_group **groups, 759 struct fwnode_handle *fwnode); 760int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 761 const struct attribute_group **groups); 762static inline int __must_check add_disk(struct gendisk *disk) 763{ 764 return device_add_disk(NULL, disk, NULL); 765} 766void del_gendisk(struct gendisk *gp); 767void invalidate_disk(struct gendisk *disk); 768void set_disk_ro(struct gendisk *disk, bool read_only); 769void disk_uevent(struct gendisk *disk, enum kobject_action action); 770 771static inline u8 bdev_partno(const struct block_device *bdev) 772{ 773 return atomic_read(&bdev->__bd_flags) & BD_PARTNO; 774} 775 776static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag) 777{ 778 return atomic_read(&bdev->__bd_flags) & flag; 779} 780 781static inline void bdev_set_flag(struct block_device *bdev, unsigned flag) 782{ 783 atomic_or(flag, &bdev->__bd_flags); 784} 785 786static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag) 787{ 788 atomic_andnot(flag, &bdev->__bd_flags); 789} 790 791static inline bool get_disk_ro(struct gendisk *disk) 792{ 793 return bdev_test_flag(disk->part0, BD_READ_ONLY) || 794 test_bit(GD_READ_ONLY, &disk->state); 795} 796 797static inline bool bdev_read_only(struct block_device *bdev) 798{ 799 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk); 800} 801 802bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 803void disk_force_media_change(struct gendisk *disk); 804void bdev_mark_dead(struct block_device *bdev, bool surprise); 805 806void add_disk_randomness(struct gendisk *disk) __latent_entropy; 807void rand_initialize_disk(struct gendisk *disk); 808 809static inline sector_t get_start_sect(struct block_device *bdev) 810{ 811 return bdev->bd_start_sect; 812} 813 814static inline sector_t bdev_nr_sectors(struct block_device *bdev) 815{ 816 return bdev->bd_nr_sectors; 817} 818 819static inline loff_t bdev_nr_bytes(struct block_device *bdev) 820{ 821 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 822} 823 824static inline sector_t get_capacity(struct gendisk *disk) 825{ 826 return bdev_nr_sectors(disk->part0); 827} 828 829static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 830{ 831 return bdev_nr_sectors(sb->s_bdev) >> 832 (sb->s_blocksize_bits - SECTOR_SHIFT); 833} 834 835#ifdef CONFIG_BLK_DEV_ZONED 836static inline unsigned int disk_nr_zones(struct gendisk *disk) 837{ 838 return disk->nr_zones; 839} 840bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs); 841 842/** 843 * disk_zone_capacity - returns the zone capacity of zone containing @sector 844 * @disk: disk to work with 845 * @sector: sector number within the querying zone 846 * 847 * Returns the zone capacity of a zone containing @sector. @sector can be any 848 * sector in the zone. 849 */ 850static inline unsigned int disk_zone_capacity(struct gendisk *disk, 851 sector_t sector) 852{ 853 sector_t zone_sectors = disk->queue->limits.chunk_sectors; 854 855 if (sector + zone_sectors >= get_capacity(disk)) 856 return disk->last_zone_capacity; 857 return disk->zone_capacity; 858} 859static inline unsigned int bdev_zone_capacity(struct block_device *bdev, 860 sector_t pos) 861{ 862 return disk_zone_capacity(bdev->bd_disk, pos); 863} 864#else /* CONFIG_BLK_DEV_ZONED */ 865static inline unsigned int disk_nr_zones(struct gendisk *disk) 866{ 867 return 0; 868} 869static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) 870{ 871 return false; 872} 873#endif /* CONFIG_BLK_DEV_ZONED */ 874 875static inline unsigned int bdev_nr_zones(struct block_device *bdev) 876{ 877 return disk_nr_zones(bdev->bd_disk); 878} 879 880int bdev_disk_changed(struct gendisk *disk, bool invalidate); 881 882void put_disk(struct gendisk *disk); 883struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node, 884 struct lock_class_key *lkclass); 885 886/** 887 * blk_alloc_disk - allocate a gendisk structure 888 * @lim: queue limits to be used for this disk. 889 * @node_id: numa node to allocate on 890 * 891 * Allocate and pre-initialize a gendisk structure for use with BIO based 892 * drivers. 