Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42 * PERF_TYPE_HARDWARE: 0xEEEEEEEE000000AA
43 * AA: hardware event ID
44 * EEEEEEEE: PMU type ID
45 * PERF_TYPE_HW_CACHE: 0xEEEEEEEE00DDCCBB
46 * BB: hardware cache ID
47 * CC: hardware cache op ID
48 * DD: hardware cache op result ID
49 * EEEEEEEE: PMU type ID
50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51 */
52#define PERF_PMU_TYPE_SHIFT 32
53#define PERF_HW_EVENT_MASK 0xffffffff
54
55/*
56 * Generalized performance event event_id types, used by the
57 * attr.event_id parameter of the sys_perf_event_open()
58 * syscall:
59 */
60enum perf_hw_id {
61 /*
62 * Common hardware events, generalized by the kernel:
63 */
64 PERF_COUNT_HW_CPU_CYCLES = 0,
65 PERF_COUNT_HW_INSTRUCTIONS = 1,
66 PERF_COUNT_HW_CACHE_REFERENCES = 2,
67 PERF_COUNT_HW_CACHE_MISSES = 3,
68 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
69 PERF_COUNT_HW_BRANCH_MISSES = 5,
70 PERF_COUNT_HW_BUS_CYCLES = 6,
71 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
72 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
73 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
74
75 PERF_COUNT_HW_MAX, /* non-ABI */
76};
77
78/*
79 * Generalized hardware cache events:
80 *
81 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82 * { read, write, prefetch } x
83 * { accesses, misses }
84 */
85enum perf_hw_cache_id {
86 PERF_COUNT_HW_CACHE_L1D = 0,
87 PERF_COUNT_HW_CACHE_L1I = 1,
88 PERF_COUNT_HW_CACHE_LL = 2,
89 PERF_COUNT_HW_CACHE_DTLB = 3,
90 PERF_COUNT_HW_CACHE_ITLB = 4,
91 PERF_COUNT_HW_CACHE_BPU = 5,
92 PERF_COUNT_HW_CACHE_NODE = 6,
93
94 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
95};
96
97enum perf_hw_cache_op_id {
98 PERF_COUNT_HW_CACHE_OP_READ = 0,
99 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
100 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
101
102 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
103};
104
105enum perf_hw_cache_op_result_id {
106 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
107 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
108
109 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
110};
111
112/*
113 * Special "software" events provided by the kernel, even if the hardware
114 * does not support performance events. These events measure various
115 * physical and sw events of the kernel (and allow the profiling of them as
116 * well):
117 */
118enum perf_sw_ids {
119 PERF_COUNT_SW_CPU_CLOCK = 0,
120 PERF_COUNT_SW_TASK_CLOCK = 1,
121 PERF_COUNT_SW_PAGE_FAULTS = 2,
122 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
123 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
124 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
125 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
126 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
127 PERF_COUNT_SW_EMULATION_FAULTS = 8,
128 PERF_COUNT_SW_DUMMY = 9,
129 PERF_COUNT_SW_BPF_OUTPUT = 10,
130 PERF_COUNT_SW_CGROUP_SWITCHES = 11,
131
132 PERF_COUNT_SW_MAX, /* non-ABI */
133};
134
135/*
136 * Bits that can be set in attr.sample_type to request information
137 * in the overflow packets.
138 */
139enum perf_event_sample_format {
140 PERF_SAMPLE_IP = 1U << 0,
141 PERF_SAMPLE_TID = 1U << 1,
142 PERF_SAMPLE_TIME = 1U << 2,
143 PERF_SAMPLE_ADDR = 1U << 3,
144 PERF_SAMPLE_READ = 1U << 4,
145 PERF_SAMPLE_CALLCHAIN = 1U << 5,
146 PERF_SAMPLE_ID = 1U << 6,
147 PERF_SAMPLE_CPU = 1U << 7,
148 PERF_SAMPLE_PERIOD = 1U << 8,
149 PERF_SAMPLE_STREAM_ID = 1U << 9,
150 PERF_SAMPLE_RAW = 1U << 10,
151 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
152 PERF_SAMPLE_REGS_USER = 1U << 12,
153 PERF_SAMPLE_STACK_USER = 1U << 13,
154 PERF_SAMPLE_WEIGHT = 1U << 14,
155 PERF_SAMPLE_DATA_SRC = 1U << 15,
156 PERF_SAMPLE_IDENTIFIER = 1U << 16,
157 PERF_SAMPLE_TRANSACTION = 1U << 17,
158 PERF_SAMPLE_REGS_INTR = 1U << 18,
159 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
160 PERF_SAMPLE_AUX = 1U << 20,
161 PERF_SAMPLE_CGROUP = 1U << 21,
162 PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22,
163 PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23,
164 PERF_SAMPLE_WEIGHT_STRUCT = 1U << 24,
165
166 PERF_SAMPLE_MAX = 1U << 25, /* non-ABI */
167};
168
169#define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
170/*
171 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
172 *
173 * If the user does not pass priv level information via branch_sample_type,
174 * the kernel uses the event's priv level. Branch and event priv levels do
175 * not have to match. Branch priv level is checked for permissions.
176 *
177 * The branch types can be combined, however BRANCH_ANY covers all types
178 * of branches and therefore it supersedes all the other types.
