Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2018, Google LLC.
4 */
5
6#ifndef SELFTEST_KVM_PROCESSOR_H
7#define SELFTEST_KVM_PROCESSOR_H
8
9#include <assert.h>
10#include <stdint.h>
11#include <syscall.h>
12
13#include <asm/msr-index.h>
14#include <asm/prctl.h>
15
16#include <linux/kvm_para.h>
17#include <linux/stringify.h>
18
19#include "kvm_util.h"
20#include "ucall_common.h"
21
22extern bool host_cpu_is_intel;
23extern bool host_cpu_is_amd;
24extern uint64_t guest_tsc_khz;
25
26#ifndef MAX_NR_CPUID_ENTRIES
27#define MAX_NR_CPUID_ENTRIES 100
28#endif
29
30#define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
31
32/* Forced emulation prefix, used to invoke the emulator unconditionally. */
33#define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34
35#define NMI_VECTOR 0x02
36
37#define X86_EFLAGS_FIXED (1u << 1)
38
39#define X86_CR4_VME (1ul << 0)
40#define X86_CR4_PVI (1ul << 1)
41#define X86_CR4_TSD (1ul << 2)
42#define X86_CR4_DE (1ul << 3)
43#define X86_CR4_PSE (1ul << 4)
44#define X86_CR4_PAE (1ul << 5)
45#define X86_CR4_MCE (1ul << 6)
46#define X86_CR4_PGE (1ul << 7)
47#define X86_CR4_PCE (1ul << 8)
48#define X86_CR4_OSFXSR (1ul << 9)
49#define X86_CR4_OSXMMEXCPT (1ul << 10)
50#define X86_CR4_UMIP (1ul << 11)
51#define X86_CR4_LA57 (1ul << 12)
52#define X86_CR4_VMXE (1ul << 13)
53#define X86_CR4_SMXE (1ul << 14)
54#define X86_CR4_FSGSBASE (1ul << 16)
55#define X86_CR4_PCIDE (1ul << 17)
56#define X86_CR4_OSXSAVE (1ul << 18)
57#define X86_CR4_SMEP (1ul << 20)
58#define X86_CR4_SMAP (1ul << 21)
59#define X86_CR4_PKE (1ul << 22)
60
61struct xstate_header {
62 u64 xstate_bv;
63 u64 xcomp_bv;
64 u64 reserved[6];
65} __attribute__((packed));
66
67struct xstate {
68 u8 i387[512];
69 struct xstate_header header;
70 u8 extended_state_area[0];
71} __attribute__ ((packed, aligned (64)));
72
73#define XFEATURE_MASK_FP BIT_ULL(0)
74#define XFEATURE_MASK_SSE BIT_ULL(1)
75#define XFEATURE_MASK_YMM BIT_ULL(2)
76#define XFEATURE_MASK_BNDREGS BIT_ULL(3)
77#define XFEATURE_MASK_BNDCSR BIT_ULL(4)
78#define XFEATURE_MASK_OPMASK BIT_ULL(5)
79#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
80#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
81#define XFEATURE_MASK_PT BIT_ULL(8)
82#define XFEATURE_MASK_PKRU BIT_ULL(9)
83#define XFEATURE_MASK_PASID BIT_ULL(10)
84#define XFEATURE_MASK_CET_USER BIT_ULL(11)
85#define XFEATURE_MASK_CET_KERNEL BIT_ULL(12)
86#define XFEATURE_MASK_LBR BIT_ULL(15)
87#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
88#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
89
90#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
91 XFEATURE_MASK_ZMM_Hi256 | \
92 XFEATURE_MASK_Hi16_ZMM)
93#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
94 XFEATURE_MASK_XTILE_CFG)
95
96/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
97enum cpuid_output_regs {
98 KVM_CPUID_EAX,
99 KVM_CPUID_EBX,
100 KVM_CPUID_ECX,
101 KVM_CPUID_EDX
102};
103
104/*
105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106 * passed by value with no overhead.