893 * 894 * Returns an ERR_PTR on error, else the allocated disk. 895 * 896 * Context: can sleep 897 */ 898#define blk_alloc_disk(lim, node_id) \ 899({ \ 900 static struct lock_class_key __key; \ 901 \ 902 __blk_alloc_disk(lim, node_id, &__key); \ 903}) 904 905int __register_blkdev(unsigned int major, const char *name, 906 void (*probe)(dev_t devt)); 907#define register_blkdev(major, name) \ 908 __register_blkdev(major, name, NULL) 909void unregister_blkdev(unsigned int major, const char *name); 910 911bool disk_check_media_change(struct gendisk *disk); 912void set_capacity(struct gendisk *disk, sector_t size); 913 914#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 915int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 916void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 917#else 918static inline int bd_link_disk_holder(struct block_device *bdev, 919 struct gendisk *disk) 920{ 921 return 0; 922} 923static inline void bd_unlink_disk_holder(struct block_device *bdev, 924 struct gendisk *disk) 925{ 926} 927#endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 928 929dev_t part_devt(struct gendisk *disk, u8 partno); 930void inc_diskseq(struct gendisk *disk); 931void blk_request_module(dev_t devt); 932 933extern int blk_register_queue(struct gendisk *disk); 934extern void blk_unregister_queue(struct gendisk *disk); 935void submit_bio_noacct(struct bio *bio); 936struct bio *bio_split_to_limits(struct bio *bio); 937 938extern int blk_lld_busy(struct request_queue *q); 939extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 940extern void blk_queue_exit(struct request_queue *q); 941extern void blk_sync_queue(struct request_queue *q); 942 943/* Helper to convert REQ_OP_XXX to its string format XXX */ 944extern const char *blk_op_str(enum req_op op); 945 946int blk_status_to_errno(blk_status_t status); 947blk_status_t errno_to_blk_status(int errno); 948const char *blk_status_to_str(blk_status_t status); 949 950/* only poll the hardware once, don't continue until a completion was found */ 951#define BLK_POLL_ONESHOT (1 << 0) 952int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 953int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 954 unsigned int flags); 955 956static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 957{ 958 return bdev->bd_queue; /* this is never NULL */ 959} 960 961/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 962const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 963 964static inline unsigned int bio_zone_no(struct bio *bio) 965{ 966 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 967} 968 969static inline bool bio_straddles_zones(struct bio *bio) 970{ 971 return bio_sectors(bio) && 972 bio_zone_no(bio) != 973 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1); 974} 975 976/* 977 * Return how much within the boundary is left to be used for I/O at a given 978 * offset. 979 */ 980static inline unsigned int blk_boundary_sectors_left(sector_t offset, 981 unsigned int boundary_sectors) 982{ 983 if (unlikely(!is_power_of_2(boundary_sectors))) 984 return boundary_sectors - sector_div(offset, boundary_sectors); 985 return boundary_sectors - (offset & (boundary_sectors - 1)); 986} 987 988/** 989 * queue_limits_start_update - start an atomic update of queue limits 990 * @q: queue to update 991 * 992 * This functions starts an atomic update of the queue limits. It takes a lock 993 * to prevent other updates and returns a snapshot of the current limits that 994 * the caller can modify. The caller must call queue_limits_commit_update() 995 * to finish the update. 996 * 997 * Context: process context. 998 */ 999static inline struct queue_limits 1000queue_limits_start_update(struct request_queue *q) 1001{ 1002 mutex_lock(&q->limits_lock); 1003 return q->limits; 1004} 1005int queue_limits_commit_update_frozen(struct request_queue *q, 1006 struct queue_limits *lim); 1007int queue_limits_commit_update(struct request_queue *q, 1008 struct queue_limits *lim); 1009int queue_limits_set(struct request_queue *q, struct queue_limits *lim); 1010int blk_validate_limits(struct queue_limits *lim); 1011 1012/** 1013 * queue_limits_cancel_update - cancel an atomic update of queue limits 1014 * @q: queue to update 1015 * 1016 * This functions cancels an atomic update of the queue limits started by 1017 * queue_limits_start_update() and should be used when an error occurs after 1018 * starting update. 