Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55/*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
67static inline unsigned long pte_index(unsigned long address)
68{
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70}
71
72#ifndef pmd_index
73static inline unsigned long pmd_index(unsigned long address)
74{
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76}
77#define pmd_index pmd_index
78#endif
79
80#ifndef pud_index
81static inline unsigned long pud_index(unsigned long address)
82{
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84}
85#define pud_index pud_index
86#endif
87
88#ifndef pgd_index
89/* Must be a compile-time constant, so implement it as a macro */
90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91#endif
92
93#ifndef kernel_pte_init
94static inline void kernel_pte_init(void *addr)
95{
96}
97#define kernel_pte_init kernel_pte_init
98#endif
99
100#ifndef pmd_init
101static inline void pmd_init(void *addr)
102{
103}
104#define pmd_init pmd_init
105#endif
106
107#ifndef pud_init
108static inline void pud_init(void *addr)
109{
110}
111#define pud_init pud_init
112#endif
113
114#ifndef pte_offset_kernel
115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116{
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118}
119#define pte_offset_kernel pte_offset_kernel
120#endif
121
122#ifdef CONFIG_HIGHPTE
123#define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125#define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128} while (0)
129#else
130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131{
132 return pte_offset_kernel(pmd, address);
133}
134static inline void pte_unmap(pte_t *pte)
135{
136 rcu_read_unlock();
137}
138#endif
139
140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141
142/* Find an entry in the second-level page table.. */
143#ifndef pmd_offset
144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145{
146 return pud_pgtable(*pud) + pmd_index(address);
147}
148#define pmd_offset pmd_offset
149#endif
150
151#ifndef pud_offset
152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153{
154 return p4d_pgtable(*p4d) + pud_index(address);
155}
156#define pud_offset pud_offset
157#endif
158
159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160{
161 return (pgd + pgd_index(address));
162};
163
164/*
165 * a shortcut to get a pgd_t in a given mm
166 */
167#ifndef pgd_offset
168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169#endif
170
171/*
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
174 */
175#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
176
177/*
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
183 */
184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185{
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187}
188
189static inline pmd_t *pmd_off_k(unsigned long va)
190{
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192}
193
194static inline pte_t *virt_to_kpte(unsigned long vaddr)
195{
196 pmd_t *pmd = pmd_off_k(vaddr);
197
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199}
200
201#ifndef pmd_young
202static inline int pmd_young(pmd_t pmd)
203{
204 return 0;
205}
206#endif
207
208#ifndef pmd_dirty
209static inline int pmd_dirty(pmd_t pmd)
210{
211 return 0;
212}
213#endif
214
215/*
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date.
226 *
227 * In the general case, no lock is guaranteed to be held between entry and exit
228 * of the lazy mode. So the implementation must assume preemption may be enabled
229 * and cpu migration is possible; it must take steps to be robust against this.
230 * (In practice, for user PTE updates, the appropriate page table lock(s) are
231 * held, but for kernel PTE updates, no lock is held). Nesting is not permitted
232 * and the mode cannot be used in interrupt context.
233 */
234#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
235#define arch_enter_lazy_mmu_mode() do {} while (0)
236#define arch_leave_lazy_mmu_mode() do {} while (0)
237#define arch_flush_lazy_mmu_mode() do {} while (0)
238#endif
239
240#ifndef pte_batch_hint
241/**
242 * pte_batch_hint - Number of pages that can be added to batch without scanning.
243 * @ptep: Page table pointer for the entry.
244 * @pte: Page table entry.
245 *
246 * Some architectures know that a set of contiguous ptes all map the same
247 * contiguous memory with the same permissions. In this case, it can provide a
248 * hint to aid pte batching without the core code needing to scan every pte.
249 *
250 * An architecture implementation may ignore the PTE accessed state. Further,
251 * the dirty state must apply atomically to all the PTEs described by the hint.
252 *
253 * May be overridden by the architecture, else pte_batch_hint is always 1.
254 */
255static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
256{
257 return 1;
258}
259#endif
260
261#ifndef pte_advance_pfn
262static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
263{
264 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
265}
266#endif
267
268#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
269
270#ifndef set_ptes
271/**
272 * set_ptes - Map consecutive pages to a contiguous range of addresses.
273 * @mm: Address space to map the pages into.
274 * @addr: Address to map the first page at.
275 * @ptep: Page table pointer for the first entry.
276 * @pte: Page table entry for the first page.
277 * @nr: Number of pages to map.
278 *
279 * When nr==1, initial state of pte may be present or not present, and new state
280 * may be present or not present. When nr>1, initial state of all ptes must be
281 * not present, and new state must be present.
282 *
283 * May be overridden by the architecture, or the architecture can define
284 * set_pte() and PFN_PTE_SHIFT.
285 *
286 * Context: The caller holds the page table lock. The pages all belong
287 * to the same folio. The PTEs are all in the same PMD.