107 */
108struct kvm_x86_cpu_feature {
109 u32 function;
110 u16 index;
111 u8 reg;
112 u8 bit;
113};
114#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
115({ \
116 struct kvm_x86_cpu_feature feature = { \
117 .function = fn, \
118 .index = idx, \
119 .reg = KVM_CPUID_##gpr, \
120 .bit = __bit, \
121 }; \
122 \
123 kvm_static_assert((fn & 0xc0000000) == 0 || \
124 (fn & 0xc0000000) == 0x40000000 || \
125 (fn & 0xc0000000) == 0x80000000 || \
126 (fn & 0xc0000000) == 0xc0000000); \
127 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
128 feature; \
129})
130
131/*
132 * Basic Leafs, a.k.a. Intel defined
133 */
134#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166#define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181
182/*
183 * Extended Leafs, a.k.a. AMD defined
184 */
185#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186#define X86_FEATURE_PERFCTR_CORE KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 23)
187#define X86_FEATURE_PERFCTR_NB KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 24)
188#define X86_FEATURE_PERFCTR_LLC KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 28)
189#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
190#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
191#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
192#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
193#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
194#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
195#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
196#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
197#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
198#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
199#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
200#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
201#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
202#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
203#define X86_FEATURE_IDLE_HLT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 30)
204#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
205#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
206#define X86_FEATURE_PERFMON_V2 KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 0)
207#define X86_FEATURE_LBR_PMC_FREEZE KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 2)
208
209/*
210 * KVM defined paravirt features.
211 */
212#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
213#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
214#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
215#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
216#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
217#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
218#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
219#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
220/* Bit 8 apparently isn't used?!?! */
221#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
222#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
223#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
224#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
225#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
226#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
227#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
228#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
229#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
230
231/*
232 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
233 * value/property as opposed to a single-bit feature. Again, pack the info
234 * into a 64-bit value to pass by value with no overhead.
235 */
236struct kvm_x86_cpu_property {
237 u32 function;
238 u8 index;
239 u8 reg;
240 u8 lo_bit;
241 u8 hi_bit;
242};
243#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
244({ \
245 struct kvm_x86_cpu_property property = { \
246 .function = fn, \
247 .index = idx, \
248 .reg = KVM_CPUID_##gpr, \
249 .lo_bit = low_bit, \
250 .hi_bit = high_bit, \
251 }; \
252 \
253 kvm_static_assert(low_bit < high_bit); \
254 kvm_static_assert((fn & 0xc0000000) == 0 || \
255 (fn & 0xc0000000) == 0x40000000 || \
256 (fn & 0xc0000000) == 0x80000000 || \
257 (fn & 0xc0000000) == 0xc0000000); \
258 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
259 property; \
260})
261
262#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
263#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
264#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
265#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
266#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
267#define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
268#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
269#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
270#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
271
272#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
273#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
274#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
275#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
276
277#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
278#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
279#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
280#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
281#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
282#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
283#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
284#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
285
286#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
287
288#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
289#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
290#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
291#define X86_PROPERTY_GUEST_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
292#define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
293#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
294#define X86_PROPERTY_NR_PERFCTR_CORE KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 0, 3)
295#define X86_PROPERTY_NR_PERFCTR_NB KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 10, 15)
296
297#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
298
299/*
300 * Intel's architectural PMU events are bizarre. They have a "feature" bit
301 * that indicates the feature is _not_ supported, and a property that states
302 * the length of the bit mask of unsupported features. A feature is supported
303 * if the size of the bit mask is larger than the "unavailable" bit, and said
304 * bit is not set. Fixed counters also bizarre enumeration, but inverted from
305 * arch events for general purpose counters. Fixed counters are supported if a
306 * feature flag is set **OR** the total number of fixed counters is greater
307 * than index of the counter.
308 *
309 * Wrap the events for general purpose and fixed counters to simplify checking
310 * whether or not a given architectural event is supported.