1019 */ 1020static inline void queue_limits_cancel_update(struct request_queue *q) 1021{ 1022 mutex_unlock(&q->limits_lock); 1023} 1024 1025/* 1026 * These helpers are for drivers that have sloppy feature negotiation and might 1027 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O 1028 * completion handler when the device returned an indicator that the respective 1029 * feature is not actually supported. They are racy and the driver needs to 1030 * cope with that. Try to avoid this scheme if you can. 1031 */ 1032static inline void blk_queue_disable_discard(struct request_queue *q) 1033{ 1034 q->limits.max_discard_sectors = 0; 1035} 1036 1037static inline void blk_queue_disable_secure_erase(struct request_queue *q) 1038{ 1039 q->limits.max_secure_erase_sectors = 0; 1040} 1041 1042static inline void blk_queue_disable_write_zeroes(struct request_queue *q) 1043{ 1044 q->limits.max_write_zeroes_sectors = 0; 1045} 1046 1047/* 1048 * Access functions for manipulating queue properties 1049 */ 1050extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1051extern void blk_set_stacking_limits(struct queue_limits *lim); 1052extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1053 sector_t offset); 1054void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 1055 sector_t offset, const char *pfx); 1056extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1057 1058struct blk_independent_access_ranges * 1059disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 1060void disk_set_independent_access_ranges(struct gendisk *disk, 1061 struct blk_independent_access_ranges *iars); 1062 1063bool __must_check blk_get_queue(struct request_queue *); 1064extern void blk_put_queue(struct request_queue *); 1065 1066void blk_mark_disk_dead(struct gendisk *disk); 1067 1068struct rq_list { 1069 struct request *head; 1070 struct request *tail; 1071}; 1072 1073#ifdef CONFIG_BLOCK 1074/* 1075 * blk_plug permits building a queue of related requests by holding the I/O 1076 * fragments for a short period. This allows merging of sequential requests 1077 * into single larger request. As the requests are moved from a per-task list to 1078 * the device's request_queue in a batch, this results in improved scalability 1079 * as the lock contention for request_queue lock is reduced. 1080 * 1081 * It is ok not to disable preemption when adding the request to the plug list 1082 * or when attempting a merge. For details, please see schedule() where 1083 * blk_flush_plug() is called. 1084 */ 1085struct blk_plug { 1086 struct rq_list mq_list; /* blk-mq requests */ 1087 1088 /* if ios_left is > 1, we can batch tag/rq allocations */ 1089 struct rq_list cached_rqs; 1090 u64 cur_ktime; 1091 unsigned short nr_ios; 1092 1093 unsigned short rq_count; 1094 1095 bool multiple_queues; 1096 bool has_elevator; 1097 1098 struct list_head cb_list; /* md requires an unplug callback */ 1099}; 1100 1101struct blk_plug_cb; 1102typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1103struct blk_plug_cb { 1104 struct list_head list; 1105 blk_plug_cb_fn callback; 1106 void *data; 1107}; 1108extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1109 void *data, int size); 1110extern void blk_start_plug(struct blk_plug *); 1111extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1112extern void blk_finish_plug(struct blk_plug *); 1113 1114void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1115static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1116{ 1117 if (plug) 1118 __blk_flush_plug(plug, async); 1119} 1120 1121/* 1122 * tsk == current here 1123 */ 1124static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1125{ 1126 struct blk_plug *plug = tsk->plug; 1127 1128 if (plug) 1129 plug->cur_ktime = 0; 1130 current->flags &= ~PF_BLOCK_TS; 1131} 1132 