179 */
180enum perf_branch_sample_type_shift {
181 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
182 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
183 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
184
185 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
186 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
187 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
188 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
189 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
190 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
191 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
192 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
193
194 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
195 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
196 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
197
198 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
199 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
200
201 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
202
203 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
204
205 PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT = 18, /* save privilege mode */
206
207 PERF_SAMPLE_BRANCH_COUNTERS_SHIFT = 19, /* save occurrences of events on a branch */
208
209 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
210};
211
212enum perf_branch_sample_type {
213 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
214 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
215 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
216
217 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
218 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
219 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
220 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
221 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
222 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
223 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
224 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
225
226 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
227 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
228 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
229
230 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
231 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
232
233 PERF_SAMPLE_BRANCH_TYPE_SAVE =
234 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
235
236 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
237
238 PERF_SAMPLE_BRANCH_PRIV_SAVE = 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT,
239
240 PERF_SAMPLE_BRANCH_COUNTERS = 1U << PERF_SAMPLE_BRANCH_COUNTERS_SHIFT,
241
242 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
243};
244
245/*
246 * Common flow change classification
247 */
248enum {
249 PERF_BR_UNKNOWN = 0, /* unknown */
250 PERF_BR_COND = 1, /* conditional */
251 PERF_BR_UNCOND = 2, /* unconditional */
252 PERF_BR_IND = 3, /* indirect */
253 PERF_BR_CALL = 4, /* function call */
254 PERF_BR_IND_CALL = 5, /* indirect function call */
255 PERF_BR_RET = 6, /* function return */
256 PERF_BR_SYSCALL = 7, /* syscall */
257 PERF_BR_SYSRET = 8, /* syscall return */
258 PERF_BR_COND_CALL = 9, /* conditional function call */
259 PERF_BR_COND_RET = 10, /* conditional function return */
260 PERF_BR_ERET = 11, /* exception return */
261 PERF_BR_IRQ = 12, /* irq */
262 PERF_BR_SERROR = 13, /* system error */
263 PERF_BR_NO_TX = 14, /* not in transaction */
264 PERF_BR_EXTEND_ABI = 15, /* extend ABI */
265 PERF_BR_MAX,
266};
267
268/*
269 * Common branch speculation outcome classification
270 */
271enum {
272 PERF_BR_SPEC_NA = 0, /* Not available */
273 PERF_BR_SPEC_WRONG_PATH = 1, /* Speculative but on wrong path */
274 PERF_BR_NON_SPEC_CORRECT_PATH = 2, /* Non-speculative but on correct path */
275 PERF_BR_SPEC_CORRECT_PATH = 3, /* Speculative and on correct path */
276 PERF_BR_SPEC_MAX,
277};
278
279enum {
280 PERF_BR_NEW_FAULT_ALGN = 0, /* Alignment fault */
281 PERF_BR_NEW_FAULT_DATA = 1, /* Data fault */
282 PERF_BR_NEW_FAULT_INST = 2, /* Inst fault */
283 PERF_BR_NEW_ARCH_1 = 3, /* Architecture specific */
284 PERF_BR_NEW_ARCH_2 = 4, /* Architecture specific */
285 PERF_BR_NEW_ARCH_3 = 5, /* Architecture specific */
286 PERF_BR_NEW_ARCH_4 = 6, /* Architecture specific */
287 PERF_BR_NEW_ARCH_5 = 7, /* Architecture specific */
288 PERF_BR_NEW_MAX,
289};
290
291enum {
292 PERF_BR_PRIV_UNKNOWN = 0,
293 PERF_BR_PRIV_USER = 1,
294 PERF_BR_PRIV_KERNEL = 2,
295 PERF_BR_PRIV_HV = 3,
296};
297
298#define PERF_BR_ARM64_FIQ PERF_BR_NEW_ARCH_1
299#define PERF_BR_ARM64_DEBUG_HALT PERF_BR_NEW_ARCH_2
300#define PERF_BR_ARM64_DEBUG_EXIT PERF_BR_NEW_ARCH_3
301#define PERF_BR_ARM64_DEBUG_INST PERF_BR_NEW_ARCH_4
302#define PERF_BR_ARM64_DEBUG_DATA PERF_BR_NEW_ARCH_5
303
304#define PERF_SAMPLE_BRANCH_PLM_ALL \
305 (PERF_SAMPLE_BRANCH_USER|\
306 PERF_SAMPLE_BRANCH_KERNEL|\
307 PERF_SAMPLE_BRANCH_HV)
308
309/*
310 * Values to determine ABI of the registers dump.
311 */
312enum perf_sample_regs_abi {
313 PERF_SAMPLE_REGS_ABI_NONE = 0,
314 PERF_SAMPLE_REGS_ABI_32 = 1,
315 PERF_SAMPLE_REGS_ABI_64 = 2,
316};
317
318/*
319 * Values for the memory transaction event qualifier, mostly for
320 * abort events. Multiple bits can be set.
321 */
322enum {
323 PERF_TXN_ELISION = (1 << 0), /* From elision */
324 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
325 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
326 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
327 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
328 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
329 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
330 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
331
332 PERF_TXN_MAX = (1 << 8), /* non-ABI */
333
334 /* bits 32..63 are reserved for the abort code */
335
336 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
337 PERF_TXN_ABORT_SHIFT = 32,
338};
339
340/*
341 * The format of the data returned by read() on a perf event fd,
342 * as specified by attr.read_format:
343 *
344 * struct read_format {
345 * { u64 value;
346 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
347 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
348 * { u64 id; } && PERF_FORMAT_ID
349 * { u64 lost; } && PERF_FORMAT_LOST
350 * } && !PERF_FORMAT_GROUP
351 *
352 * { u64 nr;
353 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
354 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
355 * { u64 value;
356 * { u64 id; } && PERF_FORMAT_ID
357 * { u64 lost; } && PERF_FORMAT_LOST
358 * } cntr[nr];
359 * } && PERF_FORMAT_GROUP
360 * };
361 */
362enum perf_event_read_format {
363 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
364 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
365 PERF_FORMAT_ID = 1U << 2,
366 PERF_FORMAT_GROUP = 1U << 3,
367 PERF_FORMAT_LOST = 1U << 4,
368
369 PERF_FORMAT_MAX = 1U << 5, /* non-ABI */
370};
371
372#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
373#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
374#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
375#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
376 /* add: sample_stack_user */
377#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
378#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
379#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
380#define PERF_ATTR_SIZE_VER7 128 /* add: sig_data */
381#define PERF_ATTR_SIZE_VER8 136 /* add: config3 */
382
383/*
384 * Hardware event_id to monitor via a performance monitoring event:
385 *
386 * @sample_max_stack: Max number of frame pointers in a callchain,
387 * should be < /proc/sys/kernel/perf_event_max_stack
388 * Max number of entries of branch stack
389 * should be < hardware limit
390 */
391struct perf_event_attr {
392
393 /*
394 * Major type: hardware/software/tracepoint/etc.