311 */
312struct kvm_x86_pmu_feature {
313 struct kvm_x86_cpu_feature f;
314};
315#define KVM_X86_PMU_FEATURE(__reg, __bit) \
316({ \
317 struct kvm_x86_pmu_feature feature = { \
318 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \
319 }; \
320 \
321 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \
322 KVM_CPUID_##__reg == KVM_CPUID_ECX); \
323 feature; \
324})
325
326#define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0)
327#define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1)
328#define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2)
329#define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3)
330#define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4)
331#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5)
332#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6)
333#define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7)
334
335#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0)
336#define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1)
337#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2)
338#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3)
339
340static inline unsigned int x86_family(unsigned int eax)
341{
342 unsigned int x86;
343
344 x86 = (eax >> 8) & 0xf;
345
346 if (x86 == 0xf)
347 x86 += (eax >> 20) & 0xff;
348
349 return x86;
350}
351
352static inline unsigned int x86_model(unsigned int eax)
353{
354 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
355}
356
357/* Page table bitfield declarations */
358#define PTE_PRESENT_MASK BIT_ULL(0)
359#define PTE_WRITABLE_MASK BIT_ULL(1)
360#define PTE_USER_MASK BIT_ULL(2)
361#define PTE_ACCESSED_MASK BIT_ULL(5)
362#define PTE_DIRTY_MASK BIT_ULL(6)
363#define PTE_LARGE_MASK BIT_ULL(7)
364#define PTE_GLOBAL_MASK BIT_ULL(8)
365#define PTE_NX_MASK BIT_ULL(63)
366
367#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
368
369#define PAGE_SHIFT 12
370#define PAGE_SIZE (1ULL << PAGE_SHIFT)
371#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
372
373#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
374#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
375#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
376
377#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
378#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
379
380/* General Registers in 64-Bit Mode */
381struct gpr64_regs {
382 u64 rax;
383 u64 rcx;
384 u64 rdx;
385 u64 rbx;
386 u64 rsp;
387 u64 rbp;
388 u64 rsi;
389 u64 rdi;
390 u64 r8;
391 u64 r9;
392 u64 r10;
393 u64 r11;
394 u64 r12;
395 u64 r13;
396 u64 r14;
397 u64 r15;
398};
399
400struct desc64 {
401 uint16_t limit0;
402 uint16_t base0;
403 unsigned base1:8, type:4, s:1, dpl:2, p:1;
404 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
405 uint32_t base3;
406 uint32_t zero1;
407} __attribute__((packed));
408
409struct desc_ptr {
410 uint16_t size;
411 uint64_t address;
412} __attribute__((packed));
413
414struct kvm_x86_state {
415 struct kvm_xsave *xsave;
416 struct kvm_vcpu_events events;
417 struct kvm_mp_state mp_state;
418 struct kvm_regs regs;
419 struct kvm_xcrs xcrs;
420 struct kvm_sregs sregs;
421 struct kvm_debugregs debugregs;
422 union {
423 struct kvm_nested_state nested;
424 char nested_[16384];
425 };
426 struct kvm_msrs msrs;
427};
428
429static inline uint64_t get_desc64_base(const struct desc64 *desc)
430{
431 return ((uint64_t)desc->base3 << 32) |
432 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
433}
434
435static inline uint64_t rdtsc(void)
436{
437 uint32_t eax, edx;
438 uint64_t tsc_val;
439 /*
440 * The lfence is to wait (on Intel CPUs) until all previous
441 * instructions have been executed. If software requires RDTSC to be
442 * executed prior to execution of any subsequent instruction, it can
443 * execute LFENCE immediately after RDTSC
444 */
445 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
446 tsc_val = ((uint64_t)edx) << 32 | eax;
447 return tsc_val;
448}
449
450static inline uint64_t rdtscp(uint32_t *aux)
451{
452 uint32_t eax, edx;
453
454 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
455 return ((uint64_t)edx) << 32 | eax;
456}
457
458static inline uint64_t rdmsr(uint32_t msr)
459{
460 uint32_t a, d;
461
462 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
463
464 return a | ((uint64_t) d << 32);
465}
466
467static inline void wrmsr(uint32_t msr, uint64_t value)
468{
469 uint32_t a = value;
470 uint32_t d = value >> 32;
471
472 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
473}
474
475
476static inline uint16_t inw(uint16_t port)
477{
478 uint16_t tmp;
479
480 __asm__ __volatile__("in %%dx, %%ax"
481 : /* output */ "=a" (tmp)
482 : /* input */ "d" (port));
483
484 return tmp;
485}
486
487static inline uint16_t get_es(void)
488{
489 uint16_t es;
490
491 __asm__ __volatile__("mov %%es, %[es]"
492 : /* output */ [es]"=rm"(es));
493 return es;
494}
495
496static inline uint16_t get_cs(void)
497{
498 uint16_t cs;
499
500 __asm__ __volatile__("mov %%cs, %[cs]"
501 : /* output */ [cs]"=rm"(cs));
502 return cs;
503}
504
505static inline uint16_t get_ss(void)
506{
507 uint16_t ss;
508
509 __asm__ __volatile__("mov %%ss, %[ss]"
510 : /* output */ [ss]"=rm"(ss));
511 return ss;
512}
513
514static inline uint16_t get_ds(void)
515{
516 uint16_t ds;
517
518 __asm__ __volatile__("mov %%ds, %[ds]"
519 : /* output */ [ds]"=rm"(ds));
520 return ds;
521}
522
523static inline uint16_t get_fs(void)