1133int blkdev_issue_flush(struct block_device *bdev); 1134long nr_blockdev_pages(void); 1135#else /* CONFIG_BLOCK */ 1136struct blk_plug { 1137}; 1138 1139static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1140 unsigned short nr_ios) 1141{ 1142} 1143 1144static inline void blk_start_plug(struct blk_plug *plug) 1145{ 1146} 1147 1148static inline void blk_finish_plug(struct blk_plug *plug) 1149{ 1150} 1151 1152static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1153{ 1154} 1155 1156static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1157{ 1158} 1159 1160static inline int blkdev_issue_flush(struct block_device *bdev) 1161{ 1162 return 0; 1163} 1164 1165static inline long nr_blockdev_pages(void) 1166{ 1167 return 0; 1168} 1169#endif /* CONFIG_BLOCK */ 1170 1171extern void blk_io_schedule(void); 1172 1173int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1174 sector_t nr_sects, gfp_t gfp_mask); 1175int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1176 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1177int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1178 sector_t nr_sects, gfp_t gfp); 1179 1180#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1181#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1182#define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */ 1183 1184extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1185 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1186 unsigned flags); 1187extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1188 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1189 1190static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1191 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1192{ 1193 return blkdev_issue_discard(sb->s_bdev, 1194 block << (sb->s_blocksize_bits - 1195 SECTOR_SHIFT), 1196 nr_blocks << (sb->s_blocksize_bits - 1197 SECTOR_SHIFT), 1198 gfp_mask); 1199} 1200static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1201 sector_t nr_blocks, gfp_t gfp_mask) 1202{ 1203 return blkdev_issue_zeroout(sb->s_bdev, 1204 block << (sb->s_blocksize_bits - 1205 SECTOR_SHIFT), 1206 nr_blocks << (sb->s_blocksize_bits - 1207 SECTOR_SHIFT), 1208 gfp_mask, 0); 1209} 1210 1211static inline bool bdev_is_partition(struct block_device *bdev) 1212{ 1213 return bdev_partno(bdev) != 0; 1214} 1215 1216enum blk_default_limits { 1217 BLK_MAX_SEGMENTS = 128, 1218 BLK_SAFE_MAX_SECTORS = 255, 1219 BLK_MAX_SEGMENT_SIZE = 65536, 1220 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1221}; 1222 1223/* 1224 * Default upper limit for the software max_sectors limit used for 1225 * regular file system I/O. This can be increased through sysfs. 1226 * 1227 * Not to be confused with the max_hw_sector limit that is entirely 1228 * controlled by the driver, usually based on hardware limits. 1229 */ 1230#define BLK_DEF_MAX_SECTORS_CAP 2560u 1231 1232static inline struct queue_limits *bdev_limits(struct block_device *bdev) 1233{ 1234 return &bdev_get_queue(bdev)->limits; 1235} 1236 1237static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1238{ 1239 return q->limits.seg_boundary_mask; 1240} 1241 1242static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1243{ 1244 return q->limits.virt_boundary_mask; 1245} 1246 1247static inline unsigned int queue_max_sectors(const struct request_queue *q) 1248{ 1249 return q->limits.max_sectors; 1250} 1251 1252static inline unsigned int queue_max_bytes(struct request_queue *q) 1253{ 1254 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1255} 1256 1257static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1258{ 1259 return q->limits.max_hw_sectors; 1260} 1261 1262static inline unsigned short queue_max_segments(const struct request_queue *q) 1263{ 1264 return q->limits.max_segments; 1265} 1266 1267static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1268{ 1269 return q->limits.max_discard_segments; 1270} 1271 1272static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1273{ 1274 return q->limits.max_segment_size; 1275} 1276 1277static inline bool queue_emulates_zone_append(struct