395 */
396 __u32 type;
397
398 /*
399 * Size of the attr structure, for fwd/bwd compat.
400 */
401 __u32 size;
402
403 /*
404 * Type specific configuration information.
405 */
406 __u64 config;
407
408 union {
409 __u64 sample_period;
410 __u64 sample_freq;
411 };
412
413 __u64 sample_type;
414 __u64 read_format;
415
416 __u64 disabled : 1, /* off by default */
417 inherit : 1, /* children inherit it */
418 pinned : 1, /* must always be on PMU */
419 exclusive : 1, /* only group on PMU */
420 exclude_user : 1, /* don't count user */
421 exclude_kernel : 1, /* ditto kernel */
422 exclude_hv : 1, /* ditto hypervisor */
423 exclude_idle : 1, /* don't count when idle */
424 mmap : 1, /* include mmap data */
425 comm : 1, /* include comm data */
426 freq : 1, /* use freq, not period */
427 inherit_stat : 1, /* per task counts */
428 enable_on_exec : 1, /* next exec enables */
429 task : 1, /* trace fork/exit */
430 watermark : 1, /* wakeup_watermark */
431 /*
432 * precise_ip:
433 *
434 * 0 - SAMPLE_IP can have arbitrary skid
435 * 1 - SAMPLE_IP must have constant skid
436 * 2 - SAMPLE_IP requested to have 0 skid
437 * 3 - SAMPLE_IP must have 0 skid
438 *
439 * See also PERF_RECORD_MISC_EXACT_IP
440 */
441 precise_ip : 2, /* skid constraint */
442 mmap_data : 1, /* non-exec mmap data */
443 sample_id_all : 1, /* sample_type all events */
444
445 exclude_host : 1, /* don't count in host */
446 exclude_guest : 1, /* don't count in guest */
447
448 exclude_callchain_kernel : 1, /* exclude kernel callchains */
449 exclude_callchain_user : 1, /* exclude user callchains */
450 mmap2 : 1, /* include mmap with inode data */
451 comm_exec : 1, /* flag comm events that are due to an exec */
452 use_clockid : 1, /* use @clockid for time fields */
453 context_switch : 1, /* context switch data */
454 write_backward : 1, /* Write ring buffer from end to beginning */
455 namespaces : 1, /* include namespaces data */
456 ksymbol : 1, /* include ksymbol events */
457 bpf_event : 1, /* include bpf events */
458 aux_output : 1, /* generate AUX records instead of events */
459 cgroup : 1, /* include cgroup events */
460 text_poke : 1, /* include text poke events */
461 build_id : 1, /* use build id in mmap2 events */
462 inherit_thread : 1, /* children only inherit if cloned with CLONE_THREAD */
463 remove_on_exec : 1, /* event is removed from task on exec */
464 sigtrap : 1, /* send synchronous SIGTRAP on event */
465 __reserved_1 : 26;
466
467 union {
468 __u32 wakeup_events; /* wakeup every n events */
469 __u32 wakeup_watermark; /* bytes before wakeup */
470 };
471
472 __u32 bp_type;
473 union {
474 __u64 bp_addr;
475 __u64 kprobe_func; /* for perf_kprobe */
476 __u64 uprobe_path; /* for perf_uprobe */
477 __u64 config1; /* extension of config */
478 };
479 union {
480 __u64 bp_len;
481 __u64 kprobe_addr; /* when kprobe_func == NULL */
482 __u64 probe_offset; /* for perf_[k,u]probe */
483 __u64 config2; /* extension of config1 */
484 };
485 __u64 branch_sample_type; /* enum perf_branch_sample_type */
486
487 /*
488 * Defines set of user regs to dump on samples.
489 * See asm/perf_regs.h for details.
490 */
491 __u64 sample_regs_user;
492
493 /*
494 * Defines size of the user stack to dump on samples.
495 */
496 __u32 sample_stack_user;
497
498 __s32 clockid;
499 /*
500 * Defines set of regs to dump for each sample
501 * state captured on:
502 * - precise = 0: PMU interrupt
503 * - precise > 0: sampled instruction
504 *
505 * See asm/perf_regs.h for details.
506 */
507 __u64 sample_regs_intr;
508
509 /*
510 * Wakeup watermark for AUX area
511 */
512 __u32 aux_watermark;
513 __u16 sample_max_stack;
514 __u16 __reserved_2;
515 __u32 aux_sample_size;
516
517 union {
518 __u32 aux_action;
519 struct {
520 __u32 aux_start_paused : 1, /* start AUX area tracing paused */
521 aux_pause : 1, /* on overflow, pause AUX area tracing */
522 aux_resume : 1, /* on overflow, resume AUX area tracing */
523 __reserved_3 : 29;
524 };
525 };
526
527 /*
528 * User provided data if sigtrap=1, passed back to user via
529 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
530 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
531 * truncated accordingly on 32 bit architectures.