524{
525 uint16_t fs;
526
527 __asm__ __volatile__("mov %%fs, %[fs]"
528 : /* output */ [fs]"=rm"(fs));
529 return fs;
530}
531
532static inline uint16_t get_gs(void)
533{
534 uint16_t gs;
535
536 __asm__ __volatile__("mov %%gs, %[gs]"
537 : /* output */ [gs]"=rm"(gs));
538 return gs;
539}
540
541static inline uint16_t get_tr(void)
542{
543 uint16_t tr;
544
545 __asm__ __volatile__("str %[tr]"
546 : /* output */ [tr]"=rm"(tr));
547 return tr;
548}
549
550static inline uint64_t get_cr0(void)
551{
552 uint64_t cr0;
553
554 __asm__ __volatile__("mov %%cr0, %[cr0]"
555 : /* output */ [cr0]"=r"(cr0));
556 return cr0;
557}
558
559static inline uint64_t get_cr3(void)
560{
561 uint64_t cr3;
562
563 __asm__ __volatile__("mov %%cr3, %[cr3]"
564 : /* output */ [cr3]"=r"(cr3));
565 return cr3;
566}
567
568static inline uint64_t get_cr4(void)
569{
570 uint64_t cr4;
571
572 __asm__ __volatile__("mov %%cr4, %[cr4]"
573 : /* output */ [cr4]"=r"(cr4));
574 return cr4;
575}
576
577static inline void set_cr4(uint64_t val)
578{
579 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
580}
581
582static inline void set_idt(const struct desc_ptr *idt_desc)
583{
584 __asm__ __volatile__("lidt %0"::"m"(*idt_desc));
585}
586
587static inline u64 xgetbv(u32 index)
588{
589 u32 eax, edx;
590
591 __asm__ __volatile__("xgetbv;"
592 : "=a" (eax), "=d" (edx)
593 : "c" (index));
594 return eax | ((u64)edx << 32);
595}
596
597static inline void xsetbv(u32 index, u64 value)
598{
599 u32 eax = value;
600 u32 edx = value >> 32;
601
602 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
603}
604
605static inline void wrpkru(u32 pkru)
606{
607 /* Note, ECX and EDX are architecturally required to be '0'. */
608 asm volatile(".byte 0x0f,0x01,0xef\n\t"
609 : : "a" (pkru), "c"(0), "d"(0));
610}
611
612static inline struct desc_ptr get_gdt(void)
613{
614 struct desc_ptr gdt;
615 __asm__ __volatile__("sgdt %[gdt]"
616 : /* output */ [gdt]"=m"(gdt));
617 return gdt;
618}
619
620static inline struct desc_ptr get_idt(void)
621{
622 struct desc_ptr idt;
623 __asm__ __volatile__("sidt %[idt]"
624 : /* output */ [idt]"=m"(idt));
625 return idt;
626}
627
628static inline void outl(uint16_t port, uint32_t value)
629{
630 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
631}
632
633static inline void __cpuid(uint32_t function, uint32_t index,
634 uint32_t *eax, uint32_t *ebx,
635 uint32_t *ecx, uint32_t *edx)
636{
637 *eax = function;
638 *ecx = index;
639
640 asm volatile("cpuid"
641 : "=a" (*eax),
642 "=b" (*ebx),
643 "=c" (*ecx),
644 "=d" (*edx)
645 : "0" (*eax), "2" (*ecx)
646 : "memory");
647}
648
649static inline void cpuid(uint32_t function,
650 uint32_t *eax, uint32_t *ebx,
651 uint32_t *ecx, uint32_t *edx)
652{
653 return __cpuid(function, 0, eax, ebx, ecx, edx);
654}
655
656static inline uint32_t this_cpu_fms(void)
657{
658 uint32_t eax, ebx, ecx, edx;
659
660 cpuid(1, &eax, &ebx, &ecx, &edx);
661 return eax;
662}
663
664static inline uint32_t this_cpu_family(void)
665{
666 return x86_family(this_cpu_fms());
667}
668
669static inline uint32_t this_cpu_model(void)
670{
671 return x86_model(this_cpu_fms());
672}
673
674static inline bool this_cpu_vendor_string_is(const char *vendor)
675{
676 const uint32_t *chunk = (const uint32_t *)vendor;
677 uint32_t eax, ebx, ecx, edx;
678
679 cpuid(0, &eax, &ebx, &ecx, &edx);
680 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
681}
682
683static inline bool this_cpu_is_intel(void)
684{
685 return this_cpu_vendor_string_is("GenuineIntel");
686}
687
688/*
689 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
690 */
691static inline bool this_cpu_is_amd(void)
692{
693 return this_cpu_vendor_string_is("AuthenticAMD");
694}
695
696static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
697 uint8_t reg, uint8_t lo, uint8_t hi)
698{
699 uint32_t gprs[4];
700
701 __cpuid(function, index,
702 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
703 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
704
705 return (gprs[reg] & GENMASK(hi, lo)) >> lo;
706}
707
708static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
709{
710 return __this_cpu_has(feature.function, feature.index,
711 feature.reg, feature.bit, feature.bit);
712}
713
714static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
715{
716 return __this_cpu_has(property.function, property.index,
717 property.reg, property.lo_bit, property.hi_bit);
718}
719
720static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
721{
722 uint32_t max_leaf;
723
724 switch (property.function & 0xc0000000) {
725 case 0:
726 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
727 break;
728 case 0x40000000:
729 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
730 break;
731 case 0x80000000:
732 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
733 break;
734 case 0xc0000000:
735 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
736 }
737 return max_leaf >= property.function;
738}
739
740static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
741{
742 uint32_t nr_bits;
743
744 if (feature.f.reg == KVM_CPUID_EBX) {
745 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
746 return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
747 }
748
749 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
750 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
751 return nr_bits > feature.f.bit || this_cpu_has(feature.f);