request_queue *q) 1278{ 1279 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors; 1280} 1281 1282static inline bool bdev_emulates_zone_append(struct block_device *bdev) 1283{ 1284 return queue_emulates_zone_append(bdev_get_queue(bdev)); 1285} 1286 1287static inline unsigned int 1288bdev_max_zone_append_sectors(struct block_device *bdev) 1289{ 1290 return bdev_limits(bdev)->max_zone_append_sectors; 1291} 1292 1293static inline unsigned int bdev_max_segments(struct block_device *bdev) 1294{ 1295 return queue_max_segments(bdev_get_queue(bdev)); 1296} 1297 1298static inline unsigned short bdev_max_write_streams(struct block_device *bdev) 1299{ 1300 if (bdev_is_partition(bdev)) 1301 return 0; 1302 return bdev_limits(bdev)->max_write_streams; 1303} 1304 1305static inline unsigned queue_logical_block_size(const struct request_queue *q) 1306{ 1307 return q->limits.logical_block_size; 1308} 1309 1310static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1311{ 1312 return queue_logical_block_size(bdev_get_queue(bdev)); 1313} 1314 1315static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1316{ 1317 return q->limits.physical_block_size; 1318} 1319 1320static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1321{ 1322 return queue_physical_block_size(bdev_get_queue(bdev)); 1323} 1324 1325static inline unsigned int queue_io_min(const struct request_queue *q) 1326{ 1327 return q->limits.io_min; 1328} 1329 1330static inline unsigned int bdev_io_min(struct block_device *bdev) 1331{ 1332 return queue_io_min(bdev_get_queue(bdev)); 1333} 1334 1335static inline unsigned int queue_io_opt(const struct request_queue *q) 1336{ 1337 return q->limits.io_opt; 1338} 1339 1340static inline unsigned int bdev_io_opt(struct block_device *bdev) 1341{ 1342 return queue_io_opt(bdev_get_queue(bdev)); 1343} 1344 1345static inline unsigned int 1346queue_zone_write_granularity(const struct request_queue *q) 1347{ 1348 return q->limits.zone_write_granularity; 1349} 1350 1351static inline unsigned int 1352bdev_zone_write_granularity(struct block_device *bdev) 1353{ 1354 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1355} 1356 1357int bdev_alignment_offset(struct block_device *bdev); 1358unsigned int bdev_discard_alignment(struct block_device *bdev); 1359 1360static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1361{ 1362 return bdev_limits(bdev)->max_discard_sectors; 1363} 1364 1365static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1366{ 1367 return bdev_limits(bdev)->discard_granularity; 1368} 1369 1370static inline unsigned int 1371bdev_max_secure_erase_sectors(struct block_device *bdev) 1372{ 1373 return bdev_limits(bdev)->max_secure_erase_sectors; 1374} 1375 1376static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1377{ 1378 return bdev_limits(bdev)->max_write_zeroes_sectors; 1379} 1380 1381static inline bool bdev_nonrot(struct block_device *bdev) 1382{ 1383 return blk_queue_nonrot(bdev_get_queue(bdev)); 1384} 1385 1386static inline bool bdev_synchronous(struct block_device *bdev) 1387{ 1388 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS; 1389} 1390 1391static inline bool bdev_stable_writes(struct block_device *bdev) 1392{ 1393 struct request_queue *q = bdev_get_queue(bdev); 1394 1395 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1396 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE) 1397 return true; 1398 return q->limits.features & BLK_FEAT_STABLE_WRITES; 1399} 1400 1401static inline bool blk_queue_write_cache(struct request_queue *q) 1402{ 1403 return (q->limits.features & BLK_FEAT_WRITE_CACHE) && 1404 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED); 1405} 1406 1407static inline bool bdev_write_cache(struct block_device *bdev) 1408{ 1409 return blk_queue_write_cache(bdev_get_queue(bdev)); 1410} 1411 1412static inline bool bdev_fua(struct block_device *bdev) 1413{ 1414 return bdev_limits(bdev)->features & BLK_FEAT_FUA; 1415} 1416 1417static inline bool bdev_nowait(struct block_device *bdev) 1418{ 1419 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT; 1420} 1421 