288 */
289static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
290 pte_t *ptep, pte_t pte, unsigned int nr)
291{
292 page_table_check_ptes_set(mm, ptep, pte, nr);
293
294 for (;;) {
295 set_pte(ptep, pte);
296 if (--nr == 0)
297 break;
298 ptep++;
299 pte = pte_next_pfn(pte);
300 }
301}
302#endif
303#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
304
305#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
306extern int ptep_set_access_flags(struct vm_area_struct *vma,
307 unsigned long address, pte_t *ptep,
308 pte_t entry, int dirty);
309#endif
310
311#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
313extern int pmdp_set_access_flags(struct vm_area_struct *vma,
314 unsigned long address, pmd_t *pmdp,
315 pmd_t entry, int dirty);
316extern int pudp_set_access_flags(struct vm_area_struct *vma,
317 unsigned long address, pud_t *pudp,
318 pud_t entry, int dirty);
319#else
320static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
321 unsigned long address, pmd_t *pmdp,
322 pmd_t entry, int dirty)
323{
324 BUILD_BUG();
325 return 0;
326}
327static inline int pudp_set_access_flags(struct vm_area_struct *vma,
328 unsigned long address, pud_t *pudp,
329 pud_t entry, int dirty)
330{
331 BUILD_BUG();
332 return 0;
333}
334#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
335#endif
336
337#ifndef ptep_get
338static inline pte_t ptep_get(pte_t *ptep)
339{
340 return READ_ONCE(*ptep);
341}
342#endif
343
344#ifndef pmdp_get
345static inline pmd_t pmdp_get(pmd_t *pmdp)
346{
347 return READ_ONCE(*pmdp);
348}
349#endif
350
351#ifndef pudp_get
352static inline pud_t pudp_get(pud_t *pudp)
353{
354 return READ_ONCE(*pudp);
355}
356#endif
357
358#ifndef p4dp_get
359static inline p4d_t p4dp_get(p4d_t *p4dp)
360{
361 return READ_ONCE(*p4dp);
362}
363#endif
364
365#ifndef pgdp_get
366static inline pgd_t pgdp_get(pgd_t *pgdp)
367{
368 return READ_ONCE(*pgdp);
369}
370#endif
371
372#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
373static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
374 unsigned long address,
375 pte_t *ptep)
376{
377 pte_t pte = ptep_get(ptep);
378 int r = 1;
379 if (!pte_young(pte))
380 r = 0;
381 else
382 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
383 return r;
384}
385#endif
386
387#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
388#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
389static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
390 unsigned long address,
391 pmd_t *pmdp)
392{
393 pmd_t pmd = *pmdp;
394 int r = 1;
395 if (!pmd_young(pmd))
396 r = 0;
397 else
398 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
399 return r;
400}
401#else
402static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
403 unsigned long address,
404 pmd_t *pmdp)
405{
406 BUILD_BUG();
407 return 0;
408}
409#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
410#endif
411
412#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
413int ptep_clear_flush_young(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep);
415#endif
416
417#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
419extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
420 unsigned long address, pmd_t *pmdp);
421#else
422/*
423 * Despite relevant to THP only, this API is called from generic rmap code
424 * under PageTransHuge(), hence needs a dummy implementation for !THP
425 */
426static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
427 unsigned long address, pmd_t *pmdp)
428{
429 BUILD_BUG();
430 return 0;
431}
432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
433#endif
434
435#ifndef arch_has_hw_nonleaf_pmd_young
436/*
437 * Return whether the accessed bit in non-leaf PMD entries is supported on the
438 * local CPU.
439 */
440static inline bool arch_has_hw_nonleaf_pmd_young(void)
441{
442 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
443}
444#endif
445
446#ifndef arch_has_hw_pte_young
447/*
448 * Return whether the accessed bit is supported on the local CPU.
449 *
450 * This stub assumes accessing through an old PTE triggers a page fault.
451 * Architectures that automatically set the access bit should overwrite it.
452 */
453static inline bool arch_has_hw_pte_young(void)
454{
455 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
456}
457#endif
458
459#ifndef arch_check_zapped_pte
460static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
461 pte_t pte)
462{
463}
464#endif
465
466#ifndef arch_check_zapped_pmd
467static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
468 pmd_t pmd)
469{
470}
471#endif
472
473#ifndef arch_check_zapped_pud
474static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
475{
476}
477#endif
478
479#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
480static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
481 unsigned long address,
482 pte_t *ptep)
483{
484 pte_t pte = ptep_get(ptep);
485 pte_clear(mm, address, ptep);
486 page_table_check_pte_clear(mm, pte);
487 return pte;
488}
489#endif
490
491#ifndef clear_young_dirty_ptes
492/**
493 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
494 * same folio as old/clean.
495 * @mm: Address space the pages are mapped into.
496 * @addr: Address the first page is mapped at.
497 * @ptep: Page table pointer for the first entry.
498 * @nr: Number of entries to mark old/clean.
499 * @flags: Flags to modify the PTE batch semantics.
500 *
501 * May be overridden by the architecture; otherwise, implemented by
502 * get_and_clear/modify/set for each pte in the range.
503 *
504 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
505 * some PTEs might be write-protected.
506 *
507 * Context: The caller holds the page table lock. The PTEs map consecutive
508 * pages that belong to the same folio. The PTEs are all in the same PMD.
509 */
510static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
511 unsigned long addr, pte_t *ptep,
512 unsigned int nr, cydp_t flags)
513{
514 pte_t pte;
515
516 for (;;) {
517 if (flags == CYDP_CLEAR_YOUNG)
518 ptep_test_and_clear_young(vma, addr, ptep);
519 else {
520 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
521 if (flags & CYDP_CLEAR_YOUNG)
522 pte = pte_mkold(pte);
523 if (flags & CYDP_CLEAR_DIRTY)
524 pte = pte_mkclean(pte);
525 set_pte_at(vma->vm_mm, addr, ptep, pte);
526 }
527 if (--nr == 0)
528 break;
529 ptep++;
530 addr += PAGE_SIZE;
531 }
532}
533#endif
534
535static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
536 pte_t *ptep)
537{
538 pte_t pte = ptep_get(ptep);
539
540 pte_clear(mm, addr, ptep);
541 /*
542 * No need for ptep_get_and_clear(): page table check doesn't care about
543 * any bits that could have been set by HW concurrently.
544 */
545 page_table_check_pte_clear(mm, pte);
546}
547
548#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
549/*
550 * For walking the pagetables without holding any locks. Some architectures
551 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
552 * instructions. We are guaranteed that a PTE will only either go from not
553 * present to present, or present to not present -- it will not switch to a
554 * completely different present page without a TLB flush inbetween; which we
555 * are blocking by holding interrupts off.
556 *
557 * Setting ptes from not present to present goes:
558 *
559 * ptep->pte_high = h;
560 * smp_wmb();
561 * ptep->pte_low = l;
562 *
563 * And present to not present goes:
564 *
565 * ptep->pte_low = 0;
566 * smp_wmb();
567 * ptep->pte_high = 0;
568 *
569 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
570 * We load pte_high *after* loading pte_low, which ensures we don't see an older
571 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
572 * picked up a changed pte high. We might have gotten rubbish values from
573 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
574 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
575 * operates on present ptes we're safe.
576 */
577static inline pte_t ptep_get_lockless(pte_t *ptep)
578{
579 pte_t pte;
580
581 do {
582 pte.pte_low = ptep->pte_low;
583 smp_rmb();
584 pte.pte_high = ptep->pte_high;
585 smp_rmb();
586 } while (unlikely(pte.pte_low != ptep->pte_low));
587
588 return pte;
589}
590#define ptep_get_lockless ptep_get_lockless
591
592#if CONFIG_PGTABLE_LEVELS > 2
593static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
594{
595 pmd_t pmd;
596
597 do {
598 pmd.pmd_low = pmdp->pmd_low;
599 smp_rmb();
600 pmd.pmd_high = pmdp->pmd_high;
601 smp_rmb();
602 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
603
604 return pmd;
605}
606#define pmdp_get_lockless pmdp_get_lockless
607#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
608#endif /* CONFIG_PGTABLE_LEVELS > 2 */
609#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
610
611/*
612 * We require that the PTE can be read atomically.