532 */
533 __u64 sig_data;
534
535 __u64 config3; /* extension of config2 */
536};
537
538/*
539 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
540 * to query bpf programs attached to the same perf tracepoint
541 * as the given perf event.
542 */
543struct perf_event_query_bpf {
544 /*
545 * The below ids array length
546 */
547 __u32 ids_len;
548 /*
549 * Set by the kernel to indicate the number of
550 * available programs
551 */
552 __u32 prog_cnt;
553 /*
554 * User provided buffer to store program ids
555 */
556 __u32 ids[];
557};
558
559/*
560 * Ioctls that can be done on a perf event fd:
561 */
562#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
563#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
564#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
565#define PERF_EVENT_IOC_RESET _IO ('$', 3)
566#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
567#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
568#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
569#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
570#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
571#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
572#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
573#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
574
575enum perf_event_ioc_flags {
576 PERF_IOC_FLAG_GROUP = 1U << 0,
577};
578
579/*
580 * Structure of the page that can be mapped via mmap
581 */
582struct perf_event_mmap_page {
583 __u32 version; /* version number of this structure */
584 __u32 compat_version; /* lowest version this is compat with */
585
586 /*
587 * Bits needed to read the hw events in user-space.
588 *
589 * u32 seq, time_mult, time_shift, index, width;
590 * u64 count, enabled, running;
591 * u64 cyc, time_offset;
592 * s64 pmc = 0;
593 *
594 * do {
595 * seq = pc->lock;
596 * barrier()
597 *
598 * enabled = pc->time_enabled;
599 * running = pc->time_running;
600 *
601 * if (pc->cap_usr_time && enabled != running) {
602 * cyc = rdtsc();
603 * time_offset = pc->time_offset;
604 * time_mult = pc->time_mult;
605 * time_shift = pc->time_shift;
606 * }
607 *
608 * index = pc->index;
609 * count = pc->offset;
610 * if (pc->cap_user_rdpmc && index) {
611 * width = pc->pmc_width;
612 * pmc = rdpmc(index - 1);
613 * }
614 *
615 * barrier();
616 * } while (pc->lock != seq);
617 *
618 * NOTE: for obvious reason this only works on self-monitoring
619 * processes.
620 */
621 __u32 lock; /* seqlock for synchronization */
622 __u32 index; /* hardware event identifier */
623 __s64 offset; /* add to hardware event value */
624 __u64 time_enabled; /* time event active */
625 __u64 time_running; /* time event on cpu */
626 union {
627 __u64 capabilities;
628 struct {
629 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
630 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
631
632 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
633 cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */
634 cap_user_time_zero : 1, /* The time_zero field is used */
635 cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */
636 cap_____res : 58;
637 };
638 };
639
640 /*
641 * If cap_user_rdpmc this field provides the bit-width of the value
642 * read using the rdpmc() or equivalent instruction. This can be used
643 * to sign extend the result like:
644 *
645 * pmc <<= 64 - width;
646 * pmc >>= 64 - width; // signed shift right
647 * count += pmc;
648 */
649 __u16 pmc_width;
650
651 /*
652 * If cap_usr_time the below fields can be used to compute the time
653 * delta since time_enabled (in ns) using rdtsc or similar.
654 *
655 * u64 quot, rem;
656 * u64 delta;
657 *
658 * quot = (cyc >> time_shift);
659 * rem = cyc & (((u64)1 << time_shift) - 1);
660 * delta = time_offset + quot * time_mult +
661 * ((rem * time_mult) >> time_shift);
662 *
663 * Where time_offset,time_mult,time_shift and cyc are read in the
664 * seqcount loop described above. This delta can then be added to
665 * enabled and possible running (if index), improving the scaling:
666 *
667 * enabled += delta;
668 * if (index)
669 * running += delta;
670 *
671 * quot = count / running;
672 * rem = count % running;
673 * count = quot * enabled + (rem * enabled) / running;
674 */
675 __u16 time_shift;
676 __u32 time_mult;
677 __u64 time_offset;
678 /*
679 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
680 * from sample timestamps.
681 *
682 * time = timestamp - time_zero;
683 * quot = time / time_mult;
684 * rem = time % time_mult;
685 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
686 *
687 * And vice versa:
688 *
689 * quot = cyc >> time_shift;
690 * rem = cyc & (((u64)1 << time_shift) - 1);
691 * timestamp = time_zero + quot * time_mult +
692 * ((rem * time_mult) >> time_shift);
693 */
694 __u64 time_zero;
695
696 __u32 size; /* Header size up to __reserved[] fields. */
697 __u32 __reserved_1;
698
699 /*
700 * If cap_usr_time_short, the hardware clock is less than 64bit wide
701 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
702 *
703 * cyc = time_cycles + ((cyc - time_cycles) & time_mask)
704 *
705 * NOTE: this form is explicitly chosen such that cap_usr_time_short
706 * is a correction on top of cap_usr_time, and code that doesn't
707 * know about cap_usr_time_short still works under the assumption
708 * the counter doesn't wrap.
709 */
710 __u64 time_cycles;
711 __u64 time_mask;
712
713 /*
714 * Hole for extension of the self monitor capabilities
715 */
716
717 __u8 __reserved[116*8]; /* align to 1k. */
718
719 /*
720 * Control data for the mmap() data buffer.
721 *
722 * User-space reading the @data_head value should issue an smp_rmb(),
723 * after reading this value.
724 *
725 * When the mapping is PROT_WRITE the @data_tail value should be
726 * written by userspace to reflect the last read data, after issueing
727 * an smp_mb() to separate the data read from the ->data_tail store.
728 * In this case the kernel will not over-write unread data.
729 *
730 * See perf_output_put_handle() for the data ordering.
731 *
732 * data_{offset,size} indicate the location and size of the perf record
733 * buffer within the mmapped area.