1422static inline bool bdev_is_zoned(struct block_device *bdev) 1423{ 1424 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1425} 1426 1427static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1428{ 1429 return disk_zone_no(bdev->bd_disk, sec); 1430} 1431 1432static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1433{ 1434 struct request_queue *q = bdev_get_queue(bdev); 1435 1436 if (!blk_queue_is_zoned(q)) 1437 return 0; 1438 return q->limits.chunk_sectors; 1439} 1440 1441static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1442 sector_t sector) 1443{ 1444 return sector & (bdev_zone_sectors(bdev) - 1); 1445} 1446 1447static inline sector_t bio_offset_from_zone_start(struct bio *bio) 1448{ 1449 return bdev_offset_from_zone_start(bio->bi_bdev, 1450 bio->bi_iter.bi_sector); 1451} 1452 1453static inline bool bdev_is_zone_start(struct block_device *bdev, 1454 sector_t sector) 1455{ 1456 return bdev_offset_from_zone_start(bdev, sector) == 0; 1457} 1458 1459/* Check whether @sector is a multiple of the zone size. */ 1460static inline bool bdev_is_zone_aligned(struct block_device *bdev, 1461 sector_t sector) 1462{ 1463 return bdev_is_zone_start(bdev, sector); 1464} 1465 1466/** 1467 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone 1468 * @bdev: block device to check 1469 * @sector: sector number 1470 * 1471 * Check if @sector on @bdev is contained in a sequential write required zone. 1472 */ 1473static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector) 1474{ 1475 bool is_seq = false; 1476 1477#if IS_ENABLED(CONFIG_BLK_DEV_ZONED) 1478 if (bdev_is_zoned(bdev)) { 1479 struct gendisk *disk = bdev->bd_disk; 1480 unsigned long *bitmap; 1481 1482 rcu_read_lock(); 1483 bitmap = rcu_dereference(disk->conv_zones_bitmap); 1484 is_seq = !bitmap || 1485 !test_bit(disk_zone_no(disk, sector), bitmap); 1486 rcu_read_unlock(); 1487 } 1488#endif 1489 1490 return is_seq; 1491} 1492 1493int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector, 1494 sector_t nr_sects, gfp_t gfp_mask); 1495 1496static inline unsigned int queue_dma_alignment(const struct request_queue *q) 1497{ 1498 return q->limits.dma_alignment; 1499} 1500 1501static inline unsigned int 1502queue_atomic_write_unit_max_bytes(const struct request_queue *q) 1503{ 1504 return q->limits.atomic_write_unit_max; 1505} 1506 1507static inline unsigned int 1508queue_atomic_write_unit_min_bytes(const struct request_queue *q) 1509{ 1510 return q->limits.atomic_write_unit_min; 1511} 1512 1513static inline unsigned int 1514queue_atomic_write_boundary_bytes(const struct request_queue *q) 1515{ 1516 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT; 1517} 1518 1519static inline unsigned int 1520queue_atomic_write_max_bytes(const struct request_queue *q) 1521{ 1522 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT; 1523} 1524 1525static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1526{ 1527 return queue_dma_alignment(bdev_get_queue(bdev)); 1528} 1529 1530static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1531 struct iov_iter *iter) 1532{ 1533 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1534 bdev_logical_block_size(bdev) - 1); 1535} 1536 1537static inline unsigned int 1538blk_lim_dma_alignment_and_pad(struct queue_limits *lim) 1539{ 1540 return lim->dma_alignment | lim->dma_pad_mask; 1541} 1542 1543static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr, 1544 unsigned int len) 1545{ 1546 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits); 1547 1548 return !(addr & alignment) && !