752}
753
754static __always_inline uint64_t this_cpu_supported_xcr0(void)
755{
756 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
757 return 0;
758
759 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
760 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
761}
762
763typedef u32 __attribute__((vector_size(16))) sse128_t;
764#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
765#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
766#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
767
768static inline void read_sse_reg(int reg, sse128_t *data)
769{
770 switch (reg) {
771 case 0:
772 asm("movdqa %%xmm0, %0" : "=m"(*data));
773 break;
774 case 1:
775 asm("movdqa %%xmm1, %0" : "=m"(*data));
776 break;
777 case 2:
778 asm("movdqa %%xmm2, %0" : "=m"(*data));
779 break;
780 case 3:
781 asm("movdqa %%xmm3, %0" : "=m"(*data));
782 break;
783 case 4:
784 asm("movdqa %%xmm4, %0" : "=m"(*data));
785 break;
786 case 5:
787 asm("movdqa %%xmm5, %0" : "=m"(*data));
788 break;
789 case 6:
790 asm("movdqa %%xmm6, %0" : "=m"(*data));
791 break;
792 case 7:
793 asm("movdqa %%xmm7, %0" : "=m"(*data));
794 break;
795 default:
796 BUG();
797 }
798}
799
800static inline void write_sse_reg(int reg, const sse128_t *data)
801{
802 switch (reg) {
803 case 0:
804 asm("movdqa %0, %%xmm0" : : "m"(*data));
805 break;
806 case 1:
807 asm("movdqa %0, %%xmm1" : : "m"(*data));
808 break;
809 case 2:
810 asm("movdqa %0, %%xmm2" : : "m"(*data));
811 break;
812 case 3:
813 asm("movdqa %0, %%xmm3" : : "m"(*data));
814 break;
815 case 4:
816 asm("movdqa %0, %%xmm4" : : "m"(*data));
817 break;
818 case 5:
819 asm("movdqa %0, %%xmm5" : : "m"(*data));
820 break;
821 case 6:
822 asm("movdqa %0, %%xmm6" : : "m"(*data));
823 break;
824 case 7:
825 asm("movdqa %0, %%xmm7" : : "m"(*data));
826 break;
827 default:
828 BUG();
829 }
830}
831
832static inline void cpu_relax(void)
833{
834 asm volatile("rep; nop" ::: "memory");
835}
836
837static inline void udelay(unsigned long usec)
838{
839 uint64_t start, now, cycles;
840
841 GUEST_ASSERT(guest_tsc_khz);
842 cycles = guest_tsc_khz / 1000 * usec;
843
844 /*
845 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
846 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
847 */
848 start = rdtsc();
849 do {
850 now = rdtsc();
851 } while (now - start < cycles);
852}
853
854#define ud2() \
855 __asm__ __volatile__( \
856 "ud2\n" \
857 )
858
859#define hlt() \
860 __asm__ __volatile__( \
861 "hlt\n" \
862 )
863
864struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
865void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
866void kvm_x86_state_cleanup(struct kvm_x86_state *state);
867
868const struct kvm_msr_list *kvm_get_msr_index_list(void);
869const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
870bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
871uint64_t kvm_get_feature_msr(uint64_t msr_index);
872
873static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
874 struct kvm_msrs *msrs)
875{
876 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
877
878 TEST_ASSERT(r == msrs->nmsrs,
879 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
880 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
881}
882static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
883{
884 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
885
886 TEST_ASSERT(r == msrs->nmsrs,
887 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
888 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
889}
890static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
891 struct kvm_debugregs *debugregs)
892{
893 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
894}
895static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
896 struct kvm_debugregs *debugregs)
897{
898 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
899}
900static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
901 struct kvm_xsave *xsave)
902{
903 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
904}
905static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
906 struct kvm_xsave *xsave)
907{
908 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
909}
910static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
911 struct kvm_xsave *xsave)
912{
913 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
914}
915static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
916 struct kvm_xcrs *xcrs)
917{
918 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
919}
920static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
921{
922 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
923}
924
925const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
926 uint32_t function, uint32_t index);
927const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
928
929static inline uint32_t kvm_cpu_fms(void)
930{
931 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
932}
933
934static inline uint32_t kvm_cpu_family(void)
935{
936 return x86_family(kvm_cpu_fms());
937}
938
939static inline uint32_t kvm_cpu_model(void)
940{
941 return x86_model(kvm_cpu_fms());
942}
943
944bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
945 struct kvm_x86_cpu_feature feature);
946
947static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
948{
949 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
950}
951
952uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
953 struct kvm_x86_cpu_property property);