613 */
614#ifndef ptep_get_lockless
615static inline pte_t ptep_get_lockless(pte_t *ptep)
616{
617 return ptep_get(ptep);
618}
619#endif
620
621#ifndef pmdp_get_lockless
622static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
623{
624 return pmdp_get(pmdp);
625}
626static inline void pmdp_get_lockless_sync(void)
627{
628}
629#endif
630
631#ifdef CONFIG_TRANSPARENT_HUGEPAGE
632#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
633static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
634 unsigned long address,
635 pmd_t *pmdp)
636{
637 pmd_t pmd = *pmdp;
638
639 pmd_clear(pmdp);
640 page_table_check_pmd_clear(mm, pmd);
641
642 return pmd;
643}
644#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
645#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
646static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
647 unsigned long address,
648 pud_t *pudp)
649{
650 pud_t pud = *pudp;
651
652 pud_clear(pudp);
653 page_table_check_pud_clear(mm, pud);
654
655 return pud;
656}
657#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
658#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
659
660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
661#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
662static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
663 unsigned long address, pmd_t *pmdp,
664 int full)
665{
666 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
667}
668#endif
669
670#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
671static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
672 unsigned long address, pud_t *pudp,
673 int full)
674{
675 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
676}
677#endif
678#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
679
680#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
681static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
682 unsigned long address, pte_t *ptep,
683 int full)
684{
685 return ptep_get_and_clear(mm, address, ptep);
686}
687#endif
688
689#ifndef get_and_clear_full_ptes
690/**
691 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
692 * the same folio, collecting dirty/accessed bits.
693 * @mm: Address space the pages are mapped into.
694 * @addr: Address the first page is mapped at.
695 * @ptep: Page table pointer for the first entry.
696 * @nr: Number of entries to clear.
697 * @full: Whether we are clearing a full mm.
698 *
699 * May be overridden by the architecture; otherwise, implemented as a simple
700 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
701 * returned PTE.
702 *
703 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
704 * some PTEs might be write-protected.
705 *
706 * Context: The caller holds the page table lock. The PTEs map consecutive
707 * pages that belong to the same folio. The PTEs are all in the same PMD.
708 */
709static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
710 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
711{
712 pte_t pte, tmp_pte;
713
714 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
715 while (--nr) {
716 ptep++;
717 addr += PAGE_SIZE;
718 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
719 if (pte_dirty(tmp_pte))
720 pte = pte_mkdirty(pte);
721 if (pte_young(tmp_pte))
722 pte = pte_mkyoung(pte);
723 }
724 return pte;
725}
726#endif
727
728#ifndef clear_full_ptes
729/**
730 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
731 * folio.
732 * @mm: Address space the pages are mapped into.
733 * @addr: Address the first page is mapped at.
734 * @ptep: Page table pointer for the first entry.
735 * @nr: Number of entries to clear.
736 * @full: Whether we are clearing a full mm.
737 *
738 * May be overridden by the architecture; otherwise, implemented as a simple
739 * loop over ptep_get_and_clear_full().
740 *
741 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
742 * some PTEs might be write-protected.
743 *
744 * Context: The caller holds the page table lock. The PTEs map consecutive
745 * pages that belong to the same folio. The PTEs are all in the same PMD.
746 */
747static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
748 pte_t *ptep, unsigned int nr, int full)
749{
750 for (;;) {
751 ptep_get_and_clear_full(mm, addr, ptep, full);
752 if (--nr == 0)
753 break;
754 ptep++;
755 addr += PAGE_SIZE;
756 }
757}
758#endif
759
760/*
761 * If two threads concurrently fault at the same page, the thread that
762 * won the race updates the PTE and its local TLB/Cache. The other thread
763 * gives up, simply does nothing, and continues; on architectures where
764 * software can update TLB, local TLB can be updated here to avoid next page
765 * fault. This function updates TLB only, do nothing with cache or others.
766 * It is the difference with function update_mmu_cache.
767 */
768#ifndef update_mmu_tlb_range
769static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
770 unsigned long address, pte_t *ptep, unsigned int nr)
771{
772}
773#endif
774
775static inline void update_mmu_tlb(struct vm_area_struct *vma,
776 unsigned long address, pte_t *ptep)
777{
778 update_mmu_tlb_range(vma, address, ptep, 1);
779}
780
781/*
782 * Some architectures may be able to avoid expensive synchronization
783 * primitives when modifications are made to PTE's which are already
784 * not present, or in the process of an address space destruction.
785 */
786#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
787static inline void pte_clear_not_present_full(struct mm_struct *mm,
788 unsigned long address,
789 pte_t *ptep,
790 int full)
791{
792 pte_clear(mm, address, ptep);
793}
794#endif
795
796#ifndef clear_not_present_full_ptes
797/**
798 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
799 * consecutive in the pgtable.
800 * @mm: Address space the ptes represent.
801 * @addr: Address of the first pte.
802 * @ptep: Page table pointer for the first entry.
803 * @nr: Number of entries to clear.
804 * @full: Whether we are clearing a full mm.
805 *
806 * May be overridden by the architecture; otherwise, implemented as a simple
807 * loop over pte_clear_not_present_full().
808 *
809 * Context: The caller holds the page table lock. The PTEs are all not present.
810 * The PTEs are all in the same PMD.
811 */
812static inline void clear_not_present_full_ptes(struct mm_struct *mm,
813 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
814{
815 for (;;) {
816 pte_clear_not_present_full(mm, addr, ptep, full);
817 if (--nr == 0)
818 break;
819 ptep++;
820 addr += PAGE_SIZE;
821 }
822}
823#endif
824
825#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
826extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
827 unsigned long address,
828 pte_t *ptep);
829#endif
830
831#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
832extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
833 unsigned long address,
834 pmd_t *pmdp);
835extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
836 unsigned long address,
837 pud_t *pudp);
838#endif
839
840#ifndef pte_mkwrite
841static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
842{
843 return pte_mkwrite_novma(pte);
844}
845#endif
846
847#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
848static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
849{
850 return pmd_mkwrite_novma(pmd);
851}
852#endif
853
854#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
855struct mm_struct;
856static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
857{
858 pte_t old_pte = ptep_get(ptep);
859 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
860}
861#endif
862
863#ifndef wrprotect_ptes
864/**
865 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
866 * folio.