(len & alignment); 1549} 1550 1551/* assumes size > 256 */ 1552static inline unsigned int blksize_bits(unsigned int size) 1553{ 1554 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1555} 1556 1557int kblockd_schedule_work(struct work_struct *work); 1558int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1559 1560#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1561 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1562#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1563 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1564 1565#ifdef CONFIG_BLK_INLINE_ENCRYPTION 1566 1567bool blk_crypto_register(struct blk_crypto_profile *profile, 1568 struct request_queue *q); 1569 1570#else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1571 1572static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1573 struct request_queue *q) 1574{ 1575 return true; 1576} 1577 1578#endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1579 1580enum blk_unique_id { 1581 /* these match the Designator Types specified in SPC */ 1582 BLK_UID_T10 = 1, 1583 BLK_UID_EUI64 = 2, 1584 BLK_UID_NAA = 3, 1585}; 1586 1587struct block_device_operations { 1588 void (*submit_bio)(struct bio *bio); 1589 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1590 unsigned int flags); 1591 int (*open)(struct gendisk *disk, blk_mode_t mode); 1592 void (*release)(struct gendisk *disk); 1593 int (*ioctl)(struct block_device *bdev, blk_mode_t mode, 1594 unsigned cmd, unsigned long arg); 1595 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode, 1596 unsigned cmd, unsigned long arg); 1597 unsigned int (*check_events) (struct gendisk *disk, 1598 unsigned int clearing); 1599 void (*unlock_native_capacity) (struct gendisk *); 1600 int (*getgeo)(struct block_device *, struct hd_geometry *); 1601 int (*set_read_only)(struct block_device *bdev, bool ro); 1602 void (*free_disk)(struct gendisk *disk); 1603 /* this callback is with swap_lock and sometimes page table lock held */ 1604 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1605 int (*report_zones)(struct gendisk *, sector_t sector, 1606 unsigned int nr_zones, report_zones_cb cb, void *data); 1607 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1608 /* returns the length of the identifier or a negative errno: */ 1609 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1610 enum blk_unique_id id_type); 1611 struct module *owner; 1612 const struct pr_ops *pr_ops; 1613 1614 /* 1615 * Special callback for probing GPT entry at a given sector. 1616 * Needed by Android devices, used by GPT scanner and MMC blk 1617 * driver. 1618 */ 1619 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1620}; 1621 1622#ifdef CONFIG_COMPAT 1623extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t, 1624 unsigned int, unsigned long); 1625#else 1626#define blkdev_compat_ptr_ioctl NULL 1627#endif 1628 1629static inline void blk_wake_io_task(struct task_struct *waiter) 1630{ 1631 /* 1632 * If we're polling, the task itself is doing the completions. For 1633 * that case, we don't need to signal a wakeup, it's enough to just 1634 * mark us as RUNNING. 1635 */ 1636 if (waiter == current) 1637 __set_current_state(TASK_RUNNING); 1638 else 1639 wake_up_process(waiter); 1640} 1641 1642unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1643 unsigned long start_time); 1644void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1645 unsigned int sectors, unsigned long start_time); 1646 1647unsigned long bio_start_io_acct(struct bio *bio); 1648void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1649 struct block_device *orig_bdev); 1650 1651/** 1652 * bio_end_io_acct - end I/O accounting for bio based drivers 1653 * @bio: bio to end account for 1654 * @start_time: start time returned by bio_start_io_acct() 1655 */ 1656static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1657{ 1658 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1659} 1660 1661int bdev_validate_blocksize(struct block_device *bdev, int block_size); 1662int set_blocksize(struct file *file, int size); 1663 1664int lookup_bdev(const char *pathname, dev_t *dev); 1665 1666void blkdev_show(struct seq_file *seqf, off_t offset); 1667 1668#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1669#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1670#ifdef CONFIG_BLOCK 1671#define BLKDEV_MAJOR_MAX 512 1672#else 1673#define BLKDEV_MAJOR_MAX 0 1674#endif 1675 1676struct blk_holder_ops { 1677 void (*mark_dead)(struct block_device *bdev, bool surprise); 1678 1679 /* 1680 * Sync the file system mounted on the block device. 