954
955static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
956{
957 return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
958}
959
960static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
961{
962 uint32_t max_leaf;
963
964 switch (property.function & 0xc0000000) {
965 case 0:
966 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
967 break;
968 case 0x40000000:
969 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
970 break;
971 case 0x80000000:
972 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
973 break;
974 case 0xc0000000:
975 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
976 }
977 return max_leaf >= property.function;
978}
979
980static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
981{
982 uint32_t nr_bits;
983
984 if (feature.f.reg == KVM_CPUID_EBX) {
985 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
986 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
987 }
988
989 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
990 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
991 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
992}
993
994static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
995{
996 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
997 return 0;
998
999 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
1000 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
1001}
1002
1003static inline size_t kvm_cpuid2_size(int nr_entries)
1004{
1005 return sizeof(struct kvm_cpuid2) +
1006 sizeof(struct kvm_cpuid_entry2) * nr_entries;
1007}
1008
1009/*
1010 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
1011 * entries sized to hold @nr_entries. The caller is responsible for freeing
1012 * the struct.
1013 */
1014static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1015{
1016 struct kvm_cpuid2 *cpuid;
1017
1018 cpuid = malloc(kvm_cpuid2_size(nr_entries));
1019 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1020
1021 cpuid->nent = nr_entries;
1022
1023 return cpuid;
1024}
1025
1026void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1027
1028static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu)
1029{
1030 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1031}
1032
1033static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1034 uint32_t function,
1035 uint32_t index)
1036{
1037 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)");
1038
1039 vcpu_get_cpuid(vcpu);
1040
1041 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1042 function, index);
1043}
1044
1045static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1046 uint32_t function)
1047{
1048 return __vcpu_get_cpuid_entry(vcpu, function, 0);
1049}
1050
1051static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1052{
1053 int r;
1054
1055 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1056 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1057 if (r)
1058 return r;
1059
1060 /* On success, refresh the cache to pick up adjustments made by KVM. */
1061 vcpu_get_cpuid(vcpu);
1062 return 0;
1063}
1064
1065static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1066{
1067 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1068 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1069
1070 /* Refresh the cache to pick up adjustments made by KVM. */
1071 vcpu_get_cpuid(vcpu);
1072}
1073
1074void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1075 struct kvm_x86_cpu_property property,
1076 uint32_t value);
1077void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1078
1079void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1080
1081static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1082 struct kvm_x86_cpu_feature feature)
1083{
1084 struct kvm_cpuid_entry2 *entry;
1085
1086 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1087 return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1088}
1089
1090void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1091 struct kvm_x86_cpu_feature feature,
1092 bool set);
1093
1094static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1095 struct kvm_x86_cpu_feature feature)
1096{
1097 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1098
1099}
1100
1101static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1102 struct kvm_x86_cpu_feature feature)
1103{
1104 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1105}
1106
1107uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1108int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1109
1110/*
1111 * Assert on an MSR access(es) and pretty print the MSR name when possible.
1112 * Note, the caller provides the stringified name so that the name of macro is
1113 * printed, not the value the macro resolves to (due to macro expansion).
1114 */
1115#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
1116do { \
1117 if (__builtin_constant_p(msr)) { \
1118 TEST_ASSERT(cond, fmt, str, args); \
1119 } else if (!(cond)) { \
1120 char buf[16]; \
1121 \
1122 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
1123 TEST_ASSERT(cond, fmt, buf, args); \
1124 } \
1125} while (0)
1126
1127/*
1128 * Returns true if KVM should return the last written value when reading an MSR
1129 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1130 * is changing, etc. This is NOT an exhaustive list! The intent is to filter
1131 * out MSRs that are not durable _and_ that a selftest wants to write.
1132 */
1133static inline bool is_durable_msr(uint32_t msr)
1134{
1135 return msr != MSR_IA32_TSC;
1136}
1137
1138#define vcpu_set_msr(vcpu, msr, val) \
1139do { \
1140 uint64_t r, v = val; \
1141 \
1142 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
1143 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
1144 if (!is_durable_msr(msr)) \
1145 break; \
1146 r = vcpu_get_msr(vcpu, msr); \
1147 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1148} while (0)
1149
1150void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1151void kvm_init_vm_address_properties(struct kvm_vm *vm);
1152bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1153
1154struct ex_regs {
1155 uint64_t rax, rcx, rdx, rbx;
1156 uint64_t rbp, rsi, rdi;
1157 uint64_t r8, r9, r10, r11;
1158 uint64_t r12, r13, r14, r15;
1159 uint64_t vector;
1160 uint64_t error_code;
1161 uint64_t rip;
1162 uint64_t cs;
1163 uint64_t rflags;
1164};
1165
1166struct idt_entry {
1167 uint16_t offset0;
1168 uint16_t selector;
1169 uint16_t ist : 3;
1170 uint16_t : 5;
1171 uint16_t type : 4;
1172 uint16_t : 1;
1173 uint16_t dpl : 2;
1174 uint16_t p : 1;
1175 uint16_t offset1;
1176 uint32_t offset2; uint32_t reserved;
1177};
1178
1179void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1180 void (*handler)(struct ex_regs *));
1181
1182/* If a toddler were to say "abracadabra". */
1183#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1184
1185/*
1186 * KVM selftest exception fixup uses registers to coordinate with the exception
1187 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1188 * per-CPU data. Using only registers avoids having to map memory into the
1189 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1190 * for recursive faults when accessing memory in the handler. The downside to
1191 * using registers is that it restricts what registers can be used by the actual
1192 * instruction. But, selftests are 64-bit only, making register* pressure a
1193 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
1194 * by the callee, and except for r11 are not implicit parameters to any
1195 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
1196 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1197 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1198 *
1199 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1200 * is guaranteed to be non-zero on fault.
1201 *
1202 * REGISTER INPUTS:
1203 * r9 = MAGIC
1204 * r10 = RIP
1205 * r11 = new RIP on fault
1206 *
1207 * REGISTER OUTPUTS:
1208 * r9 = exception vector (non-zero)
1209 * r10 = error code
1210 */
1211#define __KVM_ASM_SAFE(insn, fep) \
1212 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
1213 "lea 1f(%%rip), %%r10\n\t" \
1214 "lea 2f(%%rip), %%r11\n\t" \
1215 fep "1: " insn "\n\t" \
1216 "xor %%r9, %%r9\n\t" \
1217 "2:\n\t" \
1218 "mov %%r9b, %[vector]\n\t" \
1219 "mov %%r10, %[error_code]\n\t"
1220
1221#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1222#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1223
1224#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
1225#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
1226
1227#define kvm_asm_safe(insn, inputs...) \
1228({ \
1229 uint64_t ign_error_code; \
1230 uint8_t vector; \
1231 \
1232 asm volatile(KVM_ASM_SAFE(insn) \
1233 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1234 : inputs \
1235 : KVM_ASM_SAFE_CLOBBERS); \
1236 vector; \
1237})
1238
1239#define kvm_asm_safe_ec(insn, error_code, inputs...) \
1240({ \
1241 uint8_t vector; \
1242 \
1243 asm volatile(KVM_ASM_SAFE(insn) \
1244 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1245 : inputs \
1246 : KVM_ASM_SAFE_CLOBBERS); \
1247 vector; \
1248})
1249
1250#define kvm_asm_safe_fep(insn, inputs...) \
1251({ \
1252 uint64_t ign_error_code; \
1253 uint8_t vector; \
1254 \
1255 asm volatile(KVM_ASM_SAFE_FEP(insn) \
1256 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1257 : inputs \
1258 : KVM_ASM_SAFE_CLOBBERS); \
1259 vector; \
1260})
1261
1262#define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \
1263({ \
1264 uint8_t vector; \
1265 \
1266 asm volatile(KVM_ASM_SAFE_FEP(insn) \
1267 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1268 : inputs \
1269 : KVM_ASM_SAFE_CLOBBERS); \
1270 vector; \
1271})
1272
1273#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1274static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \
1275{ \
1276 uint64_t error_code; \
1277 uint8_t vector; \
1278 uint32_t a, d; \
1279 \
1280 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \
1281 : "=a"(a), "=d"(d), \
1282 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1283 : "c"(idx) \
1284 : KVM_ASM_SAFE_CLOBBERS); \
1285 \
1286 *val = (uint64_t)a | ((uint64_t)d << 32); \
1287 return vector; \
1288}
1289
1290/*
1291 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1292 * use ECX as in input index, and EDX:EAX as a 64-bit output.
1293 */
1294#define BUILD_READ_U64_SAFE_HELPERS(insn) \
1295 BUILD_READ_U64_SAFE_HELPER(insn, , ) \
1296 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1297
1298BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1299BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1300BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1301
1302static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1303{
1304 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1305}
1306
1307static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1308{
1309 u32 eax = value;
1310 u32 edx = value >> 32;
1311
1312 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1313}
1314
1315bool kvm_is_tdp_enabled(void);
1316
1317static inline bool kvm_is_pmu_enabled(void)
1318{
1319 return get_kvm_param_bool("enable_pmu");
1320}
1321
1322static inline bool kvm_is_forced_emulation_enabled(void)
1323{
1324 return !!get_kvm_param_integer("force_emulation_prefix");
1325}
1326
1327uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1328 int *level);
1329uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1330
1331uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1332 uint64_t a3);
1333uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1334void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1335
1336static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1337 uint64_t size, uint64_t flags)
1338{
1339 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1340}
1341
1342static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1343 uint64_t flags)
1344{
1345 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1346
1347 GUEST_ASSERT(!ret);
1348}
1349
1350/*
1351 * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's
1352 * intended to be a wake event arrives *after* HLT is executed. Modern CPUs,
1353 * except for a few oddballs that KVM is unlikely to run on, block IRQs for one
1354 * instruction after STI, *if* RFLAGS.IF=0 before STI. Note, Intel CPUs may
1355 * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too.
1356 */
1357static inline void safe_halt(void)
1358{
1359 asm volatile("sti; hlt");
1360}
1361
1362/*
1363 * Enable interrupts and ensure that interrupts are evaluated upon return from
1364 * this function, i.e. execute a nop to consume the STi interrupt shadow.
1365 */
1366static inline void sti_nop(void)
1367{
1368 asm volatile ("sti; nop");
1369}
1370
1371/*
1372 * Enable interrupts for one instruction (nop), to allow the CPU to process all
1373 * interrupts that are already pending.
1374 */
1375static inline void sti_nop_cli(void)
1376{
1377 asm volatile ("sti; nop; cli");
1378}
1379
1380static inline void sti(void)
1381{
1382 asm volatile("sti");
1383}
1384
1385static inline void cli(void)
1386{
1387 asm volatile ("cli");
1388}
1389
1390void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1391
1392#define vm_xsave_require_permission(xfeature) \
1393 __vm_xsave_require_permission(xfeature, #xfeature)
1394
1395enum pg_level {
1396 PG_LEVEL_NONE,
1397 PG_LEVEL_4K,
1398 PG_LEVEL_2M,
1399 PG_LEVEL_1G,
1400 PG_LEVEL_512G,
1401 PG_LEVEL_NUM
1402};
1403
1404#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1405#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1406
1407#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1408#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1409#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1410
1411void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1412void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1413 uint64_t nr_bytes, int level);
1414
1415/*
1416 * Basic CPU control in CR0
1417 */
1418#define X86_CR0_PE (1UL<<0) /* Protection Enable */
1419#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
1420#define X86_CR0_EM (1UL<<2) /* Emulation */
1421#define X86_CR0_TS (1UL<<3) /* Task Switched */
1422#define X86_CR0_ET (1UL<<4) /* Extension Type */
1423#define X86_CR0_NE (1UL<<5) /* Numeric Error */
1424#define X86_CR0_WP (1UL<<16) /* Write Protect */
1425#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
1426#define X86_CR0_NW (1UL<<29) /* Not Write-through */
1427#define X86_CR0_CD (1UL<<30) /* Cache Disable */
1428#define X86_CR0_PG (1UL<<31) /* Paging */
1429
1430#define PFERR_PRESENT_BIT 0
1431#define PFERR_WRITE_BIT 1
1432#define PFERR_USER_BIT 2
1433#define PFERR_RSVD_BIT 3
1434#define PFERR_FETCH_BIT 4
1435#define PFERR_PK_BIT 5
1436#define PFERR_SGX_BIT 15
1437#define PFERR_GUEST_FINAL_BIT 32
1438#define PFERR_GUEST_PAGE_BIT 33
1439#define PFERR_IMPLICIT_ACCESS_BIT 48
1440
1441#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
1442#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
1443#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
1444#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
1445#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
1446#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
1447#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
1448#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
1449#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
1450#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1451
1452bool sys_clocksource_is_based_on_tsc(void);
1453
1454#endif /* SELFTEST_KVM_PROCESSOR_H */