867 * @mm: Address space the pages are mapped into.
868 * @addr: Address the first page is mapped at.
869 * @ptep: Page table pointer for the first entry.
870 * @nr: Number of entries to write-protect.
871 *
872 * May be overridden by the architecture; otherwise, implemented as a simple
873 * loop over ptep_set_wrprotect().
874 *
875 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
876 * some PTEs might be write-protected.
877 *
878 * Context: The caller holds the page table lock. The PTEs map consecutive
879 * pages that belong to the same folio. The PTEs are all in the same PMD.
880 */
881static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
882 pte_t *ptep, unsigned int nr)
883{
884 for (;;) {
885 ptep_set_wrprotect(mm, addr, ptep);
886 if (--nr == 0)
887 break;
888 ptep++;
889 addr += PAGE_SIZE;
890 }
891}
892#endif
893
894/*
895 * On some architectures hardware does not set page access bit when accessing
896 * memory page, it is responsibility of software setting this bit. It brings
897 * out extra page fault penalty to track page access bit. For optimization page
898 * access bit can be set during all page fault flow on these arches.
899 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
900 * where software maintains page access bit.
901 */
902#ifndef pte_sw_mkyoung
903static inline pte_t pte_sw_mkyoung(pte_t pte)
904{
905 return pte;
906}
907#define pte_sw_mkyoung pte_sw_mkyoung
908#endif
909
910#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
912static inline void pmdp_set_wrprotect(struct mm_struct *mm,
913 unsigned long address, pmd_t *pmdp)
914{
915 pmd_t old_pmd = *pmdp;
916 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
917}
918#else
919static inline void pmdp_set_wrprotect(struct mm_struct *mm,
920 unsigned long address, pmd_t *pmdp)
921{
922 BUILD_BUG();
923}
924#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
925#endif
926#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
927#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
928#ifdef CONFIG_TRANSPARENT_HUGEPAGE
929static inline void pudp_set_wrprotect(struct mm_struct *mm,
930 unsigned long address, pud_t *pudp)
931{
932 pud_t old_pud = *pudp;
933
934 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
935}
936#else
937static inline void pudp_set_wrprotect(struct mm_struct *mm,
938 unsigned long address, pud_t *pudp)
939{
940 BUILD_BUG();
941}
942#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
943#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
944#endif
945
946#ifndef pmdp_collapse_flush
947#ifdef CONFIG_TRANSPARENT_HUGEPAGE
948extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
949 unsigned long address, pmd_t *pmdp);
950#else
951static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
952 unsigned long address,
953 pmd_t *pmdp)
954{
955 BUILD_BUG();
956 return *pmdp;
957}
958#define pmdp_collapse_flush pmdp_collapse_flush
959#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
960#endif
961
962#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
963extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
964 pgtable_t pgtable);
965#endif
966
967#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
968extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
969#endif
970
971#ifndef arch_needs_pgtable_deposit
972#define arch_needs_pgtable_deposit() (false)
973#endif
974
975#ifdef CONFIG_TRANSPARENT_HUGEPAGE
976/*
977 * This is an implementation of pmdp_establish() that is only suitable for an
978 * architecture that doesn't have hardware dirty/accessed bits. In this case we
979 * can't race with CPU which sets these bits and non-atomic approach is fine.
980 */
981static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
982 unsigned long address, pmd_t *pmdp, pmd_t pmd)
983{
984 pmd_t old_pmd = *pmdp;
985 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
986 return old_pmd;
987}
988#endif
989
990#ifndef __HAVE_ARCH_PMDP_INVALIDATE
991extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
992 pmd_t *pmdp);
993#endif
994
995#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
996
997/*
998 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
999 * hugepage mapping in the page tables. This function is similar to
1000 * pmdp_invalidate(), but should only be used if the access and dirty bits would
1001 * not be cleared by the software in the new PMD value. The function ensures
1002 * that hardware changes of the access and dirty bits updates would not be lost.
1003 *
1004 * Doing so can allow in certain architectures to avoid a TLB flush in most
1005 * cases. Yet, another TLB flush might be necessary later if the PMD update
1006 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1007 * even when a TLB flush is needed because of the update, the caller may be able
1008 * to batch these TLB flushing operations, so fewer TLB flush operations are
1009 * needed.
1010 */
1011extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1012 unsigned long address, pmd_t *pmdp);
1013#endif
1014
1015#ifndef __HAVE_ARCH_PTE_SAME
1016static inline int pte_same(pte_t pte_a, pte_t pte_b)
1017{
1018 return pte_val(pte_a) == pte_val(pte_b);
1019}
1020#endif
1021
1022#ifndef __HAVE_ARCH_PTE_UNUSED
1023/*
1024 * Some architectures provide facilities to virtualization guests
1025 * so that they can flag allocated pages as unused. This allows the
1026 * host to transparently reclaim unused pages. This function returns
1027 * whether the pte's page is unused.
1028 */
1029static inline int pte_unused(pte_t pte)
1030{
1031 return 0;
1032}
1033#endif
1034
1035#ifndef pte_access_permitted
1036#define pte_access_permitted(pte, write) \
1037 (pte_present(pte) && (!(write) || pte_write(pte)))
1038#endif
1039
1040#ifndef pmd_access_permitted
1041#define pmd_access_permitted(pmd, write) \
1042 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1043#endif
1044
1045#ifndef pud_access_permitted
1046#define pud_access_permitted(pud, write) \
1047 (pud_present(pud) && (!(write) || pud_write(pud)))
1048#endif
1049
1050#ifndef p4d_access_permitted
1051#define p4d_access_permitted(p4d, write) \
1052 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1053#endif
1054
1055#ifndef pgd_access_permitted
1056#define pgd_access_permitted(pgd, write) \
1057 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1058#endif
1059
1060#ifndef __HAVE_ARCH_PMD_SAME
1061static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1062{
1063 return pmd_val(pmd_a) == pmd_val(pmd_b);
1064}
1065#endif
1066
1067#ifndef pud_same
1068static inline int pud_same(pud_t pud_a, pud_t pud_b)
1069{
1070 return pud_val(pud_a) == pud_val(pud_b);
1071}
1072#define pud_same pud_same
1073#endif
1074
1075#ifndef __HAVE_ARCH_P4D_SAME
1076static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1077{
1078 return p4d_val(p4d_a) == p4d_val(p4d_b);
1079}
1080#endif
1081
1082#ifndef __HAVE_ARCH_PGD_SAME
1083static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1084{
1085 return pgd_val(pgd_a) == pgd_val(pgd_b);
1086}
1087#endif
1088
1089#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1090static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1091 struct vm_area_struct *vma,
1092 unsigned long addr,
1093 pte_t pte, pte_t oldpte,
1094 int nr)
1095{
1096
1097}
1098#else
1099/*
1100 * Some architectures support metadata associated with a page. When a
1101 * page is being swapped out, this metadata must be saved so it can be
1102 * restored when the page is swapped back in. SPARC M7 and newer
1103 * processors support an ADI (Application Data Integrity) tag for the
1104 * page as metadata for the page. arch_do_swap_page() can restore this
1105 * metadata when a page is swapped back in.
1106 */
1107static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1108 struct vm_area_struct *vma,
1109 unsigned long addr,
1110 pte_t pte, pte_t oldpte,
1111 int nr)
1112{
1113 for (int i = 0; i < nr; i++) {
1114 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1115 pte_advance_pfn(pte, i),
1116 pte_advance_pfn(oldpte, i));
1117 }
1118}
1119#endif
1120
1121#ifndef __HAVE_ARCH_UNMAP_ONE
1122/*
1123 * Some architectures support metadata associated with a page. When a
1124 * page is being swapped out, this metadata must be saved so it can be
1125 * restored when the page is swapped back in. SPARC M7 and newer
1126 * processors support an ADI (Application Data Integrity) tag for the
1127 * page as metadata for the page. arch_unmap_one() can save this
1128 * metadata on a swap-out of a page.
1129 */
1130static inline int arch_unmap_one(struct mm_struct *mm,
1131 struct vm_area_struct *vma,
1132 unsigned long addr,
1133 pte_t orig_pte)
1134{
1135 return 0;
1136}
1137#endif
1138
1139/*
1140 * Allow architectures to preserve additional metadata associated with
1141 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1142 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1143 */
1144#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1145static inline int arch_prepare_to_swap(struct folio *folio)
1146{
1147 return 0;
1148}
1149#endif
1150
1151#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1152static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1153{
1154}
1155
1156static inline void arch_swap_invalidate_area(int type)
1157{
1158}
1159#endif
1160
1161#ifndef __HAVE_ARCH_SWAP_RESTORE
1162static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1163{
1164}
1165#endif
1166
1167#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1168#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1169#endif
1170
1171#ifndef __HAVE_ARCH_MOVE_PTE
1172#define move_pte(pte, old_addr, new_addr) (pte)
1173#endif
1174
1175#ifndef pte_accessible
1176# define pte_accessible(mm, pte) ((void)(pte), 1)
1177#endif
1178
1179#ifndef flush_tlb_fix_spurious_fault
1180#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1181#endif
1182
1183/*
1184 * When walking page tables, get the address of the next boundary,
1185 * or the end address of the range if that comes earlier. Although no
1186 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1187 */
1188
1189#define pgd_addr_end(addr, end) \
1190({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1191 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1192})
1193
1194#ifndef p4d_addr_end
1195#define p4d_addr_end(addr, end) \
1196({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1197 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1198})
1199#endif
1200
1201#ifndef pud_addr_end
1202#define pud_addr_end(addr, end) \
1203({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1204 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1205})
1206#endif
1207
1208#ifndef pmd_addr_end
1209#define pmd_addr_end(addr, end) \
1210({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1211 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1212})
1213#endif
1214
1215/*
1216 * When walking page tables, we usually want to skip any p?d_none entries;
1217 * and any p?d_bad entries - reporting the error before resetting to none.
1218 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1219 */
1220void pgd_clear_bad(pgd_t *);
1221
1222#ifndef __PAGETABLE_P4D_FOLDED
1223void p4d_clear_bad(p4d_t *);
1224#else
1225#define p4d_clear_bad(p4d) do { } while (0)
1226#endif
1227
1228#ifndef __PAGETABLE_PUD_FOLDED
1229void pud_clear_bad(pud_t *);
1230#else
1231#define pud_clear_bad(p4d) do { } while (0)
1232#endif
1233
1234void pmd_clear_bad(pmd_t *);
1235
1236static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1237{
1238 if (pgd_none(*pgd))
1239 return 1;
1240 if (unlikely(pgd_bad(*pgd))) {
1241 pgd_clear_bad(pgd);
1242 return 1;
1243 }
1244 return 0;
1245}
1246
1247static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1248{
1249 if (p4d_none(*p4d))
1250 return 1;
1251 if (unlikely(p4d_bad(*p4d))) {
1252 p4d_clear_bad(p4d);
1253 return 1;
1254 }
1255 return 0;
1256}
1257
1258static inline int pud_none_or_clear_bad(pud_t *pud)
1259{
1260 if (pud_none(*pud))
1261 return 1;
1262 if (unlikely(pud_bad(*pud))) {
1263 pud_clear_bad(pud);
1264 return 1;
1265 }
1266 return 0;
1267}
1268
1269static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1270{
1271 if (pmd_none(*pmd))
1272 return 1;
1273 if (unlikely(pmd_bad(*pmd))) {
1274 pmd_clear_bad(pmd);
1275 return 1;
1276 }
1277 return 0;
1278}
1279
1280static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1281 unsigned long addr,
1282 pte_t *ptep)
1283{
1284 /*
1285 * Get the current pte state, but zero it out to make it
1286 * non-present, preventing the hardware from asynchronously
1287 * updating it.
1288 */
1289 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1290}
1291
1292static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1293 unsigned long addr,
1294 pte_t *ptep, pte_t pte)
1295{
1296 /*
1297 * The pte is non-present, so there's no hardware state to
1298 * preserve.
1299 */
1300 set_pte_at(vma->vm_mm, addr, ptep, pte);
1301}
1302
1303#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1304/*
1305 * Start a pte protection read-modify-write transaction, which
1306 * protects against asynchronous hardware modifications to the pte.
1307 * The intention is not to prevent the hardware from making pte
1308 * updates, but to prevent any updates it may make from being lost.
1309 *
1310 * This does not protect against other software modifications of the
1311 * pte; the appropriate pte lock must be held over the transaction.
1312 *
1313 * Note that this interface is intended to be batchable, meaning that
1314 * ptep_modify_prot_commit may not actually update the pte, but merely
1315 * queue the update to be done at some later time. The update must be
1316 * actually committed before the pte lock is released, however.
1317 */
1318static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1319 unsigned long addr,
1320 pte_t *ptep)
1321{
1322 return __ptep_modify_prot_start(vma, addr, ptep);
1323}
1324
1325/*
1326 * Commit an update to a pte, leaving any hardware-controlled bits in
1327 * the PTE unmodified.
1328 */
1329static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1330 unsigned long addr,
1331 pte_t *ptep, pte_t old_pte, pte_t pte)
1332{
1333 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1334}
1335#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1336#endif /* CONFIG_MMU */
1337
1338/*
1339 * No-op macros that just return the current protection value. Defined here
1340 * because these macros can be used even if CONFIG_MMU is not defined.
1341 */
1342
1343#ifndef pgprot_nx
1344#define pgprot_nx(prot) (prot)
1345#endif
1346
1347#ifndef pgprot_noncached
1348#define pgprot_noncached(prot) (prot)
1349#endif
1350
1351#ifndef pgprot_writecombine
1352#define pgprot_writecombine pgprot_noncached
1353#endif
1354
1355#ifndef pgprot_writethrough
1356#define pgprot_writethrough pgprot_noncached
1357#endif
1358
1359#ifndef pgprot_device
1360#define pgprot_device pgprot_noncached
1361#endif
1362
1363#ifndef pgprot_mhp
1364#define pgprot_mhp(prot) (prot)
1365#endif
1366
1367#ifdef CONFIG_MMU
1368#ifndef pgprot_modify
1369#define pgprot_modify pgprot_modify
1370static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1371{
1372 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1373 newprot = pgprot_noncached(newprot);
1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1375 newprot = pgprot_writecombine(newprot);
1376 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1377 newprot = pgprot_device(newprot);
1378 return newprot;
1379}
1380#endif
1381#endif /* CONFIG_MMU */
1382
1383#ifndef pgprot_encrypted
1384#define pgprot_encrypted(prot) (prot)
1385#endif
1386
1387#ifndef pgprot_decrypted
1388#define pgprot_decrypted(prot) (prot)
1389#endif
1390
1391/*
1392 * A facility to provide batching of the reload of page tables and
1393 * other process state with the actual context switch code for
1394 * paravirtualized guests. By convention, only one of the batched
1395 * update (lazy) modes (CPU, MMU) should be active at any given time,
1396 * entry should never be nested, and entry and exits should always be
1397 * paired. This is for sanity of maintaining and reasoning about the
1398 * kernel code. In this case, the exit (end of the context switch) is
1399 * in architecture-specific code, and so doesn't need a generic
1400 * definition.
1401 */
1402#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1403#define arch_start_context_switch(prev) do {} while (0)
1404#endif
1405
1406#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1407#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1408static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1409{
1410 return pmd;
1411}
1412
1413static inline int pmd_swp_soft_dirty(pmd_t pmd)
1414{
1415 return 0;
1416}
1417
1418static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1419{
1420 return pmd;
1421}
1422#endif
1423#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1424static inline int pte_soft_dirty(pte_t pte)
1425{
1426 return 0;
1427}
1428
1429static inline int pmd_soft_dirty(pmd_t pmd)
1430{
1431 return 0;
1432}
1433
1434static inline pte_t pte_mksoft_dirty(pte_t pte)
1435{
1436 return pte;
1437}
1438
1439static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1440{
1441 return pmd;
1442}
1443
1444static inline pte_t pte_clear_soft_dirty(pte_t pte)
1445{
1446 return pte;
1447}
1448
1449static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1450{
1451 return pmd;
1452}
1453
1454static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1455{
1456 return pte;
1457}
1458
1459static inline int pte_swp_soft_dirty(pte_t pte)
1460{
1461 return 0;
1462}
1463
1464static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1465{
1466 return pte;
1467}
1468
1469static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1470{
1471 return pmd;
1472}
1473
1474static inline int pmd_swp_soft_dirty(pmd_t pmd)
1475{
1476 return 0;
1477}
1478
1479static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1480{
1481 return pmd;
1482}
1483#endif
1484
1485#ifndef __HAVE_PFNMAP_TRACKING
1486/*
1487 * Interfaces that can be used by architecture code to keep track of
1488 * memory type of pfn mappings specified by the remap_pfn_range,
1489 * vmf_insert_pfn.
1490 */
1491
1492/*
1493 * track_pfn_remap is called when a _new_ pfn mapping is being established
1494 * by remap_pfn_range() for physical range indicated by pfn and size.
1495 */
1496static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1497 unsigned long pfn, unsigned long addr,
1498 unsigned long size)
1499{
1500 return 0;
1501}
1502
1503/*
1504 * track_pfn_insert is called when a _new_ single pfn is established
1505 * by vmf_insert_pfn().
1506 */
1507static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1508 pfn_t pfn)
1509{
1510}
1511
1512/*
1513 * track_pfn_copy is called when a VM_PFNMAP VMA is about to get the page
1514 * tables copied during copy_page_range(). Will store the pfn to be
1515 * passed to untrack_pfn_copy() only if there is something to be untracked.
1516 * Callers should initialize the pfn to 0.
1517 */
1518static inline int track_pfn_copy(struct vm_area_struct *dst_vma,
1519 struct vm_area_struct *src_vma, unsigned long *pfn)
1520{
1521 return 0;
1522}
1523
1524/*
1525 * untrack_pfn_copy is called when a VM_PFNMAP VMA failed to copy during
1526 * copy_page_range(), but after track_pfn_copy() was already called. Can
1527 * be called even if track_pfn_copy() did not actually track anything:
1528 * handled internally.
1529 */
1530static inline void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1531 unsigned long pfn)
1532{
1533}
1534
1535/*
1536 * untrack_pfn is called while unmapping a pfnmap for a region.
1537 * untrack can be called for a specific region indicated by pfn and size or
1538 * can be for the entire vma (in which case pfn, size are zero).
1539 */
1540static inline void untrack_pfn(struct vm_area_struct *vma,
1541 unsigned long pfn, unsigned long size,
1542 bool mm_wr_locked)
1543{
1544}
1545
1546/*
1547 * untrack_pfn_clear is called in the following cases on a VM_PFNMAP VMA:
1548 *
1549 * 1) During mremap() on the src VMA after the page tables were moved.
1550 * 2) During fork() on the dst VMA, immediately after duplicating the src VMA.
1551 */
1552static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1553{
1554}
1555#else
1556extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1557 unsigned long pfn, unsigned long addr,
1558 unsigned long size);
1559extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1560 pfn_t pfn);
1561extern int track_pfn_copy(struct vm_area_struct *dst_vma,
1562 struct vm_area_struct *src_vma, unsigned long *pfn);
1563extern void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1564 unsigned long pfn);
1565extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1566 unsigned long size, bool mm_wr_locked);
1567extern void untrack_pfn_clear(struct vm_area_struct *vma);
1568#endif
1569
1570#ifdef CONFIG_MMU
1571#ifdef __HAVE_COLOR_ZERO_PAGE
1572static inline int is_zero_pfn(unsigned long pfn)
1573{
1574 extern unsigned long zero_pfn;
1575 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1576 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1577}
1578
1579#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1580
1581#else
1582static inline int is_zero_pfn(unsigned long pfn)
1583{
1584 extern unsigned long zero_pfn;
1585 return pfn == zero_pfn;
1586}
1587
1588static inline unsigned long my_zero_pfn(unsigned long addr)
1589{
1590 extern unsigned long zero_pfn;
1591 return zero_pfn;
1592}
1593#endif
1594#else
1595static inline int is_zero_pfn(unsigned long pfn)
1596{
1597 return 0;
1598}
1599
1600static inline unsigned long my_zero_pfn(unsigned long addr)
1601{
1602 return 0;
1603}
1604#endif /* CONFIG_MMU */
1605
1606#ifdef CONFIG_MMU
1607
1608#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1609static inline int pmd_trans_huge(pmd_t pmd)
1610{
1611 return 0;
1612}
1613#ifndef pmd_write
1614static inline int pmd_write(pmd_t pmd)
1615{
1616 BUG();
1617 return 0;
1618}
1619#endif /* pmd_write */
1620#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1621
1622#ifndef pud_write
1623static inline int pud_write(pud_t pud)
1624{
1625 BUG();
1626 return 0;
1627}
1628#endif /* pud_write */
1629
1630#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1631static inline int pmd_devmap(pmd_t pmd)
1632{
1633 return 0;
1634}
1635static inline int pud_devmap(pud_t pud)
1636{
1637 return 0;
1638}
1639static inline int pgd_devmap(pgd_t pgd)
1640{
1641 return 0;
1642}
1643#endif
1644
1645#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1646 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1647static inline int pud_trans_huge(pud_t pud)
1648{
1649 return 0;
1650}
1651#endif
1652
1653static inline int pud_trans_unstable(pud_t *pud)
1654{
1655#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1656 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1657 pud_t pudval = READ_ONCE(*pud);
1658
1659 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1660 return 1;
1661 if (unlikely(pud_bad(pudval))) {
1662 pud_clear_bad(pud);
1663 return 1;
1664 }
1665#endif
1666 return 0;
1667}
1668
1669#ifndef CONFIG_NUMA_BALANCING
1670/*
1671 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1672 * perfectly valid to indicate "no" in that case, which is why our default
1673 * implementation defaults to "always no".
1674 *
1675 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1676 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1677 * accessible VMAs.
1678 *
1679 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1680 * looking at the VMA accessibility is sufficient.
1681 */
1682static inline int pte_protnone(pte_t pte)
1683{
1684 return 0;
1685}
1686
1687static inline int pmd_protnone(pmd_t pmd)
1688{
1689 return 0;
1690}
1691#endif /* CONFIG_NUMA_BALANCING */
1692
1693#endif /* CONFIG_MMU */
1694
1695#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1696
1697#ifndef __PAGETABLE_P4D_FOLDED
1698int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1699void p4d_clear_huge(p4d_t *p4d);
1700#else
1701static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1702{
1703 return 0;
1704}
1705static inline void p4d_clear_huge(p4d_t *p4d) { }
1706#endif /* !__PAGETABLE_P4D_FOLDED */
1707
1708int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1709int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1710int pud_clear_huge(pud_t *pud);
1711int pmd_clear_huge(pmd_t *pmd);
1712int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1713int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1714int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1715#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1716static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1717{
1718 return 0;
1719}
1720static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1721{
1722 return 0;
1723}
1724static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1725{
1726 return 0;
1727}
1728static inline void p4d_clear_huge(p4d_t *p4d) { }
1729static inline int pud_clear_huge(pud_t *pud)
1730{
1731 return 0;
1732}
1733static inline int pmd_clear_huge(pmd_t *pmd)
1734{
1735 return 0;
1736}
1737static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1738{
1739 return 0;
1740}
1741static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1742{
1743 return 0;
1744}
1745static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1746{
1747 return 0;
1748}
1749#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1750
1751#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1752#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1753/*
1754 * ARCHes with special requirements for evicting THP backing TLB entries can
1755 * implement this. Otherwise also, it can help optimize normal TLB flush in
1756 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1757 * entire TLB if flush span is greater than a threshold, which will
1758 * likely be true for a single huge page. Thus a single THP flush will
1759 * invalidate the entire TLB which is not desirable.
1760 * e.g. see arch/arc: flush_pmd_tlb_range
1761 */
1762#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1763#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1764#else
1765#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1766#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1767#endif
1768#endif
1769
1770struct file;
1771int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1772 unsigned long size, pgprot_t *vma_prot);
1773
1774#ifndef CONFIG_X86_ESPFIX64
1775static inline void init_espfix_bsp(void) { }
1776#endif
1777
1778extern void __init pgtable_cache_init(void);
1779
1780#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1781static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1782{
1783 return true;
1784}
1785
1786static inline bool arch_has_pfn_modify_check(void)
1787{
1788 return false;
1789}
1790#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1791
1792/*
1793 * Architecture PAGE_KERNEL_* fallbacks
1794 *
1795 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1796 * because they really don't support them, or the port needs to be updated to
1797 * reflect the required functionality. Below are a set of relatively safe
1798 * fallbacks, as best effort, which we can count on in lieu of the architectures
1799 * not defining them on their own yet.
1800 */
1801
1802#ifndef PAGE_KERNEL_RO
1803# define PAGE_KERNEL_RO PAGE_KERNEL
1804#endif
1805
1806#ifndef PAGE_KERNEL_EXEC
1807# define PAGE_KERNEL_EXEC PAGE_KERNEL
1808#endif
1809
1810/*
1811 * Page Table Modification bits for pgtbl_mod_mask.
1812 *
1813 * These are used by the p?d_alloc_track*() set of functions an in the generic
1814 * vmalloc/ioremap code to track at which page-table levels entries have been
1815 * modified. Based on that the code can better decide when vmalloc and ioremap
1816 * mapping changes need to be synchronized to other page-tables in the system.
1817 */
1818#define __PGTBL_PGD_MODIFIED 0
1819#define __PGTBL_P4D_MODIFIED 1
1820#define __PGTBL_PUD_MODIFIED 2
1821#define __PGTBL_PMD_MODIFIED 3
1822#define __PGTBL_PTE_MODIFIED 4
1823
1824#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1825#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1826#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1827#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1828#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1829
1830/* Page-Table Modification Mask */
1831typedef unsigned int pgtbl_mod_mask;
1832
1833#endif /* !__ASSEMBLY__ */
1834
1835#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1836#ifdef CONFIG_PHYS_ADDR_T_64BIT
1837/*
1838 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1839 * with physical address space extension, but falls back to
1840 * BITS_PER_LONG otherwise.
1841 */
1842#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1843#else
1844#define MAX_POSSIBLE_PHYSMEM_BITS 32
1845#endif
1846#endif
1847
1848#ifndef has_transparent_hugepage
1849#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1850#endif
1851
1852#ifndef has_transparent_pud_hugepage
1853#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1854#endif
1855/*
1856 * On some architectures it depends on the mm if the p4d/pud or pmd
1857 * layer of the page table hierarchy is folded or not.
1858 */
1859#ifndef mm_p4d_folded
1860#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1861#endif
1862
1863#ifndef mm_pud_folded
1864#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1865#endif
1866
1867#ifndef mm_pmd_folded
1868#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1869#endif
1870
1871#ifndef p4d_offset_lockless
1872#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1873#endif
1874#ifndef pud_offset_lockless
1875#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1876#endif
1877#ifndef pmd_offset_lockless
1878#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1879#endif
1880
1881/*
1882 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1883 * mapping. It should work globally across all archs, without any
1884 * dependency on CONFIG_* options. For architectures that do not support
1885 * huge mappings on specific levels, below fallbacks will be used.
1886 *
1887 * A leaf pgtable entry should always imply the following:
1888 *
1889 * - It is a "present" entry. IOW, before using this API, please check it
1890 * with pXd_present() first. NOTE: it may not always mean the "present
1891 * bit" is set. For example, PROT_NONE entries are always "present".
1892 *
1893 * - It should _never_ be a swap entry of any type. Above "present" check
1894 * should have guarded this, but let's be crystal clear on this.
1895 *
1896 * - It should contain a huge PFN, which points to a huge page larger than
1897 * PAGE_SIZE of the platform. The PFN format isn't important here.
1898 *
1899 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1900 * pXd_devmap(), or hugetlb mappings).
1901 */
1902#ifndef pgd_leaf
1903#define pgd_leaf(x) false
1904#endif
1905#ifndef p4d_leaf
1906#define p4d_leaf(x) false
1907#endif
1908#ifndef pud_leaf
1909#define pud_leaf(x) false
1910#endif
1911#ifndef pmd_leaf
1912#define pmd_leaf(x) false
1913#endif
1914
1915#ifndef pgd_leaf_size
1916#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1917#endif
1918#ifndef p4d_leaf_size
1919#define p4d_leaf_size(x) P4D_SIZE
1920#endif
1921#ifndef pud_leaf_size
1922#define pud_leaf_size(x) PUD_SIZE
1923#endif
1924#ifndef pmd_leaf_size
1925#define pmd_leaf_size(x) PMD_SIZE
1926#endif
1927#ifndef __pte_leaf_size
1928#ifndef pte_leaf_size
1929#define pte_leaf_size(x) PAGE_SIZE
1930#endif
1931#define __pte_leaf_size(x,y) pte_leaf_size(y)
1932#endif
1933
1934/*
1935 * We always define pmd_pfn for all archs as it's used in lots of generic
1936 * code. Now it happens too for pud_pfn (and can happen for larger
1937 * mappings too in the future; we're not there yet). Instead of defining
1938 * it for all archs (like pmd_pfn), provide a fallback.
1939 *
1940 * Note that returning 0 here means any arch that didn't define this can
1941 * get severely wrong when it hits a real pud leaf. It's arch's
1942 * responsibility to properly define it when a huge pud is possible.
1943 */
1944#ifndef pud_pfn
1945#define pud_pfn(x) 0
1946#endif
1947
1948/*
1949 * Some architectures have MMUs that are configurable or selectable at boot
1950 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1951 * helps to have a static maximum value.
1952 */
1953
1954#ifndef MAX_PTRS_PER_PTE
1955#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1956#endif
1957
1958#ifndef MAX_PTRS_PER_PMD
1959#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1960#endif
1961
1962#ifndef MAX_PTRS_PER_PUD
1963#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1964#endif
1965
1966#ifndef MAX_PTRS_PER_P4D
1967#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1968#endif
1969
1970#ifndef pte_pgprot
1971#define pte_pgprot(x) ((pgprot_t) {0})
1972#endif
1973
1974#ifndef pmd_pgprot
1975#define pmd_pgprot(x) ((pgprot_t) {0})
1976#endif
1977
1978#ifndef pud_pgprot
1979#define pud_pgprot(x) ((pgprot_t) {0})
1980#endif
1981
1982/* description of effects of mapping type and prot in current implementation.
1983 * this is due to the limited x86 page protection hardware. The expected
1984 * behavior is in parens:
1985 *
1986 * map_type prot
1987 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1988 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1989 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1990 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1991 *
1992 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1993 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1994 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1995 *
1996 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1997 * MAP_PRIVATE (with Enhanced PAN supported):
1998 * r: (no) no
1999 * w: (no) no
2000 * x: (yes) yes
2001 */
2002#define DECLARE_VM_GET_PAGE_PROT \
2003pgprot_t vm_get_page_prot(unsigned long vm_flags) \
2004{ \
2005 return protection_map[vm_flags & \
2006 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
2007} \
2008EXPORT_SYMBOL(vm_get_page_prot);
2009
2010#endif /* _LINUX_PGTABLE_H */