1681 */ 1682 void (*sync)(struct block_device *bdev); 1683 1684 /* 1685 * Freeze the file system mounted on the block device. 1686 */ 1687 int (*freeze)(struct block_device *bdev); 1688 1689 /* 1690 * Thaw the file system mounted on the block device. 1691 */ 1692 int (*thaw)(struct block_device *bdev); 1693}; 1694 1695/* 1696 * For filesystems using @fs_holder_ops, the @holder argument passed to 1697 * helpers used to open and claim block devices via 1698 * bd_prepare_to_claim() must point to a superblock. 1699 */ 1700extern const struct blk_holder_ops fs_holder_ops; 1701 1702/* 1703 * Return the correct open flags for blkdev_get_by_* for super block flags 1704 * as stored in sb->s_flags. 1705 */ 1706#define sb_open_mode(flags) \ 1707 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \ 1708 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE)) 1709 1710struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder, 1711 const struct blk_holder_ops *hops); 1712struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode, 1713 void *holder, const struct blk_holder_ops *hops); 1714int bd_prepare_to_claim(struct block_device *bdev, void *holder, 1715 const struct blk_holder_ops *hops); 1716void bd_abort_claiming(struct block_device *bdev, void *holder); 1717 1718struct block_device *I_BDEV(struct inode *inode); 1719struct block_device *file_bdev(struct file *bdev_file); 1720bool disk_live(struct gendisk *disk); 1721unsigned int block_size(struct block_device *bdev); 1722 1723#ifdef CONFIG_BLOCK 1724void invalidate_bdev(struct block_device *bdev); 1725int sync_blockdev(struct block_device *bdev); 1726int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1727int sync_blockdev_nowait(struct block_device *bdev); 1728void sync_bdevs(bool wait); 1729void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask); 1730void printk_all_partitions(void); 1731int __init early_lookup_bdev(const char *pathname, dev_t *dev); 1732#else 1733static inline void invalidate_bdev(struct block_device *bdev) 1734{ 1735} 1736static inline int sync_blockdev(struct block_device *bdev) 1737{ 1738 return 0; 1739} 1740static inline int sync_blockdev_nowait(struct block_device *bdev) 1741{ 1742 return 0; 1743} 1744static inline void sync_bdevs(bool wait) 1745{ 1746} 1747static inline void bdev_statx(const struct path *path, struct kstat *stat, 1748 u32 request_mask) 1749{ 1750} 1751static inline void printk_all_partitions(void) 1752{ 1753} 1754static inline int early_lookup_bdev(const char *pathname, dev_t *dev) 1755{ 1756 return -EINVAL; 1757} 1758#endif /* CONFIG_BLOCK */ 1759 1760int bdev_freeze(struct block_device *bdev); 1761int bdev_thaw(struct block_device *bdev); 1762void bdev_fput(struct file *bdev_file); 1763 1764struct io_comp_batch { 1765 struct rq_list req_list; 1766 bool need_ts; 1767 void (*complete)(struct io_comp_batch *); 1768}; 1769 1770static inline bool blk_atomic_write_start_sect_aligned(sector_t sector, 1771 struct queue_limits *limits) 1772{ 1773 unsigned int alignment = max(limits->atomic_write_hw_unit_min, 1774 limits->atomic_write_hw_boundary); 1775 1776 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT); 1777} 1778 1779static inline bool bdev_can_atomic_write(struct block_device *bdev) 1780{ 1781 struct request_queue *bd_queue = bdev->bd_queue; 1782 struct queue_limits *limits = &bd_queue->limits; 1783 1784 if (!limits->atomic_write_unit_min) 1785 return false; 1786 1787 if (bdev_is_partition(bdev)) 1788 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect, 1789 limits); 1790 1791 return true; 1792} 1793 1794static inline unsigned int 1795bdev_atomic_write_unit_min_bytes(struct block_device *bdev) 1796{ 1797 if (!bdev_can_atomic_write(bdev)) 1798 return 0; 1799 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev)); 1800} 1801 1802static inline unsigned int 1803bdev_atomic_write_unit_max_bytes(struct block_device *bdev) 1804{ 1805 if (!bdev_can_atomic_write(bdev)) 1806 return 0; 1807 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev)); 1808} 1809 1810#define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1811 1812#endif /* _LINUX_BLKDEV_H */