734 */
735 __u64 data_head; /* head in the data section */
736 __u64 data_tail; /* user-space written tail */
737 __u64 data_offset; /* where the buffer starts */
738 __u64 data_size; /* data buffer size */
739
740 /*
741 * AUX area is defined by aux_{offset,size} fields that should be set
742 * by the userspace, so that
743 *
744 * aux_offset >= data_offset + data_size
745 *
746 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
747 *
748 * Ring buffer pointers aux_{head,tail} have the same semantics as
749 * data_{head,tail} and same ordering rules apply.
750 */
751 __u64 aux_head;
752 __u64 aux_tail;
753 __u64 aux_offset;
754 __u64 aux_size;
755};
756
757/*
758 * The current state of perf_event_header::misc bits usage:
759 * ('|' used bit, '-' unused bit)
760 *
761 * 012 CDEF
762 * |||---------||||
763 *
764 * Where:
765 * 0-2 CPUMODE_MASK
766 *
767 * C PROC_MAP_PARSE_TIMEOUT
768 * D MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
769 * E MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
770 * F (reserved)
771 */
772
773#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
774#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
775#define PERF_RECORD_MISC_KERNEL (1 << 0)
776#define PERF_RECORD_MISC_USER (2 << 0)
777#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
778#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
779#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
780
781/*
782 * Indicates that /proc/PID/maps parsing are truncated by time out.
783 */
784#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
785/*
786 * Following PERF_RECORD_MISC_* are used on different
787 * events, so can reuse the same bit position:
788 *
789 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
790 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
791 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
792 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
793 */
794#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
795#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
796#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
797#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
798/*
799 * These PERF_RECORD_MISC_* flags below are safely reused
800 * for the following events:
801 *
802 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
803 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
804 * PERF_RECORD_MISC_MMAP_BUILD_ID - PERF_RECORD_MMAP2 event
805 *
806 *
807 * PERF_RECORD_MISC_EXACT_IP:
808 * Indicates that the content of PERF_SAMPLE_IP points to
809 * the actual instruction that triggered the event. See also
810 * perf_event_attr::precise_ip.
811 *
812 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
813 * Indicates that thread was preempted in TASK_RUNNING state.
814 *
815 * PERF_RECORD_MISC_MMAP_BUILD_ID:
816 * Indicates that mmap2 event carries build id data.
817 */
818#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
819#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
820#define PERF_RECORD_MISC_MMAP_BUILD_ID (1 << 14)
821/*
822 * Reserve the last bit to indicate some extended misc field
823 */
824#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
825
826struct perf_event_header {
827 __u32 type;
828 __u16 misc;
829 __u16 size;
830};
831
832struct perf_ns_link_info {
833 __u64 dev;
834 __u64 ino;
835};
836
837enum {
838 NET_NS_INDEX = 0,
839 UTS_NS_INDEX = 1,
840 IPC_NS_INDEX = 2,
841 PID_NS_INDEX = 3,
842 USER_NS_INDEX = 4,
843 MNT_NS_INDEX = 5,
844 CGROUP_NS_INDEX = 6,
845
846 NR_NAMESPACES, /* number of available namespaces */
847};
848
849enum perf_event_type {
850
851 /*
852 * If perf_event_attr.sample_id_all is set then all event types will
853 * have the sample_type selected fields related to where/when
854 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
855 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
856 * just after the perf_event_header and the fields already present for
857 * the existing fields, i.e. at the end of the payload. That way a newer
858 * perf.data file will be supported by older perf tools, with these new
859 * optional fields being ignored.
860 *
861 * struct sample_id {
862 * { u32 pid, tid; } && PERF_SAMPLE_TID
863 * { u64 time; } && PERF_SAMPLE_TIME
864 * { u64 id; } && PERF_SAMPLE_ID
865 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
866 * { u32 cpu, res; } && PERF_SAMPLE_CPU
867 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
868 * } && perf_event_attr::sample_id_all
869 *
870 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
871 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
872 * relative to header.size.
873 */
874
875 /*
876 * The MMAP events record the PROT_EXEC mappings so that we can
877 * correlate userspace IPs to code. They have the following structure:
878 *
879 * struct {
880 * struct perf_event_header header;
881 *
882 * u32 pid, tid;
883 * u64 addr;
884 * u64 len;
885 * u64 pgoff;
886 * char filename[];
887 * struct sample_id sample_id;
888 * };
889 */
890 PERF_RECORD_MMAP = 1,
891
892 /*
893 * struct {
894 * struct perf_event_header header;
895 * u64 id;
896 * u64 lost;
897 * struct sample_id sample_id;
898 * };
899 */
900 PERF_RECORD_LOST = 2,
901
902 /*
903 * struct {
904 * struct perf_event_header header;
905 *
906 * u32 pid, tid;
907 * char comm[];
908 * struct sample_id sample_id;
909 * };
910 */
911 PERF_RECORD_COMM = 3,
912
913 /*
914 * struct {
915 * struct perf_event_header header;
916 * u32 pid, ppid;
917 * u32 tid, ptid;
918 * u64 time;
919 * struct sample_id sample_id;
920 * };
921 */
922 PERF_RECORD_EXIT = 4,
923
924 /*
925 * struct {
926 * struct perf_event_header header;
927 * u64 time;
928 * u64 id;
929 * u64 stream_id;
930 * struct sample_id sample_id;
931 * };
932 */
933 PERF_RECORD_THROTTLE = 5,
934 PERF_RECORD_UNTHROTTLE = 6,
935
936 /*
937 * struct {
938 * struct perf_event_header header;
939 * u32 pid, ppid;
940 * u32 tid, ptid;
941 * u64 time;
942 * struct sample_id sample_id;
943 * };
944 */
945 PERF_RECORD_FORK = 7,
946
947 /*
948 * struct {
949 * struct perf_event_header header;
950 * u32 pid, tid;
951 *
952 * struct read_format values;
953 * struct sample_id sample_id;
954 * };
955 */
956 PERF_RECORD_READ = 8,
957
958 /*
959 * struct {
960 * struct perf_event_header header;
961 *
962 * #
963 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
964 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
965 * # is fixed relative to header.
966 * #
967 *
968 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
969 * { u64 ip; } && PERF_SAMPLE_IP
970 * { u32 pid, tid; } && PERF_SAMPLE_TID
971 * { u64 time; } && PERF_SAMPLE_TIME
972 * { u64 addr; } && PERF_SAMPLE_ADDR
973 * { u64 id; } && PERF_SAMPLE_ID
974 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
975 * { u32 cpu, res; } && PERF_SAMPLE_CPU
976 * { u64 period; } && PERF_SAMPLE_PERIOD
977 *
978 * { struct read_format values; } && PERF_SAMPLE_READ
979 *
980 * { u64 nr,
981 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
982 *
983 * #
984 * # The RAW record below is opaque data wrt the ABI
985 * #
986 * # That is, the ABI doesn't make any promises wrt to
987 * # the stability of its content, it may vary depending
988 * # on event, hardware, kernel version and phase of
989 * # the moon.
990 * #
991 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
992 * #
993 *
994 * { u32 size;
995 * char data[size];}&& PERF_SAMPLE_RAW
996 *
997 * { u64 nr;
998 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
999 * { u64 from, to, flags } lbr[nr];
1000 * #
1001 * # The format of the counters is decided by the
1002 * # "branch_counter_nr" and "branch_counter_width",
1003 * # which are defined in the ABI.
1004 * #
1005 * { u64 counters; } cntr[nr] && PERF_SAMPLE_BRANCH_COUNTERS
1006 * } && PERF_SAMPLE_BRANCH_STACK
1007 *
1008 * { u64 abi; # enum perf_sample_regs_abi
1009 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
1010 *
1011 * { u64 size;
1012 * char data[size];
1013 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
1014 *
1015 * { union perf_sample_weight
1016 * {
1017 * u64 full; && PERF_SAMPLE_WEIGHT
1018 * #if defined(__LITTLE_ENDIAN_BITFIELD)
1019 * struct {
1020 * u32 var1_dw;
1021 * u16 var2_w;
1022 * u16 var3_w;
1023 * } && PERF_SAMPLE_WEIGHT_STRUCT
1024 * #elif defined(__BIG_ENDIAN_BITFIELD)
1025 * struct {
1026 * u16 var3_w;
1027 * u16 var2_w;
1028 * u32 var1_dw;
1029 * } && PERF_SAMPLE_WEIGHT_STRUCT
1030 * #endif
1031 * }
1032 * }
1033 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
1034 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
1035 * { u64 abi; # enum perf_sample_regs_abi
1036 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
1037 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
1038 * { u64 size;
1039 * char data[size]; } && PERF_SAMPLE_AUX
1040 * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
1041 * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
1042 * };
1043 */
1044 PERF_RECORD_SAMPLE = 9,
1045
1046 /*
1047 * The MMAP2 records are an augmented version of MMAP, they add
1048 * maj, min, ino numbers to be used to uniquely identify each mapping
1049 *
1050 * struct {
1051 * struct perf_event_header header;
1052 *
1053 * u32 pid, tid;
1054 * u64 addr;
1055 * u64 len;
1056 * u64 pgoff;
1057 * union {
1058 * struct {
1059 * u32 maj;
1060 * u32 min;
1061 * u64 ino;
1062 * u64 ino_generation;
1063 * };
1064 * struct {
1065 * u8 build_id_size;
1066 * u8 __reserved_1;
1067 * u16 __reserved_2;
1068 * u8 build_id[20];
1069 * };
1070 * };
1071 * u32 prot, flags;
1072 * char filename[];
1073 * struct sample_id sample_id;
1074 * };
1075 */
1076 PERF_RECORD_MMAP2 = 10,
1077
1078 /*
1079 * Records that new data landed in the AUX buffer part.
1080 *
1081 * struct {
1082 * struct perf_event_header header;
1083 *
1084 * u64 aux_offset;
1085 * u64 aux_size;
1086 * u64 flags;
1087 * struct sample_id sample_id;
1088 * };
1089 */
1090 PERF_RECORD_AUX = 11,
1091
1092 /*
1093 * Indicates that instruction trace has started
1094 *
1095 * struct {
1096 * struct perf_event_header header;
1097 * u32 pid;
1098 * u32 tid;
1099 * struct sample_id sample_id;
1100 * };
1101 */
1102 PERF_RECORD_ITRACE_START = 12,
1103
1104 /*
1105 * Records the dropped/lost sample number.
1106 *
1107 * struct {
1108 * struct perf_event_header header;
1109 *
1110 * u64 lost;
1111 * struct sample_id sample_id;
1112 * };
1113 */
1114 PERF_RECORD_LOST_SAMPLES = 13,
1115
1116 /*
1117 * Records a context switch in or out (flagged by
1118 * PERF_RECORD_MISC_SWITCH_OUT). See also
1119 * PERF_RECORD_SWITCH_CPU_WIDE.
1120 *
1121 * struct {
1122 * struct perf_event_header header;
1123 * struct sample_id sample_id;
1124 * };
1125 */
1126 PERF_RECORD_SWITCH = 14,
1127
1128 /*
1129 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1130 * next_prev_tid that are the next (switching out) or previous
1131 * (switching in) pid/tid.
1132 *
1133 * struct {
1134 * struct perf_event_header header;
1135 * u32 next_prev_pid;
1136 * u32 next_prev_tid;
1137 * struct sample_id sample_id;
1138 * };
1139 */
1140 PERF_RECORD_SWITCH_CPU_WIDE = 15,
1141
1142 /*
1143 * struct {
1144 * struct perf_event_header header;
1145 * u32 pid;
1146 * u32 tid;
1147 * u64 nr_namespaces;
1148 * { u64 dev, inode; } [nr_namespaces];
1149 * struct sample_id sample_id;
1150 * };
1151 */
1152 PERF_RECORD_NAMESPACES = 16,
1153
1154 /*
1155 * Record ksymbol register/unregister events:
1156 *
1157 * struct {
1158 * struct perf_event_header header;
1159 * u64 addr;
1160 * u32 len;
1161 * u16 ksym_type;
1162 * u16 flags;
1163 * char name[];
1164 * struct sample_id sample_id;
1165 * };
1166 */
1167 PERF_RECORD_KSYMBOL = 17,
1168
1169 /*
1170 * Record bpf events:
1171 * enum perf_bpf_event_type {
1172 * PERF_BPF_EVENT_UNKNOWN = 0,
1173 * PERF_BPF_EVENT_PROG_LOAD = 1,
1174 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1175 * };
1176 *
1177 * struct {
1178 * struct perf_event_header header;
1179 * u16 type;
1180 * u16 flags;
1181 * u32 id;
1182 * u8 tag[BPF_TAG_SIZE];
1183 * struct sample_id sample_id;
1184 * };
1185 */
1186 PERF_RECORD_BPF_EVENT = 18,
1187
1188 /*
1189 * struct {
1190 * struct perf_event_header header;
1191 * u64 id;
1192 * char path[];
1193 * struct sample_id sample_id;
1194 * };
1195 */
1196 PERF_RECORD_CGROUP = 19,
1197
1198 /*
1199 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1200 * the number of old bytes, 'new_len' is the number of new bytes. Either
1201 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1202 * addition or removal of a trampoline. 'bytes' contains the old bytes
1203 * followed immediately by the new bytes.
1204 *
1205 * struct {
1206 * struct perf_event_header header;
1207 * u64 addr;
1208 * u16 old_len;
1209 * u16 new_len;
1210 * u8 bytes[];
1211 * struct sample_id sample_id;
1212 * };
1213 */
1214 PERF_RECORD_TEXT_POKE = 20,
1215
1216 /*
1217 * Data written to the AUX area by hardware due to aux_output, may need
1218 * to be matched to the event by an architecture-specific hardware ID.
1219 * This records the hardware ID, but requires sample_id to provide the
1220 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1221 * records from multiple events.
1222 *
1223 * struct {
1224 * struct perf_event_header header;
1225 * u64 hw_id;
1226 * struct sample_id sample_id;
1227 * };
1228 */
1229 PERF_RECORD_AUX_OUTPUT_HW_ID = 21,
1230
1231 PERF_RECORD_MAX, /* non-ABI */
1232};
1233
1234enum perf_record_ksymbol_type {
1235 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1236 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1237 /*
1238 * Out of line code such as kprobe-replaced instructions or optimized
1239 * kprobes or ftrace trampolines.
1240 */
1241 PERF_RECORD_KSYMBOL_TYPE_OOL = 2,
1242 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1243};
1244
1245#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1246
1247enum perf_bpf_event_type {
1248 PERF_BPF_EVENT_UNKNOWN = 0,
1249 PERF_BPF_EVENT_PROG_LOAD = 1,
1250 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1251 PERF_BPF_EVENT_MAX, /* non-ABI */
1252};
1253
1254#define PERF_MAX_STACK_DEPTH 127
1255#define PERF_MAX_CONTEXTS_PER_STACK 8
1256
1257enum perf_callchain_context {
1258 PERF_CONTEXT_HV = (__u64)-32,
1259 PERF_CONTEXT_KERNEL = (__u64)-128,
1260 PERF_CONTEXT_USER = (__u64)-512,
1261
1262 PERF_CONTEXT_GUEST = (__u64)-2048,
1263 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1264 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1265
1266 PERF_CONTEXT_MAX = (__u64)-4095,
1267};
1268
1269/**
1270 * PERF_RECORD_AUX::flags bits
1271 */
1272#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1273#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1274#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1275#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1276#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK 0xff00 /* PMU specific trace format type */
1277
1278/* CoreSight PMU AUX buffer formats */
1279#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT 0x0000 /* Default for backward compatibility */
1280#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW 0x0100 /* Raw format of the source */
1281
1282#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1283#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1284#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1285#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1286
1287#if defined(__LITTLE_ENDIAN_BITFIELD)
1288union perf_mem_data_src {
1289 __u64 val;
1290 struct {
1291 __u64 mem_op:5, /* type of opcode */
1292 mem_lvl:14, /* memory hierarchy level */
1293 mem_snoop:5, /* snoop mode */
1294 mem_lock:2, /* lock instr */
1295 mem_dtlb:7, /* tlb access */
1296 mem_lvl_num:4, /* memory hierarchy level number */
1297 mem_remote:1, /* remote */
1298 mem_snoopx:2, /* snoop mode, ext */
1299 mem_blk:3, /* access blocked */
1300 mem_hops:3, /* hop level */
1301 mem_rsvd:18;
1302 };
1303};
1304#elif defined(__BIG_ENDIAN_BITFIELD)
1305union perf_mem_data_src {
1306 __u64 val;
1307 struct {
1308 __u64 mem_rsvd:18,
1309 mem_hops:3, /* hop level */
1310 mem_blk:3, /* access blocked */
1311 mem_snoopx:2, /* snoop mode, ext */
1312 mem_remote:1, /* remote */
1313 mem_lvl_num:4, /* memory hierarchy level number */
1314 mem_dtlb:7, /* tlb access */
1315 mem_lock:2, /* lock instr */
1316 mem_snoop:5, /* snoop mode */
1317 mem_lvl:14, /* memory hierarchy level */
1318 mem_op:5; /* type of opcode */
1319 };
1320};
1321#else
1322#error "Unknown endianness"
1323#endif
1324
1325/* type of opcode (load/store/prefetch,code) */
1326#define PERF_MEM_OP_NA 0x01 /* not available */
1327#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1328#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1329#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1330#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1331#define PERF_MEM_OP_SHIFT 0
1332
1333/*
1334 * PERF_MEM_LVL_* namespace being depricated to some extent in the
1335 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1336 * Supporting this namespace inorder to not break defined ABIs.
1337 *
1338 * memory hierarchy (memory level, hit or miss)
1339 */
1340#define PERF_MEM_LVL_NA 0x01 /* not available */
1341#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1342#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1343#define PERF_MEM_LVL_L1 0x08 /* L1 */
1344#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1345#define PERF_MEM_LVL_L2 0x20 /* L2 */
1346#define PERF_MEM_LVL_L3 0x40 /* L3 */
1347#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1348#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1349#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1350#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1351#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1352#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1353#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1354#define PERF_MEM_LVL_SHIFT 5
1355
1356#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1357#define PERF_MEM_REMOTE_SHIFT 37
1358
1359#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1360#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1361#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1362#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1363#define PERF_MEM_LVLNUM_L2_MHB 0x05 /* L2 Miss Handling Buffer */
1364#define PERF_MEM_LVLNUM_MSC 0x06 /* Memory-side Cache */
1365/* 0x7 available */
1366#define PERF_MEM_LVLNUM_UNC 0x08 /* Uncached */
1367#define PERF_MEM_LVLNUM_CXL 0x09 /* CXL */
1368#define PERF_MEM_LVLNUM_IO 0x0a /* I/O */
1369#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1370#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB / L1 Miss Handling Buffer */
1371#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1372#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1373#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1374
1375#define PERF_MEM_LVLNUM_SHIFT 33
1376
1377/* snoop mode */
1378#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1379#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1380#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1381#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1382#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1383#define PERF_MEM_SNOOP_SHIFT 19
1384
1385#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1386#define PERF_MEM_SNOOPX_PEER 0x02 /* xfer from peer */
1387#define PERF_MEM_SNOOPX_SHIFT 38
1388
1389/* locked instruction */
1390#define PERF_MEM_LOCK_NA 0x01 /* not available */
1391#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1392#define PERF_MEM_LOCK_SHIFT 24
1393
1394/* TLB access */
1395#define PERF_MEM_TLB_NA 0x01 /* not available */
1396#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1397#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1398#define PERF_MEM_TLB_L1 0x08 /* L1 */
1399#define PERF_MEM_TLB_L2 0x10 /* L2 */
1400#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1401#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1402#define PERF_MEM_TLB_SHIFT 26
1403
1404/* Access blocked */
1405#define PERF_MEM_BLK_NA 0x01 /* not available */
1406#define PERF_MEM_BLK_DATA 0x02 /* data could not be forwarded */
1407#define PERF_MEM_BLK_ADDR 0x04 /* address conflict */
1408#define PERF_MEM_BLK_SHIFT 40
1409
1410/* hop level */
1411#define PERF_MEM_HOPS_0 0x01 /* remote core, same node */
1412#define PERF_MEM_HOPS_1 0x02 /* remote node, same socket */
1413#define PERF_MEM_HOPS_2 0x03 /* remote socket, same board */
1414#define PERF_MEM_HOPS_3 0x04 /* remote board */
1415/* 5-7 available */
1416#define PERF_MEM_HOPS_SHIFT 43
1417
1418#define PERF_MEM_S(a, s) \
1419 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1420
1421/*
1422 * single taken branch record layout:
1423 *
1424 * from: source instruction (may not always be a branch insn)
1425 * to: branch target
1426 * mispred: branch target was mispredicted
1427 * predicted: branch target was predicted
1428 *
1429 * support for mispred, predicted is optional. In case it
1430 * is not supported mispred = predicted = 0.
1431 *
1432 * in_tx: running in a hardware transaction
1433 * abort: aborting a hardware transaction
1434 * cycles: cycles from last branch (or 0 if not supported)
1435 * type: branch type
1436 * spec: branch speculation info (or 0 if not supported)
1437 */
1438struct perf_branch_entry {
1439 __u64 from;
1440 __u64 to;
1441 __u64 mispred:1, /* target mispredicted */
1442 predicted:1,/* target predicted */
1443 in_tx:1, /* in transaction */
1444 abort:1, /* transaction abort */
1445 cycles:16, /* cycle count to last branch */
1446 type:4, /* branch type */
1447 spec:2, /* branch speculation info */
1448 new_type:4, /* additional branch type */
1449 priv:3, /* privilege level */
1450 reserved:31;
1451};
1452
1453/* Size of used info bits in struct perf_branch_entry */
1454#define PERF_BRANCH_ENTRY_INFO_BITS_MAX 33
1455
1456union perf_sample_weight {
1457 __u64 full;
1458#if defined(__LITTLE_ENDIAN_BITFIELD)
1459 struct {
1460 __u32 var1_dw;
1461 __u16 var2_w;
1462 __u16 var3_w;
1463 };
1464#elif defined(__BIG_ENDIAN_BITFIELD)
1465 struct {
1466 __u16 var3_w;
1467 __u16 var2_w;
1468 __u32 var1_dw;
1469 };
1470#else
1471#error "Unknown endianness"
1472#endif
1473};
1474
1475#endif /* _UAPI_LINUX_PERF